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Abstract—With the emergence of edge computing paradigm,
many applications such as image recognition and augmented
reality require to perform machine learning (ML) and artifi-
cial intelligence (AI) tasks on edge devices. Most AI and ML
models are large and computational-heavy, whereas edge devices
are usually equipped with limited computational and storage
resources. Such models can be compressed and reduced for
deployment on edge devices, but they may lose their capability
and not perform well. Recent works used knowledge transfer
techniques to transfer information from a large network (termed
teacher) to a small one (termed student) in order to improve the
performance of the latter. This approach seems to be promising
for learning on edge devices, but a thorough investigation on its
effectiveness is lacking. This paper provides an extensive study
on the performance (in both accuracy and convergence speed)
of knowledge transfer, considering different student architectures
and different techniques for transferring knowledge from teacher
to student. The results show that the performance of KT
does vary by architectures and transfer techniques. A good
performance improvement is obtained by transferring knowledge
from both the intermediate layers and last layer of the teacher
to a shallower student. But other architectures and transfer
techniques do not fare so well and some of them even lead to
negative performance impact.

Index Terms—Deep neural networks, edge computing, cloud
computing, knowledge transfer

I. INTRODUCTION

Deep neural networks (DNNs) have achieved tremendous
accuracy improvements compared to conventional machine
learning techniques for many important tasks, such as image
classification and speech recognition. Edge applications are
adopting AI, specifically deep learning, to assist users in
a better and more intelligent way. For example, augmented
reality, face recognition, and intelligent personal assistants
require deep networks for complex classification and deci-
sion making. However, state-of-the-art deep learning models
typically require storing millions of parameters and need to
perform large amounts of operations, which involves hours or
even days of training using many CPUs and GPUs on large-
scale systems such as the cloud.

Such a cloud-only deep learning approach does not work
well when the network is not reliable or when the cloud is not
responsive enough to handle sudden load surge. At the same
time, the available computing and storage resources on modern
edge devices are not utilized to help the learning. Moreover,
there are also important benefits from performing learning on
edge devices: 1) Personalization of the models based on user-
specific behaviors and requirements can be more effective and

scalable by learning on the devices that users directly interact
with; 2) Responsiveness to changes in user behaviors and
environments can be better achieved by adapting the models
quickly and dynamically using the on-device resources; and 3)
Privacy of user-specific information learned by the models can
be better protected on a device owned by the user compared
to public resources shared by many.

Deploying the computational and memory intensive models
on edge devices such as mobile phones and smart cameras
is challenging, since such devices are based on System on
chip (SoC) architecture with limited resources designed to
fulfill requirements of embedded/mobile applications. To en-
able learning on such resource-constrained devices, several
different approaches were proposed. The knowledge transfer
(KT) approach is particularly interesting, which trains smaller
networks (termed students hereinafter) under the supervision
of the larger networks (termed teachers hereinafter) to improve
accuracy and speed.

There are potentially several advantages of this KT approach
compared to the others. First, it can help the student network
converge faster by utilizing the information coming from the
teacher network. Such information can help the optimization
phase of the student network by directing student’s parameters
into the same representations that the teacher network captures.
As a result, the student network can possibly approach an
accurate representation faster than an independent network
trained without the teacher’s supervision. Second, it can pos-
sibly improve the accuracy of the student network. KT allows
student models to arrive at better parameter values based on
the teacher model’s parameter values, which can deliver a
classification function with higher accuracy. Third, it can help
the student network become more general by preventing from
getting biased toward a certain set of data.

Prior works on KT [1]–[4] focused only on the performance
comparison between student and teacher models, but they
ignored the comparison between the student models trained
with and without KT. This comparison is important to un-
derstanding the effectiveness of the KT techniques. Moreover,
in terms of performance, the related works focused only on
the accuracy of the student models, but they ignored the con-
vergence time. Faster convergence can bring several benefits,
such as better response time and less power consumption. In
addition, each of the related works has only limited coverage
on student network architectures which are either shallower
or thinner compared to teacher models. The assumption that



a certain type of KT technique is applicable to all types of
architectures is not necessarily true. In order to generalize the
effectiveness of KT techniques, we believe that the behavior of
KT techniques on different architectures needs to be evaluated.

Our goal is to provide a thorough analysis of the effec-
tiveness of the existing KT techniques. We broadly classify
the existing KT techniques into three categories based on
the type of knowledge transferred from teacher networks to
student networks: 1) the hard logits of a network [2], which
are defined as the output of the last layer of the teacher network
before passing to the softmax activation function; 2) the soft
logits of a network [1], which are obtained by softening hard
logits with the help of temperature softmax variable and then
passing softened logits to the softmax activation function; and
3) the intermediate representations of a network (in addition
to the soft logits) [3], [4], which are the outputs of the middle
layers of the teacher network.

We study these KT techniques on three different types of
student-teacher architectures: 1) Type I, where the student
network is shallower than teacher network [1], [2], [4]. For
example, the student consists of six layers whereas the teacher
consists of 16 layers; 2) Type II utilizes a student network
thinner than the teacher network. For example, the student is
MobileNet [5] with the width multiplier set to 0.05, whereas
the teacher is the baseline MobileNet model with the width
multiplier of 1.0; and 3) Type III student network [3] is thinner
but deeper than teacher network where the student consists of
19 layers and the teacher consists of 5 layers.

We build the above models on TensorFlow [6], and evaluate
them using the CIFAR-10 and Caltech 101 datasets on a GPU-
based testbed. Overall our study shows some positive results
for KT, but existing KT techniques do not behave the same on
all architectures. In terms of accuracy, only the intermediate-
representations KT technique and Type I student architecture
achieve significant improvement (7.36%) for the dependent
student (trained with KT) over the independent student (trained
without KT). The other KT techniques do not perform well
on this architecture, and this particular technique also does not
perform well on the other architectures. In many cases, the use
of KT, in fact, reduces the accuracy of the dependent student
compared to an independent student and the drop can also
be significant (up to 60.43%). In terms of convergence time,
KT can achieve some level of speedup on all the architectures,
where the best result (16X) is still from using the intermediate-
representations KT technique on Type I architecture.

Based on our results, we conclude that KT does have poten-
tial to improve both accuracy and speed of a small network,
but it is sensitive to how the knowledge is transferred from
the teacher and the architecture of the student. In particular,
transferring knowledge through the intermediate layers (in
addition to the last layer) is the most promising KT technique.
Therefore, in our future work, we will conduct a more focused
study on the intermediate-representations KT technique in
order to understand its full potential.

The rest of the paper is organized as follows: Section II
introduces the background and related works; Sections III

and IV describe the existing KT techniques and possible
student network architectures; Sections V and VI present the
evaluation methodology and results; and finally, Section VII
concludes the paper.

II. BACKGROUND AND RELATED WORKS

DNNs require large volumes of input data to train the
models, while the training also requires large amounts of com-
putational resources in order to reach a good accuracy within
a reasonable time. Therefore, DNNs have been traditionally
hosted on large-scale systems such as cloud datacenters. The
learning-based applications (e.g., Siri, Google Now, Cortana,
Alexa) running on the edge devices have to send their requests
(e.g., image classification, voice recognition) to the cloud
where DNNs are used to perform inference and return the
results to the applications across the network. A significant
drawback of this cloud-based learning approach is that it relies
solely on the cloud resources for learning and cannot perform
well when the cloud is overloaded or the network is unreliable.
However, there are important reasons that we should exploit
the capabilities of edge devices for deep learning:

• Personalization: For many applications, custom models
tailored to individual users’ behaviors and/or require-
ments are important to deliver accurate results to the
users. While it is possible to train and run all the
personalized models on the cloud, it can be slow, costly,
and difficult to scale. Although existing works allow a
generic model to be downloaded to edge devices and
use the local resources to perform inference, they do not
allow such a model to be personalized on the devices
to meet the user’s specific needs. In comparison, it is
advantageous if the personalized models can be trained
in situ on the devices, while the user-specific training data
is collected by the local sensors and user interfaces.

• Responsiveness: Using edge devices to support deep
learning can provide better responsiveness than relying
solely on cloud resources. On one hand, a locally stored
model on an edge device can be readily used to perform
training and inference and respond to user requests using
local resources, regardless of the network connectivity
and the load on cloud system. On the other hand, by
using the local data and resources to continuously train
the model on the device, it can also quickly respond to
the dynamic changes in the user’s behaviors, situations,
and requirements.

• Privacy: For certain DNN applications (e.g., biometric
authentication), the privacy of the data and/or model
needs to be protected. Such privacy concerns can be more
effectively addressed if a user’s personal data and model
are stored and used only on the user’s own device, while
cloud resources can still be involved in training a generic
model to assist the learning on the devices.

Related works proposed several model compression tech-
niques in order to reduce a deep model to one that can be
trained on an edge device. These techniques can be broadly
classified into three categories as mentioned below.



• Weight Sharing: This technique reduces the memory oc-
cupied by the model by grouping connection weights and
replacing them with a single value, which leads to storage
of fewer parameters. K-means clustering technique was
used to group connections weights, assign an average
weight to each group, and replace all those weights with
the average weight value [7]. HashedNets model shares
weights by using a hash function to group weights into
hash buckets and then using a single value to replace all
of them [8].

• Quantization: The size of the model can be reduced
by shrinking the number of bits needed by the weights.
For example, the number of bits is reduced from 35 to
5 for every connection in the network in one related
work [7]. Blockwise structured sparsity technique can be
used to quantize the weights and activations, resulting in a
reduction of 5-6 bit from each single weight variable [9].
By reducing the model’s size, quantization helps reduce
both the model’s time and space costs.

• Pruning Techniques: The complexity of a model
can be reduced extensively using pruning techniques.
Magnitude-based pruning removes weights or connec-
tions which produces a negligible response. All the
weights that are below a particular threshold value can
be removed, resulting in the reduction of parameters
by 9X and 13X for AlexNet and VGG-16 models,
respectively [7]. The Optimal Brain Damage work re-
duces the number of weights based on the Hessian
loss function [10]. The data-driven pruning technique
removes redundant neurons which learn the same rep-
resentations [11].

The above-mentioned techniques all focus on reducing the
size of a model so that it can be deployed in a resource-
constrained environment such as an edge device. The key
difference between KT and these techniques is the existence
of a teacher model which provides supervision to the model
trained on the device and helps it achieve potentially better
accuracy and speed.

In the KT approach, input data are passed through both the
teacher, which is already trained and the student, which is
trained from scratch. At every iteration, the inference outputs
from the teacher are collected, which can come from the last
layer and possibly some other layers, and provided to the
student as a knowledge to help train the student. By doing
so, student model has the potential to learn the representation
that is already learned by the teacher model, despite being
small.

Although there are several related works on KT, none of
them provides a thorough study on the effectiveness of such
techniques, and we still do not have good answers to several
key questions: 1) Do all the KT techniques bring significant
improvement to the accuracy of the student network? 2) Can
we apply a single KT technique on any student architecture
with any training dataset and yet see consistent results? 3) Do
all the KT techniques improve the convergence speed of the
student model? Therefore, the goal of this paper is to provide

a good understanding of KT by finding answers to the above
questions through a comprehensive analysis of accuracy and
speed of different KT techniques on different architectures.
The rest of the paper details our methodology and results.

III. KNOWLEDGE TRANSFER TECHNIQUES

In this section, we broadly classify the existing KT tech-
niques into three categories, and explain the basic approach
and discuss the potential strengths of each of them.

A. Transferring Hard Logits

Hard-logits-based KT technique was introduced by Ba et
al. [2]. They first trained a deep teacher model to achieve
a good accuracy. Then they trained a shallow student model
on TIMIT and CIFAR-10 datasets to mimic the behavior of
the deep teacher model, by formulating a regression problem
which minimizes squared difference (RMSE) between the
logits (output of the last layer) of the deep teacher model and
the softmax output of the shallow student model, as shown in
Fig. 1(a). They used the logits of the teacher model directly
as opposed to probabilities produced by passing logits to the
softmax activation function, in order to learn the valuable
similarity structure over the data. Since these logits are not
softened and used directly to train student network, we name
this KT approach transferring hard logits.

In this approach, the student network is trained only on
the teacher network’s logits, unlike the other approaches men-
tioned in this section where the original labels of the dataset
are also used. Loss function of this approach is formulated as
follows: √√√√ n∑

i=1

(ŷs
i − zti)

2 (1)

where:
ŷs: predicted softmax output of student
zt: predicted hard logits of teacher
i: the ith feature map of teacher/student
n: the number of feature maps of teacher/student

This technique can be helpful for two major reasons. First,
if true labels have errors, the teacher model helps eliminate
some of them and helps the student learn the correct model.
Second, the original labels may depend on the features that
are not available as inputs to the student network. Thus, the
teacher model helps eliminate those labels that are dependent
on unavailable data and provide the labels which are dependent
only on the input features.

B. Transferring Soft Logits

Hinton et al. proposed a knowledge distillation approach [1]
to compress the knowledge of ensemble models into a student
model. They achieved this by introducing a temperature soft-
max variable (T) as follows:

qi = exp(zi/T )/
∑
j

exp(zj/T ) (2)



where,
zi: the output of ith neuron of teacher’s first fully con-
nected layer (i.e., hard logits)
T : the temperature softmax variable—parameter to con-
trol the relative importance of the soft targets provided
by the larger model. The higher the value of T, the softer
are the targets
qi: the output of ith neuron of teacher’s softmax layer
(soft logits)
j: the number of neurons at the teacher’s softmax layer

Hard logits of teacher and student models are divided by
temperature softmax variable (T) and passed through softmax
activation function to obtain softer probabilities (soft logits)
qi as mentioned in Eq. 2. The student model minimizes the
sum of two objective functions: (1) cross entropy loss between
the soft logits, and (2) cross entropy loss between the softmax
output and correct labels of the dataset as shown in Fig. 1(b).
We name this KT approach transferring soft logits because
the soft logits of the teacher network are used to train the
student network.

The loss function of this technique is mentioned in Eq. 3.
Interpretation of the loss function is as follow: the first term
indicates the student’s cross-entropy loss, and the second term
indicates the cross-entropy loss between the soft logits of
teacher and student. The student model minimizes the cross
entropy loss between the soft logits while minimizing the
overall loss as well. By doing so, the parameters of the
student’s model (weights and biases) tend to move towards the
parameters of the teacher’s model, which results in learning
the same representations as that of teacher’s.

J =

n∑
i=1

[ys
i logŷ

s
i + (1− ys

i )log(1− ŷs
i )]

+

n∑
i=1

[qti logq
s
i + (1− qti)log(1− qsi )]

(3)

where:
ys: true labels of the datasets
ŷs: equal to qs with a temperature softmax (T) value of
1
qs: predicted softened softmax output of student (soft
logits)
qt: predicted softened softmax output of teacher (soft
logits)

It is claimed that by using soft targets instead of hard targets,
more useful information can be carried which is not possible
if encoded with hard targets [1]. The other advantage of this
approach is that the student network can be trained with much
less data than before, since soft targets with high entropy
provide more information compared to hard targets and much
less variance in the gradient between training stages.

C. Transferring Intermediate Representations

Both above approaches use only the hard or soft logits of the
teacher model as knowledge to a student model. In addition to

Teacher StudentTeacher Student

(a) Hard-logits KT

Teacher Student

(b) Soft-logits KT

Teacher Student

(c) Intermediate-representations (Sin-
gle Layer) KT

(d) Intermediate-representations
(Multiple Layers) KT

Fig. 1: Different types of KT techniques

these logits, knowledge from the teacher’s intermediate layers
can also be used in the training phase. Therefore, we name this
type of approach as transferring intermediate representations.

Romero et al. proposed to use the output of the middle layer
of the teacher model as a hint to improve the performance
of the deep and thin student model [3]. Unlike shallow
models used in the previous two approaches, this approach
assumes that the student model is thin but deep. Thinner model
reduces the computational burden whereas deeper model takes
advantage of depth to reuse the features and are exponentially
more expressive than the shallow ones. By using the hints de-
rived from the intermediate representations, on the CIFAR-10
dataset, the student network, which is thinner but deeper than
the teacher network and contains ten times fewer parameters,
can outperform the teacher.

Knowledge transfer is achieved by training the student
model in two stages. In the first stage, the student model is
trained up to the guided layer (the 11th layer of the student
network) with the output of the teacher’s hint layer (the 2nd

layer of the teacher network) as target labels, as illustrated
in Fig. 1(c). During the training, student network updates the
weights of all the layers up to the guided layer by minimizing
the loss between the teacher’s hint layer and the student’s
guided layer. The reason for training up to the guided layer



is to obtain a good starting point in the parameter space for
training of the student model.

In the second stage, the student model continues training on
the pre-trained parameters obtained in the first stage. Further,
it updates the weights of the entire network by minimizing
the knowledge distillation (KD) loss. KD loss is defined as
the sum of two cross entropy loss functions as mentioned in
Eq 3.

J =

√√√√ n∑
i=1

(ys
ji − yt

ki)
2

+

n∑
i=1

[ys
i logŷ

s
i + (1− ys

i )log(1− ŷs
i )]

+

n∑
i=1

[qti logq
s
i + (1− qti)log(1− qsi )]

(4)

where:

ysji: output of student’s jth layer (j = 11)
ytki: output of teacher’s kth layer (k = 2)
ŷs: predicted softmax output of student
qs: predicted softened softmax output of student (soft
logits)
qt: predicted softened softmax output of teacher (soft
logits)

The loss function is interpreted as follows: the first term
is the RMSE loss between the outputs of teacher-student
intermediate layer pairs; the second term is the cross-entropy
loss of the student model; and the third term is the cross
entropy loss between the soft logits of the teacher and student
models.

Student model minimizes the RMSE loss while minimizing
the overall loss function. By doing so, parameters of the
student model (weights and biases) tend to move towards the
parameters of the teacher’s model. Thus, the student’s inter-
mediate layers’ outputs approximate the teacher’s intermediate
layers’ outputs. As a result, the student network has the poten-
tial to generalize and perform as well as the teacher network.
Romoreo et al. claimed that a student network with 10 times
fewer parameters than the teacher network could outperform
the teacher network with the help of knowledge transferred
through middle layer representations. As the intermediate layer
considered for KT in this approach is only the middle layer
of the teacher model, we name this specific KT technique as
transferring intermediate representations (single layer).

The technique of transferring intermediate representations
is extended further by Venkatesan et al. [4]. Here, instead
of considering only the middle layer pairs of student-teacher
models, they experimented with multiple intermediate layer
pairs, including softmax layers, as shown in Fig. 1(d). First,
they trained a teacher model on the dataset Caltech 256. Then
they used the representations from the middle layers including
the last layer of the pre-trained teacher model to train a student
model on Caltech 101. Overall loss function of this approach
is formulated as follows:

J =
∑

(j,k)∈M

√√√√ n∑
i=1

(ys
ji − yt

ki)
2

+

n∑
i=1

[ys
i logŷ

s
i + (1− ys

i )log(1− ŷs
i )]

+

n∑
i=1

[ŷt
i logŷ

s
i + (1− ŷt

i)log(1− ŷs
i )]

(5)

where:
M : the set of teacher-student layer pairs (jth layer of
student, kth layer of teacher)
ysji: output of student’s jth layer
ytki: output of teacher’s kth layer
ŷs: predicted softmax output of student
ŷt: predicted softmax output of teacher

This approach can reduce to the previous one when knowl-
edge from only one of the layers is utilized as opposed to
multiple layers [4]. Venkatesan et al. claimed that student
model when trained with multi-layer KT technique improved
the accuracy by 10% when compared to the student model
trained without any KT techniques. As this approach transfers
the representations from multiple layers of the teacher model,
we name this specific KT technique as transferring interme-
diate representations (multiple layers).

IV. ARCHITECTURES

In this study, we consider three different types of student-
teacher architectures proposed by the related works. In each
of the architectures, the student model is constructed in a way
that requires much fewer parameters than the teacher model.

• Type I: The teacher model is VGG16 [12] and the student
model is a network that is shorter than the teacher and
consists of much fewer parameters (3.2M vs. 8.5M) [4].
Venkatesan et al. [4] originally proposed this architecture
and applied intermediate-representations (multiple layers)
based KT on it.

• Type II: Howard et al. [5] originally proposed a
lightweight architecture named MobileNet for mobile and
embedded applications. We use this architecture and ap-
ply KT techniques on it. Here, teacher and student models
are MobileNets of different widths. We change the width
by tuning the width multiplier parameter present in the
MobileNet architecture. In our experiments, we set the
width multiplier of the teacher to 1.0 and that of the
student to 0.1 [5]. Unlike Type I, the student network
is thinner and of the same depth as that of the teacher.
In terms of the number of parameters, the student model
consists of 1.3M whereas the teacher model consists of
4.2M.

• Type III: The teacher model is Maxout model [13], and
the student model is FitNet4 [3]. In this case, the student
network is thinner and deeper compared to the teacher
network. The number of parameters in the student model
is 2.5M, which is about a quarter of the teacher model’s



(9M). Romero et al. [3] initially proposed this archi-
tecture and applied intermediate-representations (single
layer) based KT technique on it.

All the related works have only limited coverage on the
architecture types. Hard-logits, soft-logits, and intermediate-
representations (multiple layer) based KT techniques were
evaluated only on shallow models similar to Type I [1], [2], [4].
Intermediate-representations (single layer) based KT technique
was applied only on Type III. None of these works justified
why they evaluated their KT techniques only on specific
architectures. In order to drive general conclusions on the
effectiveness of KT techniques, we analyze the behavior of
KT techniques on different architectures.

V. METHODOLOGY

In this section, we discuss in detail our methodology for
evaluating the different KT techniques described in Section III.
All the models were built on TensorFlow [6] version r1.3, and
run on a Nvidia Tesla K40 GPU, hosted on a server equipped
with dual Intel Xeon E5-2630 processors and 64GB of main
memory (unless otherwise noted). Although the experiments
were run on a server, the relative performance of KT w.r.t. the
baselines should hold on edge devices.

A. Benchmark Datasets

• CIFAR-10 dataset consists of 60,000 (32X32) RGB
natural images from 10 different object classes with 6000
images per class [14]. There are 50,000 training images
and 10,000 test images.

• Caltech 101 dataset consists of 9145 RGB images
(224X224), belonging to 101 classes. Each class has 40
to 800 images. We divided the dataset into three parts:
the training set consists of 5853 images (64% of the total
dataset), the testing set consists of 1829 images (20%),
and the validation set consists of 1463 images (16%) [15].

CIFAR-10 and Caltech 101 data sets are augmented with
random left and right flipping during training. We also normal-
ize both datasets with zero mean and unit standard deviation
before feeding the data into the network. This preprocessing
adds synthetic data, which exposes the model to additional
variations without the cost of collecting more data and thereby
improves the models’ ability to generalize [3].

B. Training Methodology

In order to apply KT, we passed the same batch of input data
(Caltech 101/CIFAR-10) to the teacher and student models.
The teacher model did the inference on the input data and
predicted the output. The student model was trained by mini-
mizing the loss function formulated with the teacher’s output,
as described in Section III.

While applying intermediate-representations (single layer)
KT technique, we chose layer pairs as mentioned in Table
I. Similarly, Table II shows the mapping of layer pairs for
intermediate-representations (multiple layers) based KT tech-
nique.

TABLE I: Mapping of teacher→student single-layer pairs

Single Layer Mapping

Type I 7th→ 3rd

Type II 7th→ 7th

Type III 2nd→ 11th

TABLE II: Mapping of teacher→student multiple-layer pairs

Multiple Layers Mapping

Type I 2nd→ 1st, 3rd→2nd, 5th→ 3rd

Type II & Type III 1st→ 1st, 2nd→2nd, 3rd→ 3rd

While training Type III student network with KT techniques
on Caltech 101, we observed out-of-memory issue even for a
batch size of 1. Thus, for this setting only, we used a different
server equipped with four GPUs (one Nvidia TITAN Xp and
three Nvidia TITAN X) to train this student network.

We compared the performance of the student model that
was trained with the help of the teacher (named dependent
student model), with the following two baselines:

• Teacher model was used as a baseline to see how much
the student represents the state-of-the-art accuracy. The
teacher model provides supervision for the student model,
so it was trained ahead of the student model.

• Independent student model was trained independently
from scratch without applying any form of knowledge
transfer, and was used as a baseline to see how much
improvement the KT technique brought to the dependent
student.

Both the teacher and independent student models were
trained to minimize the cross-entropy loss formulated as
follows:

n∑
i=1

[yilogŷi + (1− ŷi)log(1− yi)] (6)

where:
y: True labels of the dataset
ŷ: Predicted softmax output of model

We used a batch size of 128 to train networks on CIFAR-
10 dataset and batch size of 25 on Caltech 101 dataset.
Initial learning rates were set to 10e−2. They were decayed
exponentially each epoch with a factor of 0.98. We trained all
the networks for 100K iterations and calculated validation and
test accuracy at each epoch. We determined the final accuracy
of the model as the test accuracy attained at the epoch with
the highest validation accuracy.

VI. EVALUATION RESULTS

We consider two important performance metrics:
• Classification accuracy is the proportion of correctly

predicted labels among all the predictions obtained by the
network. In Top-1 accuracy, predicted label is counted as
correct when the label with the highest probability equals
the target label.



TABLE III: Type I architecture

KT Techniques Caltech 101 CIFAR-10
Baseline (Teacher) 74.12% 77.71%
Baseline (Independent Student) 61.24% 73.31%
Hard Logits 61.27% 75.19%
Soft Logits 63.73% 75.01%
Intermediate Rep. (single layer) 68.60% 74.98%
Intermediate Rep. (multi-layer) 68.22% 74.47%

TABLE IV: Type II architecture

KT Techniques Caltech 101 CIFAR-10
Baseline (Teacher) 70.74% 75.64%
Baseline (Independent Student) 60.11% 47.72%
Hard Logits 29.89% 41.09%
Soft Logits 50.63% 29.08%
Intermediate Rep. (single layer) 29.68% 49.12%
Intermediate Rep. (multi-layer) 10.25% 39.09%

TABLE V: Type III architecture

KT Techniques CIFAR-10 Caltech 101
Baseline (Teacher) 68.08% 64.04%
Baseline (Independent Student) 73.47% 70.67%
Hard Logits 14.54% 10.24%
Soft Logits 75.32% 74.32%
Intermediate Rep. (single layer) 68.24% 68.35%
Intermediate Rep. (multi-layer) 72.56% 73.34%

TABLE VI: Numbers of iterations required by the independent
and dependent student models (trained with the respective best
KT techniques) to reach 90% of their best accuracy

Student Model Caltech 101 CIFAR-10
Type I Type III Type I Type III

Independent 17K 17K 1.1K 15K
Dependent 1K 6K 1K 7K
SpeedUp 1600% 183.33% 10% 114%

• Convergence time, which is the total training time re-
quired by the network to reach the smallest possible
validation loss. After convergence, loss value will not
decrease, but only fluctuates around a specific value. We
evaluate convergence time of the network as the total
number of iterations required to reach 90% of the Top-1
accuracy.

A. Accuracy

Table III shows the accuracy of the dependent student
and the baseline models using the Type I architecture. For
Caltech 101, the best result from the dependent student is from
intermediate-representations (single layer) based KT, which is
7.36% better than the independent student and only 5.52%
less than the teacher. The result from transferring multiple
intermediate layers’ representations is not the best one but is
still 6.98% better than the independent student. We believe
that the large improvement in the accuracy is because, in

addition to the knowledge from the last layer, the intermediate
layer(s) also contributes thereby giving adequate knowledge to
the dependent student.

For CIFAR-10, the best dependent student, from using
hard-logits-based KT, performs only 1.88% better than the
independent student. Since the student model is trained on the
CIFAR-10 dataset which has 40,000 images in the training set
as opposed to 5853 images in Caltech 101, we believe that
it gets sufficient supervision from the dataset, which makes
extra supervision from the teacher model ineffective. This
observation is also confirmed by the small difference among
the different KT techniques.

Table IV shows the accuracy of the dependent student and
baseline models using Type II architecture. For Caltech 101,
none of the KT techniques improves the accuracy of the
dependent student over the independent student. For CIFAR-
10, only the dependent student trained using the intermediate-
representations (single layer) based KT performs better than
the independent student, but only 1.4% better.

Table V shows the accuracy of the dependent student and
the baseline models using Type III architecture. As claimed in
Romero et al.’s work [3], the student model trained using their
proposed intermediate-representations (single layer) based KT
technique outperforms the teacher model on both Caltech
101 and CIFAR-10. However, we also noticed that 1) this
specific KT technique is not as good as the independent student
(5% lower for CIFAR-10, and 2% lower for Caltech 101);
2) it is also not the best KT technique—soft-logits-based
KT outperforms it by 6%; and 3) most surprisingly, even
the independent student outperforms the teacher. Therefore,
we believe that this improvement achieved by the dependent
student is due to its deeper network than the teacher, but not
because of the use of KT technique. Non-linearity generally
increases with the growing depth of a network, which results
in learning more complex representations and achieving higher
classification accuracy.

Finally, comparing the dependent student model’s results
across all the three architectures, we observe that 1) the highest
improvement is from using intermediate-representations KT on
Type I architecture; 2) Type II does not support KT well as
the accuracy drops for all the KT techniques; and 3) in many
cases, improper KT techniques in fact make the dependent
student’s accuracy worse than the independent student.

B. Convergence Time

Since the previous results show that KT techniques bring
positive improvement only on Type I and Type III architec-
tures, here we study the convergence time of only these two
architectures. For each architecture and dataset setting, we
consider only the best KT technique (as shown in the previous
results) and the baselines.

Table VI shows the number of iterations required by the
independent/dependent student (trained with the respective
best KT technique) to reach 90% of its best accuracy. Fig. 2
shows how their Top-1 accuracies evolve over time. Note that
each iteration of the dependent student does slightly more
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Fig. 2: Accuracy of dependent student and baseline models after every 5K iterations

work than the independent student, because the former requires
the transfer of the teacher’s output values. However, the time
spent on this transfer is insignificant compared to the student’s
training time (especially when the student runs on a resource-
constrained edge device). Therefore, here we use only the
number of iterations to measure the convergence speed.

The results show that some level of speedup is achieved on
all the architectures, whereas the best improvement (16X) still
comes from Type 1 architecture with the use of intermediate-
representations KT.

VII. CONCLUSIONS AND FUTURE WORK

This paper provides a comprehensive study of existing KT
techniques, which is important to understand the effective-
ness of the knowledge transfer approach for enabling deep
learning on resource-constrained edge devices. We considered
four different KT techniques and three different model ar-
chitectures and evaluated their performance in terms of both
accuracy and convergence time. Our results show that only
intermediate-representations KT technique and Type I model
achieve significant accuracy improvement (up to 7.36%) for
the dependent student model compared to the independent
student. The intermediate-representations KT technique is the
most promising one as it allows knowledge to be transferred
from the intermediate layers in addition to the last layer.
With respect to convergence time, all KT techniques help
the dependent student model converge faster with a speedup
ranging from 10% to 1600% compared to the independent
student model. The intermediate-representations KT technique
also achieves the best speedup in convergence time compared
to the other KT techniques.

Based on these results, in our future work, we will study
more effective edge-based deep learning along the following
possible directions. First, we will further investigate the use
of intermediate layers to enable more fine-grained transfer
of knowledge. Second, we will consider using the available
accelerators on edge devices to improve the speed of learning
on devices [16].
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