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ABSTRACT
Virtualization enables flexible application delivery and efficient

resource consolidation, and is pervasively used to build various

virtualized systems including public and private cloud computing

systems. Many applications can benefit from computing on virtual-

ized systems, including those that are time sensitive, but it is still

challenging for existing virtualized systems to deliver application-

desired timeliness. In particular, the lack of awareness between

VM host- and guest-level schedulers presents a serious hurdle to

achieving strong timeliness guarantees on virtualized systems. This

paper presents RTVirt, a new solution to time-sensitive computing

on virtualized systems through cross-layer scheduling. It allows the

two levels of schedulers on a virtualized system to communicate key

scheduling information and coordinate on the scheduling decisions.

It enables optimal multiprocessor schedulers to support virtualized

time-sensitive applications with strong timeliness guarantees and

efficient resource utilization. RTVirt is prototyped on a widely used

virtualization framework (Xen) and evaluated with diverse work-

loads. The results show that it can meet application deadlines (99%)

or tail latency requirements (99.9th percentile) nearly perfectly; it

can handle large numbers of applications and dynamic changes in

their timeliness requirements; and it substantially outperforms the

existing solutions in both timeliness and resource utilization.
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1 INTRODUCTION
System virtualization [4, 11, 26] allows applications to be conve-

niently deployed with customized execution environments using

virtual machines (VMs) and enables them to flexibly share various

types of resources from the physical host. It is a core technology

of public and private cloud computing systems [1, 9, 28] which

can elastically and cost-effectively provision resources on demand.

Many applications can benefit from computing on virtualized sys-

tems, including those that have different degrees of timeliness re-

quirements, e.g., a server that needs to stream videos at guaranteed

rates or an in-memory datastore that needs to deliver low-latency

responses to queries.

However, it is challenging for virtualized systems to deliver the

desired timeliness to hosted applications, because of several impor-

tant reasons. First, the high resource consolidation enabled by vir-

tualization creates complex and dynamic resource contention and

performance interference among the applications. Time-sensitive

applications are particularly vulnerable to variations of resource

availability, and are difficult to achieve the desired timeliness Qual-

ity of Service (QoS) on virtualized systems. Second, the resource

management on a virtualized system is typically optimized for fair

sharing and maximizing overall throughput, but not for timeliness

QoS. Consequently, when the resources are shared by multiple

VMs hosting applications with different time constraints, the sys-

tem cannot allocate the necessary resources in time to meet their

timeliness requirements. Finally, even if both the VM host and VM

guests employ real-time schedulers, the lack of awareness between

these two levels of schedulers in the traditional virtualization ar-

chitecture makes it challenging to provide timeliness guarantees.

The host-level VM scheduler is agnostic of the characteristics of

guest-level applications and cannot schedule a VM according to its

applications’ timeliness requirements; and the guest-level applica-

tion scheduler is unaware of the host-level decisions and cannot

schedule its applications properly when it is given time to run.

To address the above challenges, this paper presents RTVirt, a
new solution to time-sensitive computing on virtualized systems

through cross-layer scheduling. First, it provides a new virtual-

ization architecture that enables cross-layer communication and

coordination between the host-level VM scheduler and guest-level

application schedulers and supports the diverse timeliness require-

ments of virtualized applications. This cross-layer interface is built

upon paravirtualization (specifically a hypercall and shared mem-

ory) and supports low-latency and low-overhead interactions be-

tween the two levels of schedulers for co-scheduling time-sensitive

applications. Second, based on this cross-layer scheduling archi-

tecture, RTVirt enables optimal multiprocessor schedulers (e.g.,

DP-WRAP [16]) which can schedule any task set whose utiliza-

tion does not exceed processor capacity. As a result, RTVirt can
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achieve strong timeliness guarantees with efficient CPU bandwidth

utilization.

RTVirt supports time-sensitive applications that have stringent

deadline requirements (e.g., meeting 99% of the deadlines) but

can tolerate some deadline misses. For such applications, deadline

misses would not cause catastrophic failures but may lead to un-

desirable consequences (e.g., reduced service quality to customers

and loss of revenues for service providers). RTVirt also supports ap-

plications that do not really have deadlines but rather service-level

objectives (SLOs) specified in latencies (99.9th-percentile latency

target). In this paper, we refer to all of such applications as RTAs for

conciseness. RTVirt supports both uniprocessor and multiprocessor
VMs hosting time-sensitive applications with periodic or sporadic
requests and with dynamic arrivals and dynamically changing pa-

rameters. The design of RTVirt is generally applicable to different

virtualization frameworks, and it requires no change to applications.
RTVirt is prototyped on a widely used VM system (Xen [4]).

The paper presents a thorough evaluation of RTVirt. The results

show that it meets stringent timeliness requirements (meeting at

least 99% of all the deadlines or a 99.9th percentile latency target)

for virtualized applications in complex and dynamic settings. At

the same time, it makes efficient use of the resources and saves

up to 50.2% of CPU bandwidth compared to the state-of-the-art

works [30]. RTVirt also supports VMs with dynamic bandwidth

requirements hosting dynamic RTAs, which cannot be handled by

existing solutions [8, 12, 30]. RTVirt allows real-world applications

such as video streaming servers to deliver guaranteed streaming
rates andmemcached services to substantially cut down tail latencies
when they are run on VMs and under intensive resource contention.

Finally, the results show that RTVirt has good scalability and low

overhead (< 1%) when running 100 virtualized RTAs concurrently

on the same host.

Overall, compared to existing solutions, the advantages of RTVirt

come from 1) the cross-layer scheduling approach which enables

VM guest/host schedulers to collaboratively achieve strong timeli-

ness with good scalability and resource efficiency, and 2) its vari-

ous designs (including the paravirtualization-based interface, op-

timal multiprocessor scheduling, and dynamic RTA/VM admis-

sion/scheduling) for realizing the full potential of this approach in

supporting diverse time-sensitive applications.

The current focus of RTVirt is on cross-layer CPU scheduling,

which is a challenging problem to solve on its own. Therefore, in

this paper, we assume that the time-sensitive applications are CPU-

bound, and each computing task runs from start to completion

once it arrives. The applications can still perform other activities

such as I/Os; but because RTVirt cannot provide any timeliness

guarantee for such activities, the time that an application spends

on these activities is assumed to be insignificant compared to its

time on CPU. The applications need to declare their timeliness

requirements (e.g., required CPU bandwidth and deadline) when

they register with RTVirt, but these requirements are allowed to

change dynamically.

In the rest of the paper, Section 2 introduces the background

and motivations, Section 3 describes the design and implemen-

tation, Section 4 presents the evaluation, Section 5 examines the

related work, Section 6 discusses several open issues, and Section 7

concludes the paper.
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(b) The schedule of two RTAs in VM1

Figure 1: (a) The schedule parameters of three VMs (VM1:
(slice=5, period=15), VM2: (slice=5, period=10), and VM3:
(slice=5, period=30)). (b) The scheduling of two RTAs (RTA1:
(slice=1, period=15) and RTA2: (slice=4, period=15)) inside
VM1. The shaded portion shows when VM1 is scheduled
by the VMM, and the numbered boxes represent RTA1 and
RTA2. RTA1 has the same deadline as VM1 (arrows), and
RTA2’s deadlines are marked with circles. Every other dead-
line is missed for RTA2.

2 BACKGROUND AND MOTIVATIONS
System virtualization is implemented by the layer of software called

virtual machine monitor (VMM, a.k.a. hypervisor), which is respon-

sible for multiplexing physical resources among the VMs. There are

two major approaches to virtualization: full-virtualization [11, 26]

presents the same hardware interface to guest OSes as the physical

machines and supports unmodified OSes; paravirtualization [4]

presents a slightly modified hardware interface to a guest OS, with

features designed to reduce virtualization overheads, but at the

expense of requiring the guest OS to be modified to conform to the

paravirtualized interface.

While virtualization technologies have supported a wide va-

riety of workloads, their use in time-sensitive environments has

not yet flourished. A fundamental challenge in dealing with time-

sensitive applications comes from the fact that VMs are designed to

be functionally equivalent to physical machines, but are subject to

differences in timing and resource constraints. While many applica-

tions achieve acceptable service under a best-effort timing regime,

applications that are sensitive to delays that cause deadlines to be

missed, or jitter and deviations that lead to degraded QoS, may

perform poorly in virtualized environments—including real-time

simulation, multimedia streaming, and latency-critical services,

among others. Although existing real-time scheduling algorithms

can be employed by a VM host for VM scheduling and by a VM

guest for process scheduling, the lack of awareness between these

two levels makes it difficult to provide strong timeliness guarantees.

The host-level VM scheduler is agnostic of the characteristics of

guest-level applications and cannot schedule a VM according to its

applications’ timeliness requirements; and the guest-level applica-

tion scheduler is unaware of the host-level decisions and cannot

schedule its RTAs properly when it is given time to run.

We use a simple example to demonstrate this problem. Figure 1a

shows three VMs running periodic tasks and sharing a single CPU.

It shows the deadlines for each VM and when each VM is scheduled

and for how long by an EDF scheduler in the VMM. Based on their
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parameters (listed in the caption), the VMs use a total of 100% of

CPU bandwidth, so they are supposed to be schedulable (assuming

no scheduling overhead); but, in fact, the RTAs running inside

the VMs cannot always meet their deadlines. Figure 1b shows an

example of two RTAs running in VM1 and scheduled by an EDF

scheduler in the guest. VM1 is allocated enough time to schedule

both RTAs, i.e., 5/15 = 1/15 + 4/15. When VM1 is scheduled for

the first time, both RTAs have arrived and are able to use VM1’s

CPU time to meet their deadlines. RTA1 is scheduled before RTA2

because the former has an earlier deadline. However, when VM1 is

scheduled the second time, only RTA1 is ready to run; and when

RTA2 arrives, VM1’s time on the CPU has already passed so it

misses its deadline. This pattern repeats and RTA2 misses every

other deadline.

This example shows how having real-time schedulers at both

levels is not enough to guarantee that RTAs running inside VMs

will meet their deadlines. First, even though the VMM is aware of a

VM’s bandwidth requirement, it is still unaware that the RTAs with

distinct deadlines are being scheduled inside the VM, and it does

not schedule the VM at the times required by the RTAs. Second, the

guest-level scheduler is unaware of what points in time the VM will

be scheduled, because it does not know the scheduling requirements

of the other VMs or the scheduling policy used by the VMM-level

scheduler. Consequently, even if the VM is given the necessary

CPU bandwidth, and the guest-level EDF scheduler allocates time

to each RTA correctly, it cannot avoid missing deadlines.

One possible solution to this problem is to move all the guest-

level process scheduling decisions to the host-level scheduler so

that the latter manages the scheduling globally across the entire

system. This approach is appropriate for embedded systems which

host only a small number of VMs, but will be difficult to scale on

multiprocessor/multicore systems supporting many VMs. Another

approach is to design a static scheduling hierarchy by analyzing

the requirements of all the RTAs in the system. It however does

not work in dynamic environments (such as cloud systems) where

applications/VMs arrive/leave dynamically and their timeliness

requirements may also change over time. In comparison, RTVirt

leverages cross-layer scheduling to provide strong timeliness guar-

antees for diverse, dynamic applications with good scalability and

efficient resource utilization, as explained in the rest of the paper.

3 CROSS-LAYER REAL-TIME SCHEDULING
3.1 Architecture
The goal of this paper is to design a VM system that is capable

of supporting applications with stringent timeliness requirements.

The key challenge to realizing this goal on the traditional virtualiza-

tion architecture is the lack of awareness between a VM host and

its VM guests regarding their scheduling information and decisions.

In such a virtualized system, the host-level scheduler is agnostic of

the guest-level process scheduling, whereas a guest-level scheduler

also has no knowledge of the underlying host-level VM scheduling.

Although such transparency is key to virtualization, it presents a

serious obstacle to delivering strong timeliness guarantees to virtu-

alized time-sensitive applications. Despite the unawareness of each

other’s scheduling decisions, the VMM and VMs interact in complex

ways. Application-desired timeliness requirements cannot be met
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Figure 2: Overview of the architecture of RTVirt. RTAs reg-
ister, adjust parameters, and unregister with their OS in the
VM using an existing system call. The guest OS communi-
cates the VM’s scheduling parameters with the VMM on the
host using a new hypercall and sharedmemory. The two lev-
els of schedulers work cooperatively to enforce timeliness
guarantees for the virtualized RTAs.

even if both levels employ real-time capable resource schedulers,

as demonstrated by the motivating example in the previous section.

Therefore, a tradeoff needs to be made on such transparency in

order to meet application timeliness requirements on a virtualized

system.

RTVirt provides a new virtualization architecture, as illustrated

in Figure 2, which keeps the schedulers at the VM-host and -guest

levels while enabling cross-layer communication and coordination

between the two levels for providing strong timeliness guarantees.

On one hand, this architecture preserves the benefits of hierarchical

scheduling in virtualized systems, where the guest-level scheduler

addresses the timeliness of RTAs (and schedules other background

applications (BGAs)) in the VM and the host-level scheduler ad-

dresses the timeliness of the VMs in its physical host. Therefore,

it can scale to host a large number of VMs and applications. On

the other hand, the cross-layer scheduling architecture enables the

information sharing and scheduling cooperation between these two

levels of schedulers: a guest can inform the host on the timeliness

requirement (e.g., bandwidth needs and deadlines) for satisfying its

hosted applications, while a host can notify the guest its scheduling

decision (e.g., allocated CPU time), both of which are essential for

supporting different degrees of timeliness required by the virtual-

ized applications.

RTVirt is designed to support both periodic and sporadic work-

loads. Without loss of generality, we follow the typical RTA model

where once the task is activated, it requires a slice of CPU time

s over a period of time p in order to meet a deadline which is at

the end of the period. The difference between a periodic task and

a sporadic task is that the former is executed at known regular
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intervals, and the latter is executed in response to external events

with unknown release times. A periodic task is said to be arriving

at exactly every interval of time p, and thus it is activated p units

apart, whereas the release time of a sporadic task is not known a
priori but it arrives at a minimum of p units apart. For both types

of workloads, the RTA’s time slice and period can be used to sum-

marize its CPU bandwidth requirement, i.e., in order to meet its

deadlines, a portion of time equivalent to s/p of a CPU needs to be

allocated for that task.

Figure 2 shows the interfaces used at both the guest and host

levels. At the user space of a guest, applications use a system call
to register themselves as RTAs; modify their timeliness require-

ments; and unregister when they terminate or change to non-time-

sensitive. These events are first handled by the scheduler in the

guest OS which may later use a hypercall and shared memory to

communicate the change of the VM’s timeliness needs with the

VMM. The VMM is in charge of performing the schedulability tests

and then allocating CPU bandwidths to the VMs based on their

requests.

The specific algorithms used by RTVirt in the above operations

to perform admission control and scheduling are explained in the

rest of this section. This paravirtualization-based cooperative sched-

uling approach requires changes of existing VM interfaces which

currently do not allow a guest or host to influence the other layer’s

scheduling decisions. Similar to the motivation for existing paravir-

tualization interfaces [4], it exposes a certain aspect—scheduling—of
virtualization to guests, trading complete transparency for an impor-

tant improvement—improved timeliness of virtualized applications.

Note that while the discussions here use Xen and Linux as exam-

ples of hypervisors and guest OSes, the general design of RTVirt is

applicable to other systems which can be extended to implement

the hypercall and shared memory interface discussed above.

3.2 Guest-level Process Scheduling
At the guest level, we extend existing real-time schedulers [24]

in OSes to provide deadline-aware scheduling of the applications

and support the cross-layer cooperation with the host-level VM

scheduler. For example, on Linux-based guests, RTVirt leverages

the SCHED_DEADLINE scheduler class to perform EDF scheduling

of processes inside the guest. An application makes explicit sched-

uling requests to the guest OS through an existing system call (e.g.,

sched_setattr() on Linux). By using the existing system call, any

application can run on RTVirt without any change. The implemen-

tation of the system call and the guest OS scheduler are modified to

support RTVirt’s cross-layer scheduling. The guest-level scheduler

performs admission control. If there is bandwidth available in the

VM, it uses a new hypercall, sched_rtvirt(), to request the neces-

sary bandwidth from the VMM, and shares its specific scheduling

parameters with the VMM via shared memory.

Specifically, 1) when a new RTA registers, the guest scheduler
chooses a virtual CPU (VCPU) with enough bandwidth, but before

assigning the RTA to the candidate VCPU, it makes the sched_rtvirt()
hypercall with the INC_BW flag along with the VCPU ID and its

required bandwidth. Given these guest-level parameters, the host-

level scheduler performs admission control. If the request is granted,

the guest-level EDF scheduler then proceeds to assign the RTA to

the chosen VCPU, and schedule all the RTAs assigned on this VCPU

according to their deadlines; 2) when an existing RTA requests more
bandwidth, it is handled similarly to the previous case. But if the

RTA has to be rescheduled to a different VCPU (due to the lack of

bandwidth on the previous one), the guest makes the hypercall with

the INC_DEC_BW flag along with the IDs and updated bandwidth

requirements of the involved two VCPUs; 3) when an RTA reduces
the bandwidth requirement, the guest scheduler makes the hypercall

with the DEC_BW flag along with the ID and updated bandwidth

requirement of the VPCU assigned to this RTA; and 4) when an

RTA unregisters, RTVirt handles it similarly to 3).

Although the SCHED_DEADLINE scheduler class is based on the

global EDF (gEDF) scheduler algorithm, we modify it to perform

partitioned EDF (pEDF) scheduling [5]. The difference between

pEDF and gEDF is that in pEDF, tasks are pinned to their VCPUs,

and in gEDF tasks can migrate between VCPUs. Therefore, when

a new RTA is registered, or when an RTA requests a higher CPU

bandwidth than what is allocated to it, the guest OS uses pEDF to

find a VCPU with available bandwidth to satisfy the request, and

the task is pinned to this VCPU if it is found. Note that the guest can

reshuffle the placement of RTAs if there is enough bandwidth on the

VM to satisfy a request but the available bandwidth is fragmented

across the VCPUs. This scenario, however, only happens when

RTAs register or increase their current bandwidth requirements.

We use pEDF as the guest-level scheduler because by assigning

tasks statically to a specific VCPU, RTVirt can quickly derive the

scheduling parameters of the VCPU from the pinned tasks. It does

not sacrifice resource usage efficiency, as our VMM-level sched-

uler (explained in the next section) allows the VCPUs to migrate

among physical CPUs (PCPUs) and make full use of the system’s

available bandwidth. Note that when the number of VCPUs of a

VM is not enough for its RTAs, RTVirt uses CPU hotplug to add

additional VCPUs to the VM online and still support the RTAs trans-

parently. In comparison, using gEDF would introduce unnecessary

complexity in configuring the VCPUs’ bandwidths and overhead

from migrating process across VCPUs.

3.3 Host-level VM Scheduling
At the host level, we create a newVM scheduler to make optimal use

of multiprocessor/multicore resources and support the cross-layer

cooperation with the guest-level application schedulers. Specifi-

cally, our host-level scheduler is based on the DP-WRAP scheduling

algorithm which is an optimal multiprocessor/multicore scheduler

that schedules tasks using deadline partitioning (DP) [16]. By doing

DP, all tasks are scheduled using the same deadline, instead of using

each task’s deadline derived from its own period. These new global
deadlines are the set of deadlines contained in the union of all the

tasks’ deadlines. The CPU time between consecutive global dead-

lines (namely, global slice) is then partitioned among all tasks based

on their required bandwidth (slice over period). DP-WRAP is an op-

timal multiprocessor scheduler which can use all of the processors’

bandwidths for real-time scheduling and guarantee that the tasks

meet their deadlines as long as the sum of the tasks’ bandwidths

is equal or less than the total bandwidth of the processors [16].

It uses task migrations to enable full utilization of the system’s

bandwidth; but it performs these operations conservatively with an
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upper-bound ofm-1 (m is the number of PCPUs) migrations during

a global slice.

RTVirt follows the DP-WRAP algorithm to schedule VMs at the

host level according to the timeliness requirements of the guest-

level RTAs. Instead of requiring global knowledge of all RTAs and

scheduling them directly, the scheduler makes scheduling decisions

at the VCPU granularity and stores only the VCPU parameters

in the VMM. The goal of this design is to reduce the complexity

of host-level scheduling (including both processing and storage

overhead) and improve the scalability of RTVirt.

Specifically, the guest-level scheduler determines the scheduling

parameters of a VCPU based on the bandwidth needs of the RTAs

running on the VCPU. Each VCPU is configured with a budget and

period according to the slice and period parameters of its RTAs:

the budget is derived using the sum of the bandwidths of all the

RTAs, and the period is decided by the smallest period among the

RTAs’ periods. In practice, the budget of the VCPU should be set

slightly higher (e.g., 500µs more in our evaluation) than what the

RTAs need in order to compensate for scheduling overhead of both

the guest and VMM levels. The guest-level scheduler shares the

scheduling parameters of the VCPU with the host-level DP-WRAP

scheduler via the sched_rtvirt() hypercall when the assigned RTAs

register or change their timeliness needs.

Moreover, in order to meet the deadlines of RTAs running on a

VCPU, the host-level DP-WRAP scheduler also requires the next ear-

liest deadline among these RTAs. The guest-level scheduler shares

the next earliest deadline on every VCPU of the VM with the VMM

using shared memory. The host-level scheduler then decides the

next global deadline for the entire system based on the earliest

one considering the next earliest deadline of every VCPU from

all the VMs in the system. After getting the next global deadline,

the host-level scheduler splits the time on each PCPU between the

previous and next global deadlines, i.e., the global slice, among all

VCPUs currently assigned to this PCPU. Each VCPU is allocated a

partition of the global slice on its assigned PCPU proportionally to

its bandwidth need. In practice, RTVirt limits the smallest global

slice (e.g., 250µs in our evaluation) in order to bound the scheduling

overhead, similarly to how an OS scheduler limits the smallest time

slice for scheduling processes.

In this way, by considering the RTAs’ deadlines, we address the

problem illustrated in the motivational scenario (Section 2), which

is allocating CPU bandwidth to the VM when the tasks actually

need it, and not later after deadline misses occur. At the same time,

the information shared between the guests and the host is kept

at minimum—only the total bandwidth need and the next earliest

deadline for each VCPU, instead of all the scheduling parameters of

all the RTAs. This approach allows the system to be scalable when

handling large numbers of RTAswith diverse parameters. Moreover,

RTVirt leverages the cache coherence of commodity processors to

share scheduling information among the PCPUs without explicit

synchronization. The guest-level schedulers running on the PCPUs

save their VCPUs’ next earliest deadlines in memory; the host-level

scheduler uses one of the PCPUs to calculate the global deadline

from these VCPU deadlines (in O(loдn), n = the total number of

VCPUs)) and disseminates it to the other PCPUs also via shared

memory.

For periodic RTAs, the next earliest deadline of a VCPU can

be easily derived among all RTAs assigned on the VCPU, since

the time at which each RTA arrives is determined by its period.

For sporadic RTAs, however, the next earliest deadline cannot be

known beforehand because the RTAs may arrive at anytime. But it

is known that once a sporadic task arrives, a minimum period of p
needs to elapse before the next time the RTA is activated. Using this

knowledge, we configure the next earliest deadline value to handle

the worst-case scenario; that is the case in which the sporadic task

with the minimum period p is activated immediately p units of time

apart. This is the only way to guarantee that the sporadic RTA can

meet its deadline when it arrives.

3.4 Summary
Figure 2 shows a summary of all the levels involved in RTVirt-

based cross-layer scheduling. RTVirt delivers strong timeliness

guarantees transparently to virtualized applications based on the

new cross-guest-host scheduling architecture, without modifying

the existing user-space interfaces that applications use to request

real-time scheduling. It enables the guest-level pEDF scheduler

and the host-level DP-WRAP scheduler to cooperate on schedul-

ing decisions using existing paravirtualization mechanisms such

as hypercalls and shared memory, and collaboratively enforce the

timeliness guarantees for applications. As we demonstrate quanti-

tatively in the next section, by using cross-layer scheduling, RTVirt

is able to efficiently utilize practically all of the system’s available

CPU bandwidth for time-sensitive applications while providing

strong timeliness guarantees. After satisfying the requirements for

scheduling time-sensitive applications, the remaining bandwidth

of the system is allocated among the VMs proportionally, which

is used by the guests to satisfy the resource needs of their non-

time-sensitive processes; a certain amount of bandwidth can be

also reserved for such processes to avoid starvation.

4 EVALUATION
This section presents a comprehensive evaluation of RTVirt on its

ability to provide strong timeliness guarantees for diverse applica-

tions, make efficient use of CPU bandwidth, and support a large

number of dynamic RTAs and VMs.

4.1 Setup
The prototype of RTVirt was implemented on Xen [4], one of the

most widely used VM systems. In the experiments, both Dom0 and

DomUs ran paravirtualized Linux 4.6.0 kernel. This version does

not implement the steal_clock function, which is now available in

the latest 4.8 release, so we added it ourselves. This function allows

a guest to be aware of the “stolen time” which is the time used by

the VMM to run other guests when this one was preempted. The

hardware testbed consisted of a cluster of servers each with dual

eight-core Xeon 2.4GHz processors (with hyperthreading disabled),

64GB RAM, two 1TB HDDs, and a 400GB SSD. One node was used

to execute the RTA VMs, and the others were used to run the clients

for the sporadic RTA experiments. Dom0was allocated one full CPU,

so the remaining 15 processors were used for scheduling DomUs.

The experiments considered both uniprocessor and multiprocessor

DomUs.
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Category Group List of RTAs (Slice, Period)

H-Equiv (13,20) (25,40) (49,80) (19,100)

Harmonic H-Dec (7,10) (13,20) (18,40) (13,100)

H-Inc (5,10) (13,20) (31,40) (10,100)

NH-Equiv (13,20) (26,40) (39,60) (13,100)

Non-harmonic NH-Dec (23,30) (13,20) (5,10) (10,100)

NH-Inc (11,21) (26,43) (40,60) (13,100)

Table 1: Parameters (in ms) of periodic RTA groups

RTA RT-Xen VM RTVirt VM

Slice Period Slice Period Slice Period

23ms 30ms 4ms 5ms 23.5ms 30ms

13ms 20ms 3ms 4ms 13.5ms 20ms

5ms 10ms 2ms 3ms 5.5ms 10ms

10ms 100ms 1ms 9ms 10.5ms 100ms

BW: 2.02 CPUs 2.33 CPUs 2.11 CPUs

Table 2: Bandwidth requirements for the NH-Dec RTA
group, and the corresponding VM configurations
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Figure 3: Total CPU bandwidth requirement for each RTA
VM group when scheduled under RT-Xen and RTVirt

We used a variety of representative workloads including both

synthetic benchmarks and real-world applications to evaluate RTVirt.

We compared it with the state-of-the-art related work RT-Xen

2.0 [30], hereinafter referred to as RT-Xen. RTVirt is based on the

cross-layer scheduling architecture with pEDF at the guest level

and DP-WRAP at the host level, as discussed in the previous section.

On account of the scheduling overhead, a 500µs slack was added

to each VCPU’s bandwidth allocation, and the smallest global slice

was set to 250µs, both empirically determined based on the speed

of the hardware. For RT-Xen, we considered its best configuration

with pEDF at the guest level and gEDF with deferrable server at

the host level, which produces the most efficient VCPU bandwidth

allocation and lowest deadline miss ratio compared to its other

configurations [30].

4.2 Synthetic Periodic and Sporadic RTAs
The first group of experiments evaluates the deadline guarantees

and bandwidth requirements of RTVirt formultiprocessor/multicore

environments using synthetic applications.

Periodic RTAs.We ran periodic RTAs using a tool, rt-app [3]. It

takes the time slice and period as in put, and simulates a periodic

load which runs for a specified duration. Table 1 lists the RTAs and

their parameters considered in the experiments. The RTAs in each

group were run concurrently, one RTA per VM. Each group was

run for 100 seconds, and this experiment was repeated for each

framework.

Before discussing the results, we use the non-harmonic RTAs

(NH-Dec) listed in Table 2 to explain how we arrive to a CPU

bandwidth allocation for RTVirt and RT-Xen. For RTVirt, the CPU

bandwidth requirements of the VMs can be straightforwardly de-

termined based on the RTAs’ bandwidth requirements. For VMs

equipped with multiple VCPUs and running multiple RTAs, the

configuration process is also straightforward as described in Sec-

tion 3.3.

RT-Xen requires using the CARTS tool [21] to get the period and

slice of each VM based on compositional scheduling analysis (CSA)

according to the real-time requirements of the RTAs. CARTS also

requires the period of the VM as an input which is difficult to de-

termine as the VM’s bandwidth requirement changes as the period

input varies according to CSA. We try different period values and

choose the one that gives the smallest bandwidth requirement for

the VM. Then we use the Deterministic Multiprocessor Resource

periodic model (DMPR) to get the minimum number of CPUs re-

quired to schedule a group of VMs [30]. We have to follow this

process to configure all the RT-Xen experiments in this evaluation,

which is a nontrivial and time-consuming process.

Both RTVirt and RT-Xen met all the deadlines of all the periodic

RTAs, but the amounts of CPU bandwidths that they required are

quite different, as shown in Figure 3. The RT-Xen: Claimed bar in

the figure represents the amount of bandwidth that must be set

aside by RT-Xen in order to meet the RTA deadlines according

to CSA. It is much higher than the amount of bandwidth actually

allocated to the VMs, and the difference is wasted bandwidth which

cannot be used to run any new RTAs due to the pessimism of CSA.

For example, when running the H-Equiv group of RTAs, RT-Xen

requires that 2.283 CPUs be allocated and 3 CPUs claimed for the

VMs, which leaves 0.717 units of CPU bandwidth unusable for RTAs.

If we attempt to run another RTA, there is no guarantee from CSA

any more and deadlines are indeed missed in the experiments. This

is also the reason why we compare the CPU bandwidth allocation

instead of utilization here. Across these experiments, RT-Xen re-

quires on average 0.736 more CPU than what is needed by the

RTAs, and the worst case is the H-Dec group which has 0.807 CPU

wasted. This result is on par with RT-Xen’s own finding of 60%

wastage [30].

Unlike RT-Xen, RTVirt does not have bandwidth wastage, and

any remaining bandwidth that is not allocated to current VMs can

be used for new RTAs. As discussed in Section 3, the reasons for

this efficiency are two-fold. First, the configuration method used

to abstract the bandwidth needs of all RTAs on each VCPU allows

RTVirt to be as efficient as possible when allocating bandwidth
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Video FPS CPU Bandwidth Need RTA Parameters

24 44.5% s=19ms p=41ms

30 54.1% s=18ms p=33ms

48 84.5% s=17ms p=20ms

60 93.6% s=15ms p=16ms

Table 3: Timeliness characteristics of real-world video
streaming applications

to the VMs. Second, the information shared (e.g., the next earliest

deadline of each VCPU) through the cross-layer mechanisms allows

RTVirt to leverage the optimality of the DP-WRAP scheduler to

provide tight timeliness guarantees to every individual RTA running

inside each VM.

Overall, Figure 3 shows that VMs scheduled in RTVirt require

little additional bandwidth than what is required by the RTAs. Com-

pared to RT-Xen, RTVirt allocates on average 6.8% less bandwidth

for its VMs, and more importantly, in terms of bandwidth claimed

for scheduling RTAs, RTVirt uses on average 39.4% less bandwidth

than RT-Xen.

Sporadic RTAs. We configured a set of sporadic RTAs with the

same parameters as the above periodic tasks, as shown in Table 1,

and the VMs were configured the same as before too. The difference

is that instead of being launched at the start of every period, the

sporadic workload is activated when it receives an external signal

which is implemented by a TCP request from a client across the

network. The TCP client runs on a separate host, and it sends

requests to the RTA using randomly generated interarrival times

with a uniform distribution between 100ms to 1s. Whenever the

RTA receives a request, it triggers a one-time CPU-bound job that

runs for the duration of the time slice and has a deadline equal to

the period.

For each group in the table, we generated 100 sporadic requests

to each RTA. The results show that there were no deadline misses

for all the sporadic RTAs on both frameworks, but RTVirt requires

an average of 39.4% less bandwidth than RT-Xen’s VMs, as in the

periodic RTA experiments. Note that the potential network delays

to the requests are not considered here. In our experiments, we

observed that the 99.9th percentile delay introduced by the network

transfer is 19µs, which is indeed insignificant compared to the RTAs’

deadlines. Controlling the network delay is out of the scope of this

paper; please see Section 4.4 for more detailed discussion.

4.3 Video Streaming Server
RTVirt’s cross-layer scheduling approach and ease of configuration

allow it to support RTAs and VMs with dynamic arrivals/departures

and dynamically changing parameters, which is difficult to do with

existing solutions. For example, RT-Xen needs offline configura-

tion of VM interfaces, as discussed in the previous section, which

requires knowledge of the parameters of all RTAs in the system,

and a lengthy process to find out the optimal VM period. It also

lacks the necessary cross-layer features that RTVirt has for RTAs

to inform the VMM on changes to their timeliness requirements
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(d) CPU allocations for VM3’s RTAs running on each VCPU
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(e) CPU allocations for VM4’s RTAs running on each VCPU

Figure 4: CPU allocations for video streaming VMs

and for VMM to perform admission control online and adapt the

bandwidth allocation dynamically according to the changes.

In this section, we evaluate RTVirt’s support for dynamic RTAs.

Examples of applications that can benefit from this support include

media streaming applications whose CPU bandwidth requirement

changes over time depending on the required streaming quality.

We model such applications by configuring rt-app with parameters

obtained from a real-world streaming application VLC [25]. VLC

launches a transcoding thread to service each new streaming re-

quest, and depending on the frame rate used to encode the video,

the threads’ timeliness requirements vary. We use rt-app with dif-

ferent parameters to represent VLC’s transcoding threads. Table 3

shows the CPU bandwidth required for streaming a video using
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VLC with four different frame rates and the RTA configurations

that model the streaming application. The periods are obtained

from the frame rates used by the application (we round the periods

to the floor of the decimal), and the time slices are derived from the

observed CPU usage of the application.

In the experiment, we ran four VMs, eachwith four VCPUs to run

RTAs which were dynamically spawned to handle video streaming

requests with various frame rate requirements. The experiment

lasted for 10 minutes during which various numbers of RTAs started

and stopped running in each of the VMs. Each RTA was created

with random parameters chosen in the following way:

• Timeliness requirement of each RTA is randomly chosen from

one of the four configurations listed in Table 3.

• Start time and duration of each RTA are randomly assigned

(with uniform distributions) between the start and end of

the experiment and between 10 seconds and 6 minutes, re-

spectively.

• VCPUs are each randomly assigned one of the RTAs config-

ured as discussed above or a random interval of idle time

(uniformly distributed between 10 seconds and 6 minutes)

during which it is reserved 10% of bandwidth.

RTVirt supports these dynamics by allowing the RTAs to dynami-

cally register and unregister with the guest schedulers, using the

system call, as they enter and leave the system, respectively. It

also allows the VMs to dynamically change their CPU bandwidth

requests, using the hypercall, based on the needs of their hosted

RTAs. These changes can all be done quickly in the system as each

event requires only the invocation and handling of these system

call and hypercall (10us on average. See Section 4.5 for the overhead
analysis).

Figure 4a shows the CPU allocations to each VM throughout

the experiment. The rest of Figure 4 provides a detailed view of

CPU allocations to each VCPU of the VMs as RTAs with different

parameters were dynamically assigned to this VCPU over time. For

example, Figure 4b shows how three RTAs ran over the period of

10 minutes on VCPU1 of VM1. The first RTA is the one with (s=15,
p=16), which ran from the beginning of the test to the 540s mark,

followed by an RTA with (s=18, p=33) which ran until the 580s

mark, and finally an RTA with (s=18, p=33) which ran until the end

of the test.

RTVirt provided strong timeliness guarantees to these dynamic

RTAs—out of the 54 RTAs that were run throughout the test, only

five had deadline misses, and in the worst case the deadline miss

percentage was 0.136%. In the meantime, RTVirt saved substantial

amount of CPU bandwidth compared to the static approach which

allocates a fixed amount of bandwidth to each VM based on its peak

load.

4.4 Memcached
In this section, we present a series of experiments that showRTVirt’s

capabilities of supporting VMs hosting sporadic RTAs. We use

memcached to model real-world sporadic workloads with stringent

timeliness requirements [18]. Memcached is an in-memory caching

framework, which enables dynamic web applications to access re-

mote data quickly by allowing data that would normally be stored
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Figure 5: Latency distributions of memcached VMs contend-
ing with (a) non-RTA VMs and (b) periodic VMs emulating
video streaming servers

in external storage to be cached in memory. Memcached is a good

example of workloads that have sporadic activities—requests may

arrive at any time—and require timeliness guarantees—response

times should meet the desired service-level objectives (SLOs).

We used Mutilate [20] to generate a workload that represents

the query distributions at Facebook, following the methodology of

the related work on tail latencies [15]. The workload includes all

GET requests to 200B values uniformly at random from a set of 30B

keys, and the inter-arrival times follow a normal distribution with

an average rate of 100 queries per second. We ran Mutilate on a

separate physical server to issue requests to the memcached VM

across the network. Although the per-VM request rate is not high,

the latency target for the requests is set according to the request

rate. The experiment also confirms that it is not trivial to meet this

target when the memcached VM is under contention from other

RTA and non-RTA VMs. Each memcached VM was configured with

one VCPU, and multiple concurrent memcached VMs were used to

simulate sharded memcached servers.

We measured the tail latency of the requests, and focused on

the NIC-to-NIC latency, the same way as another related work

on tail latencies [17]. Specifically, we recorded the latency from
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Scheduler 90th 95th 99th 99.9th

Credit 113.3µs 114.4µs 120.6µs 129.1µs
RT-Xen 49.6µs 50.7µs 54.6µs 65.7µs
RTVirt 51.3µs 52.2µs 54.5µs 57.5µs

Table 4: Tail latency of memcached requests for the mem-
cached VM on a dedicated CPU using different schedulers

the time when the request arrives at Dom0 to the time when the

response is sent out to the network. We do not collect the latencies

reported by the client because these measurements include delay

introduced by the network which is outside the control of RTVirt.

The current focus of RTVirt is on addressing the challenges of

meeting the timeliness requirements of virtualized CPU-bound

workloads within the constraints of the VM host. By providing a

solution with strong guarantees in this area, we believe that RTVirt

can then be a valuable component in a more holistic solution that

addresses other aspects of time-sensitive computing on a virtualized

system such as network contention. We considered different levels

of NIC-to-NIC tail latencies from 99th percentile to 99.9th percentile,

and set the SLO to 500µs which also serves as the period for the

memcached RTA. In comparison, the 99.9th percentile network

latency (between the client and server) was only 19µs, which is

insignificant compared to the NIC-to-NIC latency.

In order to determine the CPU bandwidth need of the mem-

cached VM for RTVirt and RT-Xen (as well as Xen’s default Credit

scheduler [6] as an additional baseline), we first ran the VM on a

dedicated CPU, and measured the request processing latencies for

each of the frameworks (listed in Table 4). These results already

show that among the three schedulers, RTVirt is able to handle

most of the memcached requests using the least amount of time.

That is, in order to complete 99.9% of the memcached requests in

time the memcached VM needs a time slice of 58µs on RTVirt, 66µs
on RT-Xen, and 129µs on Credit.

Based on these results, we can derive the configuration for the

memcached VM on each framework. For Credit, we configured the

VM with a weight that is equivalent to 130µs/500µs = 26% of the

CPU bandwidth. The scheduler’s global timeslice parameter is set to

1ms, and its ratelimit parameter to 500µs. For RTVirt, the VM was

configured with (p=500µs, s=58µs). For RT-Xen, (p=500µs, s=66µs)
was used as the input to the CSA tool. The most CPU-efficient

configuration given by the tools is (p=14µs, s=2µs), but the period
is too small and results in the VM not runnable when configured

as such. Therefore, we have to use larger periods that allow the

VM to run, and the two most efficient configurations are (p=283µs,
s=66µs), hereinafter referred to as RT-Xen A, and (p=177µs, s=33µs),
hereinafter referred to as RT-Xen B.

Non-RTA Workload Contention. In the first experiment, we

ran the memcached VM using the previously mentioned configura-

tions, alongside 19 VMs containing non-RTA CPU-bound processes.

These 20 VMs shared two PCPUs. The bandwidth that was not

reserved by the memcached VM was distributed equally among the

19 background VMs.

The distribution of the memcached request latencies is shown

in Figure 5a. The results reveal that only RTVirt and RT-Xen A are

able to meet the SLO, with a 99.9th percentile latency of 379µs and
114µs, respectively; but RTVirt uses 50.2% less CPU bandwidth than

RT-Xen A. Note that RT-Xen achieves a lower tail latency here only

because of its overprovisioning of resources; in comparison, RTVirt

can meet the same SLO with a much lower resource usage. Credit
and RT-Xen B cannot meet the SLO, and have a 99.9th percentile

latency of 7.1ms and 8.4ms, respectively. Note that Credit does have

a low average latency, because it prioritizes the memcached VM

when it comes back from idle to service a new request; but Credit

is still undesirable due to its long tail latency.

Periodic Workload Contention. In the second experiment we

launched five memcached VMs alongside ten periodic VMs run-

ning emulated video streaming servers. The memcached VMs were

configured as before, but each with an independent workload gen-

erated by a separate Mutilate instance. Among the video streaming

VMs, three were configured to stream at a 24fps rate, three at 30fps,

two at 48fps, and two at 60fps using the parameters listed in Table 3.

In total, the combined bandwidth allocated to the memcached and

video streaming VMs is 7.44 CPUs for RTVirt, 8.16 CPUs for Credit,
8.03 CPUs for RT-Xen A, and 8.27 CPUs for RT-Xen B. Note that, as
discussed in Section 4.2, the CSA tool requires both RT-Xen groups

to have a claimed bandwidth of 15 CPUs. It means that almost seven

more CPUs need to be set aside for the RT-Xen groups in order to

meet their deadlines, and this wasted bandwidth cannot be used to

run any additional RTA.

Figure 5b shows the latency distribution aggregated for all five

memcached VMs. The 99.9th percentile latency is 303µs for RTVirt,
1170µs for Credit, 1974µs for RT-Xen A, and 296µs for RT-Xen B.
Only RTVirt and RT-Xen B are able to meet the SLO. Interestingly,

the only RT-Xen configuration that meets the SLO in the previous

experiment is RT-Xen A. For the video streaming VMs, RTVirt has

only one VM with 0.8% of deadline misses. Credit has five VMs

with many deadline misses and the worst one has 14.35% of the

deadlines missed. RT-Xen has no deadline misses because of its

significant overprovisioning of resources.

Overall, RTVirt is the best in meeting the SLO of sporadic work-

loads with dynamic request arrivals and at the same time also

meeting the deadlines of periodic workloads. This strong timeli-

ness guarantee is achieved while requiring substantially less CPU

bandwidth (10% less in terms of allocated bandwidth to the VMs

and 46.7% less in terms of claimed bandwidth).

4.5 Scalability and Overhead
In this section, we show that RTVirt is scalable even when hosting

a large number of RTAs on VMs. In order to do so, we first present

an overview of the complexity of RTVirt’s architecture, followed

by an experimental evaluation.

Complexity Analysis. At the guest level, RTVirt employs the

simple pEDF scheduler which has a complexity of O(loдl), where l
is the number of tasks in a VCPU. From guest to host, hypercalls are

invoked when a RTA registers, adjusts its bandwidth requirements,

or unregisters, and each hypercall has an overhead of 10µs on
average. The space used by shared memory to communicate the

deadlines between guest and host is 8 bytes for each VCPU, which

is negligible. At the host level, the VMM’s schedule() and context
switch functions are where most of the overhead is introduced.
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The schedule() function is where the scheduling algorithm is

implemented. Specifically, there are two types of work here. First,

determining the next global deadline: At the end of each global

slice—the interval between two global deadlines, schedule() is called
to determine the new global deadline as discussed in Section 3.3.

This task requires sorting the next earliest deadline provided by

each VCPU, which takes O(loдn) work, where n is the number of

VCPUs, and it is done by only one PCPU (e.g., CPU 0) with the result

shared with all the other PCPUs. Each PCPU is then in charge of

determining the slice of each of its VCPUs, which in total requires

O(n) time considering all PCPUs. Therefore, the schedule() call does
O(n) +O(loдn) work.

Second, choosing the next VCPU: In between calls where global

deadlines are determined, the schedule() function performs a much

lighter routine which chooses a VCPU to schedule next and then

performs a context switch. A linked-list based runqueue is main-

tained for each PCPU, and the VCPUs in the runqueue do not need

to be sorted—they can follow any specific order. This work requires

O(1) work, since we simply choose the VCPU at the head of the

runqueue. When a VCPU is done using its allocated time on a

PCPU, if it still has time remaining on another PCPU, it is migrated

there; otherwise, it is moved to the waiting queue. The number of

migrations performed between global deadlines for all PCPUs is

O(m − 1), wherem is the number of PCPUs. The total number of

context switches done between global deadlines is at mostO(n − 1),

considering all the VCPUs in the system.

OverheadMeasurement. In order to quantify the aforementioned

overhead, we ran 10 groups of periodic RTAs with randomly gener-

ated parameters (listed in Table 5). We then measured the duration

of the schedule() and context switch functions for two scenarios

where a total of 100 RTAs were executed concurrently on the same

host.

• Multi-RTAVMs:We ran 10 RTAs per VMand a total of 10 VMs

on the system. Each VM hosted a different group of RTAs,

and was configured with the minimum number of VCPUs

required by its hosted RTAs. This configuration resulted

in 1 VM with 4 VCPUs, 1 with 3 VCPUs, 5 with 2 VCPUs,

and 3 with 1 VCPU. In total, this experiment involved 100

concurrent RTAs on 10 VMs with a total of 20 VCPUs.

• Single-RTA VMs: We ran 100 RTAs, 10 from each group, each

on a separate single-VCPU VM. In total, this experiment

involved 100 concurrent RTAs on 100 VMs with a total of

100 VCPUS.

Comparing these two scenarios, in Multi-RTA VMs, the guest-level
scheduler has more work to do for scheduling the 10 RTAs in a

VM, whereas in Single-RTA VMs, the VMM-level scheduler has to

schedule a lot more VCPUs.

We also evaluated RT-Xen in these two scenarios. Due to RT-

Xen’s pessimism, it cannot support so many RTAs as RTVirt does.

For the Multi-RTA VMs scenario, we were able to run 10 RTAs

each for only the first 8 groups before CSA requires us to use more

than 15 PCPUs which are all we have on the host (one PCPU was

dedicated to Dom0). As a result, we had 80 RTAs across 8 VMs

where 1 VM with 4 VCPUs, 1 with 3 VCPUs, 5 with 2 VCPUs, and

3 VMs with 1 VCPU. For Single-RTA VMs, we were able to run 93

Group # (Slice, Period)

1 (6ms, 75ms)

2 (7ms, 92ms)

3 (46ms, 188ms)

4 (12ms, 102ms)

5 (19ms, 139ms)

Group # (Slice, Period)

6 (13ms, 124ms)

7 (36ms, 260ms)

8 (21ms, 159ms)

9 (9ms, 103ms)

10 (62ms, 208ms)

Table 5: Groups of RTAs used in scalability experiments

(a)Multi-RTA VMs Scenario

Framework

Time Spent on Time Spent on Total

Schedule Context Switches Overhead (%)

RT-Xen 331,020µs 63,829µs 0.39

RTVirt 32,026µs 71,059µs 0.10

(b) Single-RTA VMs Scenario

Framework

Time Spent in Time Spent in Total

Schedule Context Switches Overhead (%)

RT-Xen 850,043µs 1,307,759µs 2.16

RTVirt 238,108µs 689,119µs 0.93

Table 6: Time spent on the schedule() function and context
switches and the total overhead in terms of percentage of
the total runtime

RTAs, including 10 RTAs for Groups 1 to 3 each and 9 RTAs for

Groups 4 to 10 each.

Results from these experiments show that, first, RTVirt is able

to handle a large number of RTAs in both intensive scenarios, with

no deadline misses for Multi-RTA VMs and only 0.007% deadline

misses for Single-RTA VMs. In terms of overhead, RTVirt spends

only 0.1% and 0.93% of the total runtime on the schedule() function
and context switches, for the Multi-RTA VMs and Single-RTA VMs
scenarios, respectively (shown in Table 6). Moreover, the scheduling

overhead of RTVirt is also much lower than RT-Xen. First, the time

spent on the schedule() calls, in terms of both per schedule() call
time and total time, is much lower than RT-Xen. Second, RT-Xen

also suffers from a lot higher context switch overhead, which we

believe is due to the frequent use of VM migrations performed by

RT-Xen’s gEDF scheduler at the host level. In comparison, RTVirt’s

DP-WRAP scheduler considers the cost of VM migrations and uses

them judiciously.

Overall, RTVirt is the only framework capable of meeting the

timeliness requirements of all RTAs while incurring a negligible

overhead and fully using the system’s CPU bandwidth to schedule

time-sensitive workloads. Note that at the time of this paper’s

submission, a new experimental version of RT-Xen was released,

which changed the implementation from quantum-driven to event-

driven to reduce the number of schedule() calls. But we have verified
that the per schedule() call overhead is still higher than RTVirt and

it does not address its higher context switch overhead.
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5 RELATEDWORK
As shown in the previous evaluation and the motivation example

in Section 2, although related real-time schedulers can be employed

by either guest OS, VMM [13, 14], or both [2, 30], the lack of co-

operation between the host- and guest-level schedulers makes it

difficult to enforce an application’s timeliness requirement without

sacrificing CPU usage efficiency. RTVirt addresses these limita-

tions with a new cross-layer scheduling architecture for virtualized

time-sensitive applications.

There are several related works on improving the timeliness of

virtualized systems. RT-Xen [30] has been thoroughly compared

to in the previous section, and in summary, 1) it requires offline

configuration of VM interfaces which is time consuming and makes

it unable to support RTAs with dynamic timeliness requirements;

and 2) its pessimism results in severe underutilization of CPU band-

width. In some cases, e.g., for the periodic workloads in Section 4.4,

overprovisioning helps RT-Xen to not miss any deadline; but in

other cases, e.g., for the sporadic workloads in Section 4.4, even

overprovisioning is not sufficient. A conventional real-time theory

such as CSA is not appropriate for modern general-purpose sys-

tems (e.g., cloud servers), as its pessimism cannot guarantee that

deadlines/SLOs are always met, but it does severely underutilize

the resources all the time. In comparison, RTVirt delivers strong

timeliness guarantees (at most 0.8% of deadline misses) with highly

efficient resource utilization. These properties are particularly im-

portant to applications that can tolerate some deadline misses but

desire efficient resource utilization (e.g., cloud applications).

Related works have studied flattening the hierarchical schedul-

ing in virtualized systems by allowing guests to export scheduling

information to the host [8, 12]. Although they also follow the gen-

eral cross-layer scheduling approach, there are several limitations

in their specific designs: 1) they support only simple host-level

schedulers (e.g., EDF) which are not optimal for multiprocessor sys-

tems; 2) they cannot handle tasks and VMs with dynamic arrivals or

dynamic scheduling parameters; and 3) they lack considerations for

scalability and were evaluated with only a small number of (three)

VMs.

In comparison to the above related works, RTVirt provides flex-

ible (online configuration, dynamic tasks/VMs) and scalable (100

RTAs per host) support to diverse applications (periodic and spo-

radic tasks) with strong timeliness guarantees (in deadlines and tail

latency targets).

For embedded systems, several hypervisors have been proposed

to allow general-purpose OSes to run along with real-time OSes [10,

19, 22], which typically provide real-time guarantees by putting the

RTAs on dedicated cores. This approach is appropriate for embed-

ded systems as they need to support only a small set of RTAs (e.g.,

automative control) that these systems are specifically designed for.

In contrast, RTVirt targets larger and more diverse environments

such as clouds which host a large number of applications with

different timeliness characteristics and requirements on highly con-

solidated servers; RTVirt’s cross-layer scheduling approach allows

these applications to time-share resources while still achieving their

desired timeliness.

Cross-layer VM scheduling can also be achieved by using mid-

dleware, without changing the existing VM interfaces. For example,

related work proposed such a solution [27], where 1) the host-level

VM manager exploits guest-level application knowledge to better

estimate the VMs’ resource demands; and 2) the guest-level applica-

tion manager uses the host-level feedback to adapt the applications

according to changing resource availability. In comparison, RTVirt

uses paravirtualization to enable fine-grained, low-overhead cross-

layer scheduling which is necessary for providing strong timeliness

guarantees to time-sensitive applications.

Considering the general problem of addressing latencies in a

shared computing environment, there are several related works

developed for non-virtualized systems. Leverich et al. proposed a

solution [15] that supports QoS guarantees in shared cluster envi-

ronments by using overprovisioning to handle interference, reduc-

ing thread migration, and replacing the default Linux CFS scheduler

with a real-time scheduler. In comparison, RTVirt provides a new

cross-layer scheduling framework for virtualized applications, and

achieves strong timeliness guarantees without overprovisioning.

Dean et al. discussed fine-grained techniques that reduce latency
variability at the component level, as well as coarse-grained tech-

niques to mask unpredictable high-latency episodes across various

components [7]. Li et al. explored possible sources of delay found

in the hardware, kernel, and application layer which can affect the

tail latency of applications [17]. RTVirt is complementary to these

works as their techniques can be employed to reduce latencies in a

distributed, virtualized system. At the same time, RTVirt can be a

key component to provide timeliness guarantees at the VM/VMM

level and offer strong support to the guarantees required by the

cluster/datacenter-level schedulers.

6 DISCUSSIONS
Security is important in scenarios where the applications may not

be trustworthy, and request CPU resources more than what they

actually need. While security is out of the scope of this paper, there

are several factors that mitigate such risks. First, the schedulers

can monitor the applications’/VMs’ actual CPU usages, and tax

the applications/VMs if they claim more than what the need. The

tax rate of an application/VM can be determined based on the

observed idle CPU ratio and will be used by the schedulers to

proportionally deduct the application’s/VM’s CPU allocation when

the system’s CPU bandwidth is oversubscribed. This technique

is similar to the idle memory tax used by VMM for reclaiming

idle memory from VMs [26]. In practice, RTVirt also limits the

smallest interval between global deadlines (250µs in the prototype

implementation), which ensures that inappropriate deadlines given

by VMs do not affect the overall efficiency of the system. Second,

in typical public cloud environments [1, 9, 28], users are charged

based on the amount of resources that they claim, not how much

they actually use, and are9 therefore not encouraged to claim more

than what they actually need.

Overhead in RTVirt for allowing VMs to migrate across PCPUs

and making efficient use of the system’s CPU bandwidth is low, as

the host-level DP-WRAP scheduler limits the number of migrations

to at mostm-1 (m = the total number of PCPUs) during a global slice,

and it is also shown to be insignificant in our evaluation results. In

larger systems where this overhead becomes more considerable,

RTVirt can further reduce this limit as needed. Similarly, RTVirt can
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also support CPU affinity for VMs that are sensitive to processor

cache locality by simply excluding such VMs from the m-1 VMs

that the host-level scheduler considers to migrate.

Support for other OSes and VMMs is conceivable following

RTVirt’s cross-layer scheduling approach, as it requires only a

hypercall and a shared memory area for communicating the guest-

level scheduling parameters to the host-level scheduler. The changes

required to the guest/host interface is small. While Xen is the most

well-know paravirtualized system, other VMMs have also adopted

paravirtualization for various purposes.

Other scheduling considerations can be addressed by extending
the solid cross-layer scheduling framework provided by RTVirt.

First, the cross-layer approach can be extended to the scheduling

of other important resources such as storage and network I/Os for

supporting I/O-intensive time-sensitive applications. Second, con-

sidering the availability of multiple hosts, RTVirt’s VM admission

and scheduling process can be extended to optimize the placement

of VMs across different hosts, in addition to the placement of VC-

PUs across different PCPUs on a single host. Live VM migration

can be considered to dynamically adjust VM placement at runtime,

but its overhead must be properly accounted for [29]. Third, while

RTVirt is designed to deliver strong timeliness guarantees, deadline

misses are sometimes unavoidable (less than 0.8% in our evaluation

results) due to the nondeterminism of the system. In general, dead-

line misses can be further reduced by increasing the scheduling

slack (500µs per VCPU in the prototype). Considering the different

priorities of RTAs, the slack can also be assigned in proportion to

the priorities so that more important RTAs will have less likelihood

to miss their deadlines than the less important ones.

7 CONCLUSIONS AND FUTUREWORK
In this paper we have studied cross-layer techniques to enable

time-sensitive CPU scheduling for virtualized applications. The

result is RTVirt, a framework that is capable of meeting stringent

timeliness requirements of virtualized applications while efficiently

utilizing the system’s CPU resources and incurring low overhead.

Our cross-layer scheduling approach allows us to overcome some

of the major hurdles to enabling time-sensitive applications on

virtualized systems. Specifically, our approach entails synergizing

the scheduling capabilities held by the VM host and guest levels

and creating a hierarchical scheduling framework that has enough

information to deliver CPU resources to applications at the right

time and for the right duration.

Our experimental evaluation confirms that RTVirt can support

applications with diverse timeliness requirements, including appli-

cations that have periodic or sporadic tasks and applications that

have deadlines or just need low latencies. For these applications,

RTVirt is able to meet at least 99% of all the deadlines or deliver

the required latency at the 99.9th percentile target. Compared to

the existing solutions, RTVirt is substantially more efficient in CPU

usage, and it supports dynamic RTAs and dynamic VMs with chang-

ing timeliness requirements. Finally, our experiments show that

RTVirt is also scalable, supporting a large number of concurrent

RTAs and VMs, while keeping both the deadline miss percentage

and overhead to under 1%.

RTVirt relies on paravirtualization to build the cross-layer sched-

uling, which trades the transparency between VM and host for

the ability to provide strong timeliness guarantees with high sys-

tem utilization. We believe that this tradeoff is necessary for many

time-sensitive applications. Moreover, for users, the use of par-

avirtualization and cross-layer scheduling in RTVirt is completely

transparent to their applications.

RTVirt is an open-source project [23] and a solid framework for

a variety of further studies on virtualized time-sensitive computing.

One of our future objectives is to expand the support of cross-layer

scheduling to include I/O resources, in order to support applications

that are dependent on timely delivery of I/O resources, in addition

to CPU bandwidth. Another topic of interest is studying the combi-

nation of host-level resource scheduling with cross-host network

scheduling, in order to deliver end-to-end timeliness guarantees to

distributed applications.
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