
IBIS: Interposed Big-data I/O Scheduler

Yiqi Xu
Florida International University

11200 SW 8th St
Miami, FL 33199 USA
yxu006@cs.fiu.edu

Ming Zhao
Arizona State University

699 S Mill Ave
Tempe, AZ 85281 USA
mingzhao@asu.edu

ABSTRACT
Big-data systems are increasingly shared by diverse, data-intensive
applications from different domains. However, existing systems
lack the support for I/O management, and the performance of big-
data applications degrades in unpredictable ways when they con-
tend for I/Os. To address this challenge, this paper proposes IBIS,
an Interposed Big-data I/O Scheduler, to provide I/O performance
differentiation for competing applications in a shared big-data sys-
tem. IBIS transparently intercepts, isolates, and schedules an appli-
cation’s different phases of I/Os via an I/O interposition layer on ev-
ery datanode of the big-data system. It provides a new proportional-
share I/O scheduler, SFQ(D2), to allow applications to share the
I/O service of each datanode with good fairness and resource uti-
lization. It enables the distributed I/O schedulers to coordinate with
one another and to achieve proportional sharing of the big-data sys-
tem’s total I/O service in a scalable manner. Finally, it supports
the shared use of big-data resources by diverse frameworks and
manages the I/Os from different types of big-data workloads (e.g.,
batch jobs vs. queries) across these frameworks. The prototype of
IBIS is implemented in Hadoop/YARN, a widely used big-data sys-
tem. Experiments based on a variety of representative applications
(WordCount, TeraSort, Facebook, TPC-H) show that IBIS achieves
good total-service proportional sharing with low overhead in both
application performance and resource usages. IBIS is also shown
to support various performance policies: it can deliver stronger
performance isolation than native Hadoop/YARN (99% better for
WordCount and 15% better for TPC-H queries) with good resource
utilization; and it can also achieve perfect proportional slowdown
with better application performance (30% better than native Hadoop).

1. INTRODUCTION
Big data is an important computing paradigm that becomes in-

creasingly used by many science, engineering, medical, and busi-
ness disciplines for knowledge discovery, decision making, and
other data-driven tasks based on processing and analyzing large
volumes of data. These applications are built upon computing para-
digms that can effectively express data parallelism and exploit data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HPDC’16, May 31-June 04, 2016, Kyoto, Japan
c© 2016 ACM. ISBN 978-1-4503-4314-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2907294.2907319

locality (e.g., MapReduce [9]) and storage systems that can pro-
vide high scalability and availability (e.g., Google File System [10],
Hadoop HDFS [16]). As the needs of data-intensive computing
continue to grow in various disciplines, it becomes increasingly
common to use shared infrastructure to run such applications. First,
big-data systems often require substantial investments on comput-
ing, storage, and networking resources. Therefore, it is more cost-
effective for both resource users and providers to use shared in-
frastructure for big-data applications. Second, hosting popular data
sets (e.g., human genome data, weather data, census data) on shared
big-data systems allows such massive data to be conveniently and
efficiently shared by different applications from different users.

Although computing resources (CPUs) are relatively easy to par-
tition, shared storage resources (I/O bandwidths) are difficult to al-
locate, particularly for data-intensive applications which compete
fiercely for access to large volumes of data on the storage. Existing
big-data systems lack the mechanisms to effectively manage shared
storage I/O resources, and as a result, applications’ performance
degrades in unpredictable ways when there is I/O contention. For
example, when one typical MapReduce application (WordCount)
runs concurrently with a highly I/O-intensive application (Tera-
Gen), WordCount is slowed down by up to 107%, compared to
when it runs alone with the same number of CPUs.

I/O performance management is particularly challenging for big-
data systems because of two important reasons. First, big-data ap-
plications have complex I/O phases (e.g., rounds of map and reduce
tasks with different amounts of inputs, intermediate results, and
outputs for a MapReduce application), which makes it difficult to
understand their I/O demands and allocate I/O resources properly
to meet their performance requirements. Second, a big-data appli-
cation is highly distributed across many datanodes, which makes
it difficult to coordinate the resource allocations across all the in-
volved nodes needed by the data-parallel application. For example,
the performance of a MapReduce application depends on the re-
ceived total storage bandwidth from all the nodes assigned to its
map and reduce tasks.

This paper proposes IBIS, an Interposed Big-data I/O Scheduler,
to provide performance differentiation for competing applications’
I/Os in a shared big-data system. This scheduler is designed to
address the above-mentioned two challenges. First, how to effec-
tively differentiate I/Os from competing applications and allocate
the shared storage bandwidth on the individual nodes of a big-data
system? IBIS introduces a new I/O interposition layer upon the dis-
tributed file system in a big-data system, and is able to transparently
intercept the I/Os from the various phases of applications and iso-
late and schedule them on every datanode of the system. IBIS also
employs a new proportional-share I/O scheduler, SFQ(D2), which
can automatically adapt I/O concurrency based on the storage load

http://dx.doi.org/10.1145/2907294.2907319


GFS/HDFS

Local	File	System

map reduce map reduce

Interposed	I/O	Scheduler
�

� GFS/HDFS

Local	File	System

reduce map reduce map�

�

⑤
�Input	to	a	map	task

�Output	(intermediate	results)	from	
a	map	task

�Input	to	a	reduce	task	(from	the	
map	phase’s	intermediate	results)

�Input	to	a	reduce	task	(spilled	from	
memory)

⑤Output	from	a	reduce	task

Interposed	I/O	Scheduler

DATA	NODE DATA	NODE

Distributed	I/O
Scheduling	Coordination

Figure 1: Architecture of MapReduce-type big-data systems and the proposed IBIS-based I/O management

and achieve strong performance isolation with good resource uti-
lization. Second, how to efficiently coordinate the distributed I/O
schedulers across datanodes and allocate the big-data system’s to-
tal I/O service to the data-parallel applications? IBIS provides
a scalable coordination scheme for the distributed SFQ(D2) sched-
ulers to efficiently coordinate their scheduling across the datanodes.
The schedulers then adjust their local I/O scheduling based on the
global I/O service distribution and allow the applications to propor-
tionally share the entire system’s total I/O service.

The IBIS prototype is implemented in Hadoop/YARN, a widely
used big-data system, by interposing HDFS as well as the related
local and network I/Os transparently to the applications, and it is
able to support the I/O management of diverse applications from
different big-data frameworks. It is evaluated using a variety of
representative big-data applications (WordCount, TeraSort, Tera-
Gen, Facebook2009 [6], TPC-H queries on Hive [17]). The results
confirm that IBIS can effectively achieve total-service proportional
bandwidth sharing for diverse applications in the system. They
also show that IBIS can support various important performance
polices. It achieves strong performance isolation for a less I/O-
intensive workload (WordCount, Facebook2009, TPC-H) when un-
der heavy contention from a highly I/O-intensive application (Ter-
aGen and TeraSort), which outperforms native Hadoop by 99% for
WordCount and 15% for TPC-H queries. This result is accom-
plished while still allowing the competing application to make good
progress and to fully utilize the storage bandwidth (< 4% reduction
in total throughput). IBIS can also achieve excellent proportional
slowdown for competing applications (TeraSort vs. TeraGen) and
outperforms native Hadoop by 30%. Finally, the use of IBIS in-
troduces small overhead in terms of both application runtime and
resource usages.

Overall, unlike most of the related works which focus on im-
proving the I/O efficiency of big-data systems [8, 11], this paper
addresses the problem of I/O interference and performance man-
agement in big-data systems, which is not adequately addressed in
the literature. Although existing mechanisms such as cgroups [4]
can be employed to manage the contention among local I/Os, as the
results in this paper will show, they are insufficient due to the lack
of control on distributed I/Os which are unavoidable for big-data
applications. IBIS therefore complements the existing solutions
for CPU and memory management of big-data systems, and pro-
vides the missing control knob for I/O management which is much
needed by increasingly data-intensive applications. Compared to
the few related works [20, 15, 19] that also studied the performance
management of big-data storage, IBIS supports applications that
are more challenging (with complex computing and I/O demands)
and diverse (including both batch and query workloads).

The rest of the paper is organized as follows: Section 2 intro-
duces the background and motivating examples; Sections 3, 4, and

5 describe the I/O interposition framework, SFQ(D2) scheduler,
and distributed scheduling coordination of IBIS, respectively; Sec-
tion 6 discusses the support for I/O management across different
big-data frameworks; Section 7 presents the experimental evalua-
tion; Section 8 examines the related work; Section 9 discusses the
limitations and future work; and Section 10 concludes the paper.

2. BACKGROUND AND MOTIVATIONS

2.1 Big-data Systems
Typical big-data computing systems are often built upon a highly

scalable and available distributed file system. In particular, Google
File System (GFS) [10] and its open-source clone Hadoop Dis-
tributed File System (HDFS) [16] provide storage for massive amounts
of data on a large number of nodes built with inexpensive commod-
ity hardware while supporting fault tolerance at scale. A big-data
application runs many tasks on these datanodes, which process the
locally stored data in parallel via the I/O interface provided by such
a distributed file system. In particular, the MapReduce program-
ming model and associated run-time system are able to automati-
cally execute user-specified map and reduce functions in parallel
and handle job scheduling and fault tolerance [9]. Higher-level
storage services such as databases (e.g., Hive [17]) can be further
built upon the distributed file system and offer more convenient in-
terfaces (e.g., SQL) for users to process the data. Therefore, this
paper focuses on big-data storage systems of the GFS/HDFS kind.

Both the map and reduce phases of a MapReduce application can
spawn large numbers of map and reduce tasks on the GFS/HDFS
nodes to process data in parallel. They often have complex but
well-defined I/O phases (Figure 1). A map task is preferably sched-
uled to the node where its input data is stored. It reads the in-
put from GFS/HDFS (either via the local file system or across
the network) and spills and merges key-value pairs onto the local
file system as intermediate result. A reduce task starts by copy-
ing/shuffling its inputs from all the map tasks’ intermediate results
(either stored locally or across the network). It then merges the
copied inputs, performs the reduce processing, and generates final
output to GFS/HDFS. Each of the above phases can have differ-
ent bandwidth demands for input and output. Moreover, given the
same volume of data to a map or reduce task, it can take different
amount of time to process the data depending on the application’s
computational complexity.

2.2 Big-data Resource Management
Existing big-data systems offer simple core resource manage-

ment functions. Hadoop MapReduce [1] allocates CPU resources
in terms of slots to map or reduce tasks, where the number of avail-
able slots is set according to the number of CPU cores in the system.
Recent developments such as Mesos [12] and YARN [18] allow the



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  100  200  300  400  500  600

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Time (s)

Write
Read

(a) TeraSort

 0

 100

 200

 300

 400

 500

 600

 700

 0  50  100  150  200  250  300  350

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Time (s)

Write
Read

(b) WordCount

Figure 2: I/O demands of two classic MapReduce applications

allocation of both CPU and memory resources to competing big-
data applications. The management of shared I/O bandwidth is still
missing from existing solutions, which is however crucial to the
performance of inherently I/O intensive big-data applications.

The performance management problem for big-data storage is
not adequately addressed in the literature. Frosting [20] provides
a scheduling layer upon HBase [3], but it treats the entire HBase
stack as a single black box and it is thus difficult to achieve strong
performance isolation and good resource utilization. PISCES [15]
achieves fair-sharing of a key-value store by controlling the dis-
patching of simple requests to datanodes, and Cake [19] provides
QoS support to HBase queries by controlling the queuing of simple
requests. In comparison, IBIS is designed to manage the I/O perfor-
mance for diverse big-data applications including those with much
more complex and dynamic I/O demands. A detailed examination
of the related work is presented in Section 8.

2.3 Motivating Examples
The lack of I/O management in big-data systems presents a se-

rious hurdle for data-intensive applications to get their desired per-
formance. In a MapReduce system, on every single datanode, the
tasks from different MapReduce applications compete with one an-
other across all their phases for HDFS, local file system, and net-
work I/Os. Across the whole big-data system, these highly dis-
tributed applications also compete on many datanodes and their
performance depends on the total amount of I/O services that they
can get from all the involved nodes.

As an example of the diverse I/O demands of big-data applica-
tions, Figure 2 compares the I/O profiles of two classic MapReduce
applications, TeraSort and WordCount, each running alone with
the same allocation of CPU and memory resources. These pro-
files show that TeraSort has a much more intensive I/O workload
than WordCount. TeraSort has intensive HDFS reads and local file
system writes in the map phase and intensive HDFS writes in the
reduce phase. WordCount’s output is much smaller than its input,
but there are plenty of intermediate writes throughout the map and
reduce phases.

With such diverse big-data applications, the lack of I/O man-
agement will lead to severe and unpredictable performance inter-
ference between the applications. As an example of the I/O con-
tention’s performance impact, Figure 3 compares the performance
of WordCount when it runs alone to when it runs with another ap-
plication (TeraGen, TeraSort, TeraValidate) while keeping its CPU
allocation (half of the 96 CPU cores in the system) the same. De-
tails of the experiment setup are provided in Section 7. The results
show substantial performance degradation in WordCount, which
confirms the significant performance impact caused by I/O con-
tention (CPU cache contention is relatively insignificant to the per-

formance of these data-intensive applications). This paper addresses
this serious problem with an interposed big-data I/O scheduling ap-
proach, IBIS, which is presented in the rest of the paper.

3. INTERPOSED I/O SCHEDULING
The first question addressed by IBIS is how to effectively differ-

entiate the I/Os across the different phases of competing MapRe-
duce applications on every datanode of a big-data system. The gen-
eral design of IBIS is based on the virtualization principles, where
an indirection layer exposes the interfaces already in use by the big-
data system to access storage, allowing applications to time-share
the storage system without modifications, while enforcing perfor-
mance isolation and differentiation among them.

A key design decision that needs to be made in a virtualization
approach is choosing the proper abstraction to introduce the virtual-
ization layer. In the context of a big-data system, there are multiple
layers in the storage hierarchy, from the applications, to HDFS, and
to local file system and storage devices. On one hand, introducing
virtualization at a higher layer can make use of more application
knowledge to help the implementation, but it is more tied to spe-
cific applications and loses control of how I/Os are executed by the
underlying layers. On the other hand, introducing virtualization at
a lower layer of the storage hierarchy allows more control of I/O
executions and can support more diverse applications, but it has to
deal with more primitive I/O operations and loses application se-
mantics that are useful for I/O differentiation.

Considering this tradeoff, IBIS is introduced upon the GFS/HDFS
layer of the MapReduce storage architecture (Figure 1). This de-
sign can make effective use of application information to differen-
tiate I/Os, because applications access the shared storage mostly
through the HDFS interface. It also has enough low-level I/O con-
trol by scheduling the dispatch of I/Os to local file systems. Inter-
posing of the applications’ direct local file system I/Os and network
I/Os are done at other interfaces at the same level. The rest of this
section details the interposition of these different types of I/Os used
by a MapReduce application. All the modifications described be-
low for implementing IBIS are made to Hadoop/YARN and do not
require any change to applications.

Persistent I/Os are I/Os serviced by HDFS, where the inputs for
map tasks are read from HDFS, and the outputs from reduce tasks
are written to HDFS. Tasks use the DFSClient to interface with the
Data Node, which represents an HDFS daemon, and Data Node
converts the data requests, from both local and remote map tasks,
to local file system I/Os. To differentiate I/Os from competing ap-
plications, the DFSClient interface is modified to carry application-
specific information (job identifier and I/O service weight) as part
of the header of each data request issued by the map/reduce tasks.



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

WordCount
Alone

WordCount
TeraValidate

WordCount
TeraGen

WordCount
TeraSort

W
o
rd

C
o
u
n
t 
R

u
n
ti
m

e
 (

s
) map

reduce

62.6%

107%
108%

(a) HDD setup

 0

 50

 100

 150

 200

 250

 300

 350

 400

WordCount
Alone

WordCount
TeraValidate

WordCount
TeraSort

WordCount
TeraGen

W
o
rd

C
o
u
n
t 
R

u
n
ti
m

e
 (

s
) map

reduce

9%
22%

50%

(b) SSD setup

Figure 3: Runtime of WordCount when it runs alone vs. when it runs with another job on native Hadoop. The numbers on top of the bars are
the slowdown w.r.t. the standalone runtime. The CPU allocation to WordCount is kept the same in all cases. Two different storage setups are
considered, one with all hard disk drives (HDDs) and the other with all solid state drives (SSDs).

These requests are scheduled by the IBIS component implemented
in Data Node, which maintains a request queue for its local stor-
age and dispatches the queued requests according to the chosen
scheduling algorithm and policy.

Intermediate I/Os are I/Os to a datanode’s local file system (not
HDFS) for storing temporary data. Both map and reduce tasks use
the local file system for spilling and merging in-progress data. The
intermediate I/Os can also influence an application’s performance.
For example, a sorting program can generate the same amount of
intermediate data as its input. In IBIS, these intermediate I/Os
are first tagged with the job identifier and I/O service weight and
then routed to the IBIS component implemented within a local I/O
scheduler, which can also reside in the Data Node daemon that
runs on every datanode. IBIS schedules the intermediate I/Os in
the same way as the persistent I/Os, following the same scheduling
algorithm and policy.

Network I/Os occur during a shuffling phase between all the map
tasks and reduce tasks. Because each reduce task’s input is a par-
tition of the map phase’s outputs, it generally has to request a por-
tion of the outputs from every map task. The data pulling thread
launched by a reduce task is initiated with the job identifier and
I/O service weight, which are carried over in the header of ev-
ery HTTP-based data request. These requests are handled by the
HTTP servlets which are implemented in the Node Manager dae-
mons. Therefore, an IBIS scheduler is also implemented in the
Node Manager to differentiate the network I/Os and schedule the
corresponding local file system I/Os.

Note that IBIS does not rely on any bandwidth control from the
network layer, and it is shown to be sufficient in the experiments
because of two reasons: 1) The storage is generally saturated be-
fore the network; 2) By applying bandwidth control at the storage
endpoints of the network I/Os, IBIS indirectly influences the con-
tention on the network. However, IBIS can incorporate the network
bandwidth control mechanisms such as OpenFlow [5] if they are
necessary and available, which will be left for future work.

In all the above I/O phases, concurrent requests from different
applications are differentiated by their unique application IDs. An
application obtains its ID from the job scheduler, which is carried
over to all of its parallel tasks and used by the tasks to tag their
I/Os for HDFS, intermediate, and network data. For every shared
I/O service, these requests are queued and dispatched by an IBIS
scheduler according the algorithm presented in the next section.

4. PROPORTIONAL I/O SHARING
The second question addressed by IBIS is how to allow the tasks

from competing applications to proportionally share the I/O service
of each datanode in a big-data system. The interposed I/O schedul-
ing framework in IBIS is flexible enough to support different algo-
rithms. This paper focuses on algorithms that allow applications to
proportionally share the I/O bandwidth, in the same way they share
the CPU time proportionally (e.g., using the Hadoop Fair Sched-
uler [2]), so that it can provide the much needed, missing control
knob for I/O allocation in big-data systems. Proportional resource
sharing is defined as when the total demand is greater than the avail-
able resource, each application should get a share of the resource
proportional to its assigned weight. Because only the relative val-
ues of weights matter to the bandwidth allocation, in the paper, the
weight assignment to applications is often specified in terms of the
ratio among the weights.

The proposed proportional-share scheduler is built upon the SFQ
family of schedulers because of their computational efficiency, work-
conserving nature, and theoretically provable fairness. SFQ sched-
ules the backlogged requests from different applications using a
priority queue, where each request’s priority is positively affected
by its application’s weight and negatively affected by its cost (of-
ten estimated based on the size of the request). The scheduler can
dispatch only one outstanding request, and it chooses the one with
the earliest start time in the queue.

The SFQ(D) scheduler [13] is an extension of SFQ for propor-
tional sharing of storage resources which are commonly capable
of handling multiple outstanding requests concurrently. The level
of concurrency that the shared storage resource supports is cap-
tured by the depth parameter D in SFQ(D). The scheduler follows
the original SFQ algorithm to dispatch queued requests, but it al-
lows up to D outstanding I/Os to be serviced concurrently by the
underlying storage in order to take advantage of the available I/O
concurrency.

The choice of D has important implications on both fairness
and resource utilization for a real storage system. On one hand,
a larger D allows more concurrent I/Os and a higher utilization
of the storage, but it may hurt fairness because of the scheduler’s
work-conserving nature. A more aggressive workload can use up
all the storage bandwidth and even overload it, delaying the I/Os
from a less aggressive workload. On the other hand, a smaller D
gives the scheduler a tighter control on the amount of I/O share
that a more aggressive workload can steal from others, and allows
the I/Os from a less aggressive workload to be serviced quickly
when they arrive. It can thus improve fairness among the compet-



ing workloads but may lead to underutilization of the storage. So
it is difficult to determine the optimal value of D statically, and it
depends on the characteristics of the storage and workloads, some
of which are also dynamic. It was in fact left as future work in the
SFQ(D) paper [13].

To address the above problem, this paper introduces a new SFQ-
based algorithm, Dynamic Depth SFQ, or SFQ(D2) in short. It em-
ploys a feedback controller to automatically and dynamically adjust
the value of D online. The controller works periodically (e.g., ev-
ery second), and decides the depth Dk+1 for the next period k+1,
based on the distance between the observed average I/O latency Lk
of the previous period and the reference latency Lre f :

Dk+1 = Dk +K× (Lre f −Lk) (1)

where K is an integral gain factor which determines how aggres-
sively the controller works to reach the target latency. Following
this equation, the controller automatically optimizes the value of D
as it steers the observed I/O latency towards the reference latency.

The controller chooses I/O latency as the target because its goal
is to maximize the storage utilization without compromising the
fairness among applications, and I/O latency directly reflects the
I/O performance of applications and the I/O load of the underlying
storage. The reference latency is decided offline by profiling the
storage using a synthetic MapReduce workload with increasing I/O
concurrency. Both the I/O latency and throughput are measured
during the profiling, and the I/O latency observed before the storage
starts to saturate is the reference latency for the controller. Such
profiling needs to be done only once for a given storage setup. If
the storage’s read and write performance are asymmetric such as in
SSDs, the profiling can give separate reference latencies for reads
and writes. In this case, the Lre f and Lk in the controller become
the weighted average of the read latencies and write latencies, with
the weights being the percentages of reads and writes observed in
the previous control period.

This SFQ(D2) scheduler works upon the interposition layer de-
scribed in Section 3 on every datanode of the big-data system. Each
scheduler independently adjusts D based on its local dynamics in
the workloads and underlying storage, and dispatches up to D I/Os
from its local queue to the storage. This scheduler is used to pro-
vide proportional sharing of all the important I/O services offered
by a datanode, including HDFS I/Os, temporary data I/Os, and net-
work I/Os.

5. DISTRIBUTED I/O SCHEDULING COOR-
DINATION

The third question addressed by IBIS is how to efficiently co-
ordinate the distributed I/O schedulers across datanodes to sup-
port proportional sharing of a big-data system’s total I/O service
among competing applications. A limitation of the IBIS sched-
uler described above is that a local scheduler’s decision is made in-
dependently at each datanode, without accounting for information
from other nodes. Local scheduling, based on only local knowl-
edge, however, is not sufficient to deliver the desired performance
differentiation from the perspective of the highly distributed big-
data applications. The parallel nature of such an application re-
quires it to get the necessary I/O service from all the nodes where
its tasks are scheduled, and its performance depends on the total
amount of I/O service that it gets from the system. Therefore, I/O
management at the system level should support total-service pro-
portional sharing, which means that the applications share the total
I/O service from all the datanodes in the system proportionally to
their assigned weights.

Scheduling
Broker

A1 A1 A1 A2
SFQ(D2)

A2 A3 A4 A4
SFQ(D2)

A5 A6 A7 A8
SFQ(D2)

A1 A3 A5 A7
SFQ(D2)

A8 A8 A9 A9
SFQ(D2)

A1_Local
_Service

A2_Local
_Service

A1_Globa
l_Service

A2_Globa
l_Service

…
A2_Global_Service
A1_Global_Service

A8_Global_Service
A9_Global_Service

Figure 4: Architecture for distributed I/O scheduling coordination

The challenge to achieving total-service proportional sharing is
that applications often get unevenly distributed I/O services from
the involved nodes. The exact amount of service that an application
gets from a particular node depends on the number of CPU slots
that it gets on the node—which decides the I/O demands, and the
applications running on the other slots of the same node—which
decides the I/O contention. The number of slots that an application
gets on a node in turn depends on the combination of, at any mo-
ment, the global CPU slot allocation policy, the application’s data
locality on the node, and the number of slots currently available on
the node. Because of such uneven distribution of I/O service across
the nodes, simply applying the same sharing ratio to each node and
enforcing it using the local SFQ(D2) scheduler will not produce the
same ratio of sharing of the total I/O service.

To address this challenge, IBIS enables the distributed SFQ(D2)
schedulers to coordinate with one another and enforce total-service
proportional sharing collaboratively. Every scheduler shares its lo-
cal I/O service distribution—the applications that it serves and the
amounts of services that they get locally, with the other schedulers.
Based on the global I/O service distribution, every scheduler can
then adjust its local I/O service distribution so that the total services
that the applications get are proportional to their assigned weights.
Specifically, IBIS follows the algorithm in DSFQ [21] to adjust lo-
cal SFQ scheduling for total-service proportional sharing. When an
SFQ(D2) scheduler considers the scheduling of a queued request, it
delays the request’s start time by the total amount of service that the
corresponding application has received from all the other nodes. In
this way, the local scheduler dispatches the requests from different
applications according to their received total I/O services, not just
the local services.

Another challenge that must be addressed by IBIS is how to ef-
ficiently coordinate a large number of distributed schedulers in a
big-data system. If every scheduler has to broadcast its information
to all the other schedulers, it can easily overwhelm the schedulers
and the network as the system scales out. The DSFQ [21] work as-
sumes a traditional remote I/O model, where the clients send their
I/Os to remote datanodes and a coordinator can be interposed in
between to gather and pass on the global I/O service information.
But this approach does not apply to a big-data system, where com-
puting tasks are shipped to the nodes where their data is stored and
they process the data using primarily local I/Os.

To solve this problem, IBIS employs a centralized Scheduling
Broker to facilitate the information exchange among the distributed



Storage

Node	Manager

Resource	Manager

Node	Manager

DATA	NODE DATA	NODE

Storage

App1	Master

App2	
container

App2	
container

App1	
container
App1	

container

App1	
container

App2	Master

App1	
container

App1	
container

App2	
container

Interposed	I/O	Scheduler	(SFQ(D2))

App2	
container

Interposed	I/O	Scheduler	(SFQ(D2))

App2	
container

Piggybacked	 I/O	
scheduling	 information

Figure 5: Integration of IBIS with YARN for supporting the I/O
management of applications running on different big-data frame-
works.

schedulers in a scalable manner (Figure 4). Every local scheduler
j∈{1, . . . ,m} sends its current I/O service distribution—a vector of
local I/O service amount ai j for each application i ∈ {1, . . . ,n} that
the scheduler j serves—to the broker periodically (e.g., every 1 sec-
ond). Based on the information received from all the local sched-
ulers, the broker summarizes the total I/O service Ai = ∑

m
j=1 ai j for

each application i in the system. It then responds to a local sched-
uler’s message with the total I/O service distribution—a vector of
total I/O service amount Ai for each application i that the local
scheduler currently serves. Based on this total service informa-
tion, the local scheduler can then adjust its scheduling as discussed
above.

The overhead of this scheduling coordination scheme is small.
The size of the messages between a local scheduler and the broker
is bounded by the number of applications that the scheduler cur-
rently serves. The state that the broker needs to maintain is simply
a vector of total I/O service amount for all the applications cur-
rently in the system. The frequency of coordination can be adjusted
based on the desired granularity of fairness and the scale of the
system—more frequent coordination reduces transient unfairness
but increases the overhead; and vice versa. Hadoop/YARN already
employs centralized managers, in particular the Resource Manager
for coordinating the distributed Node Managers, which is shown
to be scalable for managing thousands of nodes [18]. In fact, in
the IBIS implementation, the I/O Scheduling Broker is embedded
as part of the Resource Manager and the I/O scheduling coordi-
nation information is piggybacked on the existing communications
between the managers to further reduce its overhead.

6. MULTI-FRAMEWORK I/O SCHEDULING
Big-data resources are increasingly shared by diverse comput-

ing frameworks [9, 17], as users have different data processing re-
quirements as well as different preferences of programming mod-
els. No single framework is perfect for all big-data problems and
all users. Solutions such as YARN [18] and Mesos [12] allow
different frameworks to share the same set of resources and em-
ploy mechanisms such as containers [4] to allocate CPU cores and
memory capacity to the resource-sharing applications. However,
these resource management solutions still cannot provide strong
performance isolation, because they do not support the allocation
of shared I/O resources which the data-intensive applications have
to compete for. As the experiments will show in Section 7.4, al-
though containers do provide some level of I/O isolation, it is not

Table 1: The YARN configuration used in the evaluation

Key Value
dfs.replication 3
dfs.block.size 134,217,728

fairscheduler.preemption true, 5s

sufficient. Containers can control only the I/Os directly issued to
the local file system, e.g., intermediate I/Os from MapReduce, but
not the distributed I/Os, e.g., HDFS I/Os, which are serviced by a
shared datanode server and cannot be differentiated using the con-
tainer mechanism.

Thus, existing multi-framework resource management solutions
still need IBIS to provide the missing I/O control knob for ef-
fective I/O bandwidth allocation. Specifically, in YARN, IBIS is
seamlessly integrated in its Application Master, Resource Man-
ager, Node Manager, and Data Node components (Figure 5). IBIS
allows an application to specify its required total I/O bandwidth
(e.g., 300MB/s) to its Application Master, in addition to the amount
of required CPUs and memory (e.g., 64 CPU cores and 64GB RAM),
in order to achieve its desired performance. The centralized Re-
source Manager collects the resource requests from the concurrent
Application Masters and uses IBIS to determine the global, total-
service I/O bandwidth allocation, in addition to allocating the CPUs
and memory using an existing scheduler such as the Fair Scheduler.
The Resource Manager then coordinates with the distributed Node
Managers to enforce the resource allocations on every datanode.
Each Node Manager uses the local Data Node to schedule the lo-
cal I/Os according to the global, total-service I/O sharing target,
similarly to how it uses containers to enforce the CPU and mem-
ory allocations to the local data processing tasks. Finally, the IBIS
scheduler in Data Node interposes all the I/Os, as discussed in Sec-
tion 3 and uses SFQ(D2) discussed in Section 4 to schedule the
I/Os according to the given bandwidth allocation.

7. EVALUATION

7.1 Setup
The experimental evaluation was done on a cluster of nine nodes

each with two six-core 2.4GHz AMD Opteron CPUs, 32GB of
RAM, and two 500GB 7.2K RPM SAS disks, interconnected by
a Gigabit Ethernet switch. All the nodes run the Debian 4.3.5-4
Linux with the 3.2.20-amd64 kernel and use EXT3 as the local file
system. The evaluation was performed in YARN 2.7.0 with the
IBIS prototype implemented in the Resource Manager, Node Man-
ager, Application Master, and Data Node as described in Sections 3
and 6. Eight nodes are dedicated to run applications consuming up
to 96 CPU cores and 192GB memory by their tasks, where each
map task uses 1 CPU core and 2GB of memory and each reduce
task uses 1 CPU core and 8GB of memory. One additional node
runs the YARN Resource Manager and Name Node and the IBIS
scheduling broker. The two disks on each node are used to store
HDFS data and intermediate data separately. The configuration pa-
rameters of YARN and its Fair Scheduler used in the evaluation are
listed in Table 1.

The evaluation compares the performance of IBIS to native Hadoop
with YARN using a variety of benchmarks, including TeraGen (1TB
output), TeraSort (50–400GB input), WordCount (50GB Wikipedia
input), Facebook2009 [6], and TPC-H on Hive [17] (53GB input),
which are explained in detail in the following experiments. For
IBIS with the SFQ(D2) scheduler, the control period is set to 1 sec-
ond.



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

wc
Alone

wc+tg
Native

wc+tg
SFQ

(D=12)

wc+tg
SFQ
(D=8)

wc+tg
SFQ
(D=4)

wc+tg
SFQ
(D=2)

wc+tg
SFQ(D2)

W
o
rd

C
o
u
n
t 
R

u
n
ti
m

e
 (

s
) map

reduce

107%
86%

52%

14% 13% 8%

(a) Runtime of WordCount. The numbers on top of the bars are the
slowdown w.r.t. the standalone runtime. The shuffling time of the first
wave of reduce tasks is overlapped with the map phase and not shown
in the bars. But the height of the bars reflects the total runtime.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

wc+tg
Native

wc+tg
SFQ

(D=12)

wc+tg
SFQ
(D=8)

wc+tg
SFQ
(D=4)

wc+tg
SFQ
(D=2)

wc+tg
SFQ(D2)

T
h
ro

u
g
h
p
u
t 
(M

B
/s

)

TeraGen WordCount

-11% -10% -13%
-20%

-4%

(b) Total throughput of WordCount and TeraGen. The numbers on top
of the bars are the throughput loss w.r.t. the native case.

Figure 6: Performance of WordCount (wc) when it runs alone and against TeraGen (tg) in an HDD-based storage setup

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  100  200  300  400  500  600  700  800  900 1000

 0

 20

 40

 60

 80

 100

D
e
p
th

L
a
te

n
c
y
 (

m
s
)

Time (s)

Depth
Latency

Figure 7: Adaptation of D by SFQ(D2) based on the observed I/O
latency on one datanode

7.2 Performance Isolation (WordCount)
The first experiment evaluates whether IBIS is able to provide

performance isolation to one application while it is under intensive
I/O contention from others as in the motivating example discussed
in Section 2.3. It is an important policy in many scenarios where the
performance of an important big-data application must be guaran-
teed regardless of the contention from others. As in the motivating
example, Figure 6a shows that when WordCount runs with Tera-
Gen, it is slowed down by 107% due to I/O contention, compared
to when it runs alone with the same CPU and memory allocation
(48 CPU cores and 96GB RAM). Performance isolation is chal-
lenging to accomplish for WordCount because its I/O rate is much
lower than TeraGen, while a work-conserving I/O scheduler tries
not to underutilize the storage.

Figure 6a shows the results of IBIS from using both the classic
SFQ(D) scheduler with a static value of D and the new SFQ(D2)
scheduler which dynamically adjusts D. The sharing ratio between
WordCount and TeraGen is set to 32:1 to favor WordCount, but Ter-
aGen can always use the spare I/O bandwidth because the sched-
ulers are work-conserving. Comparing the results from SFQ(D)
with different D values, it shows that reducing D does give the
scheduler a tighter control on I/O scheduling and achieves better
performance isolation for WordCount, reducing its slowdown to as
low as 13%. Comparing the results from SFQ(D) to SFQ(D2), it
shows that the new scheduler achieves the best isolation for Word-
Count with a runtime that is only 8% slower than when it runs
alone, and it does so by automatically adjusting the value of D.

Note that the 32:1 sharing ratio is used here because the objec-
tive of this experiment is to restore the performance of WordCount
without underutilizing the bandwidth. Lower sharing ratios would

favor WordCount less and result in worse performance of Word-
Count while still being much better than the native case. For ex-
ample, a sharing ratio of 2:1 restores WordCount’s performance
to 148% of its standalone runtime with SFQ(D=2) and 118% with
SFQ(D2).

The excellent performance isolation from IBIS is accomplished
while still allowing the competing application, TeraGen, to make
good progress and fully utilize the underlying storage. To confirm
this, Figure 6b compares the total throughput of WordCount and
TeraGen when they run on native Hadoop without I/O management
vs. when they run on IBIS. The native case has the highest to-
tal throughput, because TeraGen’s I/Os are sent to storage as soon
as they come without any control. In comparison, the number of
outstanding I/Os is controlled by D in the schedulers of IBIS. The
results show that IBIS can achieve good storage utilization in all
configurations, where the best result is also from SFQ(D2) which
is only 4% lower than the native case. This result is achieved while
reducing WordCount’s runtime slowdown from 107% to 8% as dis-
cussed above.

To provide a detailed view of how SFQ(D2) works, Figure 7
shows how it adapts D based on the observed I/O latency on one of
the datanodes. It follows the equation for the feedback controller
described in Section 4. The gain factor is set to 10−6. The value of
D is bounded between 1 and 12. Throughout the run the controller
reacts quickly to the observed latency and adapts D quickly to sus-
tain strong performance isolation with good resource utilization.
Noticeable that at the 260th second and 790th second, the under-
lying storage system undergoes foreground flushing of the writes
buffered in memory and causes the high spikes in I/O latency, while
the controller still responds in a timely manner. Although IBIS
does not have direct control of such lower-level dynamics, it can
still effectively mitigate their impact by timely adapting the I/O
concurrency. It is therefore able to sustain good performance isola-
tion without having to modify the underlying storage layers which
would be much more intrusive and expensive.

Although faster storage devices such as SSDs are increasingly
considered by big-data systems, they cannot completely replace
HDDs due to their limited capacity. Moreover, faster storage does
not make the I/O contention problem go away; the increasing vol-
ume and velocity of big data will always demand I/O management.
To confirm this, the same experiment is repeated on a different stor-
age setup using SSDs (Intel 120GB MLC SATA-interfaced flash
devices) to store both HDFS and temporary data on each datan-
ode. The results in Figure 8a first confirm that WordCount is still
severely interfered (50% slowdown) by TeraGen on native Hadoop
due to I/O contention. They also confirm that IBIS still achieves



 0

 50

 100

 150

 200

 250

 300

 350

 400

wc
Alone

wc+tg
Native

wc+tg
SFQ(D2)

W
o

rd
C

o
u

n
t 

R
u

n
ti
m

e
 (

s
) map

reduce
50%

-5%

(a) Runtime of WordCount

 0

 200

 400

 600

 800

wc+tg
Native

wc+tg
SFQ(D2)

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

TeraGen WordCount

2%

(b) Total throughput of WordCount and TeraGen

Figure 8: Performance of WordCount (wc) when it runs alone and against TeraGen (tg) in an SSD-based storage setup

strong performance isolation with excellent storage utilization for
this faster storage setup. Interestingly, IBIS with SFQ(D2) achieves
a better runtime for WordCount than when it runs alone, and a
better total throughput for WordCount and TeraGen than native
Hadoop. This can be explained by the read/write asymmetry of
flash devices and the implicit promotion of reads in SFQ(D2). Writes
are much slower than reads on flash devices and they can signifi-
cantly slow down the reads that are scheduled after them. When
intensive writes are received by the scheduler, it automatically re-
duces D, which gives the reads a better chance to establish back-
logged requests and be dispatched before some of the writes, there-
fore achieving better overall performance. This unique character-
istic of flash devices will be further studied in the future work to
optimize the IBIS scheduler specifically for the use of SSDs in big-
data systems.

7.3 Performance Isolation (Facebook2009)
The second experiment evaluates whether IBIS is also able to

provide performance isolation to the Facebook2009 workload, which
is far more diverse than WordCount. A total of 50 jobs are cre-
ated using the SWIM workload generator [6], by sampling the his-
torical Facebook job logs and emulating their computing and I/O
phases. The samples are down-scaled to fit the size of this paper’s
testbed. The workload consists of diverse MapReduce applications,
including both small and large jobs with different levels of I/O de-
mands. Their input-to-shuffle ratio and shuffle-to-output ratio vary
between 0.05 to 103 and 2−5 to 102 respectively. These ratios rep-
resent the relative data sizes between map input and shuffle input
and between shuffle input and reduce output. Varying these ratios
generates different levels of computation and I/O intensities for the
various phases of the jobs.

The Facebook2009 jobs are run together with TeraGen on the
native Hadoop (Interfered) and on IBIS using the SFQ(D2) sched-
uler with a bandwidth sharing ratio of 32:1 favoring Facebook jobs
(SFQ(D2)). As a baseline, Facebook2009 is also run alone without
I/O contention from others (Standalone). The CPU and memory
resources allocated to Facebook2009 are kept to half of the total
resources for all the cases.

Figure 9 compares the cumulative distribution of the Facebook2009
jobs’ runtimes. In the Standalone case, 90% of Facebook2009 jobs
finish within 120s. When they run together with TeraGen without
I/O management in the Interfered case, they are impacted drasti-
cally by TeraGen, and no job finishes within 50s and 90% of them
take up to 230s. In comparison, using SFQ(D2), IBIS is indeed able
to provide strong isolation to Facebook2009, and 90% of the jobs
can finish within 138s. Comparing the average runtime of Face-
book2009, it is reduced from 168s in the Interfered case to 115s un-

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 50  100  150  200  250  300
C

u
m

u
la

ti
v
e
 F

re
q
u
e
n
c
y

Facebook2009 Runtime (s)

Standalone
Interfered
SFQ(D2)

Figure 9: Cumulative distribution of Facebook2009 job runtimes

der SFQ(D2), where the Standalone average runtime is 98s. Most
of these jobs require only one wave of map and reduce tasks. With-
out an I/O scheduler, their I/Os are severely interfered by TeraGen
and slowed down substantially. With IBIS, they are well isolated
from TeraGen and can utilize the allocated storage bandwidth to
achieve a performance close to the standalone case.

7.4 Multi-framework I/O Scheduling
The third experiment evaluates IBIS’ ability to schedule I/Os

and manage their performance for different big-data frameworks,
Hive [17] and MapReduce, that share the same infrastructure. Specif-
ically, this experiment considers TPC-H queries [7] as the bench-
mark for Hive. TPC-H represents decision support systems scan-
ning large volumes of business data, executing queries with a high
degree of complexity, and providing keys to important business
questions. Hive is a data warehouse framework built upon Hadoop,
to support the SQL query execution for data stored on HDFS. Its
execution engine spawns a series of MapReduce jobs for query ful-
fillment, providing end users with much flexibility in data format
adaptation and ease of use in a scalable cluster environment.

The experiment focuses on the TPC-H queries Q9 (product type
profit) and Q21 (suppliers who kept orders waiting) which involve
multiple intensive I/O phases including both HDFS and intermedi-
ate I/Os. Q9 reads 53GB of initial input from five tables stored on
HDFS and generates 120GB of intermediate I/Os. Q21 reads 45GB
of initial input from four tables on HDFS, and generates 40GB of
intermediate I/Os. Both queries launch up to 15 sequential Hadoop
jobs. Q9’s final output is 5KB and Q21’s final output is 2.6GB.

The TPC-H queries on Hive and TeraSort on MapReduce are
run concurrently, each with half of the CPU cores and memory. Al-
though the native YARN does not provide any support for I/O man-
agement, it is conceivable to extend it to use cgroups [4], which



 0

 0.2

 0.4

 0.6

 0.8

 1

Q21 Q09

R
e

la
ti
v
e

 A
p

p
lic

a
ti
o

n
P

e
rf

o
rm

a
n

c
e

 

Native
CG(weight)-100:1

CG(throttle)-1MB/s
IBIS-100:1

(a) Performance of TPC-H queries (Q9 and Q21) relative to their standalone
runtimes

 0

 0.2

 0.4

 0.6

 0.8

 1

Avg Q21/TS Avg Q09/TS

R
e

la
ti
v
e

 A
p

p
lic

a
ti
o

n
P

e
rf

o
rm

a
n

c
e

 

Native
CG(weight)-100:1

CG(throttle)-1MB/s
IBIS-100:1

(b) The average relative performance of TPC-H and TeraSort

Figure 10: The performance interference and effectiveness of I/O scheduling for TPC-H on Hive and TeraSort on MapReduce that share the
same infrastructure

YARN already uses to allocate CPUs and memory, to also man-
age I/O bandwidth allocation. To compare to this cgroups-based
approach, YARN is extended to use the cgroups mechanisms to al-
locate shared I/O bandwidth between the two frameworks. This
extended YARN can use both the proportional-sharing and throt-
tling modes of cgroups to manage I/Os. In the proportional-sharing
mode, the shared bandwidth is allocated to competing applications
according to their assigned weights. In the throttling mode, a spe-
cific cap can be set to an application’s bandwidth usage. Note that
as discussed in Section 6, this approach as well as other similar
ones can manage only the intermediate I/Os, but not HDFS I/Os; in
contrast, IBIS is able to differentiate both local and distributed I/Os
and schedule them according to the given performance policy.

Figure 10a shows the relative performance of the two TPC-H
queries when running against TeraSort w.r.t. their standalone run-
times. For Q21, on Native YARN, the query experiences a 35.2%
performance loss when compared to its standalone runtime. When
using cgroups’ two different modes with aggressive parameters to
favor TPC-H—100:1 bandwidth sharing ratio in CG weighted 100:1
and 1MB/s bandwidth cap on TeraSort in CG throttled 1MB/s, it
can only improve the query performance by 1.2% and 2.5% re-
spectively. In comparison, IBIS is able to improve the query per-
formance to within 80% of its standalone performance, which is
15.2% better than native YARN and 12.7% better than cgroups. For
Q9, the query experiences a 26% performance loss when running
against TeraSort on Native YARN. Both cgroups’ throttling policy
and IBIS can restore the query performance to 91% of its stan-
dalone runtime, which is better than cgroups’ proportional-share
policy by 8%. The cgroups-based I/O throttling works better for
Q9 than Q21, because Q9 has a higher level of intermediate I/Os
which can be throttled by cgroups. However, throttling causes un-
derutilization of storage and unnecessary slowdown of the compet-
ing application, TeraSort. Consequently, the performance of Tera-
Sort is up to 16% worse when using cgroups throttling, compared
to IBIS which is work-conserving.

To evaluate the overall system performance considering both com-
peting frameworks, the experiment considers the average relative
performance of the two applications, i.e., the average of each ap-
plication’s relative performance w.r.t. its own standalone perfor-
mance. Figure 10b shows that when Q21 runs with TeraSort, the
two applications experience a 26% performance loss in average on
Native YARN, and the use of cgroups-based proportional band-
width sharing does not improve it. The I/O throttling policy of
cgroups makes it even worse because it is non-work-conserving
and causes underutilization of the I/O bandwidth. In comparison,
IBIS is able to achieve an average relative performance of 80%.
For Q9, cgroups and IBIS achieve similar average relative perfor-

mance, which is about 4% lower than Native because this query is
more I/O intensive and incurs a higher overhead in I/O scheduling.

Considering the results from both figures, a multi-framework re-
source management solution such as YARN cannot provide strong
performance isolation among competing applications due to the
lack of I/O management. In comparison, IBIS is able to provide
I/O isolation and when used in combination with YARN’s CPU and
memory management, it is able to protect the performance of a vul-
nerable application such as TPC-H while still allowing the compet-
ing, intensive application such as TeraSort to make good progress
by using the available storage bandwidth.

7.5 Proportional Slowdown
The previous three experiments are designed to show IBIS’ abil-

ity to support the performance isolation policy. Another important
and commonly used policy is proportional slowdown, i.e., the rela-
tive performance of competing applications, w.r.t. their standalone
performance, is proportional to their assigned weights. This pol-
icy is often used to achieve fairness for applications in terms of
their performance, not their resource allocations. A big-data ap-
plication’s performance depends on both the available CPU cores
and I/O bandwidth, and its use of CPU and I/O resources are cor-
related. Without control on the I/O bandwidth, it is possible to
achieve proportional slowdown by limiting the CPU slots allocated
to the more I/O-intensive application and indirectly throttling its
I/O rate, so that the less I/O-intensive one can get more I/O band-
width. Nonetheless, such a configuration leads to storage underuti-
lization and suboptimal performance of the applications.

With IBIS, system administrators can tune both CPU slot and
I/O bandwidth allocations together, and achieve proportional slow-
down without wasting the resources. Ideally, this tuning should
be done automatically without human intervention, which would
require performance models of the big-data applications that can
capture their CPU and I/O resource demands given different per-
formance targets. How to create such models and use them to au-
tomatically tune the resource allocations are interesting research
problems on their own and will be considered in the future work.
This paper focuses on the problem of providing the necessary I/O
control mechanisms to support a variety of performance policies
such as performance isolation and proportional slowdown, which
comes with a set of unique challenges discussed earlier and is tack-
led by the proposed IBIS framework. Without such control knobs
enabled by IBIS, it would be difficult for either administrators or
autonomic software to achieve the desired performance policy with
efficient resource utilization.

In this experiment, equal slowdown of both TeraSort and Tera-
Gen is the target policy, meaning that both applications should be



 40

 50

 60

 70

 80

 90

 100

 110

NO IBIS
 FS 5:1

IBIS 2:1
FS 2:1

A
p
p
lic

a
ti
o
n

S
lo

w
d
o
w

n
 (

%
)

TeraSort
TeraGen

83%

42%

61%

42%

Figure 11: Performance slowdown of TeraSort and TeraGen using
Hadoop Fair Scheduler (FS) based CPU slot allocations and IBIS-
based I/O bandwidth allocations. The FS and IBIS ratios indicate
the CPU and I/O shares, respectively, between TeraSort and Tera-
Gen.

 70

 75

 80

 85

 90

 95

 100

 105

 110

No Sync Sync

A
p
p
lic

a
ti
o
n

S
lo

w
d
o
w

n
 (

%
)

TeraSort106%

86%

TeraGen
100%

71%

Figure 12: Performance slowdown of TeraSort and TeraGen when
using IBIS without distributed scheduling coordination (No Sync)
and with distributed scheduling coordination (Sync). The CPU
sharing ratio of TeraSort vs. TeraGen is 1:1 and the I/O bandwidth
sharing ratio is 32:1.

slowed down by the same percentage relative to their respective
standalone runtime. Figure 11 shows the performance slowdown
of these two applications. By adjusting only the CPU allocation
using the Hadoop Fair Scheduler, the best equal slowdown that it
can get is 83% slowdown for TeraSort and 61% for TeraGen. By
using Fair Scheduler and IBIS to tune both CPU and I/O allocations
together, it is able to get a perfect equal slowdown of 42%, which
is 30% better than the average slowdown of the two applications
when using Fair Scheduler only. These results therefore confirm
that IBIS is also able to support the proportional slowdown policy
and optimize the application performance under this policy.

7.6 Coordinated Scheduling
As discussed in Section 5, many factors decide the I/O service

that an application gets from each datanode in a big-data system,
including data distribution, slot allocation, task assignment, and
competing applications, which all contribute to the uneven distri-
bution of I/O services across the nodes. Without a mechanism for
coordinating the distributed I/O schedulers and an algorithm to ad-
just local sharing ratios based on the global sharing policy, the total
service that an application gets from the entire big-data system will
diverge from the given target. This experiment evaluates the effec-
tiveness of the proposed distributed scheduling coordination mech-
anisms (Section 5) for achieving total-service proportional sharing.

The experiment is conducted similarly to the previous one for
achieving equal slowdown for TeraSort and TeraGen, but it con-
siders two different IBIS setups where the distributed scheduling

 0

 100

 200

 300

 400

 500

 600

WordCount TeraGen TeraSort

R
u
n
ti
m

e
 (

s
)

Native
IBIS

Figure 13: Runtime of WordCount, TeraGen, and TeraSort when
each benchmark runs on native Hadoop (Native) vs. on IBIS

Table 2: CPU and memory usages of the YARN and IBIS daemons
including the Resource Manager, Node Manager, and Data Node

Benchmark Resource Native IBIS
WordCount CPU 0.4% 0.5%
TeraGen CPU 1.7% 5.1%
TeraSort CPU 0.55% 0.65%
WordCount Memory 1.2% 8.2%
TeraGen Memory 2.0% 8.1%
TeraSort Memory 1.6% 10.6%

coordination is disabled (No Sync) and enabled (Sync). The latter
case should allow IBIS to find better equal slowdown because it can
dynamically adjust local I/O service distribution based on global
service distribution, which leads to better CPU and I/O resource
utilization and better performance for both applications. Figure 12
shows the performance slowdown of TeraSort and TeraGen with re-
spect to their own standalone runtimes. The average performance
slowdown with Sync is 25% better than from No Sync, confirming
the improvement made by the coordinated I/O scheduling.

7.7 Overhead
The last experiment evaluates the overhead of IBIS from several

aspects. First, it studies the performance impact to a big-data ap-
plication from IBIS-based I/O interposition and scheduling. Word-
Count, TeraGen, and TeraSort are all considered because each of
them has distinct I/O patterns and demands. They are run sepa-
rately with all the 96 CPU cores in the system. Figure 13 shows
that the overhead of using IBIS is 1%, 2%, and 4% for WordCount,
TeraGen, and TeraSort, respectively, in terms of runtime.

Second, the resource usages of IBIS are evaluated by tracking the
total CPU and memory utilizations of the YARN Resource Man-
ager, Node Manager, and Data Node, where the IBIS implementa-
tion is located. Table 2 lists the per-core CPU utilization and per-
node memory utilization, which are reasonable compared to native
YARN’s resource usages.

Third, Table 3 summarizes the code development complexity in
terms of lines of code categorized by the IBIS components. IBIS
provides a flexible big-data I/O scheduling framework, and allows
users to conveniently create new schedulers for different objectives.
The amount of work required to develop a sophisticated scheduler
on IBIS is only at the level of a thousand lines of code.

8. RELATED WORK
As storage performance becomes increasingly important to big-

data applications, several recent works have studied this problem.



Table 3: Development cost of IBIS

Component Lines of Code
Interposition 2593
SFQ(D) Scheduler 734
SFQ(D2) Scheduler 1520
Scheduling Coordination 1705
Total 6552

Frosting [20] provides a scheduling layer upon HBase which dy-
namically controls the number of outstanding requests and propor-
tionally shares the HBase storage among competing clients. How-
ever, it treats the entire distributed HBase storage stack as a single
black box, and may underutilize the individual datanodes in order
to provide any performance guarantee. In contrast, IBIS manages
I/Os at the lower big-data file system layer and in a distributed man-
ner, which can provide more effective I/O performance differentia-
tion while making efficient use of the underlying storage resources.

PISCES [15] provides fair sharing of key-value storage by con-
trolling requests dispatched to storage nodes according to the shares.
In comparison, in a MapReduce-type big-data system an appli-
cation’s task distribution is driven by both CPU slot requirement
and data locality, and its I/O demands are much more complex—
including multiple phases of local and network I/Os, and diverse—
with different intensities on the various types of I/Os. Hence, I/O
management in a MapReduce system cannot be achieved by merely
controlling task dispatching, and has to rely on both local I/O schedul-
ing and global coordination which are part of the IBIS solution.

Cake [19] presents a two-level scheduling approach to meet-
ing the performance goal of latency-sensitive applications (HBase)
when they are consolidated with throughput-oriented applications
(MapReduce), but it cannot provide any performance guarantee to
the latter. In comparison, IBIS supports both types of applications.

Finally, a preliminary study of IBIS [23] presented the results
from employing the traditional SFQ(D) scheduler for MapReduce
applications only. This paper extends upon the initial results and
includes a new scheduling framework that supports different types
of big-data applications (both batch jobs and queries) and a new
I/O scheduler SFQ(D2) that substantially outperforms SFQ(D).

Several works studied other orthogonal aspects of big-data stor-
age: PACMan [8] manages memory-based caching of map task in-
puts to improve application performance; iShuffle [11] improves
the performance of intermediate I/Os. However, they would still
need a storage management solution like IBIS to provide perfor-
mance isolation for the intermediate I/Os and the I/Os that trickle
down the memory cache layer among concurrent applications.

I/O interposition is a technique often used to manage a shared
storage resource that does not provide native knobs for controlling
its competing I/Os. It has been employed in the related work to
realize a proportional bandwidth scheduler for a shared file ser-
vice [13], to create application-customized virtual file systems upon
a shared network file system [25], and to manage the performance
of a parallel file system based storage system [22]. Big-data sys-
tems present unique challenges to I/O management because of the
complexity (different types of I/Os), diversity (different levels of
intensity), and scale (many datanodes) of the I/O contention. These
are addressed by the techniques embodied in IBIS, including holis-
tic interposition of HDFS, local file system, and network I/Os, an
adaptive proportion-share I/O scheduler, and scalable coordination
of distributed I/O scheduling.

There are also related works on the performance management of
other types of storage systems. Horizon [14] can provide global
minimum throughput guarantee for a RAID storage system, but

it requires a centralized controller to assign deadlines to requests,
which is difficult to apply to a big-data system where I/Os are is-
sued directly by local tasks on each datanode. A two-level sched-
uler [24] was proposed for meeting I/O latency and throughput tar-
gets, but it supports only local I/O scheduling, whereas a big-data
system requires the distributed storage management provided by
IBIS.

9. DISCUSSIONS
Overall IBIS can provide good performance isolation to various

big-data applications. For WordCount, IBIS reduces the slowdown
to merely 8% when it is under heavy I/O contention from a much
more intensive job; but for a more latency-sensitive TPC-H query
(Q21), it still shows a 25% slowdown despite the significant im-
provement over native YARN. Note that these results are achieved
without underutilizing the shared storage bandwidth. Further im-
provement is possible by trading resource utilization for perfor-
mance isolation. IBIS enables this tradeoff by adjusting its sched-
uler parameters (D in SFQ(D) and Lre f in SFQ(D2)) and choice of
schedulers—in the extreme case, a non-work-conserving scheduler
can provide strict performance isolation but may severely underuti-
lize the storage.

This paper focuses on providing the missing control knob for
managing I/Os in big-data systems, but it does not answer the ques-
tion of how to automatically tune this new knob to meet an applica-
tion’s desired performance target—the results in Section 7 are from
manually adjusting the scheduler parameters. A possible solution,
which will be explored in the future work, is to build performance
models for big-data applications that can map an application’s re-
source allocations, including IBIS-based I/O bandwidth allocation,
to its performance. Based on such models, admission control and
resource allocation can be then done automatically given the de-
sired application performance.

Although IBIS uses a centralized scheduling broker, its light-
weight design promises good scalability. The broker handles only
the forwarding of the global I/O service information to the local
schedulers and let them decide how to schedule their local flows
based on this information. In comparison, an alternative design
that uses the broker to decide the scheduling of all the local flows
in the system would not scale. The amount of information to be
communicated between the broker and each local scheduler is also
small, and it is piggybacked on the big-data system’s existing heart-
beat messages to further reduce its overhead. Therefore, the cost of
global scheduling coordination does not grow significantly as the
system size increases. Future work will consider the evaluation of
IBIS on larger-scale testbeds to quantify its scalability.

Finally, the paper assumes that the big-data storage system is
physical. A virtualized environment where the datanodes are hosted
on virtual machines would present some new challenges. For ex-
ample, several virtual datanodes may be sharing the same physical
storage, and the scheduling decisions made by the IBIS schedulers
running on these datanodes may be conflicting. As virtualized big-
data systems gain wider adoption, this is also an interesting direc-
tion for future work.

10. CONCLUSIONS
Big-data systems are increasingly important platforms for effi-

cient processing of large amounts of data for knowledge learning
and sharing in various disciplines. Big-data applications are by
nature I/O intensive, and their performance strongly depends on
the I/O services that they get from the system. Existing big-data
systems support only the allocation of CPUs and memory, which



however does not provide any performance isolation on the shared
storage. Moreover, it is challenging to achieve I/O performance
management in a big-data system because of the intrinsic complex-
ity of the application I/Os and the distributed nature of the system.

This paper presents IBIS, an Interposed Big-data I/O Scheduler,
to address the above challenges and provide the much needed I/O
performance differentiation to diverse big-data applications, possi-
bly from different frameworks. IBIS is designed to transparently
differentiate and schedule application I/Os on every datanode by
interposing upon the distributed file system commonly used in big-
data systems. It includes a new proportional-share I/O scheduler
that can dynamically adjust I/O concurrency to optimize the trade-
off between application fairness and resource utilization. It pro-
vides efficient coordination for the I/O schedulers distributed across
the datanodes to cooperate and achieve proportional sharing of the
big-data system’s total I/O service. The results from an extensive
evaluation confirm that IBIS can effectively address the severe I/O
interference problem that existing big-data systems have and pro-
vide strong performance isolation with efficient resource usage.

11. ACKNOWLEDGMENTS
The authors thank the anonymous reviewers and the shepherd,

Jon Weissman, for their helpful comments on the paper. This re-
search is sponsored by National Science Foundation CAREER award
CNS-125394 and Department of Defense award W911NF-13-1-
0157.

12. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org/.
[2] Hadoop Fair Scheduler. https://hadoop.apache.org/docs/r2.7.

1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html.
[3] HBase. http://hbase.apache.org.
[4] Linux containers. https://linuxcontainers.org.
[5] OpenFlow.

https://www.opennetworking.org/sdn-resources/openflow.
[6] Statistical workload injector for MapReduce (SWIM).

https://github.com/SWIMProjectUCB/SWIM/wiki.
[7] TPC-H Benchmark Specification. http://www.tpc.org/tpch.
[8] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,

S. Kandula, S. Shenker, and I. Stoica. PACMan: Coordinated
memory caching for parallel jobs. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and
Implementation, 2012.

[9] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In Proceedings of the 6th
Conference on Symposium on Opearting Systems Design and
Implementation (OSDI’04), Berkeley, CA, USA, 2004.
USENIX Association.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (SOSP’03), pages 29–43,
New York, NY, USA, 2003. ACM.

[11] Y. Guo, J. Rao, and X. Zhou. iShuffle: Improving Hadoop
performance with shuffle-on-write. In Proceedings of the
10th International Conference on Autonomic Computing
(ICAC’13), pages 107–117, San Jose, CA, 2013. USENIX.

[12] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A
platform for fine-grained resource sharing in the data center.
In Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, 2011.

[13] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional
sharing for a storage service utility. In Proceedings of the
Joint International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS’04), pages
37–48, New York, NY, USA, 2004. ACM.

[14] A. Povzner, D. Sawyer, and S. Brandt. Horizon: Efficient
deadline-driven disk I/O management for distributed storage
systems. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing
(HPDC’10), pages 1–12, New York, NY, USA, 2010. ACM.

[15] D. Shue, M. J. Freedman, and A. Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. In
Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, pages 349–362, 2012.

[16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The
Hadoop distributed file system. In Proceedings of the IEEE
26th Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–10. IEEE, 2010.

[17] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Antony, H. Liu, and R. Murthy. Hive - A petabyte scale
data warehouse using Hadoop. In Proceedings of the 26th
IEEE International Conference on Data Engineering
(ICDE’10), pages 996–1005, March 2010.

[18] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, and
S. Seth. Apache Hadoop YARN: Yet another resource
negotiator. In Proceedings of the Fourth ACM Symposium on
Cloud Computing, 2013.

[19] A. Wang, S. Venkataraman, S. Alspaugh, R. Katz, and
I. Stoica. Cake: Enabling high-level SLOs on shared storage
systems. In Proceedings of the Third ACM Symposium on
Cloud Computing (SOCC’12), pages 14:1–14:14, New York,
NY, USA, 2012. ACM.

[20] A. Wang, S. Venkataraman, S. Alspaugh, I. Stoica, and
R. Katz. Sweet storage SLOs with Frosting. In Proceedings
of the 4th USENIX Conference on Hot Topics in Cloud
Computing (HotCloud’12), Berkeley, CA, USA, 2012.
USENIX Association.

[21] Y. Wang and A. Merchant. Proportional-share scheduling for
distributed storage systems. In Proceedings of the 5th
USENIX Conference on File and Storage Technologies
(FAST’07), Berkeley, CA, USA, 2007. USENIX.

[22] Y. Xu, D. Arteaga, M. Zhao, Y. Liu, R. Figueiredo, and
S. Seelam. vPFS: Virtualization-based bandwidth
management for parallel storage systems. In Proceedings of
the 28th IEEE Conference on Massive Data Storage (MSST),
April 2012.

[23] Y. Xu, A. Suarez, and M. Zhao. IBIS: Interposed big-data
I/O scheduler. In Proceedings of the 22nd International
Symposium on High-performance Parallel and Distributed
Computing (HPDC’13), pages 109–110, New York, NY,
USA, 2013. ACM.

[24] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska, and
E. Riedel. Storage performance virtualization via throughput
and latency control. ACM Transactions on Storage,
2(3):283–308, Aug. 2006.

[25] M. Zhao and R. J. Figueiredo. Application-tailored cache
consistency for wide-area file systems. In Proceedings of the
26th IEEE International Conference on Distributed
Computing Systems (ICDCS’06), 2006.

http://hadoop.apache.org/
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/r2.7.1/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://hbase.apache.org
https://linuxcontainers.org
https://www.opennetworking.org/sdn-resources/openflow
https://github.com/SWIMProjectUCB/SWIM/wiki
http://www.tpc.org/tpch

	Introduction
	Background and Motivations
	Big-data Systems
	Big-data Resource Management
	Motivating Examples

	Interposed I/O Scheduling
	Proportional I/O Sharing
	Distributed I/O Scheduling Coordination
	Multi-framework I/O Scheduling
	Evaluation
	Setup
	Performance Isolation (WordCount)
	Performance Isolation (Facebook2009)
	Multi-framework I/O Scheduling
	Proportional Slowdown
	Coordinated Scheduling
	Overhead

	Related Work
	Discussions
	Conclusions
	Acknowledgments
	References

