
Cross-layer Optimization for Virtual Machine

Resource Management

Ming Zhao

Arizona State University

Tempe, AZ, USA
mingzhao@asu.edu

Lixi Wang

Amazon.com

Seattle, WA, USA
lwang007fiu@gmail.com

Yun Lv

Beihang University

Beijing, China
lvyuncn@outlook.com

Jing Xu

Google

Moutain View, CA, USA
jingxu97@gmail.com

Abstract—Virtualized systems (e.g., public and private clouds)

are playing an increasingly vital role to support the computing of

applications from different domains. Existing resource

management solutions in such systems typically treat virtual

machines (VMs) as black boxes, which presents a hurdle to

achieving application-desired Quality of Service (QoS). This paper

advocates the cooperation between VM host- and guest-layer

schedulers for optimizing the resource management and

application performance. It presents an approach to such cross-

layer optimization by enabling the host-layer scheduler to

feedback resource allocation decisions and adapt guest-layer

application configurations. As case studies, the proposed approach

is applied to virtualized databases and map services which have

challenging dynamic and complex resource demands as well as

sophisticated configurations. Specifically, for databases, the

proposed approach adapts query executions by tuning the cost

model parameters according to the available storage bandwidth

and memory capacity. For map services, it adapts the quality of

returned map imagery in order to meet the response time target

as the workload intensity and available network bandwidth

change over time. A prototype of the proposed approach is

implemented on Xen and Hyper-V VMs, and evaluated using a

TPC-H based database workload and a TerraFly-based map

service workload. The results show that with the proposed host-to-

guest application adaptation, the TPC-H workload improves its

performance by 33.5%, and the TerraFly workload improves the

map imagery quality by 40% and always meets its response time

target, compared to the schemes without adaptation.

Keywords—cross-layer optimization, virtual machine, resource

management

I. INTRODUCTION

Virtualized systems are playing an increasingly vital role to
support the computing of applications from different domains.
For example, cloud computing is a promising platform for
delivering computing as a utility to users [1][2]. Public clouds
allow public users to rent resources and run a wide variety of
applications; private clouds allow users from the same
organization to run business-related applications on shared
internal resources. In such virtualized systems, applications are
consolidated to shared physical resources via their dedicated
virtual machines (VMs). As the level of consolidation quickly
grows, there is an increasingly urgent need for virtualized
systems to deliver better Quality-of-Service (QoS), so that users
are comfortable to run their applications on a shared
infrastructure. However, current systems cannot meet stringent
performance requirements, particularly not for applications with

dynamic and complex behaviors. Consequently, examples such
as clouds cannot support QoS-based Service Level Agreements
(SLA), whereas users often have to purchase unnecessary
resources for their VMs.

Existing resource management solutions typically treat VMs
as black boxes when making resource allocation decisions. The
host-layer VM scheduler is agnostic of the application
scheduling inside of a guest, whereas a guest-layer application
scheduler is also unaware of the VM’s resource allocation on a
host. Although such transparency is important for reasons such
as portability and legacy support, it also presents a hurdle to
achieving application-desired QoS on virtualized systems. On
one hand, the knowledge of an application’s workload
characteristics could be exploited by the host-layer scheduler to
better understand the VM’s resource demands. On the other
hand, the knowledge of the host’s resource allocation decisions
can help the guest-layer scheduler adapt to the VM’s actual
resource availability.

Therefore, this paper proposes cross-layer optimization for
VM resource management which allows certain awareness and
cooperation between the VM host and guest layers in order to
improve application performance and meet its QoS target.
Specifically, this paper focuses on the problem of enabling the
host-layer scheduler to feedback resource allocation decisions to
the guest layer and adapt the application configurations. Such
cross-layer optimization are integrated into a fuzzy-modeling-
based resource management system [3] which uses online fuzzy
modeling and prediction to allocate resources dynamically
according to application QoS requirements. Compared to related
works on paravirtualization [4], this paper’s solution does not
require any change to the existing VM interfaces and thus
supports unmodified applications and operating systems.

This paper considers virtualized databases and web-based
map services as representative case studies. Databases serve
complex and dynamic workloads consisting of different queries,
whereas they also employ sophisticated query optimization
which needs to be tuned according to the resource availability.
Map services need to serve dynamic map requests with both
good responsiveness and imagery quality, which is a tradeoff
that should also be adjusted based on the resource availability.
Hence, applying cross-layer optimization to the resource
management of virtualized databases and map services can be a
convincing showcase of the proposed cross-layer optimization.
Specifically, in the case study of virtualized databases, the
proposed approach adapts query executions by tuning the cost

2

model parameters according to the changing storage bandwidth
and memory availability. For virtualized map services, it adapts
the imagery resolution of returned maps based on the workload
intensity and available network bandwidth in order to meet the
response time target.

This proposed approach is prototyped on Xen and Hyper-V
based VM environments, and evaluated using both typical
database workloads based on TPC-H [5] and typical web map
service workloads based on TerraFly [6]. The results show that
the proposed approach of host-to-guest application adaptation
effectively optimizes the database’s query executions when the
VM’s resource availability changes due to disk I/O and memory
contention. The TPC-H workload improves its query time by
about 33.5% compared to the scheme without such adaptation.
For the TerraFly map service, the proposed approach adapts the
quality of returned map imagery according to the changing
workload intensity and network contention. It improves the
imagery quality by 40% while always meeting the service’s
response time target. In comparison, the static schemes either
deliver a poor image quality and waste the available network
bandwidth, or miss the response time target when trying to
deliver a high imager quality.

In the rest of the paper, Section 2 presents the motivating
examples, Section 3 introduces the background on fuzzy-
modeling-based resource management, Section 4 and 5 present
the general approach to cross-layer optimization and its case
studies, Section 6 discusses the evaluation, Section 7 examines
the related work, and Section 8 concludes the paper.

II. MOTIVATING EXAMPLES

In this section, several examples are used to motivate the
need of cross-layer optimization by feeding back the host-
layer’s resource allocation information to the guest-layer. In the
first two examples, the workload consists of a single copy of
TPC-H query Q8 on a 3GB database VM. Figures 1 and 2
compare the query performance using two representative
settings of the cost model parameters, sequential_page_cost and
random_page_cost, denoted by seq and rand respectively. Both
parameters characterize the database’s execution environment:
the former defines the cost of fetching a page from disk using
sequential reads whereas the latter defines the cost of a non-
sequential disk page fetch. Changing these parameters affects
the database’s performance indirectly by influencing its internal
query cost estimation. Lower value of seq reduces the cost of a
plan with more sequential scans on the tables; lower value of
rand reduces the cost of a plan with more random scans, e.g.,
index scans. Therefore, when the ratio of seq vs. rand is lower,
the database favors execution plans that use more sequential
scans; whereas when the ratio is high, the database favors
execution plans that use more random scans.

Figure 1 shows the performance of Q8 on a database VM
when its memory cache is cold. As the VM’s I/O bandwidth
allocation reduces from 5000 to 1000 KB/s, the performance of
Q8 drops in both database configurations. However, when the
available I/O bandwidth is high, the sequential-scan-preferred
configuration outperforms the random-scan-preferred one (by
89% at 5000KB/s). When the available bandwidth is reduced,

the latter’s performance is much less affected and becomes
faster than the former (by 1.9 times at 1000 KB/s).

Figure 2 shows similar behavior of Q8’s performance but
with respect to changing memory availability when performed
in a warm database VM. When the available memory is low, the
sequential-scan-preferred configuration is drastically faster than
the random-scan-preferred one (by 14 times at 384MB), because
the query performance is bound by disk I/Os where sequential
I/Os are much more efficient than random I/Os. When the
available memory becomes large enough to cache the queried
data, the random-scan-preferred configuration starts to
outperform the sequential-scan-preferred one (by 3 times at
1048MB), because the former touches less data (indexes are
much smaller than tables).

The third example is demonstrated using a virtualized web-
based map service. On one hand, such a service needs to meet
the response time target for map requests; on the other hand, it
is also desirable that the returned map imagery resolution to be
as high as possible. In Figure 3, two different service
configurations are used to process a workload, by changing the
JPEG Compression Quality (JCQ) parameter which affects the
quality and size of the returned map imagery. When the
available network bandwidth is sufficient, both configurations
can meet the response time target, but the one with a higher JCQ
is more desirable because of its higher image quality. But as the
available network bandwidth reduces, the configuration with
lower JCQ becomes more suitable because it can lower the
response time by transferring less data.

The above examples show strong evidence of the importance
of adapting virtualized applications according to their actual
resource availability. Cross-layer optimization is key to enabling
such adaptation, and the rest of the paper details how it is
accomplished with the proposed solution.

Figure 3: Response time of TerraFly workload with varying network

bandwidth allocation

Figure 1: Execution time of TPC-H Q8
with varying I/O bandwidth allocation

Figure 2: Execution time of Q8
with varying memory allocation

0

5

10

15

20

25

50 100 150 200

Re
sp

on
se

 T
im

e
(m

s)

Network Allocation(Mb/s)

JCQ = 80
JCQ = 30

QoS Target

0

200

400

600

800

1000

1200

1000 2000 3000 4000 5000

E
xe

cu
ti

o
n

 T
im

e
(s

)

I/O Allocation (KB/s)

seq:rand=1:8
seq:rand=1:4

0

100

200

300

400

500

E
xe

cu
ti

o
n

 T
im

e
 (

s)

Memory(MB)

seq:rand=1:8

seq:rand=1:4

3

III. FUZZY-MODELING-BASED VM RESOURCE

MANAGEMENT

The key questions to VM resource management are how to
efficiently allocate resources to VMs and how to do so
automatically and continuously. To address these questions, the
authors’ previous work [3][7] proposed fuzzy-modeling-based
resource management to learn a VM’s resource demand and
allocate resources according to its QoS target in an autonomic
manner. Fuzzy logic is used to create a VM’s resource usage
model automatically using data observed from the system
without assuming any a priori knowledge about the system’s
structure. It is shown to be able to capture complex, nonlinear
resource usage behaviors of a virtualized system.

Figure 4 illustrates the architecture of the fuzzy-modeling-
based resource management system. It consists of four key
modules. As a workload executes on the VM, the Application
and VM Sensors monitor the workload W(t), its performance
P(t), and the VM’s resource usages R(t). The Adaptive Learner
creates and updates a fuzzy model that represents the
relationship between a workload and its VM’s resource needs.
With this model and the current workload W(t), the Resource
Predictor estimates the resource needs for time t+1 and the
Resource Allocator adjusts the allocation accordingly. Together,
these modules form a closed loop that is executed iteratively
online for VM resource management.

Fuzzy logic is employed to build the model based on the
qualified input-output data pairs, <W(t), R(t)> whose workload
performance P(t) meets the desired QoS target. Both the
workload input W(t) and the resource usage output R(t) can be
vectors with multiple dimensions. This model captures the
relationship between the application’s workload and the VM’s
resource demands for meeting the QoS target. With the fuzzy
model created by the Adaptive Learner, the Resource Predictor
performs fuzzy inference to generate an estimate of the resource
needs R given the workload input W. This estimation is then sent
to the Resource Allocator to guide the VM’s resource allocation.
More details on fuzzy modeling can be found in the authors’
previous work [3][7].

Note that while this paper’s work is built upon the above
mentioned fuzzy-modeling-based resource management system,
it does not rely on the use of fuzzy modeling. In fact, any

effective online modeling methods can be employed by the
Adaptive Learner; fuzzy modeling is preferred because of its fast
speed and ability to capture VMs’ complex resource usage
behaviors. More importantly, this paper’s work significantly
improves the existing resource management system by enabling
cross-layer optimization between the VM host and guest layers.

IV. GENERAL APPROACH TO CROSS-LAYER

OPTIMIZATION

The goal of cross-layer optimization is to enable VM host-
and guest-layer schedulers to communicate scheduling-related
information and collaboratively improve the performance of a
virtualized application and satisfy its QoS requirement. Existing
resource management solutions do not support such cross-layer
optimization, because they treat VMs as black boxes. This paper
proposes to trade off the transparency of virtualization for
certain awareness and cooperation between host and guest in
order to optimize the VM scheduling and application
performance. The cross-layer optimization considered in this
paper focuses on enabling the guest-layer scheduler to adapt its
application-specific configuration based on the host-layer VM
resource allocation to improve the application performance.
This section describes the general approach to such cross-layer
optimization.

Many applications need to be tuned to optimize their
performance based on the resource availability of the hosting
system. For example, a web server needs to tune parameters
such as the number of concurrent threads based on its host’s
available memory. A database needs to tune its internal cost
model (e.g., the CPU and I/O costs of processing a tuple) based
on its host’s resource availability so that it can correctly estimate
the costs of different query execution plans and select the most
efficient one to use. A web search engine can also change its
crawling, indexing, or searching strategies as the resource
availability varies. When resource is constrained, it may crawl
over only a portion of available web pages, restrict the depth of
parsing and indexing on the searched contents, and return a
limited number of best matching results to the users. Another
example application is a simulator that can tune the modeling
resolution based on its host’s resource availability to increase the
simulation accuracy or speed up the simulation progress [8].

When such an application is hosted on a physical machine,
it needs to be tuned only once during the initial deployment.
However, on a VM, the resource availability can vary over time,
because of: first, changing resource contention from other co-
hosted VMs as they come and go dynamically and their
workloads vary over time; second, changing resource allocation
policy such as VM priorities or SLAs. Nonetheless, the changing
resource availability to a VM is hidden to the application in
existing VM resource management solutions. As a result, the
application is stuck with the initial configuration assuming a
resource availability that is no longer valid. It cannot adapt itself
to use a configuration that is more efficient in application
performance and resource utilization as the VM’s resources
become either under pressure or abundant.

To address this problem, the cross-layer optimization
enables the host-layer scheduler to feedback the resource
allocation decision to the guest-layer and automatically adapt

Figure 4: Architecture of cross-layer optimization on fuzzy-modeling-based

resource management system

4

the latter’s configuration for improved performance given the
current resource availability. The general approach to this host-
to-guest optimization can be formally described as follows.
Specific implementations of this approach will be explained
using case studies in the next section.

 Assume that there are M different types of resources, such
as CPU cycles, memory capacity, and I/O bandwidth. 𝑅𝑖 =
[𝑅𝑖1,⋯ , 𝑅𝑖𝑀] represents the amount of resources of different
types available for application i’s workload 𝑊𝑖. The goal of the
optimization is to find a feasible set of configuration parameters,
denoted as 𝐶𝑖 of the application i, with which the performance
of workload 𝑃𝑖 is optimized, given the VM’s current resource
availability 𝑅𝑖 . For applications that have a large number of
parameters, commonly used techniques such as Principal
Component Analysis (PCA) and Independent Component
Analysis (ICA) [9] can be employed to identify a smaller set of
parameters that have strong correlations with the application
performance [10] and consider only them for application
adaptation in the cross-layer optimization.

In order to enable such adaption, a mapping needs to be built
between different resource allocations to the corresponding
optimal parameter settings. Although this mapping is
application specific, there are some general steps.

1. Find out the set of possible parameters 𝐶𝑖 =
[𝑐𝑖1, ⋯ , 𝑐𝑖𝑘 , ⋯ , 𝑐𝑖𝑛] that contribute to the application i’s
performance. For each parameter 𝑐𝑖𝑘, a mapping needs to
be determined, which defines the optimal 𝑐𝑖𝑘_𝑜𝑝𝑡 as a

function, 𝑓𝑖𝑘(𝑅𝑖), of the resource availability 𝑅𝑖.

2. Given a certain resource allocation, run a general
workload of the virtualized application for the mapping
process. Iterate a variety of settings for 𝑐𝑖𝑘 over its value
range and measure the application’s performance.
Collect the setting 𝑐𝑖𝑘_𝑜𝑝𝑡 with the best performance.

3. Repeat Step 2 under different candidate resource
allocations over the possible range.

4. Collect the data pairs 〈𝑐𝑖𝑘_𝑜𝑝𝑡 , 𝑅𝑖〉 for each allocation, and

perform regression analysis on the set of data to fit the
function 𝑐𝑖𝑘_𝑜𝑝𝑡 = 𝑓𝑖𝑘(𝑅𝑖).

Once such a mapping is built for an application, the resource
availability to the VM can be directly fed back to enable the
application’s adaptation by changing its configuration
parameters accordingly.

The aforementioned cross-layer optimization is integrated
with the fuzzy-modeling-based VM resource management
introduced in Section 3 (Figure 4). As Resource Allocator
adjusts the allocation based on the prediction given by the fuzzy
model, it also feeds back this decision to the guest for the
application to tune its parameters for better performance.
Specifically, this adaptation can be implemented using a daemon
running on the guest which periodically obtains resource
allocation decisions from the Resource Allocator, computes the
optimal parameter settings, and adjusts the parameters through
the application’s configuration interface.

The resulting autonomic resource management system is
able to not only automatically allocate resources to VMs based

on their dynamic workload demands but also adaptively
optimize the application configuration as the resource
availability changes over time. The stability of the system is
ensured by two factors: 1) guest-layer application adaptation
occurs at a much coarser time granularity (e.g., every minute)
than host-layer resource adjustment (e.g., every 10 seconds); 2)
the host layer is able to quickly update its fuzzy model to capture
a VM’s new behaviors and continue to accurately predict its
demands when the guest-layer application adapts.

The next section presents two concrete case studies using
two different and representative applications, databases and
web-based map services, to demonstrate this cross-layer
optimization approach.

V. CASE STUDIES

A. Virtualized Databases

Databases represent a typical type of applications that have
sophisticated internal mechanisms to optimize their
performance based on their knowledge about the hosting
environments. Based on the host’s resource capacity, a
database’s query optimizer can automatically evaluate the costs
of different query execution plans and choose the most efficient
one to execute queries. As the availability of resources changes,
critical parameters on which the query optimizer depends on for
cost evaluation should also be updated accordingly, which will
lead to better resource utilization and more efficient query
executions.

Specifically, a database often uses an internal cost model
CostD(C), defined as a function of a set of parameters C, to
estimate the costs for query execution plans. Each parameter 𝑐𝑘
in the cost model serves as a cost factor related to a certain type
of operation in query processing such as table scanning and tuple
processing. Appropriate values on these parameters that reflect
the actual resource availability will help the query planner
choose the most efficient operations. Taking PostgreSQL as an
example, as shown in Section 2, the query optimizer switches
from using sequential scans to random scans for processing the
TPC-H query Q8 as the ratio between seq and rand increases.
Such tuning is necessary when, e.g., disk I/O contention happens
and more efficient scanning method is desired given the limited
I/O bandwidth.

To tune the cost parameters given changing resource
availability, a mapping needs to be created from the resource
allocation to the optimal parameter values. Because all the cost
parameters in a cost model are factors normalized on the same
scale, only the changes in their relative values result in
alternative query execution plan. Therefore, the mapping needs
to be built only between the optimal ratio of the cost parameters
and the resource allocation to the VM.

For example, to investigate the impact of I/O bandwidth
allocation on scanning methods, the ratio of the aforementioned
two I/O cost parameters is considered. A simple query is used to
benchmark this ratio, which reads all the rows from a large table.
The query is executed by different plans (sequential scan vs.
random scan) with different amount of I/O allocations. The
performance is observed for each scanning plan under different
I/O allocations. Since the cost of executing this simple query is

5

mainly from the scanning operations, the performance of
different plans (sequential scan vs. random scan) can be
considered as the estimate of the I/O cost parameters (seq vs.
rand) for different I/O allocations. In this way, a mapping is built
between the I/O allocation and the I/O cost parameters (Figure
5(a)). When the VM’s I/O allocation changes, the ratio between
these two parameters can be then adapted accordingly so that the
database can choose the most efficient query execution plan
under the given resource allocation.

In addition to parameters that reflect the knowledge about
the database’s execution environment, there are also other types
of parameters that define the database’s own limit for certain
types of resource usage. Such parameters should also be adapted
according to the database VM’s actual resource availability. For
instance in PostgreSQL, the parameter shared_buffers changes
the amount of memory that the database uses for caching data.
A reasonable setting of shared_buffers should be proportional to
(e.g., ¼) the amount of memory allocated to its VM.

B. Virtualized Map Services

Another interesting case study of this paper’s cross-layer
optimization is web-based map services. Map services are the
most important applications of modern geographic information
systems, which serve requests for maps and related geographic
information for a variety of clients over Internet. Map services
represent applications that can tune their QoS based on the

resource availability (other examples include search engines and
streaming services). The configurations that need to be tuned on
a map service include the resolution and comprehensiveness of
the returned maps and the selection of different search strategies
for geographic information. The settings of these configurations
affect different aspects of a map service’s QoS and need to be
carefully tuned according to its host’s resource capacity. Hence,
automatic adaptation becomes important for a virtualized web
map service when its resource availability changes dynamically.

Specifically, this paper focuses on one key tunable parameter
in a map service, the JPEG compression quality (JCQ), which
affects two different aspects of the QoS—response time and
imagery quality. JCQ determines the compression level of a map
image returned to a request. Setting a higher JCQ value results
in returning maps with a better resolution which also require
more data transfer. This case study assumes a typical service-
level objective which is to meet the response time target while
delivering maps with the highest possible resolution. As
illustrated in Section 2, this objective cannot be met using a fixed
JCQ setting in a virtualized web map system where the available
network bandwidth varies over time. It is necessary to adapt the
JCQ setting automatically based on the VM’s network
bandwidth availability.

In order to use the host-to-guest map service adaptation for
JCQ tuning, a mapping needs to be created from the network
bandwidth allocation to the optimal JCQ value. The optimal
JCQ depends on the workload intensity, the available network
bandwidth, and the response time target. To build the mapping,
the map service’s performance is profiled using a synthetic
workload under different JCQ settings while the workload’s
intensity and the VM’s network bandwidth allocation are varied.
Based on these collected performance data, the optimal JCQ can
be then found by searching for the highest JCQ value with which
the corresponding performance satisfies the given response time
target.

In this way, the mapping is built from the network bandwidth
availability and workload intensity to the optimal JCQ for the
given response time target. The profiling time can be reduced by
collecting only a subset of the data and using regression to build
the rest of the profile. Figure 5(b) illustrates two of such
mappings for the response time targets of 22ms and 17ms. A
total of 144 data points are collected to build a mapping in this
figure and the fitting error is 2.95% on average. With these
mappings, the JCQ value can be then adjusted automatically and
always set to optimal as the network bandwidth availability or
the workload intensity changes.

VI. EVALUATION

A. Setup

This paper’s cross-layer optimization approach is evaluated
using both databases and web map services discussed in the
above case studies. The testbed is a physical machine equipped
with two six-core 2.4GHz AMD Opteron CPUs, 32GB of RAM,
and one 500GB 7.2 RPM SAS disk.

To evaluate the virtualized database, Xen 3.3.1 is installed to
provide the VMs, where the operating system for both Dom0
and DomU VMs is Ubuntu Linux 8.10 with paravirtualized

Figure 5(a): The mapping between database cost parameters and VM

I/O bandwidth allocation

Figure 5(b): The mapping between map service JCQ and workload

intensity and VM network bandwidth allocation

1 1.5 2 2.5 3

0.25

0.5

0.75

1

I/O Allocation (MB/s)

N
or

m
al

iz
ed

 v
al

ue

rand

seq

seq:rand

5
10

15

100

200

300
40

60

80

100

Network Bandwidth(Mbps)Workload Intensity (# of clients)

O
p
tim

a
l J

C
Q

22ms QoS

17ms QoS

6

kernel 2.6.18.8. The evaluated databases are hosted on DomUs,
while the resource management system is hosted on Dom0. The
management system monitors and controls the database VM’s
usage of both CPU cycles and disk I/O bandwidth every 10
seconds. In the VM Sensor, resource monitoring is done using
xentop and iostat, where the I/O bandwidth usage is considered
as the sum of reads and writes per period of time. In the
Application Sensor, a database proxy deployed on Dom0 is used
to measure the performance of the database VM. The Resource
Allocator uses Xen’s credit CPU scheduler to assign CPU
allocations and Linux’s dm-ioband I/O controller to set the cap
for disk I/O bandwidth [11]. A typical database benchmark,
TPC-H [5], is used in these experiments.

To evaluate the virtualized map service, Microsoft Hyper-V
6.2 [12] is deployed to provide the virtualization environment.
The operating systems on parent and child partitions are
Windows Server 2012 and Windows Server 2008 R2 Datacenter
respectively. The map service application is hosted on the child
partition configured with 1 CPU core and 4GB memory. The
resource management system deployed on the parent partition
monitors and controls the network I/O bandwidth to the child
partition through the Hyper-V’s bandwidth management tool.
The specific map service considered here is TerraFly [6], a
production web-based map system serving requests from over
125 countries and regions and providing users with customized
aerial photography, satellite imagery, and various overlays. The
real workload traces collected from production TerraFly system
are used in the evaluation.

B. TPC-H

This experiment demonstrates the effectiveness of the host-
to-guest optimization by automatically tuning a database system
under varying memory availability. An I/O intensive workload
consisting of a mix of duplicated copies of the Q4, Q6, Q8 and
Q14 queries from TPC-H is run on a database with warm
memory, where the query processing can be done mostly using

data cached in memory. The intensity of the workload can be
varied by changing the inter-arrival rate of the queries from 4.8s
to 8s with a corresponding request rate of 50 and 30 queries per
minute. To simulate different levels of memory contention, the
database VM’s memory allocation is varied from 2048MB,
1536MB, 1024MB to 512MB while the workload is running at a
given request rate.

Figure 6 compares the performance of two TPC-H workloads
with different intensities from the scheme that uses host-to-guest
optimization (Dynamic) vs. without it (Static). The former
dynamically adapts the ratio between seq and rand as the
memory availability changes; the latter uses a static ratio of 1:4.
The result shows that the adaptation improves the database
performance for both workloads as the available memory
reduces. For example, an average of 33.5% improvement in
query execution time is achieved when the VM’s memory is
512MB. The improvement increases as the workload becomes
more intensive because the memory contention gets worse. For
the workload with 50 request/s, as soon as the memory allocation
is reduced to 1.5GB, substantial speedup is observed; while for
the workload with 30 request/s, the advantage of optimization
becomes evident only when the available memory is reduced to
1GB and less.

The host-to-guest optimization achieves the above
performance improvement because it enables the database to
adapt its query execution strategy as the memory availability
varies. Specifically, it allows the database to switch from a
random-scan-preferred configuration to a sequential-scan-
preferred one by tuning its ratio of seq vs. rand from the default

Figure 6(a): Performance of a TPC-H workload with 50 request/s

Figure 6(b): Performance of a TPC-H workload with 30 request/s

Figure 7(a): Network bandwidth allocation to TerraFly VM

Figure 7(b): TerraFly’s JCQ settings

Figure 7(c): TerraFly’s performance with different JCQ settings

0

50

100

150

200

250

0 30 60 90 120 150 180 210 240 270

N
et

w
o

rk
 B

an
d

w
id

th

A
llo

ca
ti

o
n

(M
b

p
s)

Time (s)

20

30

40

50

60

70

80

90

100

0 30 60 90 120 150 180 210 240 270

JC
Q

Time (s)

Dynamic JCQ
Static (JCQ = 80)
Static (JCQ =30)

15

16

17

18

19

20

21

22

23

0 30 60 90 120 150 180 210 240 270

R
e

sp
o

n
se

 T
im

e
(m

s)

Time(s)

Static (JCQ = 30)
Static (JCQ = 80)
Dynamic JCQ
QoS Target

7

1:4 ratio to 1:16 as the available memory decreases from 2GB to
512MB. When the memory is sufficient to cache all the queried
data, a random-scan-preferred configuration is advantageous
because it scans indexes and accesses less data. When the
memory is not sufficient to cache the queried data, the query
processing becomes disk I/O bound where sequential scans are
more efficient. The cross-layer optimization takes advantage of
this application-specific knowledge to make sure that the
database’s performance is always optimal given its VM’s current
memory availability.

C. TerraFly

To demonstrate the effectiveness of the host-to-guest
adaptation for TerraFly-based map service, two scenarios are
considered in this experiment. In the first scenario, the amount of
available network bandwidth to TerraFly is contended by another
VM which runs an FTP server. Figure 7(a) shows that the
network bandwidth allocated to the TerraFly VM is first reduced
from 200 to 100 Mbps as a file transfer starts on the FTP VM,
sustained at 100 Mbps during the transfer, and finally increased
back to 200 Mbps when the transfer completes. With the host-to-
guest adaptation, the network resource availability is explicitly
fed back to the TerraFly VM and used to adapt the JCQ for the
map service.

Figure 7(c) compares the performance of TerraFly using
three different JCQ settings shown in Figure 7(b): one with a
dynamic JCQ adapted by host-to-guest optimization (Dynamic)
versus two using static JCQ settings (Static). The results show
that the host-to-guest adaptation allows the response time target

(20.5ms) to be met throughout the experiment. In contrast, using
a static high JCQ misses the response time target most of the time
and causes up to 15% delay in response time. Although using a
static low JCQ can meet the response time target, it fails to
provide a good image quality to map requests and wastes the
available network bandwidth when it is sufficient. Compared to
it, the host-to-guest adaptation is able to fully utilize the available
network resources and improve image quality by 40% in average.

In the second scenario, a fixed amount of network bandwidth
(50 Mbps) is allocated to the TerraFly VM while a real workload
collected from the production TerraFly system (shown in Figure
8(a)) is replayed with a 60-fold speedup. Although the network
contention does not change in this experiment, the host-to-guest
adaptation still enables TerraFly to adapt its JCQ based on the
knowledge of its network bandwidth availability and workload
intensity.

Figure 8(c) compares the performance of TerraFly using the
three different JCQ settings shown in Figure 8(b). Similar to the
previous experiment, the result shows that the dynamic JCQ
setting adapted by host-to-guest optimization outperforms the
static JCQ settings in terms of imagery quality and response time
of the map requests. Using a high JCQ statically is not able to
meet the response time target when the workload intensity
becomes high; the scheme with a static low JCQ cannot provide
good quality images even when there is abundant network
bandwidth to be used. In contrast, the host-to-guest JCQ
adaptation approach always meets the response time target and
delivers an average improvement of 26.3% in imagery quality.

VII. RELATED WORK

Various solutions have been studied in the literature to
address the problem of automatically deciding a VM’s resource
allocation based on its hosted application’s demand and QoS
requirement. In particular, machine learning algorithms have
been considered to model VM resource usages. For example, a
simple regression method is used to predict the performance
impact of VM memory allocation [13]; Reinforcement learning
is used to automatically tune VM resource configuration [14];
Artificial neural networks are used to model the nonlinear
behaviors for a variety of applications when their VMs are under
I/O contention [15]; The authors’ previous work [3][7] studied
the use of fuzzy logic to model the relationship between
application workload and VM resource demand, which is shown
to be both fast and accurate for modeling systems with complex,
time-varying behaviors.

In addition, predictive resource controllers have been used
to automatically adjust VM resource allocations based on the
VM performance models in order to meet their applications’
QoS targets. For example, linear multi-input-multi-output
(MIMO) models have been used by predictive controllers to
allocate CPU resources to multiple virtualized web servers [16],
and in more complicated cases, to allocate multiple types of
resources to virtualized multi-tier applications [17]. Fuzzy
modeling based predictive control has also been proposed to
better capture the nonlinear behaviors in VMs’ resource
contention and meet applications’ performance needs [18].

This paper builds upon the fuzzy-modeling-based resource
management framework and benefits from its fast speed and

Figure 8(a): A real TerraFly workload with changing intensity

Figure 8(b): TerraFly’s JCQ settings

Figure 8(c): TerraFly’s performance with different JCQ settings

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
lie

n
t

Se
ss

io
n

Time(hr)

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

JC
Q

Time(hr)

Dynamic JCQ

Static (JCQ = 80)

Static (JCQ = 30)

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

R
es

po
ns

e
Ti

m
e(

m
s)

Time(hr)

Dynamic JCQ
Static (JCQ = 80)
Static (JCQ = 30)
QoS Target

8

ability to capture nonlinear behaviors. More importantly, This
paper’s cross-layer optimization approach complements these
solutions in that: fuzzy modeling and the other effective
modeling methods can be employed to estimate VMs’ resource
demands and make resource requests, whereas this paper’s
approach allows the virtualized applications to adapt their
configurations and optimize their performance when the
available resources cannot satisfy their requests.

There are related paravirtualization works that also adopt a
cross-layer approach to bridge the semantics gap between VM
guests and host and improve various aspects of virtualized
systems, including reducing virtualization overhead [4],
increasing memory utilization [19], and improving intra-host
VM communications [20]. However, these works all require
changes to the virtualization interfaces and the guest operating
systems in VMs. In contrast, this paper’s approach does not
require any change to the guest systems: it keeps unmodified
virtualization interfaces for running VMs, and leverages
applications’ existing mechanisms to adapt their configurations
according to the current resource availability.

Related autonomous database works [21][22][23] are
focused mainly on a database’s internal tuning and query
optimization, which however do not work when the database is
virtualized and unware of its actual resource availability. This
paper’s cross-layer optimization approach will bridge this gap
by making the database aware of its resource availability and
able to tune itself properly in a systematic manner.

Finally, compared to the authors’ previous work on
application-aware VM resource management [24], this paper
makes substantial new contributions on host-to-guest
application adaptation by considering different types of VM
resources (memory, disk bandwidth, and network bandwidth)
and different types of virtualized applications (databases and
map services).

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes a new VM resource management
approach based on fuzzy modeling and cross-host-guest
optimization. It enables the communication between VM host-
and guest-layer schedulers and allows them to collaboratively
optimize the resource allocation and application performance.
Specifically, the guest-layer scheduler uses the host-layer
feedback to understand the changing resource availability and
adapt its configuration accordingly. Virtualized databases and
map services are considered as interesting case studies of this
cross-layer optimization approach. A database’s cost model
parameters are adapted according to its VM’s resource
availability. A map service’s imagery quality is also adapted
according to its workload intensity and resource availability in
order to sustain the response time target.

A prototype of this approach is implemented on Xen- and
Hyper-v based VMs and evaluated using TPC-H based database
workloads and TerraFly-based map service workloads. The
results demonstrate that the proposed cross-layer optimization
significantly improves the performance and QoS of virtualized
applications compared to the traditional approaches which treat
VMs as black boxes.

This cross-layer optimization approach requires certain
awareness between the virtualization software and virtualized
applications. Such awareness breaks the transparency offered by
traditional full virtualization, but this paper advocates that such
a tradeoff is necessary for business- and mission-critical
applications to achieve their desired QoS on virtualized systems.
The benefit of this tradeoff is demonstrated by the experimental
results reported in this paper. The underlying argument is the
same as that drives the success of paravirtualization [4] which
sacrifices complete transparency for lighter-weight and more
efficient virtualization. Although not every virtualized
application is capable of adapting its behaviors, the authors
believe that it will become a necessity for critical applications as
virtualization becomes pervasive.

Based on this cross-layer optimization framework, future
works will be conducted along two possible directions. First,
VM migrations will be considered in addition to application
adaptations to handle situations where resources on a host are
not sufficient to satisfy all the VMs’ requests. These two
techniques will complement each other: VM migration can
harness idle resources on other hosts to satisfy the VMs’
resource needs; application adaptation is necessary when there
is no suitable host for migration or when migration is not
supported by the hosts. When migrations are used, the authors’
previous work [25] can be employed to migrate a VM’s
performance model together with the VM so that it does not have
to be learned from scratch after the migration. Second, cross-
layer optimization will also be applied to applications that are
distributed across multiple VMs, including both parallel
applications that make use of several VMs to speed up the
execution, and multi-tiered applications that distribute their tiers
across multiple VMs. For such distributed applications,
adaptations may have to be applied across the involved VMs in
a coordinated manner, which is an interesting topic for future
research.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for their helpful
comments. This research is sponsored by National Science
Foundation under the National Science Foundation CAREER
award CNS-1619653, CNS-1629888, IIS-1633381, and CMMI-
1610282.

REFERENCES

[1] Amazon Elastic Compute Cloud, URL: http://aws.amazon.com/ec2/.

[2] Windows Azure, URL: http://www.microsoft.com/windowsazure/.

[3] L. Wang, J. Xu, M. Zhao, Y. Tu, and J. A.B. Fortes, “Fuzzy Modeling
Based Resource Management for Virtualized Database Systems”, in
Proceedings of International Symposium on Modelling, Analysis, and
Simulation of Computer and Telecommunication Systems, 2011.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization”,
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164-177,
ACM, 2003.

[5] TPC-H Benchmark Specification, URL: http://www.tcp.org.

[6] N. Rishe, S. Chen, N. Prabakar, and M. Weiss, “TerraFly: A High-
performance Web-based Digital Library System for Spatial Data Access”,
in Proceedings of International Conference on Data Engineering, 2001.

9

[7] J. Xu, M. Zhao, and J. Fortes, “Autonomic Resource Management in
Virtualized Data Centers Using Fuzzy-logic-based Control”, Cluster
Computing, 11(3), pp.213-227, 2008.

[8] J. Liu, R. Rangaswami, and M. Zhao, “Model-Driven Network Emulation
with Virtual Time Machine”, in Proceedings of Winter Simulation
Conference, December 2010.

[9] J. Stone, “Independent Component Analysis: An Introduction”, Trends in
Cognitive Sciences, vol. 6, no. 2, pp. 59–64, 2002.

[10] N. Park, W. Xiao, K. Choi, and D. Lilja, “A Statistical Evaluation of the
Impact of Parameter Selection on Storage System Benchmarks”, in
Proceedings of International Workshop on Storage Network Architecture
and Parallel I/Os, 2011.

[11] dm-ioband, URL: http://sourceforge.net/apps/trac/ioband.

[12] Hyper-V, URL: http://msdn.microsoft.com/en-
us/library/cc768520%28v=bts.10%29.aspx

[13] J. Wildstrom, P. Stone and E. Witchel, “CARVE: A Cognitive Agent for
Resource Value Estimation”, in Proceedings of International Conference
on Autonomic Computing, 2008.

[14] J. Rao, X. Bu, C. Xu, L. Wang, and G. Yin, “VCONF: A Reinforcement
Learning Approach to Virtual Machines Auto-configuration”, in
Proceedings of International Conference on Autonomic Computing,
2009.

[15] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao, “Application
Performance Modeling in a Virtualized Environment”, in Proceedings of
International Symposium on High-Performance Computer Architecture,
2010.

[16] X. Liu, X. Zhu, S. Singhal, and M. Arlitt, “Adaptive Entitlement Control
of Resource Containers on Shared Servers”, in Proceedings of
International Symposium on Integrated Network Management, 2005.

[17] P. Padala, K. Hou, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, and
A. Merchant, “Automated Control of Multiple Virtualized Resources”, in
Proceedings of European Conference on Computer Systems, 2009.

[18] L. Wang, J. Xu, M. Zhao, and J. A.B. Fortes, “Adaptive Virtual Resource
Management with Fuzzy Model Predictive Control”, in Proceedings of
International Workshop on Feedback Control Implementation and Design
in Computing Systems and Networks, 2011.

[19] C. A. Waldspurger, “Memory Resource Management in VMware ESX
Server”, ACM SIGOPS Operating Systems Review, 36(SI), 181-194.

[20] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasubramaniam.
“Xen and Co.: Communication-aware CPU Scheduling for Consolidated
Xen-based Hosting Platforms”, in Proceedings of the 3rd International
Conference on Virtual Execution Environments, pp. 126-136, 2007.

[21] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback, “Self-tuning
Database Technology and Information Services: From Wishful Thinking
to Viable Engineering”, in Proceedings of International Conference on
Very Large Databases, 2002.

[22] S. Chaudhuri, “Relational Query Optimization – Data Management Meets
Statistical Estimation”, Communications of ACM, 2009.

[23] B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum, “Achieving
Class-based QoS for Transactional Workloads”, in Proceedings of
International Conference on Data Engineering, 2006.

[24] L. Wang, J. Xu, and M. Zhao, “Application-aware Cross-layer Virtual
Machine Resource Management”, in Proceedings of Proceedings of the
9th International Conference on Autonomic Computing (ICAC2012),
September 2012.

[25] L. Wang, J. Xu, and M. Zhao, “QoS-driven Cloud Resource Management
through Fuzzy Model Predictive Control”, in Proceedings of Proceedings
of the 12th International Conference on Autonomic Computing (ICAC),
July 2015.

http://msdn.microsoft.com/en-us/library/cc768520%28v=bts.10%29.aspx
http://msdn.microsoft.com/en-us/library/cc768520%28v=bts.10%29.aspx

