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Abstract—Virtualized systems (e.g., public and private clouds) 

are playing an increasingly vital role to support the computing of 

applications from different domains. Existing resource 

management solutions in such systems typically treat virtual 

machines (VMs) as black boxes, which presents a hurdle to 

achieving application-desired Quality of Service (QoS). This paper 

advocates the cooperation between VM host- and guest-layer 

schedulers for optimizing the resource management and 

application performance. It presents an approach to such cross-

layer optimization by enabling the host-layer scheduler to 

feedback resource allocation decisions and adapt guest-layer 

application configurations. As case studies, the proposed approach 

is applied to virtualized databases and map services which have 

challenging dynamic and complex resource demands as well as 

sophisticated configurations. Specifically, for databases, the 

proposed approach adapts query executions by tuning the cost 

model parameters according to the available storage bandwidth 

and memory capacity. For map services, it adapts the quality of 

returned map imagery in order to meet the response time target 

as the workload intensity and available network bandwidth 

change over time. A prototype of the proposed approach is 

implemented on Xen and Hyper-V VMs, and evaluated using a 

TPC-H based database workload and a TerraFly-based map 

service workload. The results show that with the proposed host-to-

guest application adaptation, the TPC-H workload improves its 

performance by 33.5%, and the TerraFly workload improves the 

map imagery quality by 40% and always meets its response time 

target, compared to the schemes without adaptation. 

Keywords—cross-layer optimization, virtual machine, resource 

management 

I. INTRODUCTION 

Virtualized systems are playing an increasingly vital role to 
support the computing of applications from different domains. 
For example, cloud computing is a promising platform for 
delivering computing as a utility to users [1][2]. Public clouds 
allow public users to rent resources and run a wide variety of 
applications; private clouds allow users from the same 
organization to run business-related applications on shared 
internal resources. In such virtualized systems, applications are 
consolidated to shared physical resources via their dedicated 
virtual machines (VMs). As the level of consolidation quickly 
grows, there is an increasingly urgent need for virtualized 
systems to deliver better Quality-of-Service (QoS), so that users 
are comfortable to run their applications on a shared 
infrastructure. However, current systems cannot meet stringent 
performance requirements, particularly not for applications with 

dynamic and complex behaviors. Consequently, examples such 
as clouds cannot support QoS-based Service Level Agreements 
(SLA), whereas users often have to purchase unnecessary 
resources for their VMs. 

Existing resource management solutions typically treat VMs 
as black boxes when making resource allocation decisions. The 
host-layer VM scheduler is agnostic of the application 
scheduling inside of a guest, whereas a guest-layer application 
scheduler is also unaware of the VM’s resource allocation on a 
host. Although such transparency is important for reasons such 
as portability and legacy support, it also presents a hurdle to 
achieving application-desired QoS on virtualized systems. On 
one hand, the knowledge of an application’s workload 
characteristics could be exploited by the host-layer scheduler to 
better understand the VM’s resource demands. On the other 
hand, the knowledge of the host’s resource allocation decisions 
can help the guest-layer scheduler adapt to the VM’s actual 
resource availability.  

Therefore, this paper proposes cross-layer optimization for 
VM resource management which allows certain awareness and 
cooperation between the VM host and guest layers in order to 
improve application performance and meet its QoS target. 
Specifically, this paper focuses on the problem of enabling the 
host-layer scheduler to feedback resource allocation decisions to 
the guest layer and adapt the application configurations. Such 
cross-layer optimization are integrated into a fuzzy-modeling-
based resource management system [3] which uses online fuzzy 
modeling and prediction to allocate resources dynamically 
according to application QoS requirements. Compared to related 
works on paravirtualization [4], this paper’s solution does not 
require any change to the existing VM interfaces and thus 
supports unmodified applications and operating systems. 

This paper considers virtualized databases and web-based 
map services as representative case studies. Databases serve 
complex and dynamic workloads consisting of different queries, 
whereas they also employ sophisticated query optimization 
which needs to be tuned according to the resource availability. 
Map services need to serve dynamic map requests with both 
good responsiveness and imagery quality, which is a tradeoff 
that should also be adjusted based on the resource availability. 
Hence, applying cross-layer optimization to the resource 
management of virtualized databases and map services can be a 
convincing showcase of the proposed cross-layer optimization. 
Specifically, in the case study of virtualized databases, the 
proposed approach adapts query executions by tuning the cost 
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model parameters according to the changing storage bandwidth 
and memory availability. For virtualized map services, it adapts 
the imagery resolution of returned maps based on the workload 
intensity and available network bandwidth in order to meet the 
response time target. 

This proposed approach is prototyped on Xen and Hyper-V 
based VM environments, and evaluated using both typical 
database workloads based on TPC-H [5] and typical web map 
service workloads based on TerraFly [6]. The results show that 
the proposed approach of host-to-guest application adaptation 
effectively optimizes the database’s query executions when the 
VM’s resource availability changes due to disk I/O and memory 
contention. The TPC-H workload improves its query time by 
about 33.5% compared to the scheme without such adaptation. 
For the TerraFly map service, the proposed approach adapts the 
quality of returned map imagery according to the changing 
workload intensity and network contention. It improves the 
imagery quality by 40% while always meeting the service’s 
response time target.  In comparison, the static schemes either 
deliver a poor image quality and waste the available network 
bandwidth, or miss the response time target when trying to 
deliver a high imager quality.  

In the rest of the paper, Section 2 presents the motivating 
examples, Section 3 introduces the background on fuzzy-
modeling-based resource management, Section 4 and 5 present 
the general approach to cross-layer optimization and its case 
studies, Section 6 discusses the evaluation, Section 7 examines 
the related work, and Section 8 concludes the paper. 

II. MOTIVATING EXAMPLES 

In this section, several examples are used to motivate the 
need of cross-layer optimization by feeding back the host-
layer’s resource allocation information to the guest-layer. In the 
first two examples, the workload consists of a single copy of 
TPC-H query Q8 on a 3GB database VM. Figures 1 and 2 
compare the query performance using two representative 
settings of the cost model parameters, sequential_page_cost and 
random_page_cost, denoted by seq and rand respectively. Both 
parameters characterize the database’s execution environment: 
the former defines the cost of fetching a page from disk using 
sequential reads whereas the latter defines the cost of a non-
sequential disk page fetch. Changing these parameters affects 
the database’s performance indirectly by influencing its internal 
query cost estimation. Lower value of seq reduces the cost of a 
plan with more sequential scans on the tables; lower value of 
rand reduces the cost of a plan with more random scans, e.g., 
index scans. Therefore, when the ratio of seq vs. rand is lower, 
the database favors execution plans that use more sequential 
scans; whereas when the ratio is high, the database favors 
execution plans that use more random scans. 

Figure 1 shows the performance of Q8 on a database VM 
when its memory cache is cold. As the VM’s I/O bandwidth 
allocation reduces from 5000 to 1000 KB/s, the performance of 
Q8 drops in both database configurations. However, when the 
available I/O bandwidth is high, the sequential-scan-preferred 
configuration outperforms the random-scan-preferred one (by 
89% at 5000KB/s). When the available bandwidth is reduced, 

the latter’s performance is much less affected and becomes 
faster than the former (by 1.9 times at 1000 KB/s).  

Figure 2 shows similar behavior of Q8’s performance but 
with respect to changing memory availability when performed 
in a warm database VM. When the available memory is low, the 
sequential-scan-preferred configuration is drastically faster than 
the random-scan-preferred one (by 14 times at 384MB), because 
the query performance is bound by disk I/Os where sequential 
I/Os are much more efficient than random I/Os. When the 
available memory becomes large enough to cache the queried 
data, the random-scan-preferred configuration starts to 
outperform the sequential-scan-preferred one (by 3 times at 
1048MB), because the former touches less data (indexes are 
much smaller than tables). 

The third example is demonstrated using a virtualized web-
based map service. On one hand, such a service needs to meet 
the response time target for map requests; on the other hand, it 
is also desirable that the returned map imagery resolution to be 
as high as possible. In Figure 3, two different service 
configurations are used to process a workload, by changing the 
JPEG Compression Quality (JCQ) parameter which affects the 
quality and size of the returned map imagery. When the 
available network bandwidth is sufficient, both configurations 
can meet the response time target, but the one with a higher JCQ 
is more desirable because of its higher image quality. But as the 
available network bandwidth reduces, the configuration with 
lower JCQ becomes more suitable because it can lower the 
response time by transferring less data.  

The above examples show strong evidence of the importance 
of adapting virtualized applications according to their actual 
resource availability. Cross-layer optimization is key to enabling 
such adaptation, and the rest of the paper details how it is 
accomplished with the proposed solution. 

 

Figure 3: Response time of TerraFly workload with varying network 

bandwidth allocation 

  
Figure 1: Execution time of TPC-H Q8 
with varying I/O bandwidth allocation 

 

 

 

Figure 2: Execution time of Q8 
with varying memory allocation 
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III. FUZZY-MODELING-BASED VM RESOURCE 

MANAGEMENT 

The key questions to VM resource management are how to 
efficiently allocate resources to VMs and how to do so 
automatically and continuously. To address these questions, the 
authors’ previous work [3][7] proposed fuzzy-modeling-based 
resource management to learn a VM’s resource demand and 
allocate resources according to its QoS target in an autonomic 
manner. Fuzzy logic is used to create a VM’s resource usage 
model automatically using data observed from the system 
without assuming any a priori knowledge about the system’s 
structure. It is shown to be able to capture complex, nonlinear 
resource usage behaviors of a virtualized system. 

Figure 4 illustrates the architecture of the fuzzy-modeling-
based resource management system. It consists of four key 
modules. As a workload executes on the VM, the Application 
and VM Sensors monitor the workload W(t), its performance 
P(t), and the VM’s resource usages R(t). The Adaptive Learner 
creates and updates a fuzzy model that represents the 
relationship between a workload and its VM’s resource needs. 
With this model and the current workload W(t), the Resource 
Predictor estimates the resource needs for time t+1 and the 
Resource Allocator adjusts the allocation accordingly. Together, 
these modules form a closed loop that is executed iteratively 
online for VM resource management. 

Fuzzy logic is employed to build the model based on the 
qualified input-output data pairs, <W(t), R(t)> whose workload 
performance P(t) meets the desired QoS target. Both the 
workload input W(t) and the resource usage output R(t) can be 
vectors with multiple dimensions. This model captures the 
relationship between the application’s workload and the VM’s 
resource demands for meeting the QoS target. With the fuzzy 
model created by the Adaptive Learner, the Resource Predictor 
performs fuzzy inference to generate an estimate of the resource 
needs R given the workload input W. This estimation is then sent 
to the Resource Allocator to guide the VM’s resource allocation. 
More details on fuzzy modeling can be found in the authors’ 
previous work [3][7]. 

Note that while this paper’s work is built upon the above 
mentioned fuzzy-modeling-based resource management system, 
it does not rely on the use of fuzzy modeling. In fact, any 

effective online modeling methods can be employed by the 
Adaptive Learner; fuzzy modeling is preferred because of its fast 
speed and ability to capture VMs’ complex resource usage 
behaviors. More importantly, this paper’s work significantly 
improves the existing resource management system by enabling 
cross-layer optimization between the VM host and guest layers. 

IV. GENERAL APPROACH TO CROSS-LAYER 

OPTIMIZATION 

The goal of cross-layer optimization is to enable VM host- 
and guest-layer schedulers to communicate scheduling-related 
information and collaboratively improve the performance of a 
virtualized application and satisfy its QoS requirement. Existing 
resource management solutions do not support such cross-layer 
optimization, because they treat VMs as black boxes. This paper 
proposes to trade off the transparency of virtualization for 
certain awareness and cooperation between host and guest in 
order to optimize the VM scheduling and application 
performance. The cross-layer optimization considered in this 
paper focuses on enabling the guest-layer scheduler to adapt its 
application-specific configuration based on the host-layer VM 
resource allocation to improve the application performance. 
This section describes the general approach to such cross-layer 
optimization. 

Many applications need to be tuned to optimize their 
performance based on the resource availability of the hosting 
system. For example, a web server needs to tune parameters 
such as the number of concurrent threads based on its host’s 
available memory. A database needs to tune its internal cost 
model (e.g., the CPU and I/O costs of processing a tuple) based 
on its host’s resource availability so that it can correctly estimate 
the costs of different query execution plans and select the most 
efficient one to use. A web search engine can also change its 
crawling, indexing, or searching strategies as the resource 
availability varies. When resource is constrained, it may crawl 
over only a portion of available web pages, restrict the depth of 
parsing and indexing on the searched contents, and return a 
limited number of best matching results to the users. Another 
example application is a simulator that can tune the modeling 
resolution based on its host’s resource availability to increase the 
simulation accuracy or speed up the simulation progress [8].  

When such an application is hosted on a physical machine, 
it needs to be tuned only once during the initial deployment. 
However, on a VM, the resource availability can vary over time, 
because of: first, changing resource contention from other co-
hosted VMs as they come and go dynamically and their 
workloads vary over time; second, changing resource allocation 
policy such as VM priorities or SLAs. Nonetheless, the changing 
resource availability to a VM is hidden to the application in 
existing VM resource management solutions. As a result, the 
application is stuck with the initial configuration assuming a 
resource availability that is no longer valid. It cannot adapt itself 
to use a configuration that is more efficient in application 
performance and resource utilization as the VM’s resources 
become either under pressure or abundant. 

To address this problem, the cross-layer optimization 
enables the host-layer scheduler to feedback the resource 
allocation decision to the guest-layer and automatically adapt 

 
Figure 4: Architecture of cross-layer optimization on fuzzy-modeling-based 

resource management system 



4 

 

the latter’s configuration for improved performance given the 
current resource availability. The general approach to this host-
to-guest optimization can be formally described as follows. 
Specific implementations of this approach will be explained 
using case studies in the next section. 

 Assume that there are M different types of resources, such 
as CPU cycles, memory capacity, and I/O bandwidth. 𝑅𝑖 =
[𝑅𝑖1,⋯ , 𝑅𝑖𝑀] represents the amount of resources of different 
types available for application i’s workload 𝑊𝑖. The goal of the 
optimization is to find a feasible set of configuration parameters, 
denoted as 𝐶𝑖 of the application i, with which the performance 
of workload 𝑃𝑖  is optimized, given the VM’s current resource 
availability 𝑅𝑖 . For applications that have a large number of 
parameters, commonly used techniques such as Principal 
Component Analysis (PCA) and Independent Component 
Analysis (ICA) [9] can be employed to identify a smaller set of 
parameters that have strong correlations with the application 
performance [10] and consider only them for application 
adaptation in the cross-layer optimization. 

In order to enable such adaption, a mapping needs to be built 
between different resource allocations to the corresponding 
optimal parameter settings. Although this mapping is 
application specific, there are some general steps.   

1. Find out the set of possible parameters 𝐶𝑖 =
[𝑐𝑖1, ⋯ , 𝑐𝑖𝑘 , ⋯ , 𝑐𝑖𝑛] that contribute to the application i’s 
performance. For each parameter 𝑐𝑖𝑘, a mapping needs to 
be determined, which defines the optimal 𝑐𝑖𝑘_𝑜𝑝𝑡  as a 

function, 𝑓𝑖𝑘(𝑅𝑖), of the resource availability 𝑅𝑖. 

2. Given a certain resource allocation, run a general 
workload of the virtualized application for the mapping 
process. Iterate a variety of settings for 𝑐𝑖𝑘 over its value 
range and measure the application’s performance. 
Collect the setting 𝑐𝑖𝑘_𝑜𝑝𝑡 with the best performance.   

3. Repeat Step 2 under different candidate resource 
allocations over the possible range.  

4. Collect the data pairs 〈𝑐𝑖𝑘_𝑜𝑝𝑡 , 𝑅𝑖〉 for each allocation, and 

perform regression analysis on the set of data to fit the 
function 𝑐𝑖𝑘_𝑜𝑝𝑡 = 𝑓𝑖𝑘(𝑅𝑖). 

Once such a mapping is built for an application, the resource 
availability to the VM can be directly fed back to enable the 
application’s adaptation by changing its configuration 
parameters accordingly.  

The aforementioned cross-layer optimization is integrated 
with the fuzzy-modeling-based VM resource management 
introduced in Section 3 (Figure 4). As Resource Allocator 
adjusts the allocation based on the prediction given by the fuzzy 
model, it also feeds back this decision to the guest for the 
application to tune its parameters for better performance. 
Specifically, this adaptation can be implemented using a daemon 
running on the guest which periodically obtains resource 
allocation decisions from the Resource Allocator, computes the 
optimal parameter settings, and adjusts the parameters through 
the application’s configuration interface. 

The resulting autonomic resource management system is 
able to not only automatically allocate resources to VMs based 

on their dynamic workload demands but also adaptively 
optimize the application configuration as the resource 
availability changes over time. The stability of the system is 
ensured by two factors: 1) guest-layer application adaptation 
occurs at a much coarser time granularity (e.g., every minute) 
than host-layer resource adjustment (e.g., every 10 seconds); 2) 
the host layer is able to quickly update its fuzzy model to capture 
a VM’s new behaviors and continue to accurately predict its 
demands when the guest-layer application adapts.  

The next section presents two concrete case studies using 
two different and representative applications, databases and 
web-based map services, to demonstrate this cross-layer 
optimization approach. 

V. CASE STUDIES 

A. Virtualized Databases 

Databases represent a typical type of applications that have 
sophisticated internal mechanisms to optimize their 
performance based on their knowledge about the hosting 
environments. Based on the host’s resource capacity, a 
database’s query optimizer can automatically evaluate the costs 
of different query execution plans and choose the most efficient 
one to execute queries. As the availability of resources changes, 
critical parameters on which the query optimizer depends on for 
cost evaluation should also be updated accordingly, which will 
lead to better resource utilization and more efficient query 
executions.  

Specifically, a database often uses an internal cost model 
CostD(C), defined as a function of a set of parameters C, to 
estimate the costs for query execution plans. Each parameter 𝑐𝑘 
in the cost model serves as a cost factor related to a certain type 
of operation in query processing such as table scanning and tuple 
processing. Appropriate values on these parameters that reflect 
the actual resource availability will help the query planner 
choose the most efficient operations. Taking PostgreSQL as an 
example, as shown in Section 2, the query optimizer switches 
from using sequential scans to random scans for processing the 
TPC-H query Q8 as the ratio between seq and rand increases. 
Such tuning is necessary when, e.g., disk I/O contention happens 
and more efficient scanning method is desired given the limited 
I/O bandwidth. 

To tune the cost parameters given changing resource 
availability, a mapping needs to be created from the resource 
allocation to the optimal parameter values. Because all the cost 
parameters in a cost model are factors normalized on the same 
scale, only the changes in their relative values result in 
alternative query execution plan. Therefore, the mapping needs 
to be built only between the optimal ratio of the cost parameters 
and the resource allocation to the VM.  

For example, to investigate the impact of I/O bandwidth 
allocation on scanning methods, the ratio of the aforementioned 
two I/O cost parameters is considered. A simple query is used to 
benchmark this ratio, which reads all the rows from a large table. 
The query is executed by different plans (sequential scan vs. 
random scan) with different amount of I/O allocations. The 
performance is observed for each scanning plan under different 
I/O allocations. Since the cost of executing this simple query is 
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mainly from the scanning operations, the performance of 
different plans (sequential scan vs. random scan) can be 
considered as the estimate of the I/O cost parameters (seq vs. 
rand) for different I/O allocations. In this way, a mapping is built 
between the I/O allocation and the I/O cost parameters (Figure 
5(a)). When the VM’s I/O allocation changes, the ratio between 
these two parameters can be then adapted accordingly so that the 
database can choose the most efficient query execution plan 
under the given resource allocation. 

In addition to parameters that reflect the knowledge about 
the database’s execution environment, there are also other types 
of parameters that define the database’s own limit for certain 
types of resource usage. Such parameters should also be adapted 
according to the database VM’s actual resource availability. For 
instance in PostgreSQL, the parameter shared_buffers changes 
the amount of memory that the database uses for caching data. 
A reasonable setting of shared_buffers should be proportional to 
(e.g., ¼) the amount of memory allocated to its VM.   

B. Virtualized Map Services 

Another interesting case study of this paper’s cross-layer 
optimization is web-based map services. Map services are the 
most important applications of modern geographic information 
systems, which serve requests for maps and related geographic 
information for a variety of clients over Internet. Map services 
represent applications that can tune their QoS based on the 

resource availability (other examples include search engines and 
streaming services). The configurations that need to be tuned on 
a map service include the resolution and comprehensiveness of 
the returned maps and the selection of different search strategies 
for geographic information. The settings of these configurations 
affect different aspects of a map service’s QoS and need to be 
carefully tuned according to its host’s resource capacity. Hence, 
automatic adaptation becomes important for a virtualized web 
map service when its resource availability changes dynamically. 

Specifically, this paper focuses on one key tunable parameter 
in a map service, the JPEG compression quality (JCQ), which 
affects two different aspects of the QoS—response time and 
imagery quality. JCQ determines the compression level of a map 
image returned to a request. Setting a higher JCQ value results 
in returning maps with a better resolution which also require 
more data transfer. This case study assumes a typical service-
level objective which is to meet the response time target while 
delivering maps with the highest possible resolution. As 
illustrated in Section 2, this objective cannot be met using a fixed 
JCQ setting in a virtualized web map system where the available 
network bandwidth varies over time. It is necessary to adapt the 
JCQ setting automatically based on the VM’s network 
bandwidth availability.   

In order to use the host-to-guest map service adaptation for 
JCQ tuning, a mapping needs to be created from the network 
bandwidth allocation to the optimal JCQ value. The optimal  
JCQ depends on the workload intensity, the available network 
bandwidth, and the response time target. To build the mapping, 
the map service’s performance is profiled using a synthetic 
workload under different JCQ settings while the workload’s 
intensity and the VM’s network bandwidth allocation are varied. 
Based on these collected performance data, the optimal JCQ can 
be then found by searching for the highest JCQ value with which 
the corresponding performance satisfies the given response time 
target. 

In this way, the mapping is built from the network bandwidth 
availability and workload intensity to the optimal JCQ for the 
given response time target. The profiling time can be reduced by 
collecting only a subset of the data and using regression to build 
the rest of the profile. Figure 5(b) illustrates two of such 
mappings for the response time targets of 22ms and 17ms. A 
total of 144 data points are collected to build a mapping in this 
figure and the fitting error is 2.95% on average. With these 
mappings, the JCQ value can be then adjusted automatically and 
always set to optimal as the network bandwidth availability or 
the workload intensity changes. 

VI. EVALUATION 

A. Setup 

This paper’s cross-layer optimization approach is evaluated 
using both databases and web map services discussed in the 
above case studies. The testbed is a physical machine equipped 
with two six-core 2.4GHz AMD Opteron CPUs, 32GB of RAM, 
and one 500GB 7.2 RPM SAS disk. 

To evaluate the virtualized database, Xen 3.3.1 is installed to 
provide the VMs, where the operating system for both Dom0 
and DomU VMs is Ubuntu Linux 8.10 with paravirtualized 

 

Figure 5(a): The mapping between database cost parameters and VM 

I/O bandwidth allocation 

 

Figure 5(b): The mapping between map service JCQ and workload 

intensity and VM network bandwidth allocation 
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kernel 2.6.18.8. The evaluated databases are hosted on DomUs, 
while the resource management system is hosted on Dom0. The 
management system monitors and controls the database VM’s 
usage of both CPU cycles and disk I/O bandwidth every 10 
seconds. In the VM Sensor, resource monitoring is done using 
xentop and iostat, where the I/O bandwidth usage is considered 
as the sum of reads and writes per period of time. In the 
Application Sensor, a database proxy deployed on Dom0 is used 
to measure the performance of the database VM. The Resource 
Allocator uses Xen’s credit CPU scheduler to assign CPU 
allocations and Linux’s dm-ioband I/O controller to set the cap 
for disk I/O bandwidth [11]. A typical database benchmark, 
TPC-H [5], is used in these experiments.  

To evaluate the virtualized map service, Microsoft Hyper-V 
6.2 [12] is deployed to provide the virtualization environment. 
The operating systems on parent and child partitions are 
Windows Server 2012 and Windows Server 2008 R2 Datacenter 
respectively. The map service application is hosted on the child 
partition configured with 1 CPU core and 4GB memory. The 
resource management system deployed on the parent partition 
monitors and controls the network I/O bandwidth to the child 
partition through the Hyper-V’s bandwidth management tool. 
The specific map service considered here is TerraFly [6], a 
production web-based map system serving requests from over 
125 countries and regions and providing users with customized 
aerial photography, satellite imagery, and various overlays. The 
real workload traces collected from production TerraFly system 
are used in the evaluation. 

B. TPC-H  

This experiment demonstrates the effectiveness of the host-
to-guest optimization by automatically tuning a database system 
under varying memory availability. An I/O intensive workload 
consisting of a mix of duplicated copies of the Q4, Q6, Q8 and 
Q14 queries from TPC-H is run on a database with warm 
memory, where the query processing can be done mostly using 

data cached in memory. The intensity of the workload can be 
varied by changing the inter-arrival rate of the queries from 4.8s 
to 8s with a corresponding request rate of 50 and 30 queries per 
minute. To simulate different levels of memory contention, the 
database VM’s memory allocation is varied from 2048MB, 
1536MB, 1024MB to 512MB while the workload is running at a 
given request rate. 

Figure 6 compares the performance of two TPC-H workloads 
with different intensities from the scheme that uses host-to-guest 
optimization (Dynamic) vs. without it (Static). The former 
dynamically adapts the ratio between seq and rand as the 
memory availability changes; the latter uses a static ratio of 1:4. 
The result shows that the adaptation improves the database 
performance for both workloads as the available memory 
reduces. For example, an average of 33.5% improvement in 
query execution time is achieved when the VM’s memory is 
512MB. The improvement increases as the workload becomes 
more intensive because the memory contention gets worse. For 
the workload with 50 request/s, as soon as the memory allocation 
is reduced to 1.5GB, substantial speedup is observed; while for 
the workload with 30 request/s, the advantage of optimization 
becomes evident only when the available memory is reduced to 
1GB and less.  

The host-to-guest optimization achieves the above 
performance improvement because it enables the database to 
adapt its query execution strategy as the memory availability 
varies. Specifically, it allows the database to switch from a 
random-scan-preferred configuration to a sequential-scan-
preferred one by tuning its ratio of seq vs. rand from the default 

 

Figure 6(a): Performance of a TPC-H workload with 50 request/s 

 

Figure 6(b): Performance of a TPC-H workload with 30 request/s 

 

 

 
Figure 7(a): Network bandwidth allocation to TerraFly VM 

 
Figure 7(b): TerraFly’s JCQ settings  

 
Figure 7(c): TerraFly’s performance with different JCQ settings 
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1:4 ratio to 1:16 as the available memory decreases from 2GB to 
512MB. When the memory is sufficient to cache all the queried 
data, a random-scan-preferred configuration is advantageous 
because it scans indexes and accesses less data. When the 
memory is not sufficient to cache the queried data, the query 
processing becomes disk I/O bound where sequential scans are 
more efficient. The cross-layer optimization takes advantage of 
this application-specific knowledge to make sure that the 
database’s performance is always optimal given its VM’s current 
memory availability. 

C.  TerraFly  

To demonstrate the effectiveness of the host-to-guest 
adaptation for TerraFly-based map service, two scenarios are 
considered in this experiment. In the first scenario, the amount of 
available network bandwidth to TerraFly is contended by another 
VM which runs an FTP server. Figure 7(a) shows that the 
network bandwidth allocated to the TerraFly VM is first reduced 
from 200 to 100 Mbps as a file transfer starts on the FTP VM, 
sustained at 100 Mbps during the transfer, and finally increased 
back to 200 Mbps when the transfer completes. With the host-to-
guest adaptation, the network resource availability is explicitly 
fed back to the TerraFly VM and used to adapt the JCQ for the 
map service.  

Figure 7(c) compares the performance of TerraFly using 
three different JCQ settings shown in Figure 7(b): one with a 
dynamic JCQ adapted by host-to-guest optimization (Dynamic) 
versus two using static JCQ settings (Static). The results show 
that the host-to-guest adaptation allows the response time target 

(20.5ms) to be met throughout the experiment. In contrast, using 
a static high JCQ misses the response time target most of the time 
and causes up to 15% delay in response time. Although using a 
static low JCQ can meet the response time target, it fails to 
provide a good image quality to map requests and wastes the 
available network bandwidth when it is sufficient. Compared to 
it, the host-to-guest adaptation is able to fully utilize the available 
network resources and improve image quality by 40% in average. 

In the second scenario, a fixed amount of network bandwidth 
(50 Mbps) is allocated to the TerraFly VM while a real workload 
collected from the production TerraFly system (shown in Figure 
8(a)) is replayed with a 60-fold speedup. Although the network 
contention does not change in this experiment, the host-to-guest 
adaptation still enables TerraFly to adapt its JCQ based on the 
knowledge of its network bandwidth availability and workload 
intensity.  

Figure 8(c) compares the performance of TerraFly using the 
three different JCQ settings shown in Figure 8(b). Similar to the 
previous experiment, the result shows that the dynamic JCQ 
setting adapted by host-to-guest optimization outperforms the 
static JCQ settings in terms of imagery quality and response time 
of the map requests. Using a high JCQ statically is not able to 
meet the response time target when the workload intensity 
becomes high; the scheme with a static low JCQ cannot provide 
good quality images even when there is abundant network 
bandwidth to be used. In contrast, the host-to-guest JCQ 
adaptation approach always meets the response time target and 
delivers an average improvement of 26.3% in imagery quality. 

VII. RELATED WORK 

Various solutions have been studied in the literature to 
address the problem of automatically deciding a VM’s resource 
allocation based on its hosted application’s demand and QoS 
requirement. In particular, machine learning algorithms have 
been considered to model VM resource usages. For example, a 
simple regression method is used to predict the performance 
impact of VM memory allocation [13]; Reinforcement learning 
is used to automatically tune VM resource configuration [14]; 
Artificial neural networks are used to model the nonlinear 
behaviors for a variety of applications when their VMs are under 
I/O contention [15]; The authors’ previous work [3][7] studied 
the use of fuzzy logic to model the relationship between 
application workload and VM resource demand, which is shown 
to be both fast and accurate for modeling systems with complex, 
time-varying behaviors.  

In addition, predictive resource controllers have been used 
to automatically adjust VM resource allocations based on the 
VM performance models in order to meet their applications’ 
QoS targets. For example, linear multi-input-multi-output 
(MIMO) models have been used by predictive controllers to 
allocate CPU resources to multiple virtualized web servers [16], 
and in more complicated cases, to allocate multiple types of 
resources to virtualized multi-tier applications [17]. Fuzzy 
modeling based predictive control has also been proposed to 
better capture the nonlinear behaviors in VMs’ resource 
contention and meet applications’ performance needs [18]. 

This paper builds upon the fuzzy-modeling-based resource 
management framework and benefits from its fast speed and 

 
Figure 8(a): A real TerraFly workload with changing intensity 

 
Figure 8(b): TerraFly’s JCQ settings  

 
Figure 8(c): TerraFly’s performance with different JCQ settings 
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ability to capture nonlinear behaviors. More importantly, This 
paper’s cross-layer optimization approach complements these 
solutions in that: fuzzy modeling and the other effective 
modeling methods can be employed to estimate VMs’ resource 
demands and make resource requests, whereas this paper’s 
approach allows the virtualized applications to adapt their 
configurations and optimize their performance when the 
available resources cannot satisfy their requests. 

There are related paravirtualization works that also adopt a 
cross-layer approach to bridge the semantics gap between VM 
guests and host and improve various aspects of virtualized 
systems, including reducing virtualization overhead [4], 
increasing memory utilization [19], and improving intra-host 
VM communications [20]. However, these works all require 
changes to the virtualization interfaces and the guest operating 
systems in VMs. In contrast, this paper’s approach does not 
require any change to the guest systems: it keeps unmodified 
virtualization interfaces for running VMs, and leverages 
applications’ existing mechanisms to adapt their configurations 
according to the current resource availability. 

Related autonomous database works [21][22][23] are 
focused mainly on a database’s internal tuning and query 
optimization, which however do not work when the database is 
virtualized and unware of its actual resource availability. This 
paper’s cross-layer optimization approach will bridge this gap 
by making the database aware of its resource availability and 
able to tune itself properly in a systematic manner. 

Finally, compared to the authors’ previous work on 
application-aware VM resource management [24], this paper 
makes substantial new contributions on host-to-guest 
application adaptation by considering different types of VM 
resources (memory, disk bandwidth, and network bandwidth) 
and different types of virtualized applications (databases and 
map services). 

VIII. CONCLUSIONS AND FUTURE WORK 

This paper proposes a new VM resource management 
approach based on fuzzy modeling and cross-host-guest 
optimization. It enables the communication between VM host- 
and guest-layer schedulers and allows them to collaboratively 
optimize the resource allocation and application performance. 
Specifically, the guest-layer scheduler uses the host-layer 
feedback to understand the changing resource availability and 
adapt its configuration accordingly. Virtualized databases and 
map services are considered as interesting case studies of this 
cross-layer optimization approach. A database’s cost model 
parameters are adapted according to its VM’s resource 
availability. A map service’s imagery quality is also adapted 
according to its workload intensity and resource availability in 
order to sustain the response time target. 

A prototype of this approach is implemented on Xen- and 
Hyper-v based VMs and evaluated using TPC-H based database 
workloads and TerraFly-based map service workloads. The 
results demonstrate that the proposed cross-layer optimization 
significantly improves the performance and QoS of virtualized 
applications compared to the traditional approaches which treat 
VMs as black boxes. 

This cross-layer optimization approach requires certain 
awareness between the virtualization software and virtualized 
applications. Such awareness breaks the transparency offered by 
traditional full virtualization, but this paper advocates that such 
a tradeoff is necessary for business- and mission-critical 
applications to achieve their desired QoS on virtualized systems. 
The benefit of this tradeoff is demonstrated by the experimental 
results reported in this paper. The underlying argument is the 
same as that drives the success of paravirtualization [4] which 
sacrifices complete transparency for lighter-weight and more 
efficient virtualization. Although not every virtualized 
application is capable of adapting its behaviors, the authors 
believe that it will become a necessity for critical applications as 
virtualization becomes pervasive.  

Based on this cross-layer optimization framework, future 
works will be conducted along two possible directions. First, 
VM migrations will be considered in addition to application 
adaptations to handle situations where resources on a host are 
not sufficient to satisfy all the VMs’ requests. These two 
techniques will complement each other: VM migration can 
harness idle resources on other hosts to satisfy the VMs’ 
resource needs; application adaptation is necessary when there 
is no suitable host for migration or when migration is not 
supported by the hosts. When migrations are used, the authors’ 
previous work [25] can be employed to migrate a VM’s 
performance model together with the VM so that it does not have 
to be learned from scratch after the migration. Second, cross-
layer optimization will also be applied to applications that are 
distributed across multiple VMs, including both parallel 
applications that make use of several VMs to speed up the 
execution, and multi-tiered applications that distribute their tiers 
across multiple VMs. For such distributed applications, 
adaptations may have to be applied across the involved VMs in 
a coordinated manner, which is an interesting topic for future 
research. 
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