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Abstract—Stress is a central factor in our daily lives, impacting
performance, decisions, well-being, and our interactions with
others. With the development of IoT technology, smart wearable
devices can handle diverse operations, including networking
and recording biometric signals. The enhanced data processing
capability of wearables has also allowed for increased stress
awareness among users. Edge computing on such devices enables
real-time feedback which can provide an opportunity to prevent
severe consequences that might result if stress is left unaddressed.
Edge computing can also strengthen privacy by implementing
stress prediction on local devices without transferring personal
information to the public cloud.

This paper presents a framework for real-time stress predic-
tion, specifically for police training cadets, using wearable devices
and machine learning with support from cloud computing. We
developed an application for Fitbit and the user’s accompanying
smartphone to collect heart rate fluctuations and corresponding
stress levels entered by users and a cloud backend for storing data
and training models. Real-world data for this study was collected
from police cadets during a police academy training program.
Machine learning classifiers for stress prediction were built using
this data through classic machine learning models and neural
networks. To analyze efficiency across different environments,
the models were optimized using model compression and other
relevant techniques and tested on cloud and edge environments.
Evaluation using real data and real devices showed that the
highest accuracy came from XGBoost and Tensorflow neural
network models, and on-edge stress prediction models produced
lower latency results than in-cloud prediction.

I. INTRODUCTION

Stress often occurs when we become pressured by events
that overwhelm our capacity to deal with those events [1].
This can be particularly consequential in the workplace. Stress
is inversely related to job performance and negatively affects
decision-making [2]. Law enforcement work in particular
comes with many unexpected threats and challenging de-
mands. Chronic stress increases the perception of threat and
level of aggression in response [3]. Identifying and addressing
symptoms of acute stress among officers is critical, as stress
can otherwise become chronic, leading to loss in job per-
formance, poor officer health, and problematic behaviors [4].
Moreover, despite wide variation from person to person [5],
increased cardiovascular activation (e.g., heart rate) generally
is associated with more intense physical and emotional states,
including stress [6].

There is utility in understanding whether frequent or cumu-
lative increases in heart rate can predict feelings of stress;
which features or properties of the heart rate signal are

predictive; and the time course for optimal predictions. This
has real-world implications for police officers, who must be
aware of and manage their stress and physiological arousal in
real time [7]. To address and ultimately mitigate the potentially
detrimental effects of stress in police officers as they navigate
their ever-changing field, we investigated stress prediction
through the collection of biometric data via wearables, used
that data to create machine learning models, and analyzed the
success of those models on the edge.

As described in this paper, we leveraged machine learning
and edge computing techniques for stress prediction. The
machine learning approach allowed us to draw relevant pre-
dictions from a large volume of data collected over time. With
the growth of machine learning techniques and models, this
paper investigates the use of classic models as well as modern
neural networks. Edge computing, combined with a machine
learning approach, can create a faster and more reliable stress
prediction mechanism than the cloud. With all the computing
power moved to the local devices, users can achieve strong
data privacy and fast prediction speed.

We developed a framework for real-time stress prediction
using wearable devices and machine learning with support
from cloud computing. We utilized Fitbit, a commercial wear-
able device, to collect biometrics including heart rate, and
developed a custom application to collect stress level ratings
that participants could manually input into the Fitbit. We used
Amazon Web Services (AWS) to securely store data and train
machine learning classifiers. Our custom Fitbit application
generated prompts, triggered by heart rate fluctuation thresh-
olds (35% increase above resting heart rate, based on previous
research and pilot testing), with 5 stress level buttons to
collect user input (adapted from [8]). We created a secure web
application with a dashboard to allow users and researchers to
monitor each Fitbit device and view all the collected data.

We worked closely with a local metropolitan police training
academy to collect biometric data and stress perception scores
from police training cadets. For this initial study, data was
collected over 4 months across 15 different cadets. Our team
worked with each cadet to prepare and maintain their data
collection from Fitbit devices and to gather overall study
feedback.

Using the data collected, we built classification models to
categorize stress experiences from features of heart rate using
machine learning. We employed binary classification methods



(“not stressed” vs. “stressed”) using both classic models and
a neural network. Then, we deployed the stress classification
models on smartphones to predict stress ratings in proximity
to the user without sending the data to the cloud. To optimize
the neural network for edge use, we applied quantization to
reduce the model size.

The most significant results of our study are as follows:
• The best accuracies for stress prediction were 96.98%

from XGBoost and 95.98% from a feedforward neural
network using an over-sampled data extraction approach.

• Quantization reduced the stress prediction model size
by 74.2% and maintained the accuracy as before the
quantization.

• Several trials proved that on-edge stress prediction with
the quantized model saved nearly 200ms compared to in-
cloud stress prediction.

The rest of the paper is organized as follows: Section 2
investigates the related works; Section 3 presents our data
collection strategies; Section 4 details our approach to machine
learning-based stress prediction; Section 5 presents our edge
computing-based stress prediction solution, and Section 6
concludes the paper.

II. RELATED WORKS

A. Efficacy of Wearable Devices in Clinical Domains

Wearable devices as a health monitoring and management
tool are increasing in popularity and functionality. Seam-
less integration with smartphone devices and real-time data
collection have made it simple and convenient for users to
learn more about their health, mental health, and physiological
states without any external involvement. As wearable devices
continue to grow in popularity, studies have begun to leverage
their health data collection capabilities to learn more about
human behaviors and tendencies.

For example, a study conducted by Beniczky et al. [9]
investigated the use of wearable devices to detect and predict
seizures in patients with epilepsy. Through the use of the
sensors on the device, the researchers were able to collect
electrocardiogram (ECG), heart rate variability (HRV), and
accelerometer data. These data were then fed into machine
learning models to create predictive models for generalized
tonic-clonic seizures. Results showed that the noninvasive
wearable devices were able to detect such seizures with
90%-96% accuracy. Rykov et al. [10] were able to leverage
wearable devices in the same capacity to screen for depression-
related biomarkers, collecting sleep patterns, physical activity,
and psychological measurements to evaluate mental states.
Models created in this depression detection domain were able
to reach 82% accuracy. The ability to make diagnoses and
predictions like these in real-world contexts demonstrates the
feasibility of using wearable devices to extend clinical research
beyond controlled environments.

B. Stress Prediction using Machine Learning and Wearables

Several studies have leveraged data collected from wearable
devices in machine learning-based stress prediction. Lawanont

et al. [11] and Dai et al. [12] both investigated the use of
wearable devices to detect stress in controlled stress scenarios.
Using the Fitbit and the Fossil Gen4 Explorist commercially
available wearable devices, both studies collected several
different data points during controlled experiments. Inputs
included heart rate data—specifically root mean square of
successive differences (RMSSD) and inter-beat interval; sleep
data—including rapid eye movement (REM), deep and light
sleep time; and other metrics such as calories, steps, and
intensity of movement. Can et al. [13] and Martinez et al. [14]
similarly leveraged wearable devices in the stress prediction
domain, collecting heart rate variability, accelerometer, and
temperature data, but took the research a step further by
attempting to detect stress in situ. The authors underscore the
promise and challenges of data collection in unconstrained
daily-life contexts.

These studies employed classification-based models to de-
tect stress. Among these, the Lawanot et al. study [11]
achieved an 84.10% accuracy with the Decision Tree model
(no F1-score reported), the Dai et al. study [12] achieved
an 82.3% accuracy and 62.3% F1-score with the Support
Vector Machine (SVM) model, and the Can et al. [13] study
achieved 92.19% accuracy and 90.30% F1-score among other
significant results. Through such key findings, we can learn
that there is great promise in leveraging empirically-chosen
classification models to predict stress experiences in highly
stressful situations, even unconstrained daily-life contexts. Our
work is one of few studies to date to investigate stress predic-
tion in the real-world context of law enforcement training.

With an increased demand for stress management in law
enforcement domains, a handful of studies involving wearable
devices, machine learning, and behavior prediction have been
conducted. Tiwari et al. [15] proposes stress prediction through
the use of heart rate variability and breathing analyses during
three waves of data collection. Each wave consisted of a
different assessment—beginning with daily wear to gauge
baseline levels, and moving on to shooting range exercises
and intervention simulation exercises. Similarly, in the study
by Erickson et al. [16], heart rate and sleep data were collected
through in-class, day, and night field training. Both studies
used the collected data as inputs into classification models,
including SVM (most accurate for [15]), Logistic Regression,
Random Forest (most accurate for [16]), and Adaboost.

Building upon the findings of these stress prediction studies
in both general and law enforcement domains, our work makes
several new contributions: 1) we developed an end-to-end
system with a custom wearable app to prompt users for real-
time inputs based on physiological signals; 2) we used this
system to collect multiple months of data from real users in
real-world scenarios; and 3) we implemented the use of edge
computing for real-time stress prediction.

C. Machine Learning on Edge Devices

Due to the immediate and dynamic nature of stress and its
consequences, the use of on-edge machine learning can be
pivotal in real-time stress prediction.
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Chen et al. [17] and Mauldin et al. [18] provided in-depth
research about the capability of mobile devices for training and
inferencing with deep learning models. Chen et al. leveraged
the CIFAR-10 dataset, containing millions of images used
to train computer-vision models. These data were fed into
various deep learning models, significantly, the Convolutional
Neural Network (CNN). Mauldin et al., proposing a real-time
fall detection system, leveraged external wearable datasets
in several models, including SVM, Naive Bayes Classifier,
and a Deep Neural Network (DNN) which was the most
accurate. The former study found that training operations
contribute most significantly to the latency, especially for
the gradient calculation of the backward path. As a result,
the study concluded that it is possible to run both training
and inference on mobile devices provided that the models’
complexity is reduced. The latter study similarly concluded
that it is possible to run machine learning inference on mobile
devices, providing a lightweight model. It becomes clear from
these works that mobile inference is possible in real-time
machine learning deployments.

Ogden et al. [19] and Guo et al. [20] delved deeper into on-
edge vs. in-cloud latency with their respective deployments.
Ogden et al. primarily focused on which model compression
techniques to use, which model to choose for mobile inference,
and when to depend on servers. They proved that the quantized
models have significantly smaller model sizes; moreover, load-
ing the 8-bit quantized model did not contribute significantly
to inference time, compared with other models. Additionally,
through an analysis of various devices and Internet connection
strength, they determined that cloud-based inference does
still consume less power and deliver faster response times
compared to on-edge inference, but discovers promising results
for the future of on-edge inference.

Guo et al. [20] tested on-edge vs. in-cloud latency, but
observed varying results. The evaluation metrics used in this
study were latency, power consumption, and resource usage.
They found that the in-cloud approach outperforms on-edge.
They share, however, that this conclusion is dependent on
the performance capabilities of the smartphone and the model
size. With the manipulation of these two parameters, there is a
high possibility for low latency through on-edge deployment.
Though both conclusions differ, this lays the groundwork
for additional research between on-edge and in-cloud model
deployments to improve real-time feedback.

In this paper, we study an edge computing-based solution
for stress prediction that addresses the unique challenges
brought by developing an accurate and fast model for pre-
dicting stress in real time from real users’ biometric inputs.

III. DATA COLLECTION

A. Overview

This project collected heart rate and stress rating data from
Fitbit devices worn by 15 police cadets during four continuous
months in a rigorous training academy. Stress ratings were
collected directly into the Fitbit when prompted based on
increases in the user’s heart rate. Stress level rating options

ranged from one to five, with one as “not at all stressed” and
five as “extremely stressed”. We recorded a zero when the
cadet did not respond to a prompt. This scale was adapted
from the 5-point Perceived Stress Scale (PSS) [8], a widely
used self-report measure of subjective stress.

The architecture of our Stress Management system com-
prises several key components, as shown in Figure 1. There
are two types of data collection pipelines for heart rates and
stress responses, respectively. Heart rate data is transmitted to
Fitbit’s remote server by itself (once a Fitbit gets synchronized
to the smartphone), and can be retrieved via Fitbit Web API
with user account credentials. Stress levels, on the other hand,
need a private database as they are measured and collected by
the custom application. These are stored in key-value format.
After the data uploading and processing phases, a data archive
is kept with cadets’ heart rates and stress responses for model
development.

B. Fitbit Application

Fitbit’s network architecture includes the Fitbit watch and
the smartphone companion application, a supplementary run-
time environment built to extend application capabilities. Fitbit
needs to be paired with the companion through a Bluetooth
connection to transfer Fitbit-collected data. Because Fitbit does
not have Internet connection by itself, it depends on the com-
panion for any other operations, like fetching information or
storing data, except for recording bio-signals. Upon syncing to
the companion, Fitbit sends all the biometric signals recorded
to the remote server. Fitbit also provides an application on the
smartphone to display statistical data of the recording. While
Fitbit focuses mainly on recording biometric measurements,
the companion can do more complex operations; together, they
can build a more elaborate application.

Fitbit supplies a Software Development Kit (SDK) and
various Application Programming Interfaces (APIs) to de-
velopers for custom application development. As this initial
study intended to catch stress occurrence mainly by heart
rate fluctuation, we built a Fitbit application (in the form of
a custom clock face) to detect patterns indicating possible
stressful situations and prompt users for stress inputs as shown
in Figure 2. The prompting generation mechanism is when the
heart rate goes above the resting heart rate by 35 percent for
two minutes, the clock’s face changes to the prompted face
with five buttons ranging from five levels, “No Stress”, “A
Little”, “Moderate”, “A Lot”, and “Extremely”. Users enter
their stress levels subjectively. A 30-minute pause period was
programmed to occur between prompts to avoid continuous
prompting. If a user is unable to respond to a given prompt
after 7 minutes, the value is stored as a zero representing a
“missed” prompt in our database.

Through this custom application, once the user enters the
stress level, Fitbit keeps the stress input data in the file storage
in the CBOR format and sends it to the companion as soon
as the Bluetooth connection is established. The companion
receives the stress file and concatenates it to the existing data in
a key-value format, so the data is temporarily preserved in the
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Fig. 1. Architecture of the proposed edge machine learning-based stress management system. Through the custom-built app on Fitbit and companion on
the smartphone, police cadets can provide stress perception scores alongside Fitbit-collected biometric data. The companion requests various cloud resources
through the API Gateway to process data and train models. With the trained models, the companion can perform stress prediction on the edge in real time.
The system also provides a web application for researchers to manage users and monitor data.

Fig. 2. Custom-built Fitbit clock face built to collect self-reported stress levels
from cadets in real-time while also serving general watch functionality with
a traditional default face. On prompt, the watch face displays 5 stress levels
on a rotating cycle as options for stress reporting from the user.

companion. The companion is responsible for sending the key-
value dataset to the cloud when the smartphone is connected
to the Internet. It sends the dataset to the cloud database using
Fitbit Fetch API. The Fetch API allows developers to make
GET and POST requests to HTTPS endpoints. Additionally,
to distinguish each cadet’s data from the others, the Fitbit-
provided unique device identification (ID) number was used
as the partition key in the database.

Fitbit automatically stores biometric data, through the com-
panion, in its remote server, and we can retrieve this data
using the Fitbit Web APIs. However, it requires specific
authorization credentials, including access tokens and user
identification. To validate the access tokens, users must go
through the authorization code grant process, which depends
on OAuth 2.0, a protocol to allow a third-party user to access
the resources. The OAuth application creates the client ID and
secret for use to invoke the access token. Each access token
is only valid for 8 hours before it needs to be refreshed again.

C. Web Application

To handle multiple devices and data collection pipelines,
we created a web application dashboard. The web application
enables monitoring of the data collection for each user and
shows the device information on the dashboard, such as battery
status and the last synced time to their smartphone. It also
provides tools for data retrieval and processing, including
downloading interfaces that convert JSON data to CSV format
and a visualization page to analyze the heart rate data with
stress inputs for each cadet, as shown in Figure 3.

We implemented this web application using a serverless
static web application through AWS. The benefit of static web
hosting is that it minimizes the initial cost and eliminates the
need for a hosting server, such as an EC2 instance. Instead,
the web application runs in the S3 bucket, where HTML, CSS,
and JS files are stored. The bucket has a feature to host an
application with a designated AWS domain. However, since
Fitbit only allows the HTTPS protocol to communicate with
the outside, we purchased the private domain for the website
and connected it to the S3 bucket using Route53, CloudFront,
and Certificate Manager.

Most importantly, we utilized AWS Lambda functions to al-
low our static web application to act as a standard server. AWS
Lambda is a serverless computing service that executes code
without establishing a server. It is event-driven, executed only
when the service is requested. Lambda helps the application
build data processing functions by accessing other resources
provided by AWS such as DynamoDB and S3. It can handle
up to 250MB of code, and the execution time cannot be more
than 15 minutes, which is sufficient for our needs. In the case
of our application, we built lambda functions for creating and
logging in user accounts, uploading and retrieving recorded
data to the interface, and, in the case of in-cloud prediction,
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Fig. 3. A graph from the web application visualizing 24 hours of heart rate and stress data from one user. The blue lines represent heart rate in bpm, and
the red dots represent stress prompts, ranging from no-answer (shown as 0) to 5.

kicking off inference tasks on pre-trained models.

D. Database

We employed DynamoDB, a non-relational key-value
NoSQL database, to store all of our collected stress data.
The key-value data is easy to query by the partition key or
sort key, like extracting heart rate values for a specific user
given start and end dates. Additionally, DynamoDB allows
scaling both vertically and horizontally, which is important
to support data generated continuously from many wearable
devices. As mentioned earlier, biometric data is stored and
accessed separately through the Fitbit-owned database.

Note that in this research, we obtained the cadets’ permis-
sions to store their data in the cloud and used the security
mechanisms provided by AWS to protect the data. In real
scenarios, users may not permit their private data to leave
their personal devices. Our system can be extended to employ
privacy-preserving machine learning methods such as feder-
ated learning to support such scenarios.

E. API Gateway

We utilized the API Gateway to handle requests from the
companion using resources provided by the cloud. Our appli-
cation runs in RESTful APIs, which requests and responds in
JSON format with four methods, including CREATE (post),
READ (get), UPDATE (put), and DELETE (delete). AWS’s
API Gateway provides users in the backend with the endpoints
to access other services such as Lambda and DynamoDB.
In our application, we built endpoints and mapped them to
Lambda functions so that the companion can upload and
process data, and the system can use the data to train models.

IV. MACHINE LEARNING-BASED STRESS MANAGEMENT

A. Problem Definition

As stated earlier, this research aimed to build a real-time
stress prediction solution using machine learning. Our initial
goal was to detect the patterns of heart rate that could indicate
stress. Heart rate was collected through the Fitbit Versa 3,
and the user supplied real-time stress perception scores using
the clock face application. Our dataset, comprised of these

Stress level Numerical value Number of responses
No Response 0 9578
Not Stressed 1 2935

A Bit Stressed 2 355
Moderate 3 89

A Lot 4 19
Extremely Stressed 5 5

TABLE I
DISTRIBUTION OF STRESS RESPONSES

data points, proved to be suitable for supervised learning
algorithms, due to its labeled nature. The labels were also
categorical variables, so we decided to employ classification
algorithms to determine the input instances as “stressed” or
“not stressed”. Table I shows the distribution of stress levels
from all the prompts that the users received. Stress level 0
indicates no response at the time of the stress prompt, while
1-5 indicates the increasing scale of stress.

B. Data Processing

As mentioned above, our work is appropriate for classifi-
cation models of supervised learning given its labeled nature.
We began by extracting heart rate segments from the original,
continuous heart rate data for each user. To capture heart
rate leading up to the stress prompt (programmed to generate
when the current heart rate exceeded 35% above the baseline
for 2 minutes), we extracted the 2 minutes of data before
the prompt. Each heart rate segment was then mapped to
corresponding stress levels to label each of them as “stressed”
or “not stressed”. We converted the stress level to “0” for
“not stressed” and “1” for “stressed” for binary classification.
Since users indicated their stress in five different levels, we
could map them into “not stressed” and “stressed” in different
ways. Given the ambiguity of stress level 2, we mapped and
processed the data in two separate ways: 1) including data
with stress levels from 2 to 5 as “stressed” while level 1 was
“not stressed”, and 2) including data with stress levels from 3
to 5 as “stressed” while levels 1 to 2 were “not stressed”.

The pre-processed raw dataset includes the prompting
threshold, resting heart rates, and 40 samples of heart rates.
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“Stressed’” levels “Not Stressed” levels Resampling method
1 2 to 5 1 Under-sampling
2 2 to 5 1 SMOTE
3 3 to 5 1 to 2 Under-sampling
4 3 to 5 1 to 2 SMOTE

TABLE II
FOUR APPROACHES FOR TRAINING MODELS

The granularity of heart rates recorded by Fitbit is between 5
to 10-seconds, so the 40 samples of heart rates represent about
2 to 3 minutes of data before the prompt. Since the resting
heart rates are calculated by Fitbit automatically, we did not
have to go through feature extraction steps to get those values.

The next step is feature extraction. Since we set the prompt-
ing algorithm based on how the heart rate fluctuates compared
to the resting heart rate, we extracted the features representing
distribution and fluctuation-related aspects of heart rate. There
were seven features extracted from the heart rate. The primary
five were 1) mean, 2) standard deviation, 3) minimum and 4)
maximum value of the heart rate, and 5) resting heart rate.
The additional two features were 6) the difference between
mean heart rate from the resting heart rate by percentage
(DiffRest) [11] and 7) the root mean square of successive
differences between normal heartbeats (RMSSD) which Fitbit
uses for calculating heart rate variability.

One issue we faced was the unbalanced nature of the dataset.
Over 85% of the dataset contained “not stressed” instances.
To avoid a learning bias across our models, we explored
two approaches for dataset balancing: 1) To under-sample the
majority class by randomly choosing as many instances as the
number of the minority, and 2) To over-sample the minority
instances using Synthetic Minority Over-Sampling Technique
(SMOTE) [21]. The former method actually reduced the size
of the data, proving to be ineffective for training models;
however, it presented the ability to learn both “stressed” and
“not stressed” equally. The latter increased the dataset size and
the effectiveness of the learning stage but created similar but
synthetic sampled instances. Lastly, to ensure all attributes had
equal, unbiased influence, we implemented standard scaling
on all the dataset columns to make them have the same
distribution with 0 means and the unit standard deviation.

C. Training Models

We considered four approaches for training models as
specified in Table II. We trained models separately by how we
defined “stressed” (level 2 to 5 or 3 to 5) and how we balanced
the dataset (under-sampling or over-sampling). Regarding
classification algorithms, we considered four classic models
and TensorFlow’s feed-forward network. The set of classic
models includes Decision Tree, Random Forest, Adaboost,
and XGBoost. The first three models were imported from
Scikit-learn (Sklearn) [22] which provides not only reliable
classification models but also useful built-in functions for the
machine learning process, such as train test split or standard
scaler. Before running the dataset for training, we split the

Model Accuracy F1 Score
Approach 1 Decision Tree 61.23% 60.51%

KNN 60.14% 58.33%
Random Forest 64.85% 65.72%
AdaBoost 60.86% 58.33%
XGBoost 70.28% 70.50%
Neural Networks 56.52% 56.52%

Approach 2 Decision Tree 85.29% 85.63%
KNN 81.08% 83.18%
Random Forest 87.63% 88.14%
AdaBoost 71.22% 73.37%
XGBoost 88.60% 88.75%
Neural Networks 87.77% 88.38%

Approach 3 Decision Tree 77.27% 76.92%
KNN 77.27% 72.72%
Random Forest 81.72% 81.83%
AdaBoost 72.12% 71.64%
XGBoost 78.78% 78.12%
Neural Networks 86.36% 88.46%

Approach 4 Decision Tree 91.79% 91.73%
KNN 88.34% 88.73%
Random Forest 94.41% 94.34%
AdaBoost 79.25% 80.15%
XGBoost 96.98% 96.95%
Neural Networks 95.98% 96.02%

TABLE III
EVALUATIONS BY ACCURACY AND F1-SCORE

dataset into a training set (80%) and a testing set (20%) to
evaluate the models’ capability to handle unseen data.

We developed a feed-forward network on TensorFlow with
six hidden layers activated by the ReLu function. The output
layer was set with a Sigmoid function returning a value
ranging from 0 to 1. If the final return value from an input
instance is lower or equal to 0.5, it is “not stressed”, which is
labeled as 0. Otherwise, it is “stressed” and labeled as 1. Since
we used binary classification, we used binary cross-entropy for
the loss function.

D. Evaluation

Table III shows the accuracy and F1 scores for each
approach. Approach 1 gave us the worst result. The models
could not distinguish between “not stressed” and “stressed”
by heart rate features. This might be because of either an
insufficient number of instances or ambiguity of features from
stress level 2. We could gain better results from Approach 2,
which over-sampled the minority class. Approach 3 showed
more reliable results than Approach 1 by not using over-
sampling with synthetic samples. The dataset size was reduced
even more than Approach 1, as it excluded stress level 2 from
“stressed” and re-sampled the “not stressed” data as many as
the number of “stressed” data samples. Although it does not
have a sufficient dataset, it showed pretty good accuracy and
F1 scores by properly inferencing on the testing set. Lastly,
Approach 4 gave us the best results. It excluded stress level
2 and over-sampled the minority class. The best accuracy
it reached is 96.98% from XGBoost and 95.98% from the
Tensorflow neural network.
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V. EDGE COMPUTING FOR STRESS PREDICTION

A. In-Cloud vs. On-Edge Stress Prediction

Edge computing enables the operation of classification mod-
els on edge devices such as smart wearables and smartphones,
alleviating the burdens of reaching the server in the cloud.
Before we established the edge-based stress prediction, as
a baseline, we implemented in-cloud stress prediction by
running pre-trained models on EC2 instances with the input
from the companion. On-edge stress prediction, in comparison,
uses the companion, instead of the cloud server, to load models
and predict stress to save the communication time between the
companion and server.

Our Fitbit app always maintains the latest 2 to 3 minutes
of heart rates using the queue data structure. When it needs
to request stress prediction, it generates an input instance by
calculating the seven features specified in Section B. It sends
a request with a feature vector to either the companion or the
cloud after extracting the features.

For on-edge stress prediction, the companion loads the pre-
trained models and runs the inference. Unlike typical Android
applications, the Fitbit companion cannot load files from the
device’s storage, and thus it has to retrieve the pre-trained
models from the cloud. Specifically, the companion uses the
Fitbit Fetch API to retrieve the models from the AWS S3
buckets via HTTPS. There is an initial overhead when the
companion loads the models from the cloud into its memory
when it performs the first inference; the following inferences
can directly use the models that are already in memory (until
the app restarts). Since the Fitbit app and the companion run
in JavaScript, we had to convert the models, originally written
in Python for TensorFlow, to JavaScript versions, utilizing the
TensorFlow library. Among the four approaches we tested,
we chose Approach 4’s model, which achieved the highest
accuracies and F1 scores. Because the smartphone has limited
computing power and memory capacity, we considered model
optimization techniques such as quantization for reducing the
complexity and size of the models.

For in-cloud stress prediction, we used the API Gateway that
handles requests from the companion, runs model inference,
and returns the prediction result. The companion communi-
cates with the Gateway using the Fitbit Fetch API to upload,
retrieve, and manipulate data from our storage tables. When
requesting stress prediction, the companion uses the POST
method of the Fetch API to send the inference input containing
heart rate features. Upon receiving the request, the Gateway
triggers Lambda functions to proceed with stress prediction
using pre-trained models fetched from the S3 bucket. Since
the cloud has sufficient resources, far superior to the com-
panion, the server-side models have not gone through model
optimization processes.

B. Evaluation

Since the companion has limited computing resources, we
compressed the model to optimize for the edge device. We ap-
plied quantization to reduce the precision of model parameters

Model Type Value
Original Model Accuracy 85.98%

Topology Size 0.005 MB
Weight Size 3.0 MB

Quantized 8-bit Model Accuracy 84.10%
Topology Size 0.0067 MB
Weight Size 0.774 MB

TABLE IV
ACCURACY AND THE SIZE OF MODELS

Fig. 4. Latencies of in-cloud vs. on-edge stress prediction with their break-
downs. Fitbit-to-Companion is the latency of transferring input from Fitbit to
the smartphone companion; Inference is the time for stress prediction using
model inference; Companion-to-Fitbit is the latency of sending the prediction
result back to Fitbit. In addition, for in-cloud prediction, Companion-to-Server
is the latency for transferring input and response between the companion and
the cloud.

to 8-bits from the original model. There are two approaches to
quantization, post-quantization and quantization-aware train-
ing. In this work, we used the quantization-aware training
approach because it generally creates more accurate quantized
models by considering the error introduced by quantization
during the training process. Table IV shows the accuracy and
the size of the models. The topology size slightly increases
from the original to the quantized model but decreases by
74.2% for the overall weight size. At the same time, the
accuracy across both models only varies by 2%.

Figure 4 illustrates the stress prediction latencies and their
breakdowns. We compared three scenarios: original model
on-edge (“Companion-orig”), quantized 8-bit model on-edge
(“Companion-8bit”), and original model in-cloud (“Server-
orig”). On one hand, the overall latency difference for both on-
edge scenarios proves to be negligible, with small variations
across data transfer steps. Nonetheless, the quantized model on
the edge still saves nearly 74.2% of memory usage compared
to the traditional server, which is still valuable for resource-
limited smartphones. On the other hand, it can be observed
that the in-cloud deployment takes an extra 200ms on average,
mainly contributed by the additional data transfer overhead be-
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tween the companion and server. This result confirms that on-
edge deployment of stress prediction produces lower latency
than in-cloud deployment.

VI. CONCLUSION

In this paper, we studied the feasibility of edge machine
learning-based stress prediction using wearable devices with
police cadets during a training academy. We focused on heart
rate as an important starting point and verified that heart rate
recorded by commercial wearable devices can be effectively
used for stress prediction. Unlike other equipment which
records ECG data in milliseconds, Fitbit reads heartbeats in 5
to 10-second granularity (with a 1-second segment extraction
option). However, with features extracted from the heartbeats
and participant-reported stress levels, we found that Fitbit-
based heartbeat data also can be a validated data type in-
dicating stressful or non-stressful circumstances, even when
measured under real-world conditions.

Next, we employed five classic classification models and
one neural network for binary classification. After segmenting
heart rate data into 2 to 3-minute windows and extracting five
statistical features and two features representing heart rate
variability, we could apply the dataset to machine learning
algorithms. We also resolved the imbalance of the dataset by
either under-sampling or over-sampling. The best accuracies
were 96.98% from XGBoost and 95.98% from a 6-layer feed-
forward neural network using an approach that over-sampled
the minority instances and only used levels 3 to 5 as “stressed”
while categorizing levels 1 and 2 as “not stressed”.

Lastly, we optimized our neural network model for edge de-
ployment (on the Fitbit companion) using quantization which
reduced the model size by 74.2% and maintained the accu-
racy as before the quantization. On-edge deployment of the
quantized model to the companion saved approximately 200
milliseconds, proving to be promising as we move forward.
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