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Toward Multi-FPGA Acceleration of the Neural Networks
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High-throughput and low-latency Convolutional Neural Network (CNN) inference is increasingly important

for many cloud- and edge-computing applications. FPGA-based acceleration of CNN inference has demon-

strated various benefits compared to other high-performance devices such as GPGPUs. Current FPGA CNN-

acceleration solutions are based on a single FPGA design, which are limited by the available resources on an

FPGA. In addition, they can only accelerate conventional 2D neural networks. To address these limitations,

we present a generic multi-FPGA solution, written in OpenCL, which can accelerate more complex CNNs

(e.g., C3D CNN) and achieve a near linear speedup with respect to the available single-FPGA solutions. The

design is built upon the Intel Deep Learning Accelerator architecture, with three extensions. First, it includes

updates for better area efficiency (up to 25%) and higher performance (up to 24%). Second, it supports 3D

convolutions for more challenging applications such as video learning. Third, it supports multi-FPGA com-

munication for higher inference throughput. The results show that utilizing multiple FPGAs can linearly

increase the overall bandwidth while maintaining the same end-to-end latency. In addition, the design can

outperform other FPGA 2D accelerators by up to 8.4 times and 3D accelerators by up to 1.7 times.
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1 INTRODUCTION

In recent years, FPGAs have received tremendous attention in the world of neural network
acceleration. FPGAs can provide unique benefits to accelerate Convolutional Neural Networks
(CNNs). First, FPGAs can guarantee tight latency bounds for incoming requests. Conventional
CNN accelerators (i.e., GPUs) have shown the ability for the acceleration of a batch of requests
by leveraging their farm of processing cores. Unfortunately, they lack the potential to guarantee
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low-latency services for individual requests [1, 2]. In contrast to GPUs, FPGAs can leverage
their reconfigurable deep pipeline to service the requests in a streaming fashion and provide a
predictable low latency. Second, conventional processors are usually power hungry, which makes
them challenging to deploy in power- or energy-constrained environments. Differently, FPGAs
are highly power efficient due to their low operational clock frequency. In conclusion, FPGAs are
considered as an excellent platform for accelerating CNNs for deployment.

The ever-increasing complexity of emerging CNNs requires FPGAs with a higher amount
of resources, such as memory bandwidth and logical units, to achieve low-latency and high-
throughput inferences. Even high-end FPGA chip technologies can host only a small section of
a whole CNN model. For example, the Intel Stratix 10 FPGA can perform only 5,000 multiply-
accumulation (MAC) operations per clock cycle, which is even less than the total number of
operations for a single layer of a typical CNN, such as VGG-16 or ResNet. As a result, they fall
short in handling heavier CNNs for ultra-low latency (less than 10 ms) and high-throughput
(more than 60 images/frames per second). Such a problem is even more significant for accelerating
more computationally intensive operations, such as 3D convolutions, which show great potential
in video processing applications. This challenge can be potentially addressed by utilizing a cluster
of FPGAs, connected through a high-bandwidth communication infrastructure.

Achieving linear speedup using a multi-FPGA solution is not straightforward. First, we need
to have an efficient design on a single FPGA and achieve state-of-the-art performance. Such per-
formance benefits should be reflected in the acceleration of various CNN operations. Second, the
pipeline of multiple FPGAs should be correctly managed to ensure that all FPGAs are doing use-
ful works to handle incoming requests. Third, CNN partitioning, which is the process of mapping
different parts of the model onto different FPGAs, should be done intelligently to make sure the
workload is balanced across the FPGAs.

Related works [1, 3] have studied the multi-FPGA acceleration of neural networks. These works
come with several limitations. First, they do not provide a general architecture to accelerate various
types of CNNs. For example, they are only able to accelerate either 2D or 3D convolutions, but not
both. Second, they do not optimally exploit the FPGA acceleration resources, which leads to sub-
optimal performance compared to the maximum theoretical performance of an FPGA. Third, they
are designed and developed, using low-level hardware programming languages (Jiang et al. [3]
used Xilinx HLS), which makes it difficult to extend and support by the widely used deep learning
frameworks, such as TensorFlow [4] and Caffe [5].

In this article, we present a novel multi-FPGA CNN accelerator that can leverage a deep pipeline
of FPGAs, connected through a high-performance I/O channel. First, we adopted the Intel Deep
Learning Accelerator (DLA) [6] architecture and applied various optimizations to achieve an effi-
cient design on a single FPGA. Using a novel systolic array design, our architecture has reduced the
total resource consumption of the DLA by up to 25% and increased the overall performance by 24%.
We developed this design using OpenCL, which enables convenient integration with widely used
deep learning frameworks. In addition, it enables the integration of the accelerator in a hetero-
geneous environment, where the same OpenCL code can run across different processors. Second,
we extended the design to support data communication with other FPGAs in the pipeline, using a
40-Gb/s QSFP+ I/O channel. Using a network of connected FPGAs enables temporal (distributing
the layers onto different FPGAs) and spatial (splitting a single layer and mapping it onto multiple
FPGAs) parallelization of the layers. Using this configuration, a user can allocate a set of FPGAs in
a network, with no prior information about the network architecture. The user can interact with
these FPGAs as a single FPGA with a large number of resources. Further, the user can select a
neural network model and deploy it on these FPGAs. The framework can automatically split the
model into several sub-models and deploy each sub-model onto an FPGA. This cluster of FPGAs
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can provide the same or better latency and energy efficiency compared to the available CPU or
GPU solutions. Third, we extended the design to support 3D convolutions, on top of 2D convolu-
tions, for certain types of emerging CNN applications. Fourth, we developed a model and strategy
for optimizing the partitioning and the placement of the CNN layers on the set of available FPGAs
in the pipeline.

To demonstrate the feasibility of our framework, we performed multiple experiments using
different widely used CNN models. Our CNN models for the experiments are VGG-16, AlexNet,
and ResNet, which are 2D models commonly used for image classification, and C3D, which is a 3D
model commonly used for video processing. We deployed these models on single- and multi-FPGA
pipelines. Our results show that using the multi-FPGA configuration can increase the throughput,
almost linearly, with respect to the total number of FPGAs. In addition, our extended systolic array
shows superior performance (up to 1.7 times), compared to other related works, for accelerating
the 3D convolution-based CNN architectures.

The rest of the article is organized as follows. Section 2 introduces the background, Section 3
describes the methodology, Section 4 presents experimental results, and Section 5 presents the
related works. Section 6 concludes the article.

2 BACKGROUND

2.1 Convolutional Neural Networks

CNNs are the main building blocks in many AI applications, such as image classification [7], rein-
forcement learning [8], and natural language processing. CNNs are also showing promising results
in more complex domains such as video understanding [9, 10, 11, 12, 13]. Almost all CNNs are
considered as a chain of various operations, such as convolution (2D or 3D), matrix multiplication
(MM), pooling, and ReLU. In CNN, the data is processed by one operation, and the result is handed
over to the next operation in the chain. In a 2D convolution operation, the input data is just com-
posed of multiple input channels, where each input channel is a 2D structure of numerical values.
In a 3D convolution operation, the input data is not only composed of multiple input channels,
but each input channel contains data from different instances in a time frame, where the instances
should be sequential in that specific time frame. Equation (1) and Equation (2) describe the 2D
and 3D convolutions, wherem represents a specific output channel, f represents a specific frame
number,w and h represent width and height location, respectively, in the output,CHin represents
the total number of input channels, and n, k , i , and j represent the iterator indexes on the input
channels, frames, and width and height locations of the convolution kernel.

OUT [m][w][h] =

CHin∑
n=0

Kw∑
i=0

Kh∑
j=0

WEIGHT [m][n][i][j] × IN [n][stride ×w + i][stride × h + j] (1)

OUT [m][f ][w][h] =

CHin∑
n=0

Kf∑
k=0

Kw∑
i=0

Kh∑
j=0

WEIGHT [m][n][f ][i][j]

× IN [n][stride × f + k][stride ×w + i][stride × h + j] (2)

CNNs are highly computationally intensive, due to a large number of mathematical operations
(hundreds of thousands and even up to millions) that each layer of the network involves. Among
all of the widely used operations in the neural networks, convolutions and MMs (also known as
fully connected (FC)) are the most significant contributors to the total execution time for one round
of inference on a simple neural network. Table 1 reports the contribution of three primary opera-
tions in the VGG-16 model in terms of the total number of arithmetic operations (e.g., MAC, min,
and max) and the parameter size. Ops and Data columns represent the total number of arithmetic
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Table 1. Total Contribution of Major Operations in the

VGG-16 CNN Model in Terms of Total Number of

Arithmetic Operations and Input/Weight Parameters

Operation (2D) Ops Data

Convolution 99.19% 8.61%
Matrix multiplication 00.79% 91.38%

Pooling 00.00% 00.00%

Table 2. Total Contribution of Major Operations in C3D

CNN Model in Terms of Total Number of Arithmetic

Operations and Input/Weight Parameters

Operation Ops Data

Convolution (3D) 99.9% 26.72%
Matrix multiplication 00.1% 73.28%

Pooling 00.00% 00.00%
ReLU 00.00% 00.00%

operations and parameters (weights and inputs) involved in that operation, respectively. The con-
volution operations (2D) contribute more than 99% of the total arithmetic. The MM operations
contribute more than 91% of input and weight data access from global memory, which can con-
sume a considerable portion of the total runtime.

Compared to 2D convolutions, 3D convolutions have higher computational complexity, due to
the existence of an extra dimension (usually frame), which enables spatio-temporal feature recog-
nition in continuous video frames. Table 2 lists the total contribution of 3D convolutions and other
operations in the C3D model. The convolution operations (3D) contribute more than 99% of the
total operations. The MM contributes to more than 73% of data access.

Based on the preceding observations, in this article we mainly focus on the acceleration of the
convolution (2D and 3D) and the MM operation, which are the main contributors to the end-to-end
execution time. We omit the discussion of the other types of layers, such as pooling and ReLU, due
to their simplicity and lack of impact on the runtime of the CNNs.

2.2 Winograd Algorithm

Winograd transformation [14] is a proven method to reduce the complexity of MAC operation
in hardware design. Using this technique for convolutions can ultimately reduce the arithmetic
complexity. Shen et al. [15] showed that using the Winograd algorithm can reduce the total number
of multiplications by 58%. In addition, Winograd becomes more practical for smaller filter sizes,
such as 3 × 3, which is quite common in many neural networks. In our design, we utilize the 2D
Winograd algorithm to accelerate both 2D and 3D convolutions on the FPGAs. To demonstrate
the Winograd algorithm, we will start with an example of a 1D convolution. In the Winograd
algorithm, we denote a 1D convolution as F (M,R), where M and R represent the size of the input
and the filter. The typical convolution computation is given by

Oi =

R−1∑
r=0

Wr Ii+r , (3)

where I , O , and W denote the input, output, and filter data. By using the Winograd algorithm,
the output can alternatively be derived as follows [16] (we consider the Winograd algorithm for
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F (2, 3)):

O = M[(Sx ) · (Ww )], (4)

where M , S , andW are transformation matrices with values of

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
1
2

1
2

1
2

1
2
−1
2

1
2

1
2
−1
2

1
2

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, M =

[
1 1 1 0
0 1 −1 −1

]
. (5)

The preceding method can be extended for 2D convolutions as well. Considering the 2D Wino-
grad algorithm F (m ×m, r × r ), it can be calculated using the following equation:

O = M[(SxST ) · (WwW T )]MT . (6)

2.3 Hardware Acceleration

Hardware acceleration is a crucial enabler of the CNN applications. Due to the computational in-
tensity of the CNNs (mainly convolution and MM), CPUs cannot deliver a reasonable performance
for latency-critical applications, such as object detection for self-driving cars, due to the limited
parallelism capability. This problem leads to the utilization of hardware accelerators, such as GPUs,
FPGAs, and TPUs [17]. Unlike CPUs, hardware accelerators can exploit their massive parallelism
to split major functions into thousands of parallel operations and ultimately reduce the overall
computation time. GPUs have been extensively studied and utilized for the acceleration of both in-
ference and training. Widely used deep learning frameworks, such as TensorFlow [4] and Caffe [5],
rely on GPUs to deliver acceptable performance for both the training and the inference. Recently,
FPGAs have captured the right amount of attention due to their flexibility and reconfigurability.
FPGAs are proven to be able to provide much lower latency, compared to CPU and GPU, for ap-
plications with latency-critical conditions [1, 2]. In addition, they can provide much better energy
efficiency compared to CPUs and GPUs, which is crucial for energy-restricted environments, such
as edge computing [1, 18].

Recent advancements in high-level languages have made it easy to program and use FPGAs for
various applications. For example, developers can use C or C++ to describe their algorithm and
compile and deploy it on a target FPGA. FPGA vendors have integrated OpenCL, a heterogeneous
parallel programming language, with their FPGAs. OpenCL has several benefits for software de-
velopers and systems designers. It provides ease of development by keeping a higher abstraction,
at the cost of an acceptable performance loss. In addition, it enables software engineers to take
advantage of the ultimate performance and the energy efficiency of FPGAs. Using OpenCL, devel-
opers can describe their algorithm in standard representation and target all available accelerators,
such as GPUs, CPUs, and DSPs. To port OpenCL across different platforms, a developer needs only
to make minor modifications to utilize the unique features of the target platform fully. OpenCL
also enables further integration with widely used deep learning frameworks, such as Caffe and
TensorFlow. These frameworks provide an OpenCL adapter (Figure 1), which enables the utiliza-
tion of any OpenCL-compatible accelerator. This work is fully developed in OpenCL, using the
Intel OpenCL SDK toolchain [19].

Several related works have studied the acceleration of the 2D [2, 6, 20–23] and 3D CNNs [10,
11, 13, 24] on FPGAs. Other related works [1, 3] have studied the feasibility of using multiple
FPGAs for increasing the throughput or decreasing the latency of the CNN accelerators. However,
these works cannot deliver state-of-the-art performance and are not designed to support different
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Fig. 1. General architecture of deep learning frameworks.

Fig. 2. CNN accelerator architecture.

types of convolutions in a single architecture. In addition, they are all implemented with low-
level hardware languages, which makes them hard for further extensions and improvements. Our
design is built on top of the DLA [6] architecture. Boutros et al. [25] made a comparison between
widely known CNN accelerators on FPGA and showed that DLA is the fastest available solution.
However, DLA lacks several important optimizations and critical features. For example, the systolic
array needs enhancements for lower resource consumption and higher throughput. In addition,
weight and input organization can be changed for better memory utilization. From the usability
perspective, it works for only the default 2D convolution but cannot support the more complex
3D convolution. Finally, it does not support the multi-FPGA acceleration, which is important for
complex CNNs. Our design is built on top of DLA while addressing all of the preceding limitations.

3 METHODOLOGY

In this section, we discuss the overall architecture of our CNN accelerator and the host side man-
ager for distributing and accelerating of a target neural network model. More specifically, first,
we discuss the anatomy of the basic building blocks of our CNN architecture. Second, we describe
how this CNN architecture is further extended to support 3D convolutions for use cases such as
video processing. We also explain our method for choosing the best strategy for mapping 3D con-
volution onto our native 2D convolution accelerator. Third, we describe the multi-FPGA support
for our design architecture. Last, we discuss our algorithm for the efficient mapping of various
layers of a CNN onto the available chain of the FPGAs.

3.1 CNN Accelerator Architecture

Our CNN accelerator skeleton has adopted the 1D systolic array architecture from the DLA [6]. We
applied various optimizations on the DLA to achieve higher performance and lower resource uti-
lization. We also extended it to support 3D convolutions and data transmission with other FPGAs.
Figure 2 depicts the overall architecture of our CNN accelerator design. Our design consists of sev-
eral key components. First, the Controller acts as the coordinator between all other components.
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The Controller sends the respective configuration parameters to the Feature Provider, Processing
Elements (PEs), and so forth. These parameters are usually the type of the layer, size of the input
data for processing, and all other related necessary parameters for executing a layer. Second, the
Feature Provider is responsible for reading the data in a fixed size and feeding it into the first PE.
This component reads the data from the global memory, caches it in the respective local memory,
and sends it over a channel to the first PE in the systolic array, which is a grid of connected PEs.
The channel is a communication medium between two components in the same kernel or different
kernels on separate FPGAs. Third, the Weight Provider takes care of updating the weight buffers
in all of the PEs. Since the number of the PEs is usually less than the number of output channels,
the PE needs to update the weight buffers multiple times while handling a single layer. Fourth,
the Cross Bar (xBar) and all attached activation layers apply the required transformation (pool-
ing, ReLU, etc.), after each convolution or MM for each layer. Fifth, the Feature Writer receives the
output from the xBar and writes it back to the global memory. Latter layers further use this data.
Sixth, the Serializer and the Deserializer are responsible for receiving/sending the intermediate re-
sults from/to the previous/next FPGA in the chain of the FPGA cluster, respectively. Seventh, the
Winograd and inverse (inv) Winograd convert the data into Winograd format and revert the data
into the normal representation, respectively. Finally, the controller activates the Bypass Channel

if the FPGA handles a sub-section of a layer (sub-layer), instead of a whole layer or a group of
layers. This channel is responsible for bypassing the partial results from processing a sub-layer to
the next FPGA and potentially to the FPGA that handles the last sub-layer of a specific layer. The
FPGA that handles the final sub-layer concatenates all partial results and generates the complete
output for that layer. We need to mention that the Bypass Channel is deactivated if the FPGA is
handling the first of the last sub-section of a layer.

Feature Provider. The Feature Provider is responsible for reading the input data from the global
memory and feeding it into the first PE. Further, each PE forwards the received data to the next
available PE in the chain. Reading data from the global memory is critical in the accelerator design.
Non-optimized data read from the global memory can lead to major stalls (low throughput) in the
pipeline. To maximize the throughput, our design leverages two main optimizations: (1) memory
data access coalescing and (2) caching data in the local memory. First, every access to the global
memory requires hundreds or thousands of clock cycles. At the same time, the global memory
can provide only a chunk of data in every memory access. As a result, to reduce the overall mem-
ory waiting time, it is critical to reducing the memory access frequency by coalescing multiple
load/store requests. By doing so, the Feature Provider can almost saturate the external memory
bandwidth and, consequently, minimize the total number of memory transactions. Second, the lo-
cal memory can be up to 100 times faster than global memory. Hence, caching and reusing data
on the local memory can provide significant performance benefits.

For efficient global memory data access, we applied data rearrangement on the input data. Pre-
vious works [2, 6] demonstrated the importance of memory interface bit width, which is the total
number of bits that can be accessed in one memory transaction, and burst length, which is the total
amount of data that is going to be fetched from memory in multiple sequential memory accesses,
to performance. For example, for the Intel Arria 10 FPGAs, a minimum bit width of 512 and a burst
length of above 128 KB are required to saturate the 16 GB/s per bank memory bandwidth. The
traditional row-major data representation (used in DLA [6]) has limitations to achieve efficient
burst length due to discontinuous DRAM access. To alleviate this problem, we propose a partial
input-channel-major data arrangement. Figure 3 represents both the traditional and the new data
arrangement. In this new method, the host divides the input channel section into multiple chunks
of size VEC_SIZE. Further, it iterates over the data in a row-major manner, but instead of storing
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Fig. 3. Traditional feature data arrangement versus new data arrangement. In the traditional arrangement,

the data is first stored by rows and then the input channels. In the new arrangement, for each row we store

a set of input channels, sequentially.

a single data item, it stores the whole VEC_SIZE. This data rearrangement is applied to the input
data before it is streamed into the FPGA.

The Feature Provider needs to send the data in the right format and size to the PEs so that they
can perform the convolution correctly. Starting from a convolution, each PE has to convolve a
collection of weight parameters for a single output channel, with a section of the input data, which
has the same width, height, and input channel size. We call this piece of data a brick, with a size of
Width × Heiдht × IN_CH_SIZE. Due to the utilization of Winograd, theWidth is always equal to
W_VEC (in our case, it equals eight). The Feature Provider does not send the whole brick at once,
but instead sends it in the granularity ofWidth × 1 ×VEC_SIZE, which we call a plate. Each plate
has a width of 8, a height of 1, and a depth ofVEC_SIZE. The total number of plates in each brick
is equal to Heiдht × (IN_CH_SIZEVEC_SIZE). Due to the arrangement of the data in the global
memory, reading each plate or multiple sequential plates leads to fully sequential data access in
the memory. Sequential data access helps in reading more data in fewer transactions and leads to
better utilization of the memory bandwidth. The new data arrangement places the required data
sequentially in the memory and enables the Feature Provider to load the required data with the
minimum number of memory accesses.

Weight Provider. The Weight Provider updates the weight buffers on all PEs while servicing a
layer. In our design, each PE generates all particular features for a single output channel. Since
the total number of PEs (it is 32 in our design, based on the available DSPs) is usually less than
the actual number of output channels (up to 8,096 in different models), they can only generate the
features for a certain number of output channels (32). For the rest of the outputs, the controller
needs to refresh the PEs with the new set of weight parameters and initiate the same process as
the previous round. Finally, similar to the Feature Provider, the Weight Provider should maximize
the DDR bandwidth (the available data transfer rate between the global memory and the weight
and input providers) to minimize the overall stall while reloading the weight buffers on the PEs.
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Fig. 4. (a) PE semi-1D structure. (b) PE architecture.

As a result, the weights are reordered, similar to the input data (Figure 3), to enable efficient burst
length and bit width.

Processing element. PEs are the main building blocks of the design, for the computation of the
convolutions and the MMs. In our design, PEs are all arranged in a semi-1D systolic array fashion.
We call it semi-1D, since it adopts the original 1D systolic array while the outputs from the PEs
are forwarded in a 2D fashion for area optimization purposes. Figure 4(a) represents the general
architecture of the array of PEs. Each PE has a dedicated channel to the next PE in the same
column, which forwards the arrived input data (a plate) to the next PE. In contrast, the first PE of
each column also forwards the data to the next first PE of its neighbor column so that each column
can have access to the input data. Doing so helps PEs avoid reading the same piece of data directly
from memory, which leads to significant performance and area overhead. The Feature Provider

streams the data only to the first PE of the first column, and the PEs transmit the same piece of
data to the other PEs. Doing so reduces the effort for the wiring between the Feature Provider and
the PEs, and makes the process of fitting the model on the FPGA more manageable during the
compilation.

Our novel semi-1D systolic array architecture is mainly designed to reduce the resource con-
sumption of the connections between every two consecutive PEs. In a traditional systolic array
architecture, the total number of wires between PEs i and i + 1 is equal to (i + 1) ×W _VEC . As
we go through the PEs in the systolic arrays (increasing the i), we observe a higher number of
wires consumption. The total number of wires for an architecture with P PEs will be equal to
P ∗ (P + 1))/2 ∗W _VEC . In the semi-1D architecture, we arrange the PEs in a grid fashion, with n
rows and m columns (n ×m = P), as shown in Figure 4. In this architecture, the number of wires
between each two PEs in a row is following the same pattern as the traditional design, whereas
going from one row to another resets the value of i to 1, which significantly reduces the number
of wires. We have some extra wiring between PEs in a column for bypassing the computed data.
In each column, the total number of wires between the PEs with indexes (i, j ) and (i, j + 1) ((i, j )
is the index of the PE in the grid) is equal to (j + 1) ×W _VEC . As a result, the total number of
wires in the design is C ×m + D, where C is total number of wires in a column and is given by
(n × (n + 1))/2 ×W _VEC , and D is the total number of output wires in the last row and is given
by (m × (m + 1))/2 × n ×W _VEC . The total number of wires in the semi-1D design is less than
the traditional design number. Using the semi-1D arrangement for our design (32 PEs), compared
to the traditional design in DLA [6], we can reduce the total number of output ports by 65%. Re-
spectively, it reduces the total Flip-Flops (FFs) consumption by up to 25%.
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The number of PEs (P ) can affect the area efficiency of the semi-1D architecture. For example,
for a design with 29 PEs, we cannot have a perfect grid with exactly 29 PEs. The best grid will
be an 8 × 4 grid, with 3 PEs that only work as bypassing data. This configuration would consume
more resources than necessary and can lead into inefficient utilization of the available resources
on the chip. We need to mention that this problem can be alleviated by configuring the extra PEs to
take care of the next input dataset. This approach requires additional scheduling and management
from the controller.

In another design architecture, we eliminated the output channels and instead used data chan-
nels to transfer the outputs. This design is not fully pipelined since data and output are sharing
the same channel, and the data feeding process stalls while PEs are generating the output. This
optimization increases the execution time by 4% for C3D and VGG-16 while reducing total FF
consumption by 32%. Since our framework is ultimately focused on the overall performance, we
prefer the previous design architecture.

Figure 4(b) depicts the overall architecture of the PEs. Each PE has W_VEC number of MACs.
Each MAC receives an array of data with the length of VEC_SIZE. Further, it fetches the respective
array of weights of the same size from the buffer and performs an element-wise MAC between
these two arrays. The output of all MACs (an array of size W_VEC) is added and stored into a
local buffer of the same size, which acts as a temporary buffer for the partial accumulation. To
fully process a convolution, each PE iterates the preceding process for Heiдht × (IN_CH_SIZE ÷
VEC_SIZE) number of times. After fully iterating a single convolution, the PE streams the content
of the intermediate results buffer to the output channel.

FC PE. CNNs usually consist of convolutional FC layers and simple FC layers. Convolutional
FCs are the layers that connect the earlier convolution layers to the very first FC layers and have
higher memory intensity. For example, the single convolutional FC layer in VGG-16 (Layer 13) has
at least a 4.3 times higher number of parameters compared to all other layers. Simple FC layers
receive the input from a previous FC layer and perform MM. Simple FCs have a higher data to
computation ratio compared to the convolutions. Such a difference requires designers to optimize
the FC operations on a target hardware architecture. Prior CPU and GPU implementations use the
regular FC representation to utilize available libraries, such as MKL on Intel CPUs and cuBLAS on
Nvidia GPUs. Unfortunately, using regular FC representation for convolutional FC layers can im-
pact the performance and introduce significant data duplication overhead, which can overwhelm
the FPGA bandwidth-limited DDR. Zhang et al. [2] showed around 25 times overhead for using
the preceding approach.

The optimal acceleration of FC layers requires efficient mapping of these layers onto the FPGA
hardware. A common approach is to map the FC MM onto the available systolic array. To map the
FC layer onto the systolic array, the user has two options: (1) input-major and (2) weight-major
mappings. Zhang et al. [2] studied the efficiency of these mappings onto their 2D systolic array
architecture for a batch of input data. Since our design performs inferences on a single input at a
time, the previous observations may not be applicable anymore. In addition, the architectural dif-
ferences between the two designs can affect the choice of mapping. As a result, we experimented
with both input-major and weight-major mappings for a set of FC layer configurations. For the
input-major mapping, the input channel dimension is divided by W_VEC, where W_VEC number
of arrays of the size VEC_SIZE are mapped onto each plate of the Feature Provider. Doing so en-
ables efficient utilization of the computation capacity that exists in similar convolution layers and
reduces the total number of iterations required for the output calculation. For the weight-major
mapping, each PE fully loads the input data (instead of the weights), and the Feature Provider feeds
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Fig. 5. Performance for different mappings of the VGG-16 MM operations.

Table 3. Performance Comparison between 32-PE, 1-PE, and Theoretical for Acceleration of the FC Layers

Input/Output 256 512 1024 2048 4096

32-PE | 1-PE | Theor.

2048 0.27 ms | 0.34 ms | 0.04 ms 0.26|0.39|0.08 0.42|0.46|0.17 0.58|0.65|0.33 0.94|1.06|0.67

4096 0.3|0.4|0.08 0.36|0.47|0.17 0.58|0.69|0.33 0.93|0.95|0.67 1.51|1.63|1.33

8192 0.43|0.54|0.17 0.51|0.65|0.33 0.94|0.96|0.67 1.56|1.63|1.33 2.89|2.94|2.67

16384 0.53|0.64|0.33 0.86|0.94|0.67 1.52|1.6|1.33 2.94|2.91|2.67 5.57|5.65|5.33

25088 0.77|0.78|0.51 1.24|1.42|1.02 2.27|2.29|2.04 4.36|4.3|4.08 8.46|8.3|8.12

32768 0.9|0.94|0.67 1.56|1.64|1.33 2.86|2.98|2.66 5.57|5.49|5.28 10.91|10.75|10.62

the weight parameters into the PE array, in the same fashion. Doing so enables higher data reuse
rate for the input data and reduces the load from the external memory.

Both the input-major and weight-major mappings’ performance are bounded by the global
memory bandwidth. In contrast to convolutions, in MM operations, the Weight Provider needs
to update the PEs in both input-major and weight-major mappings frequently. As a result, for sin-
gle input inference, the total latency of the MM is bounded by the memory bandwidth. Figure 5
represents the latency of MM for the last three layers of the VGG-16 model. Based on these results,
both weight-major and input-major mappings provide the same latency.

Unlike all previous related works, we propose the independent MM acceleration approach. This
independent PE is responsible to accelerate the MM operations, without blocking the rest of the
systolic array. As mentioned earlier, the computation of the FC layers is bounded by the total
global memory bandwidth. As a result, the common strategy (used by all previous related works)
of accelerating MMs on the available systolic array cannot fully exploit the parallelism of the PE
systolic array. Table 3 represents the experimental performance evaluation of various FC layers
and the theoretical maximum performance, considering the number of parameters and the effec-
tive bandwidth of the global memory (12 GBps). The input and output sizes are based on the typical
FC layer dimensions in practical neural networks. The results confirm that using all available PEs
cannot guarantee performance improvements compared to the theoretical performance cap. We
need to mention that, on average, all of our results are 0.25 ms slower than the theoretical maxi-
mum performance. This difference is due to the overhead of the whole design, which includes the
startup time of the OpenCL stack, on both the host and the device. We expanded our experiments
to find the essential number of PEs to efficiently accelerate the FC layers and avoid wasting extra
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computing resources. We modified the total number of PEs and evaluated the performance of the
design. Our results confirm (shown in Table 3) that a single PE is sufficient to saturate the memory
bandwidth thoroughly and can provide the same performance as 32 PEs.

Using a separate PE for FC layers also enables our accelerator to co-locate the processing of the
last FC layers of one input and the first convolutions of the next input in time-shared scenarios. As
a result, the FPGA pipeline will not be blocked by the MM, which increases the delay for receiving
new inputs for processing. For example, the new design reduces the interval of receiving new input
requests for VGG-16 from 30.02 to 26.52 ms.

Winograd transformers. The Winograd transformation technique is used to increase the number
of operations per clock cycle. Our design utilizes this technique by transforming the input feature
data into the Winograd representation. In this design, we set the length of the Winograd data in
the x-axis to 8. This stage is handled by the Winograd Transformer. The generated data is fed to
the array of PEs for processing. The output from the final PE should be inversely transformed
to represent the real final value. This stage is handled by the Winograd Inverse Transformer. For
example, in our design, the output always has a constant length of 8, in the x-axis dimension.
For the convolutions of sizes 3 and 7, which are the typical convolution dimension, the size of
the output after the inverse transformation is 6 and 2. We need to mention that we do not apply
any transformations on the weights since they are already preprocessed and transformed into the
Winograd representation on the host for any number of inferences.

(De)Serializer. Our design utilizes a specific Deserializer and Serializer to receive/send data from
the previous or to the next FPGA. For deserialization, the Deserializer receives the size of the in-
coming data from the controller and then starts receiving data in long4 format, which is an array
of four long values. Further, it stores the received data in a specific global memory buffer. Similarly,
for serialization, the Serializer receives the size of the data to be sent and the location of the data
from the controller. Afterward, it starts sending the data in that buffer to the next FPGA, again in
long4 data format.

xBar interconnect. Our design adopts the traditional xBar in DLA [6]. xBar is a custom inter-
connect to customize, connect, and configure the layers to the design. This component allows for
adding more layers and achieves higher acceleration. Examples of these layers are ReLU, Pool,
Norm, and Sigmoid.

3.2 3D CNN Accelerator Architecture

3D CNNs are composed of 3D convolution layers, which have higher computational intensity com-
pared to the 2D convolutions. This higher intensity is due to the existence of an extra dimension
(usually frames) in the input feature map, the intermediate feature map between the layers, and
the weight filters. 3D CNNs rely on this extra dimension to learn the motion information across
multiple frames of a video. Toward this goal, 3D convolution weights slide over the frame dimen-
sion on the input feature map, similar to the weights sliding over the width and height to generate
the convolved output. The semi-1D CNN accelerator can be extended to support 3D convolutions.
Unfortunately, mapping the 3D convolutions onto the semi-1D systolic array is not trivial and can
lead to poor performance or low utilization of the FPGA resources. There are two main challenges
in mapping the 3D convolutions onto the systolic array. First, the choice of order between pro-
cessing the frames or the output channels can lead to different data and weight reuse, which can
directly affect the performance. Second, the large weight size of the 3D convolutions may not fit
inside the limited local buffer of the PEs. In the following, we discuss our solutions to address these
two problems.
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Fig. 6. (a) Latency of the layers of the C3D model, with Frame-Major and Output-Major approaches.

(b) Performance of C3D and VGG-16, with different numbers of PEs. It is already included in the graph.

Proper order between dimensions. Choosing the right processing order between the frame dimen-
sion and the output channel dimension can affect the frequency of global memory accesses and
the data reuse rate, and is thus critical for achieving the fastest implementation. There are two
approaches for mapping the computation of the 3D convolution onto the systolic array. In the first
approach, the weight provider uploads the weights isnto the PEs for a certain number of output
channels (32). Further, the feature provider can slide over the frames of the input data and stream
the data to the PE array. At the end of this round, we have all output frames for that specific number
of output channels (32). The accelerator performs this process for “OUT_CH_SIZE / NUM_PE”
rounds, where NUM_PE equals to 32, to get all relevant data for a set of output channels. In this
approach, each round the accelerator generates all output frames for a set of output channels,
which we call the Output-Major approach. In the second approach, the feature provider caches a
frame of data in the local buffer and streams it into the PE array. The weight provider iteratively
loads the weights into the PEs. Further, PEs convolve the input data with the weights and generate
the outputs. For the next round, the feature provider slides one frame over the input data and starts
over the same process. In this approach, each round the accelerator generates all output features
for one output frame, which we call the Frame-Major approach.

Figure 6(a) represents the latency of the layers of a sample 3D CNN model (C3D) while exper-
imenting with the preceding two approaches. In comparison, the frame-major approach outper-
forms the output-major, up to 1.3 times faster for specific layers. As a result, our design adopts the
frame-major approach for 3D convolutions.

Large number of weight parameters. Unlike 2D convolutions, 3D convolutions have a large num-
ber of weight parameters, due to the existence of the extra frame dimension. As a result, the weight
size might exceed the available local buffer in the PEs. There are three approaches to addressing
this problem. First, we can split the weight features into NUM_CHILDLAYER child layers, where
each child layer handles a portion of the weights, which can entirely fit in the PE’s local buffer. The
same approach is also adopted by Liu et al. [24]. The weights can be split from either the input-
channel or the frame dimension, where both lead to the same performance. The outputs of all
child layers have to be accumulated to get the final output of the convolution for the whole weight
features. This accumulation is performed inside the Feature Writer, which writes back the data to
the global memory (Figure 2). Second, we can trade the number of PEs with the total amount of
memory available in each PE. By reducing the number of PEs, we can allocate a larger buffer for
each PE, which can store the whole weight parameters. Third, we can use a combination of the
preceding two approaches. Considering the weight splitting and fewer PEs as the two ends of the
spectrum, it is possible to have an architecture that sits somewhere in between. For example, we
can attempt to reduce the total number of splits while maintaining a minimum number of PEs.

We evaluated the preceding approaches by experimenting with various designs with different
numbers of PEs and buffer size. We synthetically reduced the total size of the local memory on the
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FPGA to make the PE buffer small for the weight parameters. Figure 6(b) represents the perfor-
mance of the VGG-16 and C3D models while running on the FPGA with different configurations
(number of PEs). On the two ends of the spectrum, we have the 32 PE configuration (maximum
number of PEs) and the 4 PE configuration (enough buffer to hold all weight parameters). We also
explored architectures with 8 and 16 PEs, which represent the trade-off between the number of
PEs and the available buffer on each PE. We need to mention that reducing the number of PEs
to increase the buffer size does not mean the allocation of less DSPs. In this configuration, we
can assign more DSPs to each PE by increasing the value of VEC_SIZE in our design (each PE
contains VEC_SIZE ×W _VEC number of DSPs). As a result, we can maintain the same level of
parallelization.

Experimental results show almost no difference between various configurations. As a result,
we decided to stick with the default configuration (32 PEs, with smaller VEC_SIZE value), which
requires weight splitting for layers with a large number of weight parameters. Increasing the value
of VEC_SIZE can have adverse effects for layers with a small number of channels. In these cases,
VEC_SIZE goes beyond the size of the channel, which leads to having some of the DSPs going
idle, or doing dummy computations. As a result, choosing a relatively small VEC_SIZE value can
make the design generic enough for all types of layers with different configurations, irrespective
of their size.

3.3 Multi-FPGA Support

Our framework can split a single CNN design onto multiple FPGAs, connected through Intel-
supported serial channels. Each serial channel utilizes a 40-Gbps Infiniband link. The FPGAs are
connected in a daisy-chained fashion. The first port of each FPGA is connected to the second port
of the previous FPGA in the chain, receiving the data. The second port of each FPGA is connected
to the first port of the next FPGA in the chain, sending the data. The first port of the first FPGA
and the second port of the last FPGA do not have any cables connected. We need to mention that
the first FPGA can be connected to a streaming device (camera, cloud, etc.), and directly receives
the data for processing.

The assumption for achieving linear speedup is the perfect load balance of the FPGAs while
running the layers. In another words, each FPGA should handle an equal computation load of
the whole execution. An imperfect load balance leads to one or more FPGAs handling a larger
share of computation compared to the other FPGAs. Those FPGAs will become the bottleneck in
the pipeline, and this stops the design to achieve perfect linear speedup. As a result, proper load
balance is critical to enable optimal throughput improvement.

Figure 7 depicts a sample CNN deployed on a series of FPGAs in a row. In this example, we
broke large layers into multiple smaller sub-layers. We also grouped multiple small layers, where
the granularity of the group is equal to the other layers or sub-layers. This approach enables our
design to balance the computation overhead among all FPGAs. During the execution, each FPGA
receives the input or the intermediate data from the source or the previous FPGA, pushes the
data through the assigned (sub)layers, and sends the output to the next FPGA or the sink. On
each FPGA, the sub-layers or the layers are processed sequentially. After processing one input
and forwarding the output, each FPGA grabs the next input. In this setup, all FPGAs operate in
parallel to co-locate the execution of different layers of different inputs and increase the overall
throughput. In other words, let us consider a network with an execution time of t on a single
FPGA. With a configuration of two FPGAs, each FPGA can handle half of the network. In this
configuration, the second FPGA can execute the second half of the network for an input, whereas
the first FPGA can start processing the first half of the network for the next input. As a result, we
can obtain twice the throughput compared to a single FPGA configuration.
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Fig. 7. Mapping a neural network onto a cluster of FPGAs.

As mentioned earlier, our framework breaks large layers into multiple sub-layers. Mapping
original layers onto the FPGAs can lead to unbalanced computational overhead throughout the
pipeline, and further prevents the framework from achieving linear speedup, while increasing the
number of FPGAs. Our framework tackles this problem by splitting a layer from output channel
into multiple sub-layers with 32 output channels. Any number below 32 is not going to have any
benefit since we have 32 PEs that need to finish execution. In addition, it breaks a layer over the
frame channel, where the number of the frames of the input is higher than the number of frames
of the weight. Further splitting forces the design to pad the frame dimension, which introduces
unnecessary extra overhead. After the splitting process, each sub-layer can run individually, with
no dependency on any other sub-layer.

We need a proper model of our system to find the best mapping of sub-layers onto the FPGAs.
We consider our multi-FPGA system as a pipeline of M stages, where M is the number of FPGAs.
The framework splits the CNN network intoM partitions (each partition is composed of layers and
sub-layers) and distributes them sequentially on the chain of FPGAs. We define the Latency (L) of
the multi-FPGA system, LMulti−F PGA, as the time interval, after which the multi-FPGA system can
accept the next input. The throughput of our multi-FPGA system is equal to 1/LMulti−F PGA, which
is the total number of inputs it can process per unit of time. As mentioned before, our multi-FPGA
system is a pipeline, where each FPGA is called a stage. Each stage handles part of the neural
network. In a pipeline, the speed of the whole system is bounded by the speed of the slowest stage
(highest latency). Thus, the partition with the highest latency stalls the whole pipeline and is called
the bottleneck stage. The latency of the whole pipeline is equal to the latency of the bottleneck stage.

The latency (L) of each layer i can be calculated as follows:

Li = (WEIGHT_SIZEi / DDR_bandwidth)

+(Total_multiplicationsi / (Frequency

×VEC_SIZE ×W _VEC × Num_PEs )).

(7)

In Equation (7), the latency of each (sub)layer is specified as the time it takes to read the weights
into the PEs, plus the total time it takes to finish the overall calculations. We need to mention
that we omit the overhead of the network communication since FPGAs are directly connected
to each other through 40-Gbps QSFP+ Infiniband cables, which makes the communication latency
(OUTPUT_SIZE/Network_bandwidth) negligible. For example, for the C3D model, the maximum
communication latency between two FPGAs is less than 0.1 ms.
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Next, we need to find the appropriate mapping of the (sub)layers onto the FPGAs in our multi-
FPGA setting. Assuming we have M FPGAs, connected in a daisy-chain fashion, we aim to map a
CNN composed of N (sub)layers onto these FPGAs in a linear fashion. The most appropriate map-
ping should lead to the highest possible throughput. The overall throughput in this architecture is
typically bounded by the FPGA with the highest latency for handling the assigned layers. We can
formulate this problem as balancing the load across the FPGAs in the chain.

To find the most appropriate mapping, we first calculate the processing time (latency) and la-
tency of each (sub)layer using Equation (7). Using these latencies, we can design an algorithm
to perform a brute-force enumeration to find the best mapping. For the brute-force enumeration,

the algorithm requires to evaluate ( N
M − 1 ) configurations. The time complexity of this method is

O (Nmin (M,N−M ) ), which is exponential to the number of (sub)layers N . We also developed this
algorithm in C++ to calculate the best mapping using a different number of layers and FPGAs. For
example, a configuration of 100 layers and 10 FPGAs takes around 960 hours to finish, which is
quite expensive.

To address the preceding problem, we developed a polynomial-time load-balancing algorithm
using dynamic programming. Equation (8) presents the overall solution for the optimal mapping
of the layers:

Lj,k =

{∑j

l=1
Ll if k = 1

minj−1
r=1 (max (Lr,k−1,

∑j

l=r+1
Ll )) if k >1 and k ≤ M.

(8)

In Equation (8) Lj,k represents the latency of the first k FPGAs while handling the (sub)layers
from 1 to j. For the case with only one FPGA, the latency for accepting new inputs is equal to
the latency of handling all (sub)layers, from 1 to j, on a single FPGA. For the cases with multiple
FPGAs, the latency is calculated based one assigning the last few (sub)layers (from r + 1 to j) in
the set to the last FPGA. The latency of the final FPGA equals to the total latency of the layers.
Further, the rest of the first (sub)layers (from 1 to r ) are mapped to the other FPGAs, which is the
sub-problem in our dynamic programming algorithm. Finally, the latency of the whole pipeline is
the latency of the bottleneck stage. The time complexity of this method is O (M2 × N ), which is
linear to the number of (sub)layers. Finally, we can obtain the overall throughput of the system by
calculating the latency of the bottleneck stage.

4 EXPERIMENTAL RESULTS

To confirm and quantify the benefits of our new framework, we implemented and evaluated VGG-

16, AlexNet, ResNet, C3D, and I3D. VGG-16 is widely used for image classification. ResNet is a well-
known CNN model for object recognition. C3D and I3D are both video analytics 3D CNNs. We
evaluate the performance of our framework in comparison to the available single-FPGA and multi-
FPGA solutions. All experiments were conducted on a set of Intel Fog Reference Design units [26],
each equipped with two Nallatech p385a FPGA acceleration cards. Each host has one Intel Xeon
CPU E5-1275, with 32 GB of main memory. Each FPGA card has an Intel Arria 10 FPGA, with 8 GB
of DDR3 SDRAM. FPGAs are serially connected through QSFP+ 40-Gb/s InfiniBand cables. The
OpenCL kernels were compiled using Intel FPGA SDK for OpenCL (version 19.1) with Nallatech
p385a_sch_ax115 board support packages (BSP). We performed GPU experiments on two Nvidia
GPUs: (1) Nvidia RTX 2080Ti, which is a server class GPU, and (2) Nvidia Tesla T4, which is a
small-scale GPU for edge systems. In addition, we performed our CPU experiments on a host,
equipped with two Intel Xeon Silver 4210 octa-core CPUs, and 64 GB of main memory. We report
the latency of our design, which is the time it takes for the design to accept a new input request,
following the previous request. In addition, we report the throughput as the number of images
per second (img/s) that the system can accept. The results include the energy efficiency of our
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experiments. We used nvidia-smi command line utility and the Nallatech mempoy-mapped device
layer API to query instant board-level power consumption. For the CPU, we used the power-stat

toolkit to measure the power consumption. Finally, we performed post-training quantization with
Pytorch [27] on the VGG-16 model to enable it running with a lower bit precision (8 bit) on the
CPU.

In the single-FPGA experiments, we evaluated the performance of our design for accelerating
different CNN models. It achieves state-of-the-art performance on a single FPGA, which is crucial
for any further extensions. In the multi-FPGA experiments, we accelerated the same CNN models
but with more than one FPGA. We designed the experiment to show the correlation between the
number of FPGAs and throughput.

4.1 Single-FPGA Performance Evaluation

In this section, we present the effectiveness and performance of our design on a single FPGA.
Having a state-of-the-art single-FPGA solution is the basis for extending that solution to multiple
FPGAs. Table 4 presents the performance, energy efficiency, and resource utilization of our design
and the related works.1 Our solution can provide 27 ms of latency for single input inference on
VGG-16, which is faster than all other related works [2, 20, 22, 23]. For ResNet-50, which is a widely
used object detection model, our solution can achieve 21 ms of latency per single input, which is
6 ms faster than the solution of Ma et al. [28].

DLA [6] can achieve an average of 1-ms latency for each image while processing a batch of
images. This low latency is achieved by reading the weight and input data from the local memory,
which eliminates the overhead of accessing global memory. We replicated the DLA experiment
with VGG-16 and achieved 37 ms of latency per single image. By offloading the FC layers onto a
dedicated PE, we can achieve 27 ms of latency, which is 10 ms faster than our clone of the DLA.

Our approach achieves similar or better energy efficiency than the related works, except the
AlexNet on the Intel DLA. In this specific example, the design avoids reading/writing from/to the
external memory (the AlexNet model can fit inside the on-chip memory) and applies inference on
a batch of data. External memory exclusion significantly reduces the power consumption, and the
utilization of a batch instead of a single input increases the MM operation’s performance. However,
our design targets streaming applications, requiring real-time service of each input.

We also demonstrate the performance of our framework for accelerating CNN models with 3D
convolutions. Table 5 presents the performance of some standard video processing CNNs from
our FPGA solution and the performance reported by the related works. Using our design for 3D
convolutions, we can achieve almost 1.7 times better latency compared to these related works.
This lower latency enables processing of a higher number of frames per second, for latency-critical
applications.

Finally, Table 6 presents the performance and energy-efficiency of our design compared to the
state-of-the-art CPU and GPU implementations. The CPU shows a high latency while handling a
single input for inference, which makes it inferior to the accelerators. It also results in the lowest
energy efficiency. The GPU can outperform the FPGA, but the energy efficiency of the FPGA is
much better. We need to mention that the FPGA can operate individually, whereas the GPU re-
quires a host, which adds to the overall power consumption. In addition, FPGAs can ingest data
directly into the pipeline, which is useful to many stream data processing scenarios such as edge
computing [18], whereas GPUs require the data to be first stored in the host memory and then
copied to the GPU memory.

1Because the design details and source code are often not available, comparing to the performance numbers reported in

the related works is the standard practice in the FPGA community.
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Table 5. Performance Comparison of Single-FPGA Video Processing CNN Acceleration

Design Shen et al. [15] Liu et al. [24] Ours

CNN Model C3D C3D C3D
FPGA VC709 VC709 Arria 10

Clock Frq. (MHz) N/A 120 210
Precision N/A N/A 8 bit

Latency (ms) 89.4 115.5 66.08
Throughput (GOPS) 427.5 667.7 990

Throughput (Input/s) 11.18 8.65 15.13
Power (watt) 25 25 23

Energy Efficiency (GOPS/watt) 17.1 26.7 43.04
Energy Efficiency (Input/J) 0.44 0.34 0.65

DSP Util. 1.5K/3.6K 3.5K/3.6K 1.5K/1.5K
BRAM Util 1.5K/2.9K 0.3K/1.4K 1.3K/2.7K
LUT Util. 242K/432K 272K/432K 290K/854K
FF Util. 286K/866K 434K/866K 762K/1708K

Note: Columns and rows are the same as in Table 4.

Table 6. Performance Comparison Between CPU, GPU, and Our FPGA Implementation, Running

the VGG-16 Model

Accelerator RTX 2080Ti Tesla T4 Xeon CPU Ours

Clock Frq. (MHz) 1,545 1,087 2200 212
Precision (bits) 32 32 32 8 8 16

Latency/Image (ms) 8.43 13.14 128.39 58.35 26.52 30.3
Throughput (Img/s) 118.6 76.10 7.78 17.13 37.7 32.98

Power (watt) 250 70 86 23
Energy Efficiency (Image/J) 0.47 1.08 0.09 0.19 1.6 1.4

4.2 Multi-FPGA Performance Evaluation

In this section, we evaluate the performance of our framework while scaling out the CNN deploy-
ment on multiple FPGAs. We performed all experiments on a pipeline of FPGAs (from one to eight)
connected through I/O channels. We evaluated the performance of both 2D and 3D CNNs on our
multi-FPGA platform, using VGG-16, C3D, and I3D. Figure 8 presents the performance improve-
ments while accelerating the three CNN models mentioned previously, using multiple FPGAs. For
all three models, the throughput increases linearly by increasing the number of FPGAs from one
to eight. We can observe that using the load balancer in Section 3.3 can lead to a near-perfect
partitioning scheme with a fully balanced workload across the FPGA.

We also made a comparison between our solution and the other available multi-FPGA related
works [1, 3]. In comparison, our solution provides up to 5.8 times better throughput. Jiang et al. [3]
experimented using 16-bit variables, which has higher precision than our configuration (8 bit).
They can achieve similar performance to ours by utilizing a lower-precision configuration, but they
are using a better FPGA (much more resources compared to Arria 10). Their solution cannot scale
linearly beyond four FPGAs for the VGG-16 model. In addition, our design supports a diverse set of
convolutional operations, and it is based on the high-level OpenCL language. Finally, our solution
achieves much higher energy efficiency. We need to mention that the power consumption of the
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Table 7. Performance Comparison of Multi-FPGA Acceleration Solutions

Design Zhang et al. [1] Jiang et al. [3] Ours

CNN Model VGG-16 VGG-16 VGG-16

FPGA VC709 ZCU102 Arria 10

Clock Frq. (MHz) 150 200 210

Precision 16 bit 16 bit 8 bit

Num. FPGAs 1 2 1 2 4 8 1 2 4 8

Throughput (Input/s) 6.5 13 14 35.28 74.2 84 37.7 67.8 150.8 232

Throughput (GOPS) 203.9 407.8 N/A N/A N/A N/A 990 1,980 3,960 7,920

Power (watt) 25 50 27.2 54.4 108.8 217.6 23 46 92 184

Energy Efficiency (GOPS/watt) 8.16 N/A 43

Energy Efficiency (Input/J) 0.26 N/A 1.63

Fig. 8. Acceleration of 2D and 3D CNN models using multiple FPGAs.

related work [3] for four and eight FPGAs was estimated since the work provided experiments for
only two FPGAs and simulated the results of more than two FPGAs.

5 RELATED WORKS

Several works have studied the use of FPGAs for accelerating 2D CNNs. Caffeine [2] explored
using 2D systolic arrays for accelerating convolutions and MMs. It also studied the feasibility of
mapping MM onto the convolution systolic array in both input-major and weight-major formats.
Finally, it provided the support of the Caffe framework for the automatic deployment of the
model onto the FPGA. Compared to our design, it provides lower performance and adopts a
different approach for mapping MMs that is suitable for only processing for a batch of input
requests. PipeCNN [20] is a generic OpenCL-based implementation for accelerating the 2D
CNNs. It is the only related solution with the source code available online. Similar to our work,
PipeCNN utilizes multiple components for fetching the data, computation, and writing back the
data to the memory. All components are connected using Intel channels. Unlike other works,
PipeCNN adopts a simple implementation for the convolution and MM operations, which leads
to significant performance overhead. In addition, it cannot fully utilize the resources on an FPGA.
Zhang et al. [21] observed that the accelerator design space had not been well exploited, and the
computation throughput of a design may not well match the available memory bandwidth. As
a result, they proposed an analytical design scheme using the roofline model. Using this model,
they explored various design optimizations such as loop tiling and transformations to identify the
best performance and lowest FPGA resource requirements. Similar to the previous work, Suda
et al. [22] proposed an end-to-end large-scale CNN accelerator on FPGA. They also performed a
design space exploration to maximize throughput. Compared to our work, none of these related
works have studied the multi-FPGA acceleration of CNNs. In addition, they lack the support
for the emerging 3D convolutions and operate slower compared to our solution. Most similar
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to our work, DLA [6] is the state-of-the-art design with the highest performance available. DLA
adopted a 1D systolic array design architecture. In contrast, we proposed a novel semi-1D systolic
array, which consumes a lower amount of resources compared to the original 1D systolic array.
Our design supports more complex convolutions (3D) and multi-FPGA acceleration. As well, we
improved the overall performance by introducing an MM accelerator alongside the systolic array.

Several other related works have studied the acceleration of 3D CNNs on FPGAs. Shen et al. [15]
and Liu et al. [24] studied the uniform acceleration of 2D and 3D CNNs on FPGAs. Further, they
demonstrated a uniform analytical model to facilitate efficient design space explorations of 2D
and 3D CNNs. Morph [10] provided a specific design for accelerating 3D CNNs. This work mainly
discusses various approaches for tiling and reordering the loops for a better acceleration of the 3D
convolution computation. Compared to these works, our design can achieve higher performance
by efficiently mapping 3D convolutions onto the systolic array and enables the multi-FPGA accel-
eration of the CNNs.

Multi-FPGA CNN acceleration is an underexplored topic, with only a few related works avail-
able. Zhang et al. [1] demonstrated a multi-FPGA acceleration solution to increase the throughput
of the CNN applications. In this work, FPGAs are connected through serial channels, where each
FPGA receives one piece of data, processes it, and then sends the data to the next FPGA. However,
the FPGA cluster is managed by an external FPGA, which makes it hard for integration in hetero-
geneous systems with various types of processors. In contrast, we use a typical host system for
the management of the FPGAs. In addition, our solution provides much higher throughput. Jiang
et al. [3] proposed a multi-FPGA solution for reducing the latency of the inference operations
rather than the overall throughput. It can achieve a low-latency inference through spatially par-
allelizing CNN layers on multiple FPGAs. All experiments in this work are limited to two FPGAs.
The latency speedup of the configurations with more than two FPGAs is mathematically modeled.
This work is not scalable to more FPGAs due to the limited number of ports on the FPGAs. They
can alleviate this issue by using network switches and integrating network communication and
control stack on the FPGAs, which would, however, affect their core low-latency data transmis-
sion by introducing an extra overhead and diminish the overall latency improvement. Differently,
our design adopts a low-level data transmission protocol (direct serial channel communication
between the FPGAs), which unlocks the theoretical bandwidth between the communication chan-
nels. Complementary to this solution, our work parallelizes the CNN models temporally, which
helps increase the overall throughput of the system, as demonstrated in our experimental results,
and also scale beyond two FPGAs. Microsoft Brainwave [29] is another notable multi-FPGA so-
lution in the cloud. Brainwave relies on pruning and quantization of the model to fully store the
input and model in on-chip storage and achieve the optimal performance, which is suitable for
RNNs with small intermediate data but not for CNNs with large intermediate data. As a result, it is
suitable for only a particular set of neural networks that can fully fit in on-chip BRAM and benefit
from the preceding compression techniques.

Although our work utilizes the basic techniques of the early works, it introduces novel contribu-
tions. First, our work is the first work solely designed and developed using a high-level heteroge-
neous programming language (OpenCL) and achieves state-of-the-art performance. Second, to the
best of our knowledge, it is the first to propose a semi-1D systolic array for further area efficiency
of the design on the chip. Third, our design supports multi-FPGA acceleration of the complex neu-
ral networks such as 3D CNNs, with a novel and efficient algorithm for balanced distribution of
the layers, onto the FPGAs.

6 CONCLUSION

In this work, we demonstrated a high-throughput multi-FPGA acceleration solution for a wide
variety of CNNs. We first extended the DLA [6] architecture to achieve lower latency and
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better resource utilization for single-FPGA configuration. Second, we extended the architecture
to support 3D convolutions for the video understanding applications. It includes studying the
optimal deployment of the 3D convolutions on the semi-1D systolic array. Third, we enabled
communication between the FPGAs to support multi-FPGA setups. Finally, we developed an
algorithm for automatic deployment of the CNN layers onto the FPGAs in the multi-FPGA setup.
Our results show that utilizing multiple FPGAs can linearly increase the overall throughput of
the CNN inference. In addition, optimizing the PE systolic array and FC operations can lead to
better area utilization (up to 25%) and higher overall throughput (up to 24%) compared to the
state-of-the-art CNN accelerator. Finally, we studied the efficient mapping of 3D convolutions on
our novel semi-1D systolic array to achieve the highest overall throughput.

7 FUTURE WORK

In future work, we plan to extend our platform in several ways. First, we plan to support multi-
FPGA parallelism, where the FPGAs are connected through a network switch. This model enables
easier scalability of the FPGA clusters in data centers and server racks. Implementation of this
model requires the addition of the network connection and control layers onto the FPGAs. It also
requires eliminating the extra resource consumption and the latency overhead to guarantee effi-
cient scalability while using multiple FPGAs. Second, we plan to extend our PE design to support
sparse operations. Recent advancement in model compression has made quantization (bit-width
reduction) and sparsification getting more adopted in the model deployment process. Our design
already supports different bit-precision configuration. Supporting sparse operations enables inte-
gration with available post-training quantization and sparsification methods. In case of the multi-
FPGA support for sparsity, our design can still divide the layers onto multiple FPGAs and increase
the throughput linearly by increasing the number of FPGAs, although it may require a different ap-
proach to estimate the computational intensity of the layers. Finally, we will extend our system to
support heterogeneous acceleration. In many CNNs, particular layers with specific configurations
may run faster on a GPU or a CPU. We will extend our framework to support these accelerators
in a pipeline fashion and enable faster inference time. Our multi-FPGA accelerator is open source
and publicly available (https://github.com/saman-aghazadeh/GNU-DLA).
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