
Cluster Comput (2008) 11: 213–227
DOI 10.1007/s10586-008-0060-0

Autonomic resource management in virtualized data centers using
fuzzy logic-based approaches

Jing Xu · Ming Zhao · José Fortes · Robert Carpenter ·
Mazin Yousif

Received: 31 May 2008 / Accepted: 16 June 2008 / Published online: 16 July 2008
© Springer Science+Business Media, LLC 2008

Abstract Data centers, as resource providers, are expected
to deliver on performance guarantees while optimizing re-
source utilization to reduce cost. Virtualization techniques
provide the opportunity of consolidating multiple separately
managed containers of virtual resources on underutilized
physical servers. A key challenge that comes with virtualiza-
tion is the simultaneous on-demand provisioning of shared
physical resources to virtual containers and the manage-
ment of their capacities to meet service-quality targets at the
least cost. This paper proposes a two-level resource manage-
ment system to dynamically allocate resources to individ-
ual virtual containers. It uses local controllers at the virtual-
container level and a global controller at the resource-pool
level. An important advantage of this two-level control ar-
chitecture is that it allows independent controller designs for
separately optimizing the performance of applications and
the use of resources. Autonomic resource allocation is re-
alized through the interaction of the local and global con-
trollers. A novelty of the local controller designs is their use
of fuzzy logic-based approaches to efficiently and robustly

J. Xu (�) · M. Zhao · J. Fortes
University of Florida, Gainesville, FL, USA
e-mail: jxu@acis.ufl.edu

M. Zhao
e-mail: ming@acis.ufl.edu

J. Fortes
e-mail: fortes@acis.ufl.edu

R. Carpenter · M. Yousif
Intel Corporation, Hillsboro, OR, USA

R. Carpenter
e-mail: robert.e.carpenter@intel.com

M. Yousif
e-mail: mazin.s.yousif@intel.com

deal with the complexity and uncertainties of dynamically
changing workloads and resource usage. The global con-
troller determines the resource allocation based on a pro-
posed profit model, with the goal of maximizing the to-
tal profit of the data center. Experimental results obtained
through a prototype implementation demonstrate that, for
the scenarios under consideration, the proposed resource
management system can significantly reduce resource con-
sumption while still achieving application performance tar-
gets.

Keywords Autonomic computing · Fuzzy modeling ·
Resource management · Virtualization · Two-level control ·
Data centers

1 Introduction

Today’s data centers host a variety of business-critical ap-
plications such as web hosting, e-commerce sites and en-
terprise systems on shared hardware platforms. The need to
manage multiple applications in a shared infrastructure cre-
ates the challenge (and also the opportunity) of on-demand
resource provisioning and allocation in response to time-
varying workloads. Ideally, data centers should provide a
“pay-per-use” approach, i.e., hosted applications or applica-
tion providers would deliver services to their customers us-
ing hardware resources provided by data centers that charge
based on the resources consumed (instead of charging for
resources needed to meet peak demands). To realize this in
a cost-effective manner, the data center must provide flexi-
ble and manageable execution environments that are special-
ized for each application without compromising its ability to
share resources among applications and delivering to them
the necessary performance, security and isolation.

mailto:jxu@acis.ufl.edu
mailto:ming@acis.ufl.edu
mailto:fortes@acis.ufl.edu
mailto:robert.e.carpenter@intel.com
mailto:mazin.s.yousif@intel.com

214 Cluster Comput (2008) 11: 213–227

Virtualization is key to this vision, by allowing physical
servers to be carved into multiple virtual resource contain-
ers, and enabling a virtualized data center where applica-
tions are hosted and managed in their dedicated virtualized
containers. In particular, virtual machines (e.g., [2, 7, 15]),
which provide strong isolation, security and customizabil-
ity, can be dynamically created to serve as virtual containers.
The management of these containers, e.g., lifecycle manage-
ment and resource allocation, can be conducted through the
interface provided by the virtualization platform.

Applications served by a data center are usually business-
critical applications with Quality-of-Service (QoS) require-
ments. The resource allocation needs to not only guarantee
that a virtual container always has enough resources to meet
its application’s performance goals, but also prevent over-
provisioning in order to reduce cost and allow the concurrent
hosting of more applications. Static allocation approaches
that consider a fixed set of applications and resources cannot
be used because of changing workload mixes, and solutions
that only consider behavior of individual applications fail to
capture the competition for shared resources by virtualized
containers.

This paper presents a two-level resource management
system that enables automatic and adaptive resource allo-
cation in accordance with Service Level Agreements (SLA)
specifying dynamic tradeoffs of service quality and cost. Re-
source management in a data center is decoupled at two lev-
els: virtual containers and resource pools. The key to cost-
effective resource allocation is the ability to efficiently find
the minimum amount of resources that an application needs
to meet the desired QoS. In each virtual container hosting an
application, a local controller is responsible for determining
the amount of resources needed by the application and mak-
ing resource requests accordingly. A global controller re-
sponds to the local controllers’ requests by dynamically al-
locating resources across multiple virtual containers hosted
on the same physical resources. It controls the resource al-
locations in a way that maximizes the data center’s profit.

Two fuzzy-logic-based approaches—fuzzy modeling and
fuzzy prediction—are proposed for use by local controllers
in automatically learning of runtime behavior of virtual con-
tainers under dynamically changing workloads. One of the
advantages of fuzzy approaches is that they do not require
prior knowledge or a mathematical model of the system be-
ing managed. They typically do not need time-consuming
training, which makes them suitable for real-time control.
Moreover, the approaches are robust with respect to noisy
data and have the ability to adapt to changes very quickly.
A prototype of the proposed two-level resource manage-
ment system has been deployed on a virtualized data cen-
ter testbed. Typical e-business applications with synthetic
workloads and real-world traces were used to evaluate accu-
racy of the fuzzy-logic-based approaches employed by the

local controller and the efficiency of resource allocation de-
termined by the global controller. The results show that the
proposed system can effectively allocate resources to virtual
containers under dynamically changing workloads, and sig-
nificantly reduce resource consumption while still achieving
the desired application performance.

The rest of this paper is organized as follows. Section 2
provides an overview of the two-level resource management
system. Sections 3 and 4 describe in detail the designs of the
local controller and the global controller. Section 5 presents
an evaluation of the prototype. Section 6 examines related
work and Sect. 7 concludes the paper.

2 Two-level autonomic resource control

A data center, illustrated in Fig. 1, serves a number of appli-
cations. Each delivers a distinct service to its customers us-
ing (virtual) resources provided by its dedicated container,
which is the virtual machine that hosts the application. The
data center allocates the physical resources to each virtual
container based on its application’s resource needs.

Application SLAs between an application provider and its
customers state the quality of service providers promised to
the clients. To achieve performance isolation and guaran-
tee an application SLA independently of the load on other
containers, a local resource controller is employed in each
virtual container to estimate the resources needed by the ap-
plication’s workload and to make resource requests to the
global controller. By doing so, the local controller mini-
mizes leasing costs by avoiding over-provisioning for the
application running on the container. Resource SLAs be-
tween application providers and the data center owner spec-
ify both the cost of rental resources and the penalty due
in case the data center fails to deliver resources needed by
application providers. The underlying assumption is that if
the data center does not allocate enough physical resources
requested by the local controller resulting in its applica-
tion’s SLA violation, the data center provider will be pe-
nalized. The global controller makes allocation decisions
among competing requests, trying to avoid violations of re-
source SLAs.

This two-level resource control system is preferred over
the more obvious centralized approach in which all the con-
trol functions are implemented at one centralized location.
Since local containers are independent of each other, hetero-
geneous local controllers’ implementations are possible. All
of the internal complexities of control functions in virtual
containers are compressed by local controllers into straight-
forward resource requests, which specify the amount of re-
sources needed. The system handles two different types of
optimizations independently. The local controller tries to
minimize the resource consumed by the virtual container

Cluster Comput (2008) 11: 213–227 215

Fig. 1 “Pay-as-you-go” data
center with virtual resource
containers to host applications,
and a two-level controller
architecture to allocate physical
resources to containers

to reduce the resource cost while still satisfying application
SLAs of its clients. The global controller seeks to maximize
its own profit, which is the revenue received from allocat-
ing its resources among virtual containers minus the cost of
penalties incurred from resource SLA violations. The con-
troller design is applicable to manage any type of resource
such as CPU, memory and I/O bandwidth, while provision-
ing and managing CPU cycles are of particular interest in
this paper and tested in more detail. The following sections
explain our approach to the design of the local and global
controllers.

3 Local resource controller

Interaction between the local and global controllers enables
a virtual container to augment its resources in response to
increased workload, and to reduce its resources when they
are no longer needed. The main task of the local controller
is to estimate the set of resources needed by an application
running in the container. Our approach to the design of such
a controller is based on fuzzy logic theory, as discussed next.

3.1 Background

Fuzzy logic [21] is a tool to deal with uncertain, imprecise,
or qualitative decision-making problems. Unlike Boolean
logic, where an element x either belongs or does not belong
to a set A, in fuzzy logic the membership of x in a fuzzy set
F has a degree value (called fuzzy value) in a continuous
interval between 0 and 1 representing the extent to which x

belongs to F . Fuzzy sets are defined by membership func-
tions that map set elements into the interval [0,1].

One of the most important applications of fuzzy logic
is the design of fuzzy rule-based systems. These systems
use “IF-THEN” rules (also called fuzzy rules) whose an-
tecedents and consequents use fuzzy-logic statements to rep-
resent the knowledge or control strategies of the system. The
collection of fuzzy rules is called a rule base. There are many
approaches to the construction of fuzzy rules, for example,
by capturing expert experience or system operator’s control
actions. The approach taken for the design of our system
is to learn fuzzy rules using online monitoring information,
making it a so-called self-organizing fuzzy system.

Fig. 2 The monitored runtime behavior of virtual container

The process of formulating the mapping from inputs to
outputs using fuzzy rules is called the fuzzy inference (FIS)
mechanism. Since fuzzy rules use fuzzy sets and their asso-
ciated membership functions to describe system variables,
two functions are necessary for translating between numeric
values and fuzzy values. The process of translating input val-
ues into one or more fuzzy sets is called fuzzification. De-
fuzzification is the inverse transformation which derives a
single numeric value that best represents the inferred fuzzy
values of the output variable.

3.2 Virtual container run-time behavior

To determine the resource needs of an application hosted in
a virtual container, the local controller needs to learn the be-
havior of the virtual container under dynamically changing
workloads. Figure 2 shows the abstracted inputs and out-
puts of a virtual container that hosts a running application.
The virtual container receives the application workload from
its clients, and utilizes the physical resources provided by
the data center resource pool to process the workload. The
achieved QoS of the application depends on the amount of
allocated resources and the incoming workload. The infor-
mation about the application’s workload, its received perfor-
mance and its virtual container’s resource consumption are
monitored by the system sensors as Fig. 2 illustrates. The
local controller adaptively adjusts the resources requested
from the global controller, in order to achieve desired QoS
with the minimum cost. Depending on what information is
available from the system, two approaches are proposed for
estimating resource needs: (1) fuzzy modeling to character-
ize the relationship between workload and resource use and
(2) fuzzy prediction to determine a mapping from observa-
tions of recent resource usage to future resource needs.

216 Cluster Comput (2008) 11: 213–227

Fig. 3 Fuzzy modeling and
inference functions in a local
resource controller

3.3 Fuzzy-modeling approach

The first approach uses fuzzy logic to model the behavior
of a virtual container by automatically learning the relation-
ship between workload and the corresponding resource con-
sumption when the desired QoS is achieved. It requires the
system to periodically monitor the application workload and
their resource usage, which are then used as an input-output
data pair for generating fuzzy rules. Figure 3 illustrates the
key functions for fuzzy modeling in the local controller. The
data monitored by the sensors are first processed by the fil-
tering and clustering functions. The modeling function con-
structs fuzzy IF-THEN rules using the produced data clus-
ters and keeps them in a rule base. The fuzzy model’s pa-
rameters determined by the calculated centers and ranges of
data clusters are also stored in a database. Once the fuzzy
model is built up, the fuzzy inference functions periodically
process the fuzzy rules kept in the knowledge base to deter-
mine the resource needs based on the currently monitored
workload. The rest of this section explains these functions
in detail.

Data monitoring and filtering The sensors periodically
measure the application workload w(t), its performance
p(t), and the resource usage r(t) of a virtual container. For
a typical data center application, its workload can usually
be described by the rate and mixture of the requests. For
instance, a Web server’s workload can be characterized by
the HTTP request rate as well as the ratio of static Web-
content requests to dynamic ones. The performance metrics
are often directly taken from the SLA, e.g. the throughput
(number of completed transactions per second) and/or aver-
age service response time.

The metrics for resource utilization are associated with
the different types of consumed physical resources, includ-
ing CPU utilization, used memory size, disk storage, disk
I/O rate and network bandwidth. However, an application’s
virtual resource usage (the values collected inside of the vir-
tual container) does not necessarily represent its physical re-
source consumption. For example, an application’s network
I/O consumes not only the physical network bandwidth, but

also the physical CPU cycles. In the proposed approach, an
application’s resource usage is obtained by directly moni-
toring the physical resource consumption of its virtual con-
tainer. This is sensible because in the envisioned data center
a virtual container is dedicated to an application.

The measured workload and its resource usage compose
the input-output data used for system modeling. A sequence
of input-output data pairs (w(t), r(t)) produced by the sen-
sors at constant time intervals (20 seconds in our experi-
ments) is filtered based on the corresponding performance
measurements p(t). The filtering policy is such that a data
pair measured at time t is kept or filtered out depending on
whether the performance measured at the same time satis-
fies the SLA or not, respectively. Performance is satisfactory
only if the resource capacity allocated to the virtual con-
tainer at time t is sufficient for the given SLA. In this case,
the monitored resource utilization represents the actual re-
source needs, and thus the data pair can be used for model
learning. On the contrary, an SLA violation indicates that
the allocated resources are not enough to achieve the SLA
target. In this case, the resource consumption is capped by
the allocated capacity so that the monitored values are less
than the desired resource demands and cannot be used in
fuzzy modeling.

Data clustering and fuzzy rule construction The filtered
data pairs are used for building fuzzy models which char-
acterzing the relationship between the application workload
and resource consumption. In order to avoid generating a
large number of fuzzy rules, the data are clustered to pro-
duce a concise representation of the system’s behavior. Sev-
eral classic clustering algorithms can be used, e.g. hierarchi-
cal and k-means clustering. In the proposed local controller
design, subtractive clustering [5] is chosen for its speed and
robustness.

This clustering method assumes that each data point is a
potential cluster center and chooses the data center based on
the density of surrounding data points. The algorithm selects
the data point with the highest density as the first cluster
center and then removes all data points in the vicinity of the
first cluster center in order to determine the next data cluster

Cluster Comput (2008) 11: 213–227 217

and its center location. This process continues until all the
data are within the radius of a cluster center. The variable
radius represents a cluster center’s range of influence in each
of the data dimensions, assuming that the data fall within a
unit hyperbox. Setting small radius values generally results
in finding a large number of small clusters. This value is set
to 0.5 in the local controller’s implementation.

Since each cluster exemplifies a characteristic of system
behavior, it can be used as the basis of a fuzzy rule that
describes system behavior. If n data clusters are formed, n

rules can be produced in which the ith rule is expressed as:

IF input w(t) is in cluster i,

THEN output u(t) is in cluster i.

Each cluster specifies a fuzzy set with its membership func-
tions determined by the cluster center and range. Using the

Gaussian membership function, μi(x) = e
− (w−ci)

2

2σ2
i , the cen-

ter of the membership function ci equals the center of clus-
ter i and the weight of membership function σi equals the
radius of that cluster.

The model described by the above fuzzy rules is called
zero-order Sugeno-type fuzzy model [14]. The modeling ac-
curacy can be improved significantly by using the first-order
Sugeno model, in which the output of each rule is a linear
function of the input variables. The rules are rewritten as
follows,

IF input w(t) is in cluster i, THEN output u(t) = aw + b,

where the parameters a and b in the linear equations are
estimated by the least-squares method.

Fuzzy inference Once the fuzzy model relating workload
to resource consumption is learned from the selected work-
load to resource usage measurements, it can be used in a
rule-based fuzzy inference module which, given the appli-
cation’s workload, produces the estimated application’s re-
source demand for the virtual container.

The fuzzy inference module consists of four basic func-
tions as illustrated in Fig. 3. The knowledge base includes
a database consisting of membership functions of the fuzzy
sets and a rule base where the fuzzy rules are specified. In
the fuzzification function, the input w(t) measured from the
sensor is mapped to input fuzzy sets using the membership
functions. A decision-making unit, called the fuzzy infer-
ence engine, infers from input fuzzy sets to output fuzzy
sets according to the rules stored in the knowledge base.
The defuzzification function aggregates the fuzzy outputs
and converts them to a numeric output. The final output is
the weighted average of all rule outputs with the weight of
ith rule being the membership of the input in cluster i.

In summary, using fuzzy modeling and fuzzy inference
shown in Fig. 3, the local controller estimates the resource
needs for the current workload measured by the sensor, and
sends requests to the global controller to either ask for more
resources if the current allocation is not sufficient to satisfy
the SLA or to withdraw resources when no longer needed.

Adaptive modeling The discussion so far has only con-
sidered offline model learning from collected data. As the
workload or system conditions change, the model describ-
ing the system’s behavior needs to capture the changes ac-
cordingly. The adaptive modeling is employed by the local
controller in which the model is repeatedly updated based
on online monitored information.

The clustering function takes new data into consideration
as soon as they arrive and keeps updating, so that up-to-date
clusters are always provided for the modeling. Whenever the
data clusters are updated, the parameters of the membership
functions are changed accordingly in the database. If a new
cluster is added, a corresponding rule is then added into the
rule base; and similarly, if a cluster no longer exists, the rule
associated with it is removed from the rule base.

In the case when the allocated resources are insufficient
for the workload, the monitored data become disqualified
and are filtered out because of the performance degradation.
The shortage of qualified data will hurt the model’s learn-
ing speed and quality. To avoid this situation, whenever the
filter function detects that the percentage of qualified data
is less than 50% during a time window T (set to 5 minutes
in the prototype), the controller asks for an additional pre-
defined percentage (10% is used in the prototype) of current
resource allocation from the global controller to improve the
application’s performance back to the desired level.

3.4 Fuzzy-prediction approach

The fuzzy-modeling-based approach described above auto-
matically builds a mapping from the application workload to
the corresponding resource needs for the desired QoS. This
approach is applicable only when the application workload
can be characterized and monitored. However, data cen-
ters can host a variety of applications which are very dif-
ferent from each other so that there is no standard way of
measuring workloads. In some cases it is hard to describe
an application workload using a few metrics like request
rate. The second proposed approach—fuzzy-prediction—
only requires information about the resource usage (e.g.,
CPU utilization), which is easy to obtain by monitoring
system-level metrics. The basic idea is to determine future
resource needs on the basis of observations of past resource
usage using fuzzy system.

218 Cluster Comput (2008) 11: 213–227

Fig. 4 Fuzzy prediction
functions in a local controller

Fig. 5 An example of three-input two-output data sequences for fuzzy
rule construction

Fuzzy rule construction The fuzzy prediction system, il-
lustrated in Fig. 4, has some components that are similar to
those used in the fuzzy modeling approach. The fuzzy rules
representing a mapping from input space to output space
are generated from the monitored data and stored in the
rule base. The fuzzy inference system processes the learned
fuzzy rules to forecast future resource demands based on
the current system observations. Let r(t) (t = 1,2,3, . . .)
be the measured resource usage at sampling time t . The
problem addressed by the fuzzy prediction system can be
formulated as: at time t , given the latest m measurements
r(t), r(t − 1), . . . , r(t − m + 1) as the inputs, determine the
resource needs at future times r(t +1), r(t +2), . . . , r(t +n)

as the outputs (m and n are the number of inputs and outputs
for a fuzzy rule, respectively).

A fuzzy rule is generated from an input-output data pair,
whose components are subsequences of the successive re-
source usage measurements with the input subsequence pre-
ceding the output subsequences. Figure 5 shows an example
of three-input two-output (m = 3 and n = 2 in this case)
fuzzy rules. To translate input-output pairs into fuzzy rules,
the first step is to divide the input and output spaces into sub-
domains representing by fuzzy sets. Assuming that the input
and output ranges are normalized to [0,1], each space is di-
vided into 2N + 1 domains, denoted by R1,R2, . . . ,R2N+1,
each assigned a fuzzy membership function. Figure 6 gives

Fig. 6 An example of dividing the input/output space into 11 fuzzy
domains and the corresponding membership functions

an example where the input/output space is divided into 11
fuzzy sets (N = 5 is used in our prototype) with triangular
membership functions.

The next step is to assign a given data point to the fuzzy
set with the highest membership degree using the member-
ship functions described above. For example, input i1 is con-
sidered to be R5 and output o1 is considered to be R8 in
Fig. 6. Finally, a fuzzy rule is constructed from a pair of
input-output data as follows,

Rule i: IF i1 is Ri1 and i2 is Ri2, . . . , and im is Rim,

THEN o1 is Ro1, and o2 is Ro2 , . . . , and on is Ron.

Therefore, every sequence of m + n consecutive resource
usage measurements can be used to generate a fuzzy rule
which maps the input space (i1, i2, . . . , im) representing the
previous system state to the output space (o1, o2, . . . , on)
representing the more recent or current state.

Fuzzy rule update A fuzzy rule is generated at every sam-
pling time and each rule with m-input and n-output repre-
sents a point in the (m + n)-dimensional rule space. If every
rule is stored in the rule base the memory requirements will

Cluster Comput (2008) 11: 213–227 219

Fig. 7 The fuzzy-rule updating procedure

be excessive, and it is probable that there would be conflict-
ing rules which have the same IF part but a different THEN
part. The first problem is solved by partitioning input-output
spaces into a finite number of domains as described above
so that at most one rule is stored in the rule base for each
domain. The number of rules increases as new input-output
data are collected, but it never exceeds the maximum num-
ber of domains partitioned in the rule space.

To overcome the second problem, when updating the rule
base a reliability index is computed for each rule as Ji = the
number of occurrences of rule i. Whenever a rule is gener-
ated, the system scans all the rules stored in the rule base.
If there is a matching rule (i.e., a rule in the same domain),
the value of J is increased by 1. Otherwise, the new rule is
added to the rule base and J is initialized to 1. Figure 7 il-
lustrates the procedure for updating rules. If there exist con-
flicting rules, which one takes effect is determined by the
value of the reliability index. The rule with the highest relia-
bility index is activated, indicating that the active fuzzy rule
appears more frequently than the other conflicting rules. If
conflicting rules have the same value of reliability index, the
one that appeared most recently is activated.

Fuzzy inference Given the latest resource usage measure-
ments as inputs, as Fig. 4 shows, the fuzzy inference engine
processes the active fuzzy rules in the rule base to determine
the outputs which consist of the future resource usage. Ini-
tially, there is no rule in the rule base. After the first m + n

measurements are obtained, the first rule is generated and
stored in the rule base. Afterwards, at each sampling point,
a rule is constructed and the rule base is updated follow-

ing the updating procedure illustrated in Fig. 7. This updat-
ing procedure makes the proposed fuzzy prediction capable
of self-learning the resource usage behavior of the managed
virtual container.

Compared with the fuzzy-modeling approach, both meth-
ods essentially “learn” from the input and output history
to build a mapping and can adaptively update the mapping
when new data are available so that it can reflect system
changes very quickly. No prior knowledge or mathematical
model of the system is required and they both are a one-
pass build-up procedure that does not need iterative time-
consuming training. The difference between the two ap-
proaches is that the fuzzy modeling approach maps work-
load to resource consumption, while the fuzzy prediction
maps the observations of recent resource usage to the future
resource needs.

4 Global resource controller

Each individual local controller tries to minimize the re-
source cost by only requesting the resources necessary for
meeting the application SLA. The global controller receives
requests for physical resources from the local controllers
and allocates the resources among them as required. It seeks
to make allocations that maximize the data center’s profit,
which is the revenue received by allocating the physical re-
sources among virtual containers minus the penalties due to
violations of resource SLA.

The global controller makes allocation decision based on
the received requests and currently available resources in
the data center. If the requested resources are allocated, the
application providers are charged for the resources they re-
ceive. Otherwise, the data center has to pay certain penalties
for the unsatisfied requests. The resource price and penal-
ties specified in the resource SLA are negotiated between
the data center owner and application providers. To simplify
the problem, it is assumed that the revenue linearly increases
with the amount of allocated resources and is bounded by the
point of requested amount. The penalty also has a linear re-
lationship with the amount of unsatisfied resources (shown
in Fig. 8).

Without loss of generality, this paper considers a single
resource type and a single allocation period. Suppose that K

virtual containers are concurrently active in the data cen-
ter. Let reqk denote the resources requested from virtual
container k, and alck be the amount of resources granted
to it by the global controller. The data center receives rev-
enue of revk for every allocated resource unit over an al-
location period. But if the global controller cannot satisfy
the request reqk , the data center pays a penalty of pnlk
per unit of unmet resource demand, according to the re-
source SLA. Each resource allocation decision made by the

220 Cluster Comput (2008) 11: 213–227

Fig. 8 The revenue and penalty
function with respect to
allocated resources

global controller is expressed as a resource allocation vec-
tor (alc1, alc2, . . . , alcK), and the total profit obtained by the
data center for a time period is

profit(alc1, alc2, . . . , alcK)

=
K∑

k=1

[revkalck − pnlk(reqk − alck)] (1)

s.t. 0 ≤ alck ≤ reqk, C =
K∑

k=1

alck ≤ A

where C is the total amount of resources allocated to the
virtual containers, and A is the total resource capacity avail-
able in the data center. The profit equation can be rewritten
as follows, for one allocation period t ,

profit(alc1, alc2, . . . , alcK)

=
K∑

k=1

(revk + pnlk)alck −
K∑

k=1

pnlkreqk (2)

(revk + pnlk) is defined as the profit rate for virtual con-
tainer k. Assuming that the global controller can allocate
any resource fraction to the virtual containers, a greedy al-
gorithm that allocates resources in the order of decreasing
profit rates is an optimal allocation (this is similar to the case
of a fractional knapsack problem [10]).

To optimize profit over multiple time periods, the allo-
cation decision has to be repeated. Equation (3) defines a
cumulative profit which is the discounted sum under a dis-
counting factor γ over a time horizon T . The factor models
the fact that future profit is worth less than current profit
because of the uncertainty in the future, for T allocation pe-
riods,

T∑

t=1

γ tprofitt =
T∑

t=1

K∑

k=1

γ t [revkalctk − pnlk(reqk − alctk)]
(3)

Based on the above profit model, a greedy strategy that max-
imizes the total profit for every period is still optimal be-
cause the allocation decision for current period does not af-
fect the future periods.

5 Experimental evaluation

This section summarizes the experimental evaluation of the
proposed two-level control system for dynamic resource
allocation in a data center environment with time-varying
workloads. Section 5.2 discusses the experiments that eval-
uate the ability of the local controller to track the resource
needs of changing workloads. Section 5.3 considers the
maximal profit approach (1) discussed in Sect. 4 when the
global controller must allocate limited resources among sev-
eral competing virtual containers.

5.1 Experimental setup

Data center testbed The testbed is deployed on a 16-CPU
IBM x336 based cluster that provides virtual containers
for applications, and several workload-generating clients.
VMware ESX Server 3.0.1 is installed in each cluster node
equipped with dual hyperthreaded Intel Xeon 3.2 GHz CPUs
and 4 GB memory. Virtual machines are created on the
servers and used as virtual containers to host applications.
The clients are placed on VMware-Server-1.0.0-based vir-
tual machines, hosted on another cluster of 32 dual-2.4 GHz
hyperthreaded Intel Xeon nodes. Web-based workloads are
generated by the clients and issued to the applications across
a Gigabit Ethernet network.

Application and workload The Java Pet Store [26] was
chosen to represent a typical e-business application. It im-
plements an online store that allows users to browse and
make orders, and managers to manage orders, suppliers and
inventory. It is a reference application that has been devel-
oped on various Java EE platforms. Synthetic HTTP work-
loads that mimic the key aspects of real-world workloads are
created with various client sessions issued by httperf [11].
Each individual session consists of a sequence of requests
generated by repeating and mixing the following customer
actions: go to the storefront, sign in, browse products, add
some products to shopping cart, and checkout. Two key pa-
rameters are adjusted to vary a session’s workload on the ap-
plication: the user’s think time (the time between two con-
secutive requests) can be changed to generate different re-
quest rates; the ratio of dynamic requests (e.g., sign in, check

Cluster Comput (2008) 11: 213–227 221

out and search product) to static requests (e.g., browse sta-
tic Web pages and view images) can be varied in order to
change the workload characteristics. A Perl program was
developed to create different workloads and drive httperf to
issue the requests.

Traces collected from ’98 World Cup sites are also used
in the experiments to represent real-world workloads. The
logs provided by an Internet repository [25] consist of about
1.3 million requests made to the World Cup Web site be-
tween April 30, 1998 and July 26, 1998. A real-time log
replayer [24] is used to generate workloads using the trace.

Global/local controller prototype The virtual containers
are monitored and controlled through the Web-service-based
management interface provided by VMware ESX Server. It
allows the allocation of a server’s physical resources among
its hosted virtual machines (e.g. setting the minimum, maxi-
mum and proportional resource shares of a virtual machine),
and also provides the real-time monitoring of a virtual ma-
chine’s resource utilization.

The proposed two-level controllers are implemented in
Java, running along with the virtual containers. Every vir-
tual machine has a local controller to manage the virtual
container it provides, and the ESX cluster has a global con-
troller to manage the shared resources for the virtual con-
tainers hosted on it. The sensors, also developed in Java,
monitor the workload (request rate and mixture), the appli-
cation throughput (reply rate), and the resource consumption
(CPU usage). The monitoring period is set to 20 seconds.
Because the concerned workloads are mostly CPU inten-
sive, the experiments focus on the utilization and allocation
of CPU resources.

5.2 Local controller validation

The first set of experiments is to validate whether the lo-
cal controller can accurately estimate resource needs using
fuzzy-modeling and fuzzy-prediction approaches under dy-
namically changing workload.

5.2.1 Fuzzy-modeling approach

In the first experiment, the workload generator issues ses-
sions to the Pet Store every 10 seconds. These sessions only
contain requests for static Web content with a user think-
time ranging from 0.1 to 1 second, and each session lasts
around 1 minute. The generated sessions are divided into
groups and the average user think-time of each group is de-
creasing, hence increasing the request rate among groups.
This setup emulates the presence of bursts in real-world
workloads. The entire experiment lasts for 4000 seconds.

Because the workloads used in this experiment consist of
only static Web-content requests, the CPU usage is highly

Fig. 9 Fuzzy models learned from the workload with static Web re-
quests at the beginning (model1) and the end (model2) of the experi-
ment

correlated with the request rate, which is then used as the
only metric to characterize the workload. In this case, the
input and output to fuzzy modeling are the request rate and
CPU usage measurements. The first 50 pairs of data points
collected from the sensors are used to initialize the learning
of the fuzzy model. Afterwards, the model is continuously
updated every 200 seconds (during which 10 new data points
become available from the sensors). Figure 9 illustrates the
models learned from the monitored data at the beginning
and the end of the experiment, which shows an approximate
linear relationship between the request rate and CPU usage1

in the range of 0 to 100 requests/second.
The local controller continuously estimates the CPU de-

mand based on the current workload and the latest learned
fuzzy model, and dynamically adjusts the CPU requests to
the global controller. Because the available resources are
sufficient in this experiment, the global controller always
allocates to the virtual container the exact amount of CPU
requested by the local controller. To prove the accuracy of
the fuzzy modeling, the same experiment is repeated on
the virtual container which is statically allocated with a
large amount of CPU (3.2 GHz) in order to obtain the ideal
throughput for the same workload.

The throughputs from these two runs are compared in
Fig. 10, indicating that the actual throughput obtained by
using the local controller is almost identical to the ideal
throughput. Compared to the static allocation of CPU with
the peak value (overprovision based on the highest load),
the dynamic approach saves about 55% of CPU cycles oth-
erwise needed for this experiment. This confirms that the
online fuzzy modeling can accurately learn the relationship
between the workload and resource demand, and effectively
guide the resource allocation for the virtual container.

In the second experiment, the workloads are generated
similarly to the previous one, except that requests for dy-
namic Web content are also considered. Every group of ses-
sions differs not only in the request rate but also in the pro-

1In VMware ESX Server, the amount of CPU allocation and usage can
be expressed in CPU frequencies (Hz).

222 Cluster Comput (2008) 11: 213–227

Fig. 10 Comparison of the throughput achieved by using local con-
troller and the ideal throughput for the workload with static Web re-
quests

Fig. 11 The surface of the fuzzy model learned from the workload
with dynamic Web requests

portion of dynamic requests in the workload: the ratio of dy-
namic to static requests grows from 0 to 1 across the groups.
Servicing dynamic Web content requires processing by the
application server and database, and thus typically consumes
more resources than servicing static Web content. If the local
controller still uses request rate as the only metric for repre-
senting workload, the resulting model cannot truly describe
the actual relationship between workload and resource de-
mand. The experiment results (observed but not shown here)
also confirm that the throughput achieved by using such a
model is much worse than the ideal throughput for the work-
load.

In contrast, using both the request rate and dynamic/static
request ratio to characterize the workload, a 3D fuzzy model
can be constructed to describe the relationship between
workload and resource demand more accurately. Figure 11
shows the surface of the model learned at the end of the ex-
periment. One of the advantages of fuzzy modeling demon-
strated by the above experiments is that fuzzy models are
well-suited for learning non-linear and complex relation-
ships.

Figure 12 compares the application’s throughput to the
ideal throughput obtainable for the workload. The graph
shows that the throughput achieved is again very close to its
ideal level (the difference is under 6%). It is also noticeable
that when the workload is high the difference becomes rela-
tively larger. This is because of the delay between the change

Fig. 12 Comparison of the throughput achieved by using local con-
troller and the ideal throughput for the workload with dynamic Web
requests

Fig. 13 Fuzzy model learned from the trace-based workload at the
beginning (model1) and the end (model2) of the experiment

of workload and resource allocation, which is largely due to
the granularity of the online monitoring and control. When
the workload is heavy, this delay causes the application’s
throughput to fluctuate a little around the ideal one. How-
ever, the overall error is still very low. About 33% of CPU
cycles are saved by this dynamic allocation, compared to a
fixed allocation where overprovision is based on the highest
load.

In the third experiment, the 1998 World Cup Web site
trace collected on May 31 from 5am to 5pm (local time
in Paris) is used to generate workload, and it is played at
12X speedup to enhance its intensity. All the documents
requested by the trace are created by the log replayer tool
based on the sizes recorded in the trace. Because only static
Web pages are requested in the trace replaying, the workload
is characterized by the request rate.

During the experiment, the first 30 measurements of
workload and CPU consumption are used to initialize the
fuzzy model. After that, the model is updated every 200
seconds. Figure 13 illustrates the model learned at the be-
ginning and the end of the experiment. Figure 14 shows
that the application’s throughput achieved by using the local
controller is close to the ideal throughput obtainable for the
workload (the difference is within 5%), indicating the effec-

Cluster Comput (2008) 11: 213–227 223

Fig. 14 Comparison of the throughput achieved by using local con-
troller and the ideal throughput for the trace-based workload

Fig. 15 Comparison of the throughput achieved by dynamic allocation
using fuzzy prediction approach and the ideal throughput with maximal
allocation

tiveness of the fuzzy-modeling approach under real-world
workloads. The dynamic allocation uses less than 30% of
the CPU cycles used by a static approach that allocates max-
imum CPU fraction based on the highest workload.

5.2.2 Fuzzy-prediction approach

Similar to the previous experiment, three days of web traces
from World Cup 98 Web site are chosen to generate work-
load and played at 24X speedup to reduce experiment du-
ration. During the experiment, only the CPU utilization of
the virtual container is measured and fed to local controller
every 20 seconds. The local controller applies the proposed
fuzzy-prediction approach to estimate resource needs for
each allocation interval (set to one minute in the experi-
ment).

The first 50 measurements are used to initialize the fuzzy
rules. Then the rule base is updated whenever the new CPU
usage measurement is available (every 20 seconds). For
every minute, the local controller estimates the CPU usage
for the next minute based on the fuzzy rules learned from the
pervious observations and then sends requests to the global
controller. The global controller adjusts the CPU allocation

Fig. 16 The CPU allocated to the virtual container by using local and
global controller

as required. Figure 15 shows the resulting throughput for the
trace-workload by using fuzzy prediction and the through-
put achieved by using maximal allocation (3.2 GHz). The
results are very close and the differences between them are
less than 1% on average. Figure 16 plots the CPU allocated
to the virtual container during the experiment and about 44%
resources can be saved using the dynamic allocation com-
pared with maximal allocation.

Comparing to the fuzzy-modeling approach, fuzzy pre-
diction can produce accurate short-term resource estima-
tion for local controllers. Fuzzy modeling applies clustering
techniques to provide concise data presentation, resulting in
smaller rule base (less than ten fuzzy rules during experi-
ments) than the one generated from the fuzzy-prediction ap-
proach (about several tens of fuzzy rules in the experiments).

5.3 Global controller validation

The last set of experiments investigates the allocation deci-
sions of the global controller among multiple virtual con-
tainers. Two virtual containers (VC1, VC2) running on the
same server node compete for the available CPU cycles (re-
stricted to 1 GHz in the experiment). Both containers host
the Java Pet Store application and two clients issue requests
for static Web content to them. VC1 serves a fixed work-
load, which has a constant request rate of 30 requests/sec;
while VC2 receives an increasing workload with a request
rate rising from 10 up to 60 requests/sec.

The local controllers of these two containers employ the
fuzzy modeling approach to dynamically estimate their CPU
demands for the workloads. The amounts of resources re-
quested by the two local controllers during the experiment
are plotted in Fig. 17. The local controller of VC1 requests
around 500 MHz of CPU throughout the entire experiment;
while VC2 increases its CPU request from about 200 MHz
to more than 800 MHz as its workload grows.

When the CPU needed by VC2 goes beyond 500 MHz,
the global controller responds to the resource shortage by

224 Cluster Comput (2008) 11: 213–227

Fig. 17 CPU requests from two virtual containers (VC1, VC2) that
share limited resources

Fig. 18 CPU allocation that favors VC2

Fig. 19 CPU allocation that favors VC1

reducing the CPU allocation to VC1 or VC2 or both. The
allocation policy of the global controller is to maximize its
profit by applying the greedy algorithm discussed in Sect. 4.
Two scenarios are considered in the experiments. In the first
case, the profit rate of VC2 is higher than VC1; therefore,
the global controller decides to satisfy the resource requests
from VC2 by reducing the allocation for VC1 whenever a
CPU shortage happens. Figure 18 shows the actual CPU al-
locations for the two containers throughout the experiment.
The second case considers the opposite situation where VC1
has a higher profit rate and thus is favored in the resource al-
location. In this case, VC2 suffers from a resource shortage
when the global controller cannot allocate enough resources
for both containers (Fig. 19). The greedy strategy to resource
allocation using the simplified profit model can be theoreti-

cally proved to be the optimal solution to maximize the total
profit.

6 Related work

To the best of our knowledge there is no prior work using a
fuzzy modeling approach to data center resource manage-
ment. The following briefly summarizes other work with
some common elements with this paper’s approach.

Rule-based systems: This approach uses a set of event-
condition-action rules (defined by system experts) that are
triggered when some precondition is satisfied (e.g., when
some metrics exceed a predefined threshold). For example,
the HP-UX Workload Manager [23] allows the relative CPU
utilization of a resource partition to be controlled within a
user-specified range, and the approach of Rolia et al. [12]
observes resource utilization (consumption) by an applica-
tion workload and uses some “fixed” threshold to decide
whether current allocation is sufficient or not for the work-
load. With the growing complexity of systems, even experts
are finding it difficult to define thresholds and corrective ac-
tions for all possible system states.

Control theory: Approaches based on control theory
have been applied to resource management to achieve per-
formance guarantees. Most of the work assumes a linear
relationship between the QoS parameters and the control
parameters, and involves a training phase with a given work-
load to perform system identification. Typically, control pa-
rameters must be specified or configured offline and on a
per-workload basis. Abdelzaher et al. [1] investigated this
approach for QoS adaptation in Web servers. In [19, 22],
a nonlinear relation between response time and CPU allo-
cation to a Web server is studied, and a bimodal model is
used to switch between underload and overload operating
regions. To deal with time-varying workloads, more recent
work applies adaptive control theory, in which models are
automatically adapted to changes using online system iden-
tification.

Model-based: Previous research efforts [4, 8, 13, 18, 20]
have been trying to model computer systems from different
perspectives. Bennani et al. [3] predicts the response time
and throughput for both online and batch workloads using
multiclass open queueing networks. Liu et al. [9] uses AR
models to map CPU entitlement percentage to the mean re-
sponse time with a fixed workload. Chandra et al. [4] mod-
els the resource using a time-domain queueing model which
relates the resource requirements to its workload. Some of
these approaches make simplifying assumptions such as us-
ing a single queue to model the whole system, which may
fail to capture complexities of the relationship between ap-
plication workload and resource usage. Some models are
validated only using simulations.

Cluster Comput (2008) 11: 213–227 225

Reinforcement learning (RL): Tesauro [16] proposed to
use reinforcement learning for autonomic resource allo-
cation. Compared with our fuzzy-logic-based approaches,
both can automatically learn from past experiences with-
out an explicit performance model. However, RL usually
uses lookup table to store the information it obtained from
training data. The size of table increases exponentially with
the number of state variables, causing the scalability issue.
Fuzzy rule based system keeps its knowledge more effi-
ciently in the form of fuzzy rules and fuzzy membership
functions. RL may also have a long training time due to
the absence of domain knowledge or good heuristics, while
the construction of fuzzy rule base in our approach does not
require time-consuming training. In [17], the authors pro-
posed to use a hybrid RL method combining RL and queuing
models, in which RL trains offline on data collected while a
queuing model policy controls the system to avoid perfor-
mance degradation in live online training.

Fuzzy control: Diao et al. [6] proposed a profit-oriented
feedback control system for maximizing SLA profits in Web
server systems. The control system applies fuzzy control to
automate the admission control decisions in a way that bal-
ances the loss of revenue due to rejected work against the
penalties incurred if admitted work has excessive response
time.

The proposed resource management system in this paper
differs from the prior work in the following aspects:

• The resource control functions are separated between re-
source provider and application provider, which makes
the design of data center resource management more flex-
ible and robust. Each local controller tries to maximize its
profits by requesting “just enough” resources for satisfy-
ing application SLAs as well as reducing unnecessary re-
source cost. The global controller takes into account the
tradeoff between revenue obtained from satisfied resource
requests and cost from violations of resource SLAs.

• Fuzzy-logic-based approaches provide a generic ap-
proach to representing the relationship between system
variables. It can be easily applied to any type of applica-
tions hosted in virtual containers. This approach makes
no underlying assumption of the workload characteris-
tics, and can learn any type of relationship very fast. Es-
pecially, the fuzzy system can efficiently model the non-
linear system with dynamically changing operating con-
ditions.

• The resource management process is automatic without
any human intervention. The fuzzy rules are automati-
cally learned from online monitoring data and the knowl-
edge base is updated continuously as new data arrives,
enabling the system to capture transient or unexpected
workload changes.

7 Conclusions and future work

This paper presents a flexible two-level resource manage-
ment system that is able to provide high quality of service
with much lower resource allocation costs than worst-case
provisioning. At the application level, to enable the local
controller to accurately estimate the resource demands for
different workloads, two fuzzy logic based methods—fuzzy
modeling and fuzzy prediction—are proposed to guide re-
source allocation based on online measurements. Both ap-
proaches have an adaptive learning ability, thus requiring no
prior knowledge about the system or the application. Specif-
ically, the fuzzy modeling approach characterizes the map-
ping from the workloads and the corresponding resource
requirements, while the fuzzy prediction builds a mapping
from current resource usage to future resource needs. In this
context, “adaptive” means that the mapping can be easily up-
dated when new information is available in order to adapt to
the system changes and reflect the most recent system con-
ditions. The global controller at the resource-pool level tries
to find the optimal resource allocation based on the proposed
profit model, towards maximizing the total profit of the data
center.

Our approach, in conjunction with virtualization tech-
niques, can provide application isolation and performance
guarantees in the presence of changing workloads by dy-
namically allocating resources at fine time granularity,
which results in high utilization and low cost as well. The
proposed resource management system is implemented on a
virtualized data center testbed and evaluated using applica-
tions that are representative of e-business and Web-content
delivery scenarios. Both synthetic and real-world Web work-
loads are used to evaluate the effectiveness of the approach.
The experimental results show that the system can signifi-
cantly reduce resource cost while still guaranteeing applica-
tion QoS in various scenarios.

Future papers will consider the cost of virtual machine
migration (i.e., reassignment of a virtual machine to an-
other physical host due to resource shortage in the current
host). The profit model described in (3) does not include
the migration cost (i.e., the cost is assumed to be zero).
This assumption is reasonable in the scenario where the
data center’s physical resources reside in one location and
they have adequate network bandwidth so that the migra-
tion could take place in less than a few seconds. However,
in the case of scale-out data centers where the migrations
may happen between different locations, the migration delay
could be significant. The cost due to the resource overhead
and reallocation delay should be incorporated into the profit
model, which makes the profit optimization much harder.
The global controller has to determine not only the quantity
of physical resources allocated to each virtual container, but
also the location of those virtual containers (i.e., which phys-
ical server is assigned to host the virtual container) at each

226 Cluster Comput (2008) 11: 213–227

allocation period. The global controller’s allocation vector
extends to ((alct1; loct1), (alct2; loct2), . . . , (alctK ; loctK))

in which alctk and loctk represent the amount of the phys-
ical resources assigned to the kth virtual container and its
location at time t . If lock is changed from time t to t + 1,
it indicates that the virtual container k is moved from one
host to another. The cost of resource overhead and potential
performance loss caused by migration should be deducted
from the data center’s profit which is then redefined as, for
one allocation period t ,

profitt ((alct1; loct1), (alct2; loct2), . . . , (alctK ; loctK))

=
K∑

k=1

[revtkalctk − pnlk(reqk − alck)

(4)
− migr(loctk − loc(t−1)k)]

migr(loctk − loc(t−1)k) =
{

0 if loctk = loc(t−1)k

migr otherwise

where migr is the cost of moving a virtual container from
one host to another. Clearly, the assertion that an allocation
decision for a given period won’t affect the future profit is
no longer valid and the global controller has to make better
decisions than merely maximizing its profit for the current
period. Considering the effect on future periods, the cumu-
lative profit over a time horizon T defined in (3) is rewritten
as follows, for T allocation periods,

T∑

t=1

γ tprofitt =
T∑

t=1

K∑

k=1

γ t [revkalctk − pnlk(reqk − alctk)

− migr(loctk − loc(t−1)k)] (5)

To maximize the profit using the above model is much more
complicated than using (3) because each allocation deci-
sion will affect the future decisions and the resulting profit
as well. Moreover, the above profit formula requires the
information about the future resource requests alctk (t =
2, . . . , T), indicating that the local controllers have to pro-
vide n-step ahead forecast of resource needs. How to incor-
porate forecasting component into the local controllers and
how to solve the optimization problem (5) in the global con-
troller are the subject of ongoing work.

Acknowledgements This work was supported in part by an In-
tel grant (IT R Council), National Science Foundation grant CNS-
0540304, the BellSouth Foundation, equipment awards from DURIP
and IBM and software donations from VMware. Any opinions, find-
ings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of
the National Science Foundation, BellSouth Foundation, Intel, IBM,
or VMware.

References

1. Abdelzaher, T., Shin, K.G., Bhatti, N.: Performance guarantees for
web server end-systems: a control-theoretical approach. In: IEEE
Trans. Parallel Distrib. Syst. 13(1) (2002)

2. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtual-
ization. In: Proc. of the ACM Symposium on Operating Systems
Principles (SOSP), October 2003

3. Bennani, M.N., Menascé, D.A.: Resource allocation for auto-
nomic data centers using analytic performance models. In: Proc.
of 2nd IEEE International Conference on Autonomic Computing
(ICAC) (2005)

4. Chandra, A., Gong, W., Shenoy, P.: Dynamic resource allocation
for shared data centers using online measurements. In: Proc. of
IEEE International Workshop on Quality of Service (IWQoS),
June 2003

5. Chiu, S.: Fuzzy model identification based on cluster estimation.
J. Intell. Fuzzy Syst. 2(3) (1994)

6. Diao, Y., Hellerstein, J.L., Parekh, S.: Using fuzzy control to max-
imize profits in service level management. IBM Syst. J. 41(3)
(2002)

7. Dike, J.: A user-mode port of the Linux kernel. In: Proc. of 4th
Annual Linux Showcase & Conference (ALS 2000) (2000)

8. Doyle, R., Chase, J., Asad, O., Jin, W., Vahdat, A.: Model-based
resource provisioning in a web service utility. In: Proc. of the 4th
Conference on USENIX Symposium on Internet Technologies and
Systems, March 2003

9. Liu, X., Zhu, X., Singhal, S., Arlitt, M.: Adaptive entitlement
control of resource containers on shared servers. In: Proc. of 9th
IFIP/IEEE International Symposium on Integrated Network Man-
agement, May 2005

10. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Com-
puter Implementations. Wiley, New York (1990)

11. Mosberger, D., Jin, T.: httperf: a tool for measuring web server
performance. Perform. Eval. Rev. 26(3) (1998)

12. Rolia, J., Cherkasova, L., McCarthy, C.: Configuring workload
manager control parameters for resource pools. In: Proc. of 10th
IEEE/IFIP Network Operations and Management Symposium
(NOMS), April 2006

13. Sha, L., Liu, X., Lu, Y., Abdelzaher, T.: Queueing model based
network server performance control. In: Proc. of the 23rd IEEE
Real-Time Systems Symposium (RTSS’02) (2002)

14. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qual-
itative modeling. IEEE Trans. Fuzzy Syst. 1(1) (1993)

15. Sugerman, J., Venkitachalam, G., Lim, B.: Virtualizing I/O de-
vices on VMware workstation’s hosted virtual machine monitor.
In: Proc. of 2001 USENIX Annual Technical Conference, June
2001

16. Tesauro, G.: Online resource allocation using decompositional re-
inforcement learning. In: Proc. of the Twentieth National Confer-
ence on Artificial Intelligence (AAAI-05), July 2005

17. Tesauro, G., Jong, N., Das, R., Bennani, M.: On the use of hybrid
reinforcement learning for autonomic resource allocation. Clust.
Comput. 10(3) (2007)

18. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.:
An analytical model for multi-tier internet services and its applica-
tions. In: Proc. of ACM Sigmetrics Conference (SIGMETRICS),
Jun 2005

19. Wang, Z., Zhu, X., Singhal, S.: Utilization and SLO-based con-
trol for dynamic sizing of resource partitions. In: Proc. of 16th
IFIP/IEEE Distributed Systems: Operations and Management
(DSOM), October 2005

20. Xu, W., Zhu, X., Singhal, S., Wang, Z.: Predictive control for dy-
namic resource allocation in enterprise data centers. In: Proc. of
2006 IEEE/IFIP Network Operations & Management Symposium,
April 2006

Cluster Comput (2008) 11: 213–227 227

21. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
22. Zhu, X., Wang, Z., Singhal, S.: Utility-driven workload manage-

ment using nested control design. In: Proc. of American Control
Conference (ACC), June 2006

23. HP-UX Workload Manager, http://docs.hp.com/en/5990-8153/
ch05s12.html

24. See http://www.cs.virginia.edu/~rz5b/software/software.htm
25. See http://ita.ee.lbl.gov/html/contrib/WorldCup.html
26. See https://blueprints.dev.java.net/petstore/

Jing Xu is a PhD candidate in the
Department of Electrical and Com-
puter Engineering and a member of
the Advance Computing and Infor-
mation Systems Laboratory at the
University of Florida. She received
the degree of B.E. from University
of Science and Technology of China
in 2002. Her research interests are in
the areas of distributed/grid comput-
ing, autonomic computing, and vir-
tualization.

Ming Zhao is a PhD candidate in
the Department of Electrical and
Computer Engineering and a mem-
ber of the Advance Computing and
Information Systems Laboratory at
the University of Florida. He re-
ceived the degrees of BE and ME
from Tsinghua University. His re-
search interests are in the areas of
distributed computing, autonomic
computing, and virtualization. He
is a student member of IEEE and
ACM.

José Fortes (S’80–M’83–SM’92–
F’99) received the Ph.D. degree
in electrical engineering from the
University of Southern California,
Los Angeles, in 1984. From 1984
to 2001, he was on the faculty of
the School of Electrical and Com-
puter Engineering, Purdue Univer-
sity, West Lafayette, IN. In 2001,
he joined both the Department of
Electrical and Computer Engineer-
ing and the Department of Com-
puter and Information Science and
Engineering, University of Florida,
Gainesville, as a Professor and Bell-

South Eminent Scholar. At the University of Florida he founded and
directs the Advanced Computing and Information Systems (ACIS) lab-
oratory and the NSF Industry-University Cooperative Center on Au-
tonomic Computing. His current research interests are in the areas of
distributed computing and autonomic computing. Dr. Fortes was a Dis-
tinguished Visitor of the IEEE Computer Society from 1991 to 1995.

Robert Carpenter joined Intel in
1997 after a 20-year career as an at-
torney, retiring as district attorney
of Greene County, NY in 1996. For
many years, he taught mathemat-
ics at Bard College and later law
at Albany Law School. After serv-
ing as the Business Process Automa-
tion architect within IT, he was the
IT architect for SOE [Service Ori-
ented Enterprise] working closely
with the platform groups sharing
time between Beta SI and IT Re-
search. Robert Carpenter was de-
ceased on November 2nd, 2007.

Mazin Yousif is a Chief Systems
Architect at Numonyx Corporation.
Prior to that, Mazin was a Principal
Engineer and Director in the Corpo-
rate Technology Group of Intel Cor-
poration in Hillsboro, OR, where he
led a team that focused on platform
provisioning & virtualization to en-
able platform autonomics & Capac-
ity on Demand (CoD) in a Scale-
out Environment. Mazin was also
one the principal architects defining
the InfiniBand Architecture, during
which he chaired the Management

Working Group (MgtWG) in the InfiniBand Trade Association (IBTA).
From 1993 to 1995, he was an assistant professor in the Computer
Science Department at Louisiana Tech University. Mazin worked for
IBM’s xSeries Server Division in Research Triangle Park (RTP), NC,
from 1995–2000. Mazin also served as Adjunct Professor at several
universities including the Oregon Graduate Institute (OGI), Duke Uni-
versity and North Carolina State University.
Mazin finished his Master and Ph.D. degrees from the Pennsylvania
State University in 1987 and 1992, respectively.
Mazin’s research interests include Computer Architecture, Autonomic
and Grid Computing, Clustered Architectures, workload characteriza-
tion and workload-driven platform architectures He has published 50+
articles in his areas of research. Mazin chaired the program commit-
tee of several conferences and workshops and has been in the program
committees of many others. Mazin is in the advisory board of the Jour-
nal of Pervasive Computing and Communications (JPCC), and is an
editor in Cluster Computing, the Journal of Networks, Software Tools
and Applications. He is also in the Advisory board of ERCIM. Mazin
is an IEEE senior member.

http://docs.hp.com/en/5990-8153/ch05s12.html
http://docs.hp.com/en/5990-8153/ch05s12.html
http://www.cs.virginia.edu/~rz5b/software/software.htm
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
https://blueprints.dev.java.net/petstore/

	Autonomic resource management in virtualized data centers using fuzzy logic-based approaches
	Abstract
	Introduction
	Two-level autonomic resource control
	Local resource controller
	Background
	Virtual container run-time behavior
	Fuzzy-modeling approach
	Data monitoring and filtering
	Data clustering and fuzzy rule construction
	Fuzzy inference
	Adaptive modeling

	Fuzzy-prediction approach
	Fuzzy rule construction
	Fuzzy rule update
	Fuzzy inference

	Global resource controller
	Experimental evaluation
	Experimental setup
	Data center testbed
	Application and workload
	Global/local controller prototype

	Local controller validation
	Fuzzy-modeling approach
	Fuzzy-prediction approach

	Global controller validation

	Related work
	Conclusions and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

