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Abstract— Due to the popularity and importance of Parallel 

File Systems (PFSs) in modern High Performance Computing 

(HPC) centers, PFS designs and I/O optimizations are active 

research topics. However, the research process is often time-

consuming and faces cost and complexity challenges in deploying 

experiments in real HPC systems. This paper describes PFSsim, 

a trace-driven simulator of distributed storage systems that 

allows the evaluation of PFS designs, I/O schedulers, network 

structures, and workloads. PFSsim differentiates itself from 

related work in that it provides a powerful platform featuring a 

modular design with high flexibility in the modeling of 

subsystems including the network, clients, data servers and I/O 

schedulers. It does so by designing the simulator to capture 

abstractions found in common PFSs. PFSsim also exposes script-

based interfaces for detailed configurations. Experiments and 

validation against real systems considering sub-modules and the 

entire simulator show that PFSsim is capable of simulating a 

representative PFS (PVFS2) and of modeling different I/O 

scheduler algorithms with good fidelity. In addition, the 

simulation speed is also shown to be acceptable. 
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I. INTRODUCTION 

In modern High Performance Computing (HPC) systems, 
Parallel File Systems (PFSs) are widely adopted as the storage 
solutions, such as Lustre [1], PVFS2 [2], PanFS [3], GPFS [4] 
and Ceph [5]. To improve the system throughput or provide 
Quality of Service (QoS) guarantees, researchers also design 
I/O scheduling algorithms for these systems [6-10]. However, 
to thoroughly study those designs on large scale storage 
systems is costly. As a complement, simulation offers very 
useful insights in the performance trends and allows the 
pruning of the design space before implementation and 
evaluation on a real testbed or a deployed system. 

In this paper, we present PFSsim (Parallel File System 
simulator), a PFS simulator allowing modeling and evaluations 
on PFS designs, network structures, I/O schedulers and 
workloads. Developed based on the OMNeT++ [11] network 
simulation framework, PFSsim provides these main features: 1) 
Pluggable scheduling module: I/O scheduling algorithms can 
be easily deployed to any I/O buffer component. System 
information can also be probed by the scheduler. 2) High 
flexibility: Common PFSs can be supported through 
configuration of its modules; detailed customization options 
are offered, including network topology, cache systems, and 

disk systems. 3) High fidelity: Most of the major I/O 
performance impact factors in PFSsim are simulated and 
subsystems have been validated, allowing PFSsim to capture 
I/O performance with good accuracy.  

The rest of the paper is organized as follows. Section II 
overviews the state of art on PFS simulators.  Section III 
discusses real-world PFS-based storage systems, which provide 
the guidelines for the simulator design. Section IV describes 
the implementation details of PFSsim. Section V presents and 
evaluates the simulator validation results. Section VI concludes 
the paper and overviews future work. 

II. RELATED WORK 

Many distributed storage system simulators have been 
developed throughout the past decade. With different emphasis 
in design, each of them has outstanding features in particular 
areas. In this section, we briefly compare PFSsim with some of 
the most related works. 

HECIOS [12] is a PFS simulator developed by the Parallel 
Architecture Research Laboratory for the tests on PVFS2. In 
HECIOS, detailed caching mechanisms, file systems and disk 
drives are simulated, and schedulers for the PFS server 
application and storage disk are introduced as well. The 
HECIOS simulator is capable of simulating very detailed 
PVFS2-based systems with good fidelity. But, as a tradeoff of 
offering such details, HECIOS sacrificed its flexibility in 
providing good support for more generic design problems. For 
example, it is not straightforward to tune the system to simulate 
parallel file systems not using BMI protocols, and for many 
modules on the I/O path (e.g., the network proxies), it is not 
easy to deploy specific scheduling algorithms on them. 

SIMCAN [13] is a general-purpose storage network 
simulation platform, with the design goal of simulating a large 
variety of HPC systems with flexibility and scalability. The 
modular design facilitates users in system reconfiguration 
through tuning the detailed storage, memory, CPU and network 
subsystems. SIMCAN has modeled the computing nodes and 
the storage nodes, which are developed with detailed layered 
I/O modules mimicking the I/O stack in real systems. However, 
since SIMCAN is not specifically designed for PFS 
simulations, PFS features such as data stripping and metadata 
management are not supported. Moreover, I/O optimization 
researchers may also find it not straightforward to set up I/O 
schedulers in many subsystems of SIMCAN. 
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The CODES [14] simulator is proposed for the evaluation 
of exascale storage system designs. CODES models the 
Argonne Leadership Computing Facility’s (ALCF) computing 
and data storage environment. Several hardware and software 
parameters, such as the network throughput and latency, CIOD 
transfer size, and data stripe size are configurable. For the 
simplified architecture and ROSS simulation platform it is built 
on, CODES is able to simulate systems at a large scale. 
However, as some of the I/O subsystems are omitted in 
CODES (such as network devices and caching subsystems), it 
may lose simulation fidelity in many use cases. 

IMPIOUS [15] is a simulator designed for fast PFS design 
evaluations. IMPIOUS simulates a simplified PFS architecture 
by providing core components: the clients, the Object Storage 
Devices (OSDs) and a simplified network. The limitation of 
this work is that it has very limited capability of simulating and 
customizing the details of a storage system, so many aspects of 
the real systems cannot be reflected in the simulation result. 

PFSsim differentiates from the aforementioned work in that 
it models all I/O modules in common PFSs to provide a 
flexible, complete and detailed PFS testbed for comprehensive 
experiments. PFSsim also fully supports scheduler 
deployments, in that it provides pluggable scheduler modules, 
as well as APIs for retrieving the system runtime information 
and collaborating with other schedulers. 

III. SYSTEM MODELING 

To achieve the goal of simulating a variety of PFSs and I/O 
schedulers, we studied the system architecture and I/O 
overhead in many existing systems. In this section, we discuss 
our approach in modeling the PFS system and I/O schedulers. 

A. Parallel File System Overview 

In parallel file systems, data are often managed in terms of 
“objects” (or equivalent terms). A typical PFS has three major 
components: 1) Client: Provides the interface (e.g., POSIX) for 
the user processes to access the PFS, and requests data I/O by 
communicating with data servers and metadata servers. 2) Data 
Server (or Object Storage Devices, OSDs): Serves data to 
clients. Data are often stored in the form of objects on the local 
storage system. 3) Metadata server: Manages the mapping 
from PFS file name space to PFS storage object name space, 
and handles file metadata operation requests. 

During the processing of a normal user I/O request (data 
read/write operation), the above three PFS components are 
involved in four major steps (Fig. 1). 1) File I/O request: The 
user process initializes the I/O by sending a request to the PFS 
client application. 2) Object mapping: The PFS client 
application finds out how the target file is stored in PFS, 
querying the metadata server if required. Based on the 
computation of data striping, the client knows the data are 
stored in some objects. 3) Object Locating: The client locates 
the objects on the data servers storing them. This mapping 
information is often locally available for the client. 4) Data 
transmission: The client initiates the data transmission with the 
corresponding data servers. The data I/O lasts until all the data 
are transmitted. Note that the I/O process shown in this 
example is a general data processing approach, and different 
PFS protocols may implement them in slightly different ways. 

B. The PFS Subsystem 

In a PFS subsystem, there are four aspects that may have 
significant impacts on system I/O performance [16]. 1) 
Metadata management: Metadata I/O is often a critical part of 
system data I/O. In PFS, one or more metadata servers can be 
utilized. In the latter case, metadata servers may be organized 
in a pattern, for example, the dynamic metadata management in 
Ceph. 2) Data placement strategy: A common data placement 
technique is to stripe data into data objects, which are 
distributed onto multiple data servers. The goal of data 
distribution schemes is to statistically balance the load on each 
data server, but the implementations may vary among PFSs. 
For instance, PVFS2 delegates to users the responsibility to 
specify the stripe size and data servers to store specific data 
files while many other PFSs do not. 3) Data replication model: 
Duplicated data may incur overheads in duplicate I/O and data 
integrity checks. For example, in Ceph if data replication is 
enabled, every write operation will be committed to multiple 
OSDs in a placement group, which brings additional overhead. 
4) Data caching policy: Data caching on the data server or the 
client may improve the PFS I/O performance, at the cost of the 
data copy coherency management. PanFS implements data 
caching at both client and server. Some PFSs, such as PVFS2, 
do not support client caching by default, but note that the 
native file system may still have caching enabled. 

C. The Data Server Subsystem 

Typically, there are two types of I/O flow architectures 
inside a PFSsim data server (Fig. 2). Fig. 2 (a) shows the PFSs 
that are built upon the physical disks, in which the data server 
applications manage the disk cache and block devices directly. 

 
Fig. 1. The process of an example user I/O request in PFS 
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Fig. 2. The modules and I/O flows in the data server  



These PFSs include Lustre, GPFS and PanFS. Fig. 2 (b) shows 
the PFSs that are built on the native file systems. These PFSs 
often interact with the local storage system through the virtual 
file system interface. PVFS2 and Ceph are two representative 
PFSs designed in this scheme. 

D. The I/O Scheduler Subsystem 

In recent years, many distributed storage system I/O 
management solutions have been proposed, involving both 
centralized and decentralized schemes, as well as various 
deployment locations for different system needs. It is common 
for I/O schedulers to be transparently deployed on network 
nodes such as gateways or proxies. In Façade [6], the I/O 
scheduler is deployed on a centralized proxy, which interposes 
all the system I/O and forwards them to the storage devices. In 
Xu et al. [7], the I/O management policies are deployed on per-
server proxies, which intercept I/O and virtualize the data 
servers to the system clients. In Wang et al. [8], the scheduling 
algorithms are deployed on distributed Coordinators [9]. 
Meanwhile, Scheduling algorithms can also be implemented on 
the PFS data servers as part of the fundamental PFS services. 
Some PFS have internal scheduling modules on the data server 
applications. For instance, Ross et al. [10] describe the server-
side scheduling mechanisms in PVFS2 data servers. Specific 
scheduling algorithms also exist on the lower layers of a data 
server, for example, the disk systems may adopt the SSTF or 
SCAN algorithms to reduce the total disk seek time. 

IV. SIMULATOR IMPLEMENTATION 

PFSsim is implemented based on the network simulation 
framework OMNeT++. The code is open source and available 
to the community [17]. PFSsim provides the following major 
components: PFS client, PFS metadata server, PFS server and 
network devices. Those components are connected by the 
simulated network, and the I/O scheduler can be deployed 
inside any component. Fig. 3 illustrates the simulated 
architecture of an example PFS with per-server proxies [7], 
including interconnection network clients, metadata servers 
and I/O proxies. The proxies and data servers are linked by 
another network (e.g., SAN) or located on the same host 

machine on a “one proxy per server” basis. The I/O schedulers 
are deployed on the proxies. The major modules of PFSsim are 
described in detail in the following subsections. 

A. PFS Client 

The PFS Client contains two major modules: the user 
application module and the PFS client application module. 
These modules communicate by passing file I/O requests and 
responses. A user application module reads the I/O traces from 
a trace file, and outputs each data I/O’s processing timestamps 
to the result file. Each trace file represents the workload from 
one application, and it contains the information for every data 
I/O, including start time, file ID, offset, size, R/W, and 
application ID. This trace file can be generated by a real system 
at the I/O clients. The PFS client application module may 
query the metadata server for the data layout of PFS files, and 
it conducts the data I/O with the data servers. The file metadata 
and I/O data are cacheable at the PFS client application module. 

B. PFS Data Server 

Using a data server with Linux kernel 2.6 as prototype 
reference, we designed the internal modules of the data server 
in PFSsim. The architecture is the same as the one shown in 
Fig. 2. The PFS data server application module receives the 
PFS I/O requests from the clients and maps the objects to the 
files in the native file system or blocks on the local disk. It may 
buffer the traffic to schedule the I/O. The virtual file system 
module translates the requests with offset and size in the target 
files to the page address space. It issues I/O to the disk cache or 
the disk file system (with O_DIRECT set). In the disk cache 
module, the cache size, page size, and cache read/write speeds 
are configurable. The disk cache has realized a page table by a 
per-file ordered doubly-linked list (page-table-list) with each 
node storing a chunk of adjacent pages that have identical page 
flag settings (e.g., PG_dirty). Each node in the page-table-list 
is also in a page reclaiming list, where the LRU (Least 
Recently Used) algorithm is implemented. The local disk file 
system module manages the block layouts for the files in the 
generic block address space exposed by the disk system. It is 
able to read the file layout from an input script and mimic the 
EXT2 disk space allocation schemes. In the disk system 
module, the disk I/O speed is modeled based on statistics 
extracted from real disks. In PFSsim, disk I/O speed is 
modeled based on the disk tracks, I/O size, R/W and the disk 
head movement distance.  The simulator package includes 
scripts for users to easily extract the disk parameters from a 
real disk device. 

C. PFS Metadata Server 

The metadata servers provide the data layout and other 
metadata to the clients. The data layout information is specified 
by the scripts from users. In the current version, all the PFS 
metadata are stored on the metadata server. Deployment of 
multiple metadata servers is supported in PFSsim. Cooperative 
metadata management schemes are also possible. 

D. I/O Scheduler 

In PFSsim, the I/O scheduler module is capable of: 1) 
Offering flexibility for users to easily associate I/O scheduling 
algorithms to any I/O buffer in the system. PFSsim couples the 
scheduling algorithms with the I/O queue classes, as shown in 

 
Fig. 3. The simulated architecture of an example PFS server 



Fig. 4. The I/O queue is widely implemented in PFSsim for the 
simulation of I/O buffers. 2) Enabling inter-scheduler 
information delivery interface for decentralized scheduling. 
The SMessage objects are used to carry the scheduling 
information between schedulers (Fig. 4). These messages can 
be sent through the existing network connections, or through 
separate channels defined by users. 3) Providing ways for the 
I/O schedulers to probe the real-time system status. If the status 
is locally available to the scheduler, the user can probe the 
system status by accessing the module’s status variables. 
Otherwise, the module providing the status can encapsulate the 
information in SMessages and send them to the schedulers. 

E. Network and Network Devices 

The network connection is modeled by the OMNeT++ 
components, which offer bandwidth and latency configurations. 
The router/switch module redirects the packets in the network. 
The packets may be buffered and delayed on the router/switch 
due to data congestion. The proxy module is introduced to host 
the network I/O schedulers. The I/O queue class can be 
implemented on the proxy modules so that the I/O scheduling 
algorithms can be deployed. 

V. VALIDATION AND EVALUATION 

The testbed physical cluster contains 16 nodes. Each node 
contains 2 six-core 2.4GHz Opteron CPUs, 24GB of RAM and 
7200 RPM SAS disk. Between any two nodes, the average 
network bandwidth is 970Mbit/sec, and the average network 
latency is 0.075ms. The local loopback network has 0.01ms 
latency, and 11.3Gbit/sec bandwidth. PVFS2 with Linux kernel 
2.6.32 is deployed on each node. The local disk file systems 
are in EXT3 format. In each Linux kernel, the dirty_ratio is set 
to be 20%. PFSsim is configured according to the parameters 
gathered from the real system, including disk system, caching 
system, PFS, and network. We used IOR [18] as the 
benchmark workload generator. The I/O traces for PFSsim are 
generated on the clients. All tests are run 5 times and the 
average values are used in the result analysis. 

To validate the model of a data server, we have 
implemented a single-server PVFS2 system. The client is 
located on the same node as the data server. The total I/O size 
is 1GB, and the I/O is directed to one file. Fig. 5 shows the 
average throughput of the real and simulated systems in three 
test cases: reading from cache, reading from disk and writing. 
We notice that because of the metadata overhead, smaller 
request sizes result in lower throughput. But the throughput 
eventually reaches a ceiling when request size is large enough; 

this is because the cache or disk I/O is saturated.  To validate 
the network, we have run another two sets of tests with the 
client deployed on another machine. Fig. 6 shows the average 
I/O throughput for reading from disk and writing. In these tests, 
the lower network bandwidth brings significant overhead. In 
this sequence of tests, the simulation results show good fidelity. 
The discrepancies in those simulated results are mainly due to 
the network and PFS-specific protocols that are abstracted or 
omitted in PFSsim. 

In the PFS validation, we have deployed PVFS2 data 
servers across 8 physical nodes, using one of them also as the 
metadata server. The data files are evenly distributed onto the 
data servers with stripe size 64KB. Each client sequentially 
accesses a 512MB file, and each I/O request is 256KB. Tests of 
sequential disk reads and sequential writes are conducted, with 
the number of clients varying from 1 to 128. Fig. 7 shows the 
total system throughput for the read/write I/O on both the real 
system and PFSsim. The simulation results follow the trend of 
real system results well. For the read I/O tests, the system 
throughput grows as the number of clients grows when clients 
are fewer than 16, which is due to higher server utilization. But 
the throughput decreases afterwards. This is because the disk 
head movement is increased for seeking among more file 
locations while serving different I/Os concurrently. For the 
write I/O, the total I/O throughput grows due to higher server 
utilization, but the throughput is greatly downgraded with 128 
clients. This is because the dirty pages on each data server (in 
total 8GB) exceed the dirty_ratio threshold (about 4.8GB). 
Therefore, more overhead is brought by explicit page write-
backs. 

We evaluate the I/O scheduler of PFSsim on proxies. The 
testbed contains 4 PVFS2 data servers and 1 metadata server. 
On each data server node, a proxy is also implemented to 
intercept the I/O traffic. We deployed the SFQ(4) algorithm 
[19] on each of the proxies. We divide the clients into 2 groups 
(G1 and G2), each with 16 clients. Each client issues sequential 
read/write I/O to a 400MB file; each I/O request is 1MB. All 
files are evenly distributed on all the data servers with stripe 
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Fig. 4. The structure of the I/O queue class 
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Fig. 5. Average throughput of local single-server PFS read/write 
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Fig. 6. Average throughput of remote single-server PFS read/write 



size 4KB. Three sets of tests are conducted, with weight ratios 
1:1, 1:2, 1:4 for G1:G2 in SFQ(4). We monitor the real-time 
system throughput ratio change and the average I/O throughput 
ratio during the first 40 seconds of system runtime. Fig. 8 
shows the changes in throughput ratio of Group2 during the 
runtime. The average throughput ratios are in the brackets in 
the legend. The simulated average throughput ratios are shown 
to have good accuracy. Also, the simulated results are able to 
show that the oscillations in the I/O throughput grow as the 
share ratio becomes more imbalanced. 

Table I shows the simulation efficiency of PFSsim. We run 
tests on a personal laptop with quad-core 2.13GHz Intel Core 
i3 CPU and 3GB of RAM. In total, each client issues 128MB 
sequential read/write data I/O to a file, and the total simulation 
time is measured with various request sizes. 

VI. CONCLUSION AND FUTURE WORK 

This paper shares the experience in building a general 
purpose PFS simulator that is easy to use, modular, and 
flexible to support customizations of different parallel file 
system design points. The approach in this paper presents a 
storage system modeling methodology, and the PFSsim 
simulator can be delivered as a fundamental I/O system 
simulation tool for the PFS research community. In the future 
work, PFSsim will be validated with more real workloads and 
more PFS systems. Large scale parallel simulations will also be 
researched. 
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Fig. 7. Average throughput of PFS read/write I/O 
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Fig. 8. Throughput ratio of G2 in the SFQ(D) algorithm 

TABLE I.  SIMULATION TIME SPAN 

Request 

Size 

Read Write 

8:8
a
 512:8 512:32 8:8 512:8 512:32 

16KB 9s 2095s 1909s 9s 2832s 1142s 

256KB 8s 1618s 1220s 7s 1751s 548s 

4MB 7s 1318s 1404s 5s 1578s 523s 

a. The notation in this row stands for number of clients vs. number of servers. 

 


