
On the Design and Implementation of a Simulator for

Parallel File System Research

Yonggang Liu, Renato Figueiredo

Department of Electrical and Computer Engineering

University of Florida

Gainesville, FL

{yonggang,renato}@acis.ufl.edu

Yiqi Xu, Ming Zhao

School of Computing and Information Sciences

Florida International University

Miami, FL

{yxu006,ming}@cis.fiu.edu

Abstract— Due to the popularity and importance of Parallel

File Systems (PFSs) in modern High Performance Computing

(HPC) centers, PFS designs and I/O optimizations are active

research topics. However, the research process is often time-

consuming and faces cost and complexity challenges in deploying

experiments in real HPC systems. This paper describes PFSsim,

a trace-driven simulator of distributed storage systems that

allows the evaluation of PFS designs, I/O schedulers, network

structures, and workloads. PFSsim differentiates itself from

related work in that it provides a powerful platform featuring a

modular design with high flexibility in the modeling of

subsystems including the network, clients, data servers and I/O

schedulers. It does so by designing the simulator to capture

abstractions found in common PFSs. PFSsim also exposes script-

based interfaces for detailed configurations. Experiments and

validation against real systems considering sub-modules and the

entire simulator show that PFSsim is capable of simulating a

representative PFS (PVFS2) and of modeling different I/O

scheduler algorithms with good fidelity. In addition, the

simulation speed is also shown to be acceptable.

Keywords— simulation; parallel file system; I/O scheduling

I. INTRODUCTION

In modern High Performance Computing (HPC) systems,
Parallel File Systems (PFSs) are widely adopted as the storage
solutions, such as Lustre [1], PVFS2 [2], PanFS [3], GPFS [4]
and Ceph [5]. To improve the system throughput or provide
Quality of Service (QoS) guarantees, researchers also design
I/O scheduling algorithms for these systems [6-10]. However,
to thoroughly study those designs on large scale storage
systems is costly. As a complement, simulation offers very
useful insights in the performance trends and allows the
pruning of the design space before implementation and
evaluation on a real testbed or a deployed system.

In this paper, we present PFSsim (Parallel File System
simulator), a PFS simulator allowing modeling and evaluations
on PFS designs, network structures, I/O schedulers and
workloads. Developed based on the OMNeT++ [11] network
simulation framework, PFSsim provides these main features: 1)
Pluggable scheduling module: I/O scheduling algorithms can
be easily deployed to any I/O buffer component. System
information can also be probed by the scheduler. 2) High
flexibility: Common PFSs can be supported through
configuration of its modules; detailed customization options
are offered, including network topology, cache systems, and

disk systems. 3) High fidelity: Most of the major I/O
performance impact factors in PFSsim are simulated and
subsystems have been validated, allowing PFSsim to capture
I/O performance with good accuracy.

The rest of the paper is organized as follows. Section II
overviews the state of art on PFS simulators. Section III
discusses real-world PFS-based storage systems, which provide
the guidelines for the simulator design. Section IV describes
the implementation details of PFSsim. Section V presents and
evaluates the simulator validation results. Section VI concludes
the paper and overviews future work.

II. RELATED WORK

Many distributed storage system simulators have been
developed throughout the past decade. With different emphasis
in design, each of them has outstanding features in particular
areas. In this section, we briefly compare PFSsim with some of
the most related works.

HECIOS [12] is a PFS simulator developed by the Parallel
Architecture Research Laboratory for the tests on PVFS2. In
HECIOS, detailed caching mechanisms, file systems and disk
drives are simulated, and schedulers for the PFS server
application and storage disk are introduced as well. The
HECIOS simulator is capable of simulating very detailed
PVFS2-based systems with good fidelity. But, as a tradeoff of
offering such details, HECIOS sacrificed its flexibility in
providing good support for more generic design problems. For
example, it is not straightforward to tune the system to simulate
parallel file systems not using BMI protocols, and for many
modules on the I/O path (e.g., the network proxies), it is not
easy to deploy specific scheduling algorithms on them.

SIMCAN [13] is a general-purpose storage network
simulation platform, with the design goal of simulating a large
variety of HPC systems with flexibility and scalability. The
modular design facilitates users in system reconfiguration
through tuning the detailed storage, memory, CPU and network
subsystems. SIMCAN has modeled the computing nodes and
the storage nodes, which are developed with detailed layered
I/O modules mimicking the I/O stack in real systems. However,
since SIMCAN is not specifically designed for PFS
simulations, PFS features such as data stripping and metadata
management are not supported. Moreover, I/O optimization
researchers may also find it not straightforward to set up I/O
schedulers in many subsystems of SIMCAN.

978-1-4799-0218-7/13/$31.00 ©2013 IEEE

The CODES [14] simulator is proposed for the evaluation
of exascale storage system designs. CODES models the
Argonne Leadership Computing Facility’s (ALCF) computing
and data storage environment. Several hardware and software
parameters, such as the network throughput and latency, CIOD
transfer size, and data stripe size are configurable. For the
simplified architecture and ROSS simulation platform it is built
on, CODES is able to simulate systems at a large scale.
However, as some of the I/O subsystems are omitted in
CODES (such as network devices and caching subsystems), it
may lose simulation fidelity in many use cases.

IMPIOUS [15] is a simulator designed for fast PFS design
evaluations. IMPIOUS simulates a simplified PFS architecture
by providing core components: the clients, the Object Storage
Devices (OSDs) and a simplified network. The limitation of
this work is that it has very limited capability of simulating and
customizing the details of a storage system, so many aspects of
the real systems cannot be reflected in the simulation result.

PFSsim differentiates from the aforementioned work in that
it models all I/O modules in common PFSs to provide a
flexible, complete and detailed PFS testbed for comprehensive
experiments. PFSsim also fully supports scheduler
deployments, in that it provides pluggable scheduler modules,
as well as APIs for retrieving the system runtime information
and collaborating with other schedulers.

III. SYSTEM MODELING

To achieve the goal of simulating a variety of PFSs and I/O
schedulers, we studied the system architecture and I/O
overhead in many existing systems. In this section, we discuss
our approach in modeling the PFS system and I/O schedulers.

A. Parallel File System Overview

In parallel file systems, data are often managed in terms of
“objects” (or equivalent terms). A typical PFS has three major
components: 1) Client: Provides the interface (e.g., POSIX) for
the user processes to access the PFS, and requests data I/O by
communicating with data servers and metadata servers. 2) Data
Server (or Object Storage Devices, OSDs): Serves data to
clients. Data are often stored in the form of objects on the local
storage system. 3) Metadata server: Manages the mapping
from PFS file name space to PFS storage object name space,
and handles file metadata operation requests.

During the processing of a normal user I/O request (data
read/write operation), the above three PFS components are
involved in four major steps (Fig. 1). 1) File I/O request: The
user process initializes the I/O by sending a request to the PFS
client application. 2) Object mapping: The PFS client
application finds out how the target file is stored in PFS,
querying the metadata server if required. Based on the
computation of data striping, the client knows the data are
stored in some objects. 3) Object Locating: The client locates
the objects on the data servers storing them. This mapping
information is often locally available for the client. 4) Data
transmission: The client initiates the data transmission with the
corresponding data servers. The data I/O lasts until all the data
are transmitted. Note that the I/O process shown in this
example is a general data processing approach, and different
PFS protocols may implement them in slightly different ways.

B. The PFS Subsystem

In a PFS subsystem, there are four aspects that may have
significant impacts on system I/O performance [16]. 1)
Metadata management: Metadata I/O is often a critical part of
system data I/O. In PFS, one or more metadata servers can be
utilized. In the latter case, metadata servers may be organized
in a pattern, for example, the dynamic metadata management in
Ceph. 2) Data placement strategy: A common data placement
technique is to stripe data into data objects, which are
distributed onto multiple data servers. The goal of data
distribution schemes is to statistically balance the load on each
data server, but the implementations may vary among PFSs.
For instance, PVFS2 delegates to users the responsibility to
specify the stripe size and data servers to store specific data
files while many other PFSs do not. 3) Data replication model:
Duplicated data may incur overheads in duplicate I/O and data
integrity checks. For example, in Ceph if data replication is
enabled, every write operation will be committed to multiple
OSDs in a placement group, which brings additional overhead.
4) Data caching policy: Data caching on the data server or the
client may improve the PFS I/O performance, at the cost of the
data copy coherency management. PanFS implements data
caching at both client and server. Some PFSs, such as PVFS2,
do not support client caching by default, but note that the
native file system may still have caching enabled.

C. The Data Server Subsystem

Typically, there are two types of I/O flow architectures
inside a PFSsim data server (Fig. 2). Fig. 2 (a) shows the PFSs
that are built upon the physical disks, in which the data server
applications manage the disk cache and block devices directly.

Fig. 1. The process of an example user I/O request in PFS

PFS Data Server Application

Disk Cache

Disk System

Network

PFS Data Server Application

Virtual File System

Disk Cache

Local Disk File System

Disk System

Network

 (a) PFS based on physical disk (b) PFS based on native FS

Fig. 2. The modules and I/O flows in the data server

These PFSs include Lustre, GPFS and PanFS. Fig. 2 (b) shows
the PFSs that are built on the native file systems. These PFSs
often interact with the local storage system through the virtual
file system interface. PVFS2 and Ceph are two representative
PFSs designed in this scheme.

D. The I/O Scheduler Subsystem

In recent years, many distributed storage system I/O
management solutions have been proposed, involving both
centralized and decentralized schemes, as well as various
deployment locations for different system needs. It is common
for I/O schedulers to be transparently deployed on network
nodes such as gateways or proxies. In Façade [6], the I/O
scheduler is deployed on a centralized proxy, which interposes
all the system I/O and forwards them to the storage devices. In
Xu et al. [7], the I/O management policies are deployed on per-
server proxies, which intercept I/O and virtualize the data
servers to the system clients. In Wang et al. [8], the scheduling
algorithms are deployed on distributed Coordinators [9].
Meanwhile, Scheduling algorithms can also be implemented on
the PFS data servers as part of the fundamental PFS services.
Some PFS have internal scheduling modules on the data server
applications. For instance, Ross et al. [10] describe the server-
side scheduling mechanisms in PVFS2 data servers. Specific
scheduling algorithms also exist on the lower layers of a data
server, for example, the disk systems may adopt the SSTF or
SCAN algorithms to reduce the total disk seek time.

IV. SIMULATOR IMPLEMENTATION

PFSsim is implemented based on the network simulation
framework OMNeT++. The code is open source and available
to the community [17]. PFSsim provides the following major
components: PFS client, PFS metadata server, PFS server and
network devices. Those components are connected by the
simulated network, and the I/O scheduler can be deployed
inside any component. Fig. 3 illustrates the simulated
architecture of an example PFS with per-server proxies [7],
including interconnection network clients, metadata servers
and I/O proxies. The proxies and data servers are linked by
another network (e.g., SAN) or located on the same host

machine on a “one proxy per server” basis. The I/O schedulers
are deployed on the proxies. The major modules of PFSsim are
described in detail in the following subsections.

A. PFS Client

The PFS Client contains two major modules: the user
application module and the PFS client application module.
These modules communicate by passing file I/O requests and
responses. A user application module reads the I/O traces from
a trace file, and outputs each data I/O’s processing timestamps
to the result file. Each trace file represents the workload from
one application, and it contains the information for every data
I/O, including start time, file ID, offset, size, R/W, and
application ID. This trace file can be generated by a real system
at the I/O clients. The PFS client application module may
query the metadata server for the data layout of PFS files, and
it conducts the data I/O with the data servers. The file metadata
and I/O data are cacheable at the PFS client application module.

B. PFS Data Server

Using a data server with Linux kernel 2.6 as prototype
reference, we designed the internal modules of the data server
in PFSsim. The architecture is the same as the one shown in
Fig. 2. The PFS data server application module receives the
PFS I/O requests from the clients and maps the objects to the
files in the native file system or blocks on the local disk. It may
buffer the traffic to schedule the I/O. The virtual file system
module translates the requests with offset and size in the target
files to the page address space. It issues I/O to the disk cache or
the disk file system (with O_DIRECT set). In the disk cache
module, the cache size, page size, and cache read/write speeds
are configurable. The disk cache has realized a page table by a
per-file ordered doubly-linked list (page-table-list) with each
node storing a chunk of adjacent pages that have identical page
flag settings (e.g., PG_dirty). Each node in the page-table-list
is also in a page reclaiming list, where the LRU (Least
Recently Used) algorithm is implemented. The local disk file
system module manages the block layouts for the files in the
generic block address space exposed by the disk system. It is
able to read the file layout from an input script and mimic the
EXT2 disk space allocation schemes. In the disk system
module, the disk I/O speed is modeled based on statistics
extracted from real disks. In PFSsim, disk I/O speed is
modeled based on the disk tracks, I/O size, R/W and the disk
head movement distance. The simulator package includes
scripts for users to easily extract the disk parameters from a
real disk device.

C. PFS Metadata Server

The metadata servers provide the data layout and other
metadata to the clients. The data layout information is specified
by the scripts from users. In the current version, all the PFS
metadata are stored on the metadata server. Deployment of
multiple metadata servers is supported in PFSsim. Cooperative
metadata management schemes are also possible.

D. I/O Scheduler

In PFSsim, the I/O scheduler module is capable of: 1)
Offering flexibility for users to easily associate I/O scheduling
algorithms to any I/O buffer in the system. PFSsim couples the
scheduling algorithms with the I/O queue classes, as shown in

Fig. 3. The simulated architecture of an example PFS server

Fig. 4. The I/O queue is widely implemented in PFSsim for the
simulation of I/O buffers. 2) Enabling inter-scheduler
information delivery interface for decentralized scheduling.
The SMessage objects are used to carry the scheduling
information between schedulers (Fig. 4). These messages can
be sent through the existing network connections, or through
separate channels defined by users. 3) Providing ways for the
I/O schedulers to probe the real-time system status. If the status
is locally available to the scheduler, the user can probe the
system status by accessing the module’s status variables.
Otherwise, the module providing the status can encapsulate the
information in SMessages and send them to the schedulers.

E. Network and Network Devices

The network connection is modeled by the OMNeT++
components, which offer bandwidth and latency configurations.
The router/switch module redirects the packets in the network.
The packets may be buffered and delayed on the router/switch
due to data congestion. The proxy module is introduced to host
the network I/O schedulers. The I/O queue class can be
implemented on the proxy modules so that the I/O scheduling
algorithms can be deployed.

V. VALIDATION AND EVALUATION

The testbed physical cluster contains 16 nodes. Each node
contains 2 six-core 2.4GHz Opteron CPUs, 24GB of RAM and
7200 RPM SAS disk. Between any two nodes, the average
network bandwidth is 970Mbit/sec, and the average network
latency is 0.075ms. The local loopback network has 0.01ms
latency, and 11.3Gbit/sec bandwidth. PVFS2 with Linux kernel
2.6.32 is deployed on each node. The local disk file systems
are in EXT3 format. In each Linux kernel, the dirty_ratio is set
to be 20%. PFSsim is configured according to the parameters
gathered from the real system, including disk system, caching
system, PFS, and network. We used IOR [18] as the
benchmark workload generator. The I/O traces for PFSsim are
generated on the clients. All tests are run 5 times and the
average values are used in the result analysis.

To validate the model of a data server, we have
implemented a single-server PVFS2 system. The client is
located on the same node as the data server. The total I/O size
is 1GB, and the I/O is directed to one file. Fig. 5 shows the
average throughput of the real and simulated systems in three
test cases: reading from cache, reading from disk and writing.
We notice that because of the metadata overhead, smaller
request sizes result in lower throughput. But the throughput
eventually reaches a ceiling when request size is large enough;

this is because the cache or disk I/O is saturated. To validate
the network, we have run another two sets of tests with the
client deployed on another machine. Fig. 6 shows the average
I/O throughput for reading from disk and writing. In these tests,
the lower network bandwidth brings significant overhead. In
this sequence of tests, the simulation results show good fidelity.
The discrepancies in those simulated results are mainly due to
the network and PFS-specific protocols that are abstracted or
omitted in PFSsim.

In the PFS validation, we have deployed PVFS2 data
servers across 8 physical nodes, using one of them also as the
metadata server. The data files are evenly distributed onto the
data servers with stripe size 64KB. Each client sequentially
accesses a 512MB file, and each I/O request is 256KB. Tests of
sequential disk reads and sequential writes are conducted, with
the number of clients varying from 1 to 128. Fig. 7 shows the
total system throughput for the read/write I/O on both the real
system and PFSsim. The simulation results follow the trend of
real system results well. For the read I/O tests, the system
throughput grows as the number of clients grows when clients
are fewer than 16, which is due to higher server utilization. But
the throughput decreases afterwards. This is because the disk
head movement is increased for seeking among more file
locations while serving different I/Os concurrently. For the
write I/O, the total I/O throughput grows due to higher server
utilization, but the throughput is greatly downgraded with 128
clients. This is because the dirty pages on each data server (in
total 8GB) exceed the dirty_ratio threshold (about 4.8GB).
Therefore, more overhead is brought by explicit page write-
backs.

We evaluate the I/O scheduler of PFSsim on proxies. The
testbed contains 4 PVFS2 data servers and 1 metadata server.
On each data server node, a proxy is also implemented to
intercept the I/O traffic. We deployed the SFQ(4) algorithm
[19] on each of the proxies. We divide the clients into 2 groups
(G1 and G2), each with 16 clients. Each client issues sequential
read/write I/O to a 400MB file; each I/O request is 1MB. All
files are evenly distributed on all the data servers with stripe

New
IOMessage Dispatch

(Waiting Pool)

(Outstanding Pool)

Finished
IOMessage

Scheduling Algorithm
SMessage

(inter-scheduler)

Dispatched
IOMessage

Finished
IOMessage

System
Information

Fig. 4. The structure of the I/O queue class

0

100

200

300

400

500

600

700

800

900

1000

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M

Th
ro

u
gh

p
u

t
(M

B
/s

e
c)

Request Size

cached read (real)

cached read (sim)

disk read (real)

disk read (sim)

write (real)

write (sim)

Fig. 5. Average throughput of local single-server PFS read/write

0

20

40

60

80

100

120

140

8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M

Th
ro

u
gh

p
u

t
(M

B
/s

e
c)

Request Size

disk read (real)

disk read (sim)

write (real)

write (sim)

Fig. 6. Average throughput of remote single-server PFS read/write

size 4KB. Three sets of tests are conducted, with weight ratios
1:1, 1:2, 1:4 for G1:G2 in SFQ(4). We monitor the real-time
system throughput ratio change and the average I/O throughput
ratio during the first 40 seconds of system runtime. Fig. 8
shows the changes in throughput ratio of Group2 during the
runtime. The average throughput ratios are in the brackets in
the legend. The simulated average throughput ratios are shown
to have good accuracy. Also, the simulated results are able to
show that the oscillations in the I/O throughput grow as the
share ratio becomes more imbalanced.

Table I shows the simulation efficiency of PFSsim. We run
tests on a personal laptop with quad-core 2.13GHz Intel Core
i3 CPU and 3GB of RAM. In total, each client issues 128MB
sequential read/write data I/O to a file, and the total simulation
time is measured with various request sizes.

VI. CONCLUSION AND FUTURE WORK

This paper shares the experience in building a general
purpose PFS simulator that is easy to use, modular, and
flexible to support customizations of different parallel file
system design points. The approach in this paper presents a
storage system modeling methodology, and the PFSsim
simulator can be delivered as a fundamental I/O system
simulation tool for the PFS research community. In the future
work, PFSsim will be validated with more real workloads and
more PFS systems. Large scale parallel simulations will also be
researched.

REFERENCES

[1] Sun Microsystems, Inc., “Lustre file system: high-performance storage
architecture and scalable cluster file system”, Sun Microsystems, Inc.,
Santa Clara, CA, white paper, 2008.

[2] P. Carns, W. Ligon, R. Ross, and R. Thakur, “PVFS: A parallel file
system for Linux clusters”, in Proc. the 4th annual Linux Showcase &
Conference, Atlanta, GA, 2000, pp. 317-327.

[3] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas activeScale
storage cluster-delivering scalable high bandwidth storage”, in Proc. the
2004 ACM/IEEE Conference on Supercomputing (SC’04), Pittsburgh,
PA, 2004, p. 53.

[4] F. chmuck and R. Haskin. “GPFS: A shared-diskfi le system for large
computing clusters”, in Proceedings of the 1st USENIX Conference on
File and Storage Technologies, pp. 231–244, Monterey, CA, Jan. 2002.

[5] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distrib-uted file system”, in Proc.
the 7th symposium on Operating Systems Design and Implementation
(OSDI’06), Seattle, WA, 2006, pp. 307-320.

[6] C. R. Lumb, A. Merchant, and G. A. Alvarez, “Façade: virtual storage
devices with performance guarantees”, in Proc. the 2nd USENIX
Conference on File and Storage Technologies (FAST’03), San
Francisco, CA, Mar. 2003, pp. 131-144.

[7] Y. Xu, L. Wang, D. Arteaga, M. Zhao, Y. Liu, and R. Figueiredo,
“Virtualization-based Bandwidth Manage-ment for Parallel Storage
Systems”. in 5th Petascale Data Storage Workshop (PDSW’10), New
Orleans, LA, Nov. 2010, pp. 1-5.

[8] Y. Wang, and A. Merchant, “Proportional-share Scheduling for
Distributed Storage Systems”, in Proc. the 5th USENIX Conference on
File and Storage Technologies (FAST’07), San Jose, CA, Feb. 2007, pp.
47–60.

[9] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S. Spence. “Fab:
Building distributed enterprise disk arrays from commodity
components”, in Proc. the 11th international conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Boston, MA, Oct. 2004, pp. 48-58.

[10] R. B. Ross and W. B. L. Iii, “Server-Side Scheduling in Cluster Parallel
I/O Systems,” Calculateurs Parallèles Journal, Special Issue on Parallel
I/O for Cluster Computing, 2001.

[11] A. Varga, “The OMNeT++ discrete event simulation system”, in Proc.
the European Simulation Multi-conference (ESM’01), Prague, Czech
Republic, Jun. 2001.

[12] HECIOS, 2009. Available: http://www.parl.clemson.edu/hecios/

[13] A. Núñez, J. Fernández, J. D. Garcia, L. Prada, and J. Carretero,
“SIMCAN: a SIMulator framework for Computer Architectures and
storage Networks”, in Proceedings of the 1st international conference
on Simulation tools and techniques for communications, networks and
systems & workshops (Simutools ’08), Brussels, Belgium, Mar. 2008.

[14] N. Liu, C. Carothers, J. Cope, P. Carns, R. Ross, A. Crume, and C.
Maltzahn, “Modeling a leadership-scale storage system”, in Proceedings
of the 9th International Conference on Parallel Processing and Applied
Mathematics, Torun, Poland, Sep. 2011.

[15] E. Molina-Estolano, C. Maltzahn, J. Bent, and S. A. Brandt, “Building a
parallel file system simulator”, poster session presented in SciDAC’09,
San Diego, CA, Jun. 2009.

[16] Y. Liu, R. Figueiredo, D. Clavijo, Y. Xu, and M. Zhao, “Towards
simulation of parallel file system scheduling algorithms with PFSsim”,
in Proceedings of the 7th IEEE International Workshop on Storage
Network Architectures and Parallel I/O, Denvor, CO, May 2011.

[17] PFSsim, 2013. Available: http://www.github.com/myidpt/PFSsim

[18] Interleaved or Random (IOR) Benchmark, Available: http://www.cs.
sandia.gov/Scalable_IO/ior.html

[19] W. Jin, J. S. Chase, and J. Kaur, “Interposed proportional sharing for a
storage service utility”, in Proc. the joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS’04),
New York, NY, Jun. 2004, pp. 37-48.

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 128

Th
ro

u
gh

p
u

t
(M

B
/s

e
c)

Number of Clients

Real Read
PFSsim Read
Real Write
PFSsim Write

Fig. 7. Average throughput of PFS read/write I/O

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40

Th
ro

u
gh

p
u

t
R

at
io

 o
f

G
2

Time (Second)

1:1 real (0.496) 1:1 sim (0.502)
1:2 real (0.651) 1:2 sim (0.655)
1:4 real (0.702) 1:4 sim (0.740)

Fig. 8. Throughput ratio of G2 in the SFQ(D) algorithm

TABLE I. SIMULATION TIME SPAN

Request

Size

Read Write

8:8
a
 512:8 512:32 8:8 512:8 512:32

16KB 9s 2095s 1909s 9s 2832s 1142s

256KB 8s 1618s 1220s 7s 1751s 548s

4MB 7s 1318s 1404s 5s 1578s 523s

a. The notation in this row stands for number of clients vs. number of servers.

