
1

BigCache for Big-data Systems

Michel Angelo Roger, Yiqi Xu, Ming Zhao

Florida International University, Miami, Florida

{mroge037,yxu006,mzhao}@fiu.edu

Abstract— Big-data systems are increasingly used in many

disciplines for important tasks such as knowledge discovery and

decision making by processing large volumes of data. Big-data

systems rely on hard-disk drive (HDD) based storage to provide

the necessary capacity. However, as big-data applications grow

rapidly more diverse and demanding, HDD storage becomes

insufficient to satisfy their performance requirements. Emerging

solid-state drives (SSDs) promise great IO performance that can

be exploited by big-data applications, but they still face serious

limitations in capacity, cost, and endurance and therefore must be

strategically incorporated into big-data systems. This paper

presents BigCache, an SSD-based distributed caching layer for

big-data systems. It is designed to be seamlessly integrated with

existing big-data systems and transparently accelerate IOs for

diverse big-data applications. The management of the distributed

SSD caches in BigCache is coordinated with the job management

of big-data systems in order to support cache-locality-driven job

scheduling. BigCache is prototyped in Hadoop to provide caching

upon HDFS for MapReduce applications. It is evaluated using

typical MapReduce applications, and the results show that

BigCache reduces the runtime of WordCount by 38% and the

runtime of TeraSort by 52%. The results also show that BigCache

is able to achieve significant speedup by caching only partial input

for the benchmarks, owing to its ability to cache partial input and

its replacement policy that recognizes application access patterns.

I. INTRODUCTION

Big data is an important computing paradigm that becomes
increasingly used by many science, engineering, medical, and
business disciplines for knowledge discovery, decision making,
and other data-driven tasks based on processing and analyzing
large volumes of data. To support such applications, big-data
systems are typically built upon programming frameworks that
can effectively express data parallelism and exploit data locality
(e.g., MapReduce [1]) and storage systems that can provide high
scalability and availability (e.g., Google File System [2],
Hadoop HDFS [3]). A variety of higher-level data services (e.g.,
BigTable [4], HBase [5], GraphLab [6]) can be further built
upon such frameworks.

Big-data systems have been relying on traditional hard-disk
drive (HDD) based storage to provide the volume for storing
large amounts of data required by big-data applications. They
are optimized for large, sequential IOs which HDDs excel at [2].
However, modern big-data applications have rapidly growing
velocity, the speed of storing and processing data, and variety,
the types of data and their processing methods. HDDs alone
become insufficient to satisfy the challenging demands of such
big-data applications.

The emerging solid-state drive (SSD) based storage offers
excellent IO performance that is substantially better than HDDs

and can be employed to meet the performance requirements of
big-data applications. However SSDs still face several serious
limitations compared to HDDs. First, SSDs come with much
smaller capacity and are much more expensive per unit size,
which makes it difficult to provision enough volumes for big-
data storage at a reasonable cost. Second, SSDs wear out by
writes, which raises concerns about the durability of data as well
as the additional cost for hardware maintenance. Therefore SSD-
based storage needs to be strategically incorporated in existing
big-data systems instead of completely replacing HDDs.

Recognizing the above mentioned constraints of HDDs and
SSDs, the central research problem studied by this paper is how
to effectively incorporate both types of storage devices into big-
data systems in order to satisfy the volume, velocity, and variety
requirements from diverse big-data applications. Our solution is
BigCache, an SSD-based distributed caching layer that allows
seamless integration of SSDs with existing HDD-based big-data
systems and enables transparent acceleration of the different
types of application data accesses, thereby exploiting both the
performance of SSDs and the capacity of HDDs for big-data
applications.

Although caching is a classic technique commonly used in
computer systems design, BigCache is architected to address the
unique challenges to providing caching for big-data systems.
First, to support highly distributed big-data applications,
BigCache is designed as a distributed SSD-based caching layer
with distributed cache management across the networked
datanodes in a big-data system. Second, to make effective use of
the data cached in SSDs, the management of BigCache is
coordinated with the job management of the big-data system in
order to support locality-driven job scheduling which is critical
to the performance of big-data applications. Third, to support a
wide variety of big-data applications including legacy code, the
integration of BigCache in a big-data system is completely
transparent to the applications, without requiring any change to
the existing APIs that the applications are familiar with.

A prototype of BigCache is created on Hadoop for
MapReduce applications. Experiments based on representative
benchmarks show that the BigCache can substantially improve
the performance for applications with large input such as
WordCount and applications with both large input and output
such as TeraSort. The overhead of BigCache is unnoticeable as
even with cold caches and buffering disabled, BigCache still
achieves up to 14% runtime reduction. When the caches are
warm, the runtime reduction increases to up to 27%. When the
buffering is enabled in BigCache, the improvement grows even
higher, especially for an application such as TeraSort that has
intensive output. With both warm caches and buffering, the total
improvement for WordCount is 38% runtime reduction and for

2

TeraSort is 53%. The results also show that BigCache delivers
speedups even when the application’s working set cannot fit
entirely in the caches. The ability of caching partial input in
BigCache is valuable for large big-data applications and
consolidated big-data systems.

To the best of our knowledge, BigCache is a first SSD-based
caching and buffering solution for big-data systems. Related
work [7] has considered main-memory-based caching for
MapReduce applications, which has only limited capacity to
cache small applications and does not consider the opportunity
of caching partial input. Related study [8] has also accessed the
benefits of employing SSDs in big-data systems for storing
temporary and permanent data, but it does not consider the
limitations of SSDs which prevent them from replacing HDDs
entirely. In comparison, BigCache is the first integrated solution
that enables big-data applications to transparently benefit from
the performance of SSDs and the capacity of HDDs.

The rest of the paper is organized as follows. Section II
introduces the background and related work. Section III presents
the design and implementation of BigCache. Section IV presents
the experimental evaluation. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Big-data Systems

Typical big-data systems are built upon a highly scalable and
available distributed storage system. For example, Google File
System (GFS) [2] and its open-source clone Hadoop Distributed
File System (HDFS) [3] provide fault tolerance while storing
massive amounts of data on a large number of datanodes built
with inexpensive commodity hardware, where MapReduce [1]
applications are executed in a data-parallel fashion on the
datanodes where their data is stored. Higher-level data services
such as databases and data mining tools (e.g., [4][5][6]) can also
be built upon such a big-data computing framework.

Both the map and reduce phases of a MapReduce application
can spawn large numbers of map and reduce tasks, depending
on the size of the input, on the datanodes of a big-data system to
process data in parallel. Data stored on the distributed file
system (DFS), e.g., GFS/HDFS, is typically replicated at least
three times across the datanodes to tolerate failures. MapReduce
applications often have complex but well-defined IO phases. A
map task is always preferably scheduled to the nodes where its
input data is stored, unless there is no slot—the unit used for
CPU allocation, which typically maps to a CPU core or a portion
of it—available on these nodes. It reads the input from the HDD
storage through GFS/HDFS, either via the local file system if
the input is local or across the network otherwise. The output of
the map task, which is part of the intermediate result of the
application, is first buffered in memory and then spilled onto the
HDD storage directly via the local file system. A reduce task
starts by copying and shuffling its input from all the map tasks’
intermediate results, either stored locally from the map tasks on
the same host or across the network from the remote map tasks.
It then merges the copied inputs, performs the reduce
processing, and generates the final output, which is stored and
replicated on the HDD storage through GFS/HDFS.

B. Caching for Big-data Systems

Related work on PACMan [7] has studied the use of main-
memory-based caching of map task inputs in order to improve

application performance and cluster efficiency. There are
several key differences in the approach taken by BigCache.
First, BigCache is based on SSD devices which have much
larger capacity and lower cost than main memory. At the same
time, the limited main memory is often heavily used by big-data
applications, e.g., for a map task to buffer the intermediate result
and for a reduce task to buffer the shuffling data. Therefore,
BigCache can provide more effective caching and buffering for
large big-data applications and for highly consolidated big-data
systems. Second, PACMan assumes an All-of-Nothing cache
management property, i.e., a MapReduce application cannot
achieve any performance improvement from caching unless its
input is completely cached. This property applies to only small
applications that can finish with a single wave of map tasks, but
does not hold for large applications. In contrast, BigCache
supports the caching of partial input while still delivering
speedups to applications, as demonstrated in our experimental
results (Section 4). Therefore, BigCache offers more
opportunities for diverse big-data applications to improve
performance from the use of caching. Third, PACMan does not
consider buffering, since native MapReduce already uses main
memory for buffering. BigCache provides big-data applications
with both caching and buffering using SSDs and both are shown
to be important to application performance.

The potentials of SSD-based caching has motivated several
related solutions for distributed storage systems in general. For
example, dm-cache [9] supports SSD-based caching for a block-
level distributed storage system such as the virtual machine
(VM) storage commonly used in cloud computing systems.
Mercury [10] provides a block-level SSD cache in the
hypervisor of a storage client, in order to provide caching to the
VMs hosted on the client over a variety of networked storage
protocols. Different from these solutions, BigCache provides
SSD caching at a higher level, e.g., HDFS, of the storage
hierarchy of a big-data system. It is therefore able to exploit
useful semantics, e.g., HDFS files, specific to the applications
and distributed file system to make better cache management
decisions, e.g., per-application cache allocation and per-HDFS-
file cache replacement, for the sake of application performance
and resource utilization.

The related studies [11][12] also explored various design
choices, including write policy, persistency, consistency, and
flash-RAM integration, for SSD caching employed by cloud
systems. BigCache learns from the insights of these studies and
chooses designs that are specifically optimized for big-data
applications, which are discussed in detail in the next section.

III. DESIGN AND IMPLEMENTATION

A. Architecture

To address the performance limitations of HDDs and the
capacity and endurance limitations of SSDs, the approach taken
by BigCache is to incorporate SSDs into the existing HDD-
based big-data storage architecture as a caching layer, in order
to exploit the limited capacity of SSDs to hold only the working
sets of big-data applications and transparently accelerate the IOs
for their various phases. First, when an application’s map tasks
read the input from GFS/HDFS, the requested blocks are cached
by BigCache, so that when the application runs again the map
tasks can be accelerated from the cached input. Note that a
MapReduce application often processes the same dataset when

3

it executes repeatedly, although the knowledge that it tries to
discover or the algorithm for the knowledge discovery may
differ across runs. For example, a data mining application that
tries to discover a user’s interests from a particular social
network (e.g., Twitter) often processes the same set of data (e.g.,
tweets), which may evolve slowly, while the user of interest may
change and the algorithm for mining may also change.

Second, when the application’s map tasks generate their
intermediate results, they are buffered by BigCache if they are
spilled out of the main memory, to speed up the operations of
map output. Third, when the application’s reduce tasks start to
copy and shuffle the intermediate results from the map tasks,
they can make faster progress when they find the map output in
BigCache, instead of from the HDD storage, no matter whether
the reduce task is getting the map output from the same host or
across the network. Fourth, when the data that a reduce task has
retrieved is spilled out of the main memory, it is buffered by
BigCache to speed up the operations of shuffling.

Finally, the results generated by the reduce tasks, which are
also the final output of the MapReduce application, are cached
by BigCache, while being stored and replicated on the HDD
storage. The caching of application output is useful when there
is a chain of MapReduce applications where one’s output is the
input of the next. For example, a query to a data warehouse (e.g.,
[13]) can be processed as a series of MapReduce jobs with data
interdependencies among their inputs and outputs. For such a
workload, caching the output of one MapReduce application can
speed up the input of the next one. However, BigCache does not
delay the final output in the SSD caches, due to the concern for
data reliability, so that the output is always stored reliably on the
HDDs using the replication scheme typically employed by the
big-data system. In contrast, the intermediate results buffered in
the SSD caches will be cleaned up at the end of the application
execution, in the same way how intermediate results stored on
the HDDs are cleaned up by the native big-data system.

B. Cache Management

An important decision that the cache manager on each
datanode needs to make is how to replace cached blocks when
the cache size is not sufficient to hold the application’s entire
working set. Considering that when a map task reads its assigned
range of input, it always reads it sequentially, we choose Most
Recent Used (MRU) as the cache replacement policy instead of
the commonly used Least Recently Used (LRU). When the map
task reads a sequential sequence of blocks, LRU always evicts
the earliest accessed blocks, if the entire sequence does not fit
the cache. Consequently, when the same map task runs again, it
cannot generate any hit in the cache as it repeats the sequence
from the beginning. In contrast, for the same situation, MRU
keeps the earliest accessed blocks in the cache which will be all
hits when the map task repeats the sequence of block accesses.
The portion of the sequence of blocks that does not fit the cache
will be retrieved from the underlying HDD storage, which can
be either local or remote.

Similarly to the above discussion, BigCache also employs
MRU to buffer the output of a map task—the intermediate
result—which is a sequential sequence of block writes, so that
when the SSD gets full, the remaining map output will be
directly spilled onto the HDD storage. On the contrary, if
BigCache uses the LRU policy, the new block writes will evict
the earlier ones from the SSD and cause unnecessary writes to

both the SSD and the HDD, because the intermediate result does
not really have to be stored on the HDD. These unnecessary
writes are detrimental to both the performance of the application
and the endurance of the SSDs used for buffering.

If there are multiple big-data applications running on the
system concurrently, they also need to share the capacity of the
SSD caches. BigCache supports proportional sharing of the
cache capacity, where each application gets a certain share from
each datanode’s SSD cache. With each application’s share, the
capacity is equally divided for caching and buffing in our current
BigCache implementation. The sharing ratio can be determined
by system administrator based on the knowledge of
applications’ data size and priority. More intelligent cache and
buffer partitioning and automatic cache allocation methods will
be studied in our future work on BigCache.

C. Cache-locality-driven Job Scheduling

Locality-driven job scheduling is a fundamental principle of
big-data systems, and a key differentiator from traditional
distributed computing systems. Traditional systems typically
adopt a remote data access model where data is shipped from the
remote storage to the compute nodes where the application’s
tasks run. Big-data systems take a completely different model
which ships computing to data by scheduling an application’s
tasks to the datanodes where their data is stored. Such data-
locality-driven job scheduling avoids the expensive transfers of
large volumes of data required by big-data applications, and is
key to the success of big-data computing systems.

By employing SSD-based caching, BigCache introduces
another level of locality into a big-data system, as a task may
have its data local in the SSD cache of the node that it is
scheduled to, independently from whether it has the data local
in the HDD storage of the node. However, if a job scheduler
(e.g., JobTracker in Hadoop) is unware of the existence of cache
locality, it will schedule an application’s tasks only based on the
data locality on the HDD storage. But because data is commonly
replicated across different datanodes’ (at least three for triple
modular redundancy) HDD storage, the exact nodes that a job
scheduler chooses to run the application may differ across
different runs. Consequently, the nodes that have cached data for
the application—warmed up during the previous runs of the
application—may not be the same nodes used for the next run.
Therefore, the use of caching may become useless (while still
paying for the performance and endurance costs) and the
opportunity of accelerating the application by using the cached
data may be wasted.

To address the above issue, BigCache enables new cache-
locality-driven job scheduling by coordinating distributed cache
management with centralized job management typically used by
big-data systems. As data gets inserted into the SSD caches, the
cache managers on the datanodes will periodically communicate
with the centralized job scheduler to report the list of data blocks
that are cached locally. Based on the knowledge about the
cached blocks on all the datanodes, when the job scheduler
decides the placement of an application’s task, it will preferably
consider the nodes that have the task’s data in their local caches,
before considering the nodes that have the data in their local
HDD storage. In this way, the cached data can be effectively
reused to improve the performance of big-data applications.

4

D. Hadoop-based Prototype

In our BigCache prototype, the SSD caching and cache
management are fully integrated into Hadoop in order to assure
low overhead of the implementation. At the same time, the
modifications made to Hadoop do not require any change to the
existing MapReduce API and are hence entirely transparent to
MapReduce applications. Similarly to the use of HDD storage
in Hadoop, the SSD storage used for caching is employed
through a mounted local file system on the SSD. The path to the
cache is specified as an additional entry in the standard Hadoop
configuration file hdfs-site.xml.

The BigCache Controller class is the core component of our
SSD caching layer. It runs on every datanode to manage the IO
flow between the Hadoop DataXceiver class which issues HDFS
IOs and the SSD cache and HDD storage. It also manages the
cache allocation and replacement based on the chosen polices.
The Controller caches data at the granularity of HDFS file
chunks (by default 64MB per chunk), the unit used by
JobTracker for assigning the range of input to be processed by a
map task. Therefore, even though DataXceiver works at the
granularity of smaller data blocks (e.g., 512KB), the BigCache
Controller will always cache a chunk entirely because the map
task will always process it entirely. Per-chunk caching allows
BigCache to cache partial HDFS files and saves the overhead
from managing large numbers of smaller blocks.

The BigCache Controller also periodically reports the list of
locally cached data blocks to the Hadoop NameNode through
remote procedure calls (RPCs), if there is any change to the list
since the last report. The NameNode is a centralized component
in Hadoop which keeps track of the data distribution on the
HDDs, and is used by the Hadoop JobTracker to decide job
scheduling. The frequency of report is chosen to be the same as
the native heartbeat messages (by default every 3 seconds)
between each datanode and the JobTracker, which are used by
Hadoop to update node status and slot availability. This
frequency can be tuned by the system administrator in order to
make the overhead affordable for the size of the system.

When the native JobTracker considers the scheduling of a
map task, it will first consider node locality, i.e., the nodes that
have the required data on their local HDD storage, then rack
locality, i.e., the nodes that are on the same rack of those with
local data, and finally the other nodes without any locality in the
system. Note that JobTracker may not always be able to
schedule a map task to the nodes with locality, because the slot
availability is dynamic as tasks come and go and at the time of
the scheduling the nodes with locality may happen to have no
slot available. But by following the aforementioned locality
preferences to schedule the map task, JobTracker first tries to
eliminate any data transfer and then tries to eliminate cross-rack
data transfer. BigCache introduces another level of locality,
cache locality, into the system, and the new cache-locality-

aware JobTracker will give the nodes that have the required data
in their SSD caches the highest preference, before considering
the other nodes with lower levels of locality. This cache-locality-
driven job scheduling ensures the reuse of cached data.

IV. EVALUATION

A. Testbed and Benchmarks

This section presents an experimental evaluation of
BigCache on a typical Hadoop setup using representative
MapReduce benchmarks. The experiments were conducted on
a cluster of eight nodes, each with two six-core 2.4GHz AMD
Opteron CPUs, 32GB of RAM, one 120GB SSD, and two
500GB 7.2K RPM SAS HDDs, interconnected by a Gigabit
Ethernet switch. All the nodes run the Debian 4.3.5-4 Linux with
the 3.2.20-amd64 kernel. The HDDs use EXT3 as the local file
system, and the SSDs use EXT4 as the local file system. Seven
of these nodes are used as Hadoop datanodes and the other is
used run the Hadoop JobTracker and NameNode.

The experiments consider two commonly used MapReduce
benchmarks, WordCount and TeraSort, which have different
data access patterns. We used similar input size for both
benchmarks. The input for WordCount was downloaded from
the United State patent website [14] and replicated multiple
times to reach the 28GB of size. The input for TeraSort was
created using TeraGen. Despite of the same input size and the
same setup for execution, the two benchmarks differ
significantly in their IO demands. Table 1 summarizes the total
IO sizes of the various IO phases of these two benchmarks when
they run on native Hadoop with HDD-based storage. TeraSort
produces much more intermediate results—the map output, as
reflected by the amount of data read by the reduce tasks and the
amount of data spilled out of main memory by the map tasks and
the reduce tasks. Note that the map tasks first buffer their output
in memory and then spill it out to HDD storage. The reduce tasks
read all the map output, which is also first buffered in memory
and then spilled out to HDD storage.

All the experimental results reported in this section are from
multiple runs of the benchmarks and both the averages and
standard deviations are reported. Each run of TeraSort involves
420 map tasks and 14 reduce tasks; and each run of WordCount
involves 424 map tasks and 14 reduce tasks.

B. Caching and Buffering Speedups

In the first set of experiments, we study the performance

improvement from BigCache by providing SSD caching and

buffering to a benchmark, assuming that the SSD caches are

sufficient to hold the entire working set of the benchmark. We

compare the benchmark’s performance on the native Hadoop

(No Cache) to BigCache with four different setups: 1) only

caching is enabled and the caches are cold (Cold Cache w/o

Buffer); 3) only caching is enabled and the caches are warm

(Warm Cache w/o Buffer); 4) both caching and buffering are

enabled and the caches are cold (Cold Cache w/ Buffer); 4) both

caching and buffering are enabled and the caches are warm

(Warm Cache w/ Buffer).

When caching is enabled, BigCache will cache the input of

the benchmark on the SSDs. Before the first run of the

benchmark, the caches do not contain any data of the

benchmark and are hence considered as “cold”. After the first

Table 1. IO demands of WordCount and TeraSort

Benchmark
Map

input

Reduce

input

Map spill &

Reduce spill

Reduce

output

WordCount 28GB 40GB 71GB 248MB

TeraSort 28GB 84GB 112GB 28GB

5

run, the caches are “warm”, and the cached data may be reused

by the following runs of the benchmark and accelerate the map

phase. When buffering is enabled, BigCache will buffer the

output of the map tasks, which also becomes the input to the

reduce tasks, on the SSDs, and can potentially improve both the

map and reduce phases.

Figures 1 and 2 show the runtime of WordCount and

TeraSort, respectively, under the five different setups. The total

height of each bar represents the total runtime of the

benchmark. The error bars on the bars represent the standard

deviation. Note that the reduce time illustrated in the plots do

not represent the total runtime of the reduce phase, because the

reduce phase starts to copy the map output when a certain

percentage (by default 5%) of map tasks finishes. So part of the

reduce time is overlapped by the map time in the plots. The

numbers on top of the runtime bars represent the reduction of

runtimes achieved by BigCache over the native Hadoop.

First thing to notice is that the overhead BigCache is not

visible, because even when the caches are cold and the

buffering is disabled, which is the worst case scenario for

BigCache, it in fact achieves performance improvement (9%

runtime reduction for WordCount and 14% for TeraSort). This

improvement is because there are already reuse of data blocks

during the first run of the benchmark. When the caches are

warm, BigCache achieves more substantial improvement (more

than 20% runtime reduction for both benchmarks), because the

entire input of the benchmark can be loaded from the SSDs.

When BigCache also enables buffering to use SSDs to

store the intermediate results of the map phase, the performance

of the benchmarks is further improved. However, the two

benchmarks differ drastically in terms of the amount of

improvement achieved by the SSD buffering. WordCount gets

only another 11% reduction of runtime, whereas TeraSort’s

improvement is doubled. This difference is because TeraSort

produces much more intermediate results from the map phase

and therefore benefits much more than WordCount. As a result,

the total runtime of TeraSort is cut by more than half when both

SSD caching and buffering are employed, whereas the total

runtime of WordCount is reduced by more than one third,

which is also a considerable improvement.

The above results demonstrate that different applications

may benefit differently from the use of SSD caching and

buffering, which can be exploited to make better use of the

limited SSD capacity shared by both caching and buffering.

This observation will lead to our future work on more

intelligent cache management for BigCache.

C. Cache Performane Models

The experiments discussed above assume that BigCache has

enough capacity to hold the working set of the benchmarks.

However, in a more realistic setting, the big-data applications

may be more IO intensive than the benchmarks considered here,

and there may be multiple applications running concurrently

and contend for the cache capacity. Therefore, an application

may have only part of its working set cached by the SSDs.

Figure 1. WordCount performance with SSD caching and

buffering

Figure 2. TeraSort performance with SSD caching and

buffering

Figure 3. WordCount cache performance model

Figure 4. TeraSort cache performance model

210.75 199
151.75 140.75 130.25

51.25
39.5

40
31.75 31

0

50

100

150

200

250

300

No Cache Cold Cache
w/o Buffer

Warm Cache
w/o Buffer

Cold Cache
w/ Buffer

Warm Cache
w/ Buffer

Ti
m

e
(s

)

Map-phase

Reduce-phase

- 26.81%

- 8.97%

- 34.16% - 38.45%

262 222.25 155.5 148.75 116.25

562.25
483

484.25

261.25 274.75

0

100

200

300

400

500

600

700

800

900

No Cache Cold Cache
w/o Buffer

Warm Cache
w/o Buffer

Cold Cache
w/ Buffer

Warm Cache
w/ Buffer

Ti
m

e
(s

)

Map-phase

Reduce-phase

- 22.38%
- 14.44%

- 52.56%- 50.25%

262 252.5
230 223.5 213.25

191.75

0

50

100

150

200

250

300

No Cache Cache 20% Cache 40% Cache 60% Cache 80% Cache 100%

Ti
m

e
(s

)

- 26.81%

- 12.21% - 14.69%
- 18.61%

- 3.63%

6

Related work [7] on main-memory-based caching assumes that

a MapReduce application’s input has to be entirely cached or it

will not get any speedup. We believe this All-or-Nothing

assumption does not hold for large MapReduce applications

which have multiple waves of map tasks, and BigCache is

designed to be able to cache the partial working set of an

application. Our design choice is validated by the next set of

experiments.

In these experiments, we enable only the caching (without

buffering) in BigCache but vary the cache size to a certain

percentage of the benchmarks’ input size, from 20% to 100%.

Figures 3 and 4 illustrate the performance improvement over

the native Hadoop with different cache sizes. We can observe

considerable improvement even when only 20% of the working

set is cached, and the improvement becomes significant when

the cache size grows to more than 40% of the working set size

for both benchmarks. The speedup achieved by caching only

partial input is also attributed to BigCache’s use of MRU

replacement policy which recognizes MapReduce applications’

sequential read pattern and makes effective use of the limited

cache space. These plots also show that the runtimes of both

benchmarks fit nicely to simple linear models, which confirms

the feasibility of creating accurate cache performance models

for deciding an application’s cache allocation according to its

performance requirement.

V. CONCLUSIONS

Big data systems are important platforms for driving data
sciences in many different disciplines. Such systems have been
traditionally built upon HDD-based storage to support the large
volumes of data required by big-data applications. However,
with the increasing demand on velocity, the speed of data access,
and variety, the types of data, of modern big-data applications,
HDD-based storage alone becomes insufficient. Fortunately,
another emerging technology that comes to rescue is SSD-based
storage which offer excellent performance to both sequential
and random IO accesses. However, SSDs still have serious
limitations in capacity, cost, and endurance, and must be
incorporated into the big-data system architecture strategically,
instead of entirely replacing HDDs.

This paper presents BigCache, a first SSD-based caching
and buffering solution for big-data systems. It can be seamlessly
integrated into existing big-data systems and transparently
accelerate the various phases of big-data applications, while still
leveraging the size and cost of HDDs to provide the necessary
volume and reliability. A prototype of the BigCache approach is
created upon Hadoop for MapReduce applications. It is also
evaluated experimentally using representative MapReduce
applications, WordCount and TeraSort. The results show that
BigCache can achieve considerable performance improvement
(up to 14% runtime reduction) even when the SSD caches are
cold and the SSD buffering is disabled. When the caches are
warm, the improvement grows to up to 27%, and when the
buffering is also enabled, it can achieve as high as 53% of
runtime reduction. The results also show the ability of caching
partial input and the choice of cache replacement policy in
BigCache allows it to provide speedups to applications when
their inputs cannot be entirely stored in the caches, which is

important to the increasingly demanding big-data applications
and consolidated big-data environments.

VI. ACKNOWLEDGEMENT

The authors thank the anonymous reviewers. This research
is sponsored by the National Science Foundation under grant
CCF-0938045 and CAREER award CNS-125394 and the
Department of Defense under grant W911NF-13-1-0157.

VII. REFERENCES

[1] Jeffrey Dean and Sanjay Ghemawat, “MapReduce:
Simplified Data Processing on Large Clusters,” In
Proceedings of the 6th conference on Symposium on
Operating Systems Design & Implementation – Volume 6,
OSDI’04, page 10, Berkeley, CA, USA, 2004.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google
file system,” in ACM SIGOPS Operating Systems Review,
2003, vol. 37, pp. 29–43.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
Hadoop Distributed File System,” in IEEE 26th
Symposium on Mass Storage Systems and Technologies
(MSST), 2010,.

[4] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber, “Bigtable:
A Distributed Storage System for Structured Data,” In
Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation – Volume 7,
OSDI’06, pages 15–15, Berkeley, CA, USA, 2006.

[5] HBase. http://hbase.apache.org.
[6] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny

Bickson, Carlos Guestrin, and Joseph M Hellerstein,
“Graphlab: A New Framework for Parallel Machine
Learning,” arXiv preprint arXiv:1006.4990, 2010.

[7] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur,
S. Kandula, S. Shenker, and I. Stoica, “PACMan:
Coordinated Memory Caching for Parallel Jobs,” in
USENIX NSDI, 2012.

[8] Wei Tan, Liana Fong, and Yanbin Liu, “Effectiveness
Assessment of Solid-state Drive used in Big Data Services,”
21th IEEE International Conference on Web Services
(ICWS), 2014.

[9] dm-cache, URL: http://visa.cs.fiu.edu/dmcache.
[10] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J.

Kimmel, S. Kleiman, C. Small, and M. Storer, “Mercury:
Host-side flash caching for the data center,” In Proceedings
of the 28th IEEE Conference on Massive Data Storage,
MSST'12, Pacific Grove, CA, USA, 2012.

[11] D. A. Holland, E. L. Angelino, G. Wald, and M. I. Seltzer,
“Flash Caching on the Storage Client,” In USENIX ATC'13
Proceedings of the 2013 USENIX conference on Annual
Technical Conference. USENIX Association, 2013.

[12] D. Arteaga and M. Zhao, “Client-side Flash Caching for
Cloud Systems,” Proceedings of the 7th ACM International
Systems and Storage Conference, June 2014.

[13] Apache Hive, URL: https://hive.apache.org.
[14] The NBER U.S. Patent Citations Data File, URL:

http://www.nber.org/patents/Cite75_99.txt.

