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Abstract— Big-data systems are increasingly used in many 

disciplines for important tasks such as knowledge discovery and 

decision making by processing large volumes of data. Big-data 

systems rely on hard-disk drive (HDD) based storage to provide 

the necessary capacity. However, as big-data applications grow 

rapidly more diverse and demanding, HDD storage becomes 

insufficient to satisfy their performance requirements. Emerging 

solid-state drives (SSDs) promise great IO performance that can 

be exploited by big-data applications, but they still face serious 

limitations in capacity, cost, and endurance and therefore must be 

strategically incorporated into big-data systems. This paper 

presents BigCache, an SSD-based distributed caching layer for 

big-data systems. It is designed to be seamlessly integrated with 

existing big-data systems and transparently accelerate IOs for 

diverse big-data applications. The management of the distributed 

SSD caches in BigCache is coordinated with the job management 

of big-data systems in order to support cache-locality-driven job 

scheduling. BigCache is prototyped in Hadoop to provide caching 

upon HDFS for MapReduce applications. It is evaluated using 

typical MapReduce applications, and the results show that 

BigCache reduces the runtime of WordCount by 38% and the 

runtime of TeraSort by 52%. The results also show that BigCache 

is able to achieve significant speedup by caching only partial input 

for the benchmarks, owing to its ability to cache partial input and 

its replacement policy that recognizes application access patterns. 

I. INTRODUCTION  

Big data is an important computing paradigm that becomes 
increasingly used by many science, engineering, medical, and 
business disciplines for knowledge discovery, decision making, 
and other data-driven tasks based on processing and analyzing 
large volumes of data. To support such applications, big-data 
systems are typically built upon programming frameworks that 
can effectively express data parallelism and exploit data locality 
(e.g., MapReduce [1]) and storage systems that can provide high 
scalability and availability (e.g., Google File System [2], 
Hadoop HDFS [3]). A variety of higher-level data services (e.g., 
BigTable [4], HBase [5], GraphLab [6]) can be further built 
upon such frameworks. 

Big-data systems have been relying on traditional hard-disk 
drive (HDD) based storage to provide the volume for storing 
large amounts of data required by big-data applications. They 
are optimized for large, sequential IOs which HDDs excel at [2]. 
However, modern big-data applications have rapidly growing 
velocity, the speed of storing and processing data, and variety, 
the types of data and their processing methods. HDDs alone 
become insufficient to satisfy the challenging demands of such 
big-data applications.  

The emerging solid-state drive (SSD) based storage offers 
excellent IO performance that is substantially better than HDDs 

and can be employed to meet the performance requirements of 
big-data applications. However SSDs still face several serious 
limitations compared to HDDs. First, SSDs come with much 
smaller capacity and are much more expensive per unit size, 
which makes it difficult to provision enough volumes for big-
data storage at a reasonable cost. Second, SSDs wear out by 
writes, which raises concerns about the durability of data as well 
as the additional cost for hardware maintenance. Therefore SSD-
based storage needs to be strategically incorporated in existing 
big-data systems instead of completely replacing HDDs. 

Recognizing the above mentioned constraints of HDDs and 
SSDs, the central research problem studied by this paper is how 
to effectively incorporate both types of storage devices into big-
data systems in order to satisfy the volume, velocity, and variety 
requirements from diverse big-data applications. Our solution is 
BigCache, an SSD-based distributed caching layer that allows 
seamless integration of SSDs with existing HDD-based big-data 
systems and enables transparent acceleration of the different 
types of application data accesses, thereby exploiting both the 
performance of SSDs and the capacity of HDDs for big-data 
applications. 

Although caching is a classic technique commonly used in 
computer systems design, BigCache is architected to address the 
unique challenges to providing caching for big-data systems. 
First, to support highly distributed big-data applications, 
BigCache is designed as a distributed SSD-based caching layer 
with distributed cache management across the networked 
datanodes in a big-data system. Second, to make effective use of 
the data cached in SSDs, the management of BigCache is 
coordinated with the job management of the big-data system in 
order to support locality-driven job scheduling which is critical 
to the performance of big-data applications. Third, to support a 
wide variety of big-data applications including legacy code, the 
integration of BigCache in a big-data system is completely 
transparent to the applications, without requiring any change to 
the existing APIs that the applications are familiar with.  

A prototype of BigCache is created on Hadoop for 
MapReduce applications. Experiments based on representative  
benchmarks show that the BigCache can substantially improve 
the performance for applications with large input such as 
WordCount and applications with both large input and output 
such as TeraSort. The overhead of BigCache is unnoticeable as 
even with cold caches and buffering disabled, BigCache still 
achieves up to 14% runtime reduction. When the caches are 
warm, the runtime reduction increases to up to 27%. When the 
buffering is enabled in BigCache, the improvement grows even 
higher, especially for an application such as TeraSort that has 
intensive output. With both warm caches and buffering, the total 
improvement for WordCount is 38% runtime reduction and for 
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TeraSort is 53%. The results also show that BigCache delivers 
speedups even when the application’s working set cannot fit 
entirely in the caches. The ability of caching partial input in 
BigCache is valuable for large big-data applications and 
consolidated big-data systems. 

To the best of our knowledge, BigCache is a first SSD-based 
caching and buffering solution for big-data systems. Related 
work [7] has considered main-memory-based caching for 
MapReduce applications, which has only limited capacity to 
cache small applications and does not consider the opportunity 
of caching partial input. Related study [8] has also accessed the 
benefits of employing SSDs in big-data systems for storing 
temporary and permanent data, but it does not consider the 
limitations of SSDs which prevent them from replacing HDDs 
entirely. In comparison, BigCache is the first integrated solution 
that enables big-data applications to transparently benefit from 
the performance of SSDs and the capacity of HDDs. 

The rest of the paper is organized as follows. Section II 
introduces the background and related work. Section III presents 
the design and implementation of BigCache. Section IV presents 
the experimental evaluation. Section V concludes the paper.   

II. BACKGROUND AND RELATED WORK 

A. Big-data Systems 

Typical big-data systems are built upon a highly scalable and 
available distributed storage system. For example, Google File 
System (GFS) [2] and its open-source clone Hadoop Distributed 
File System (HDFS) [3] provide fault tolerance while storing 
massive amounts of data on a large number of datanodes built 
with inexpensive commodity hardware, where MapReduce [1] 
applications are executed in a data-parallel fashion on the 
datanodes where their data is stored. Higher-level data services 
such as databases and data mining tools (e.g., [4][5][6]) can also 
be built upon such a big-data computing framework. 

Both the map and reduce phases of a MapReduce application 
can spawn large numbers of map and reduce tasks, depending 
on the size of the input, on the datanodes of a big-data system to 
process data in parallel. Data stored on the distributed file 
system (DFS), e.g., GFS/HDFS, is typically replicated at least 
three times across the datanodes to tolerate failures. MapReduce 
applications often have complex but well-defined IO phases. A 
map task is always preferably scheduled to the nodes where its 
input data is stored, unless there is no slot—the unit used for 
CPU allocation, which typically maps to a CPU core or a portion 
of it—available on these nodes. It reads the input from the HDD 
storage through GFS/HDFS, either via the local file system if 
the input is local or across the network otherwise. The output of 
the map task, which is part of the intermediate result of the 
application, is first buffered in memory and then spilled onto the 
HDD storage directly via the local file system. A reduce task 
starts by copying and shuffling its input from all the map tasks’ 
intermediate results, either stored locally from the map tasks on 
the same host or across the network from the remote map tasks. 
It then merges the copied inputs, performs the reduce 
processing, and generates the final output, which is stored and 
replicated on the HDD storage through GFS/HDFS.  

B. Caching for Big-data Systems 

Related work on PACMan [7] has studied the use of main-
memory-based caching of map task inputs in order to improve 

application performance and cluster efficiency. There are 
several key differences in the approach taken by BigCache. 
First, BigCache is based on SSD devices which have much 
larger capacity and lower cost than main memory. At the same 
time, the limited main memory is often heavily used by big-data 
applications, e.g., for a map task to buffer the intermediate result 
and for a reduce task to buffer the shuffling data. Therefore, 
BigCache can provide more effective caching and buffering for 
large big-data applications and for highly consolidated big-data 
systems. Second, PACMan assumes an All-of-Nothing cache 
management property, i.e., a MapReduce application cannot 
achieve any performance improvement from caching unless its 
input is completely cached. This property applies to only small 
applications that can finish with a single wave of map tasks, but 
does not hold for large applications. In contrast, BigCache 
supports the caching of partial input while still delivering 
speedups to applications, as demonstrated in our experimental 
results (Section 4). Therefore, BigCache offers more 
opportunities for diverse big-data applications to improve 
performance from the use of caching. Third, PACMan does not 
consider buffering, since native MapReduce already uses main 
memory for buffering. BigCache provides big-data applications 
with both caching and buffering using SSDs and both are shown 
to be important to application performance.  

The potentials of SSD-based caching has motivated several 
related solutions for distributed storage systems in general. For 
example, dm-cache [9] supports SSD-based caching for a block-
level distributed storage system such as the virtual machine 
(VM) storage commonly used in cloud computing systems. 
Mercury [10] provides a block-level SSD cache in the 
hypervisor of a storage client, in order to provide caching to the 
VMs hosted on the client over a variety of networked storage 
protocols. Different from these solutions, BigCache provides 
SSD caching at a higher level, e.g., HDFS, of the storage 
hierarchy of a big-data system. It is therefore able to exploit 
useful semantics, e.g., HDFS files, specific to the applications 
and distributed file system to make better cache management 
decisions, e.g., per-application cache allocation and per-HDFS-
file cache replacement, for the sake of application performance 
and resource utilization. 

The related studies [11][12] also explored various design 
choices, including write policy, persistency, consistency, and 
flash-RAM integration, for SSD caching employed by cloud 
systems. BigCache learns from the insights of these studies and 
chooses designs that are specifically optimized for big-data 
applications, which are discussed in detail in the next section. 

III. DESIGN AND IMPLEMENTATION 

A. Architecture 

To address the performance limitations of HDDs and the 
capacity and endurance limitations of SSDs, the approach taken 
by BigCache is to incorporate SSDs into the existing HDD-
based big-data storage architecture as a caching layer, in order 
to exploit the limited capacity of SSDs to hold only the working 
sets of big-data applications and transparently accelerate the IOs 
for their various phases. First, when an application’s map tasks 
read the input from GFS/HDFS, the requested blocks are cached 
by BigCache, so that when the application runs again the map 
tasks can be accelerated from the cached input. Note that a 
MapReduce application often processes the same dataset when 
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it executes repeatedly, although the knowledge that it tries to 
discover or the algorithm for the knowledge discovery may 
differ across runs. For example, a data mining application that 
tries to discover a user’s interests from a particular social 
network (e.g., Twitter) often processes the same set of data (e.g., 
tweets), which may evolve slowly, while the user of interest may 
change and the algorithm for mining may also change. 

Second, when the application’s map tasks generate their 
intermediate results, they are buffered by BigCache if they are 
spilled out of the main memory, to speed up the operations of 
map output. Third, when the application’s reduce tasks start to 
copy and shuffle the intermediate results from the map tasks, 
they can make faster progress when they find the map output in 
BigCache, instead of from the HDD storage, no matter whether 
the reduce task is getting the map output from the same host or 
across the network. Fourth, when the data that a reduce task has 
retrieved is spilled out of the main memory, it is buffered by 
BigCache to speed up the operations of shuffling.  

Finally, the results generated by the reduce tasks, which are 
also the final output of the MapReduce application, are cached 
by BigCache, while being stored and replicated on the HDD 
storage. The caching of application output is useful when there 
is a chain of MapReduce applications where one’s output is the 
input of the next. For example, a query to a data warehouse (e.g., 
[13]) can be processed as a series of MapReduce jobs with data 
interdependencies among their inputs and outputs. For such a 
workload, caching the output of one MapReduce application can 
speed up the input of the next one. However, BigCache does not 
delay the final output in the SSD caches, due to the concern for 
data reliability, so that the output is always stored reliably on the 
HDDs using the replication scheme typically employed by the 
big-data system. In contrast, the intermediate results buffered in 
the SSD caches will be cleaned up at the end of the application 
execution, in the same way how intermediate results stored on 
the HDDs are cleaned up by the native big-data system. 

B. Cache Management 

An important decision that the cache manager on each 
datanode needs to make is how to replace cached blocks when 
the cache size is not sufficient to hold the application’s entire 
working set. Considering that when a map task reads its assigned 
range of input, it always reads it sequentially, we choose Most 
Recent Used (MRU) as the cache replacement policy instead of 
the commonly used Least Recently Used (LRU). When the map 
task reads a sequential sequence of blocks, LRU always evicts 
the earliest accessed blocks, if the entire sequence does not fit 
the cache. Consequently, when the same map task runs again, it 
cannot generate any hit in the cache as it repeats the sequence 
from the beginning. In contrast, for the same situation, MRU 
keeps the earliest accessed blocks in the cache which will be all 
hits when the map task repeats the sequence of block accesses. 
The portion of the sequence of blocks that does not fit the cache 
will be retrieved from the underlying HDD storage, which can 
be either local or remote.  

Similarly to the above discussion, BigCache also employs 
MRU to buffer the output of a map task—the intermediate 
result—which is a sequential sequence of block writes, so that 
when the SSD gets full, the remaining map output will be 
directly spilled onto the HDD storage. On the contrary, if 
BigCache uses the LRU policy, the new block writes will evict 
the earlier ones from the SSD and cause unnecessary writes to 

both the SSD and the HDD, because the intermediate result does 
not really have to be stored on the HDD. These unnecessary 
writes are detrimental to both the performance of the application 
and the endurance of the SSDs used for buffering.  

If there are multiple big-data applications running on the 
system concurrently, they also need to share the capacity of the 
SSD caches. BigCache supports proportional sharing of the 
cache capacity, where each application gets a certain share from 
each datanode’s SSD cache. With each application’s share, the 
capacity is equally divided for caching and buffing in our current 
BigCache implementation. The sharing ratio can be determined 
by system administrator based on the knowledge of 
applications’ data size and priority. More intelligent cache and 
buffer partitioning and automatic cache allocation methods will 
be studied in our future work on BigCache. 

C. Cache-locality-driven Job Scheduling 

Locality-driven job scheduling is a fundamental principle of 
big-data systems, and a key differentiator from traditional 
distributed computing systems. Traditional systems typically 
adopt a remote data access model where data is shipped from the 
remote storage to the compute nodes where the application’s 
tasks run. Big-data systems take a completely different model 
which ships computing to data by scheduling an application’s 
tasks to the datanodes where their data is stored. Such data-
locality-driven job scheduling avoids the expensive transfers of 
large volumes of data required by big-data applications, and is 
key to the success of big-data computing systems. 

By employing SSD-based caching, BigCache introduces 
another level of locality into a big-data system, as a task may 
have its data local in the SSD cache of the node that it is 
scheduled to, independently from whether it has the data local 
in the HDD storage of the node. However, if a job scheduler 
(e.g., JobTracker in Hadoop) is unware of the existence of cache 
locality, it will schedule an application’s tasks only based on the 
data locality on the HDD storage. But because data is commonly 
replicated across different datanodes’ (at least three for triple 
modular redundancy) HDD storage, the exact nodes that a job 
scheduler chooses to run the application may differ across 
different runs. Consequently, the nodes that have cached data for 
the application—warmed up during the previous runs of the 
application—may not be the same nodes used for the next run. 
Therefore, the use of caching may become useless (while still 
paying for the performance and endurance costs) and the 
opportunity of accelerating the application by using the cached 
data may be wasted. 

To address the above issue, BigCache enables new cache-
locality-driven job scheduling by coordinating distributed cache 
management with centralized job management typically used by 
big-data systems. As data gets inserted into the SSD caches, the 
cache managers on the datanodes will periodically communicate 
with the centralized job scheduler to report the list of data blocks 
that are cached locally. Based on the knowledge about the 
cached blocks on all the datanodes, when the job scheduler 
decides the placement of an application’s task, it will preferably 
consider the nodes that have the task’s data in their local caches, 
before considering the nodes that have the data in their local 
HDD storage. In this way, the cached data can be effectively 
reused to improve the performance of big-data applications. 
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D. Hadoop-based Prototype 

In our BigCache prototype, the SSD caching and cache 
management are fully integrated into Hadoop in order to assure 
low overhead of the implementation. At the same time, the 
modifications made to Hadoop do not require any change to the 
existing MapReduce API and are hence entirely transparent to 
MapReduce applications. Similarly to the use of HDD storage 
in Hadoop, the SSD storage used for caching is employed 
through a mounted local file system on the SSD. The path to the 
cache is specified as an additional entry in the standard Hadoop 
configuration file hdfs-site.xml.  

The BigCache Controller class is the core component of our 
SSD caching layer. It runs on every datanode to manage the IO 
flow between the Hadoop DataXceiver class which issues HDFS 
IOs and the SSD cache and HDD storage. It also manages the 
cache allocation and replacement based on the chosen polices. 
The Controller caches data at the granularity of HDFS file 
chunks (by default 64MB per chunk), the unit used by 
JobTracker for assigning the range of input to be processed by a 
map task. Therefore, even though DataXceiver works at the 
granularity of smaller data blocks (e.g., 512KB), the BigCache 
Controller will always cache a chunk entirely because the map 
task will always process it entirely. Per-chunk caching allows 
BigCache to cache partial HDFS files and saves the overhead 
from managing large numbers of smaller blocks. 

The BigCache Controller also periodically reports the list of 
locally cached data blocks to the Hadoop NameNode through 
remote procedure calls (RPCs), if there is any change to the list 
since the last report. The NameNode is a centralized component 
in Hadoop which keeps track of the data distribution on the 
HDDs, and is used by the Hadoop JobTracker to decide job 
scheduling. The frequency of report is chosen to be the same as 
the native heartbeat messages (by default every 3 seconds) 
between each datanode and the JobTracker, which are used by 
Hadoop to update node status and slot availability. This 
frequency can be tuned by the system administrator in order to 
make the overhead affordable for the size of the system. 

When the native JobTracker considers the scheduling of a 
map task, it will first consider node locality, i.e., the nodes that 
have the required data on their local HDD storage, then rack 
locality, i.e., the nodes that are on the same rack of those with 
local data, and finally the other nodes without any locality in the 
system. Note that JobTracker may not always be able to 
schedule a map task to the nodes with locality, because the slot 
availability is dynamic as tasks come and go and at the time of 
the scheduling the nodes with locality may happen to have no 
slot available. But by following the aforementioned locality 
preferences to schedule the map task, JobTracker first tries to 
eliminate any data transfer and then tries to eliminate cross-rack 
data transfer. BigCache introduces another level of locality, 
cache locality, into the system, and the new cache-locality-

aware JobTracker will give the nodes that have the required data 
in their SSD caches the highest preference, before considering 
the other nodes with lower levels of locality. This cache-locality-
driven job scheduling ensures the reuse of cached data. 

IV. EVALUATION 

A. Testbed and Benchmarks 

This section presents an experimental evaluation of 
BigCache on a typical Hadoop setup using representative 
MapReduce  benchmarks. The experiments were conducted on 
a cluster of eight nodes, each with two six-core 2.4GHz AMD 
Opteron CPUs, 32GB of RAM, one 120GB SSD, and two 
500GB 7.2K RPM SAS HDDs, interconnected by a Gigabit 
Ethernet switch. All the nodes run the Debian 4.3.5-4 Linux with 
the 3.2.20-amd64 kernel. The HDDs use EXT3 as the local file 
system, and the SSDs use EXT4 as the local file system. Seven 
of these nodes are used as Hadoop datanodes and the other is 
used run the Hadoop JobTracker and NameNode. 

The experiments consider two commonly used MapReduce 
benchmarks, WordCount and TeraSort, which have different 
data access patterns. We used similar input size for both 
benchmarks. The input for WordCount was downloaded from 
the United State patent website [14] and replicated multiple 
times to reach the 28GB of size. The input for TeraSort was 
created using TeraGen. Despite of the same input size and the 
same setup for execution, the two benchmarks differ 
significantly in their IO demands. Table 1 summarizes the total 
IO sizes of the various IO phases of these two benchmarks when 
they run on native Hadoop with HDD-based storage. TeraSort 
produces much more intermediate results—the map output, as 
reflected by the amount of data read by the reduce tasks and the 
amount of data spilled out of main memory by the map tasks and 
the reduce tasks. Note that the map tasks first buffer their output 
in memory and then spill it out to HDD storage. The reduce tasks 
read all the map output, which is also first buffered in memory 
and then spilled out to HDD storage.  

All the experimental results reported in this section are from 
multiple runs of the benchmarks and both the averages and 
standard deviations are reported. Each run of TeraSort involves 
420 map tasks and 14 reduce tasks; and each run of WordCount 
involves 424 map tasks and 14 reduce tasks.  

B. Caching and Buffering Speedups 

In the first set of experiments, we study the performance 

improvement from BigCache by providing SSD caching and 

buffering to a benchmark, assuming that the SSD caches are 

sufficient to hold the entire working set of the benchmark. We 

compare the benchmark’s performance on the native Hadoop  

(No Cache) to BigCache with four different setups: 1) only 

caching is enabled and the caches are cold (Cold Cache w/o 

Buffer); 3) only caching is enabled and the caches are warm 

(Warm Cache w/o Buffer); 4) both caching and buffering are 

enabled and the caches are cold (Cold Cache w/ Buffer); 4) both 

caching and buffering are enabled and the caches are warm 

(Warm Cache w/ Buffer). 

When caching is enabled, BigCache will cache the input of 

the benchmark on the SSDs. Before the first run of the 

benchmark, the caches do not contain any data of the 

benchmark and are hence considered as “cold”. After the first 

Table 1. IO demands of WordCount and TeraSort 

Benchmark 
Map 

input 

Reduce 

input 

Map spill & 

Reduce spill 

Reduce 

output 

WordCount 28GB 40GB 71GB 248MB 

TeraSort 28GB 84GB 112GB 28GB 
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run, the caches are “warm”, and the cached data may be reused 

by the following runs of the benchmark and accelerate the map 

phase. When buffering is enabled, BigCache will buffer the 

output of the map tasks, which also becomes the input to the 

reduce tasks, on the SSDs, and can potentially improve both the 

map and reduce phases. 

Figures 1 and 2 show the runtime of WordCount and 

TeraSort, respectively, under the five different setups. The total 

height of each bar represents the total runtime of the 

benchmark. The error bars on the bars represent the standard 

deviation. Note that the reduce time illustrated in the plots do 

not represent the total runtime of the reduce phase, because the 

reduce phase starts to copy the map output when a certain 

percentage (by default 5%) of map tasks finishes. So part of the 

reduce time is overlapped by the map time in the plots. The 

numbers on top of the runtime bars represent the reduction of 

runtimes achieved by BigCache over the native Hadoop. 

First thing to notice is that the overhead BigCache is not 

visible, because even when the caches are cold and the 

buffering is disabled, which is the worst case scenario for 

BigCache, it in fact achieves performance improvement (9% 

runtime reduction for WordCount and 14% for TeraSort). This 

improvement is because there are already reuse of data blocks 

during the first run of the benchmark. When the caches are 

warm, BigCache achieves more substantial improvement (more 

than 20% runtime reduction for both benchmarks), because the 

entire input of the benchmark can be loaded from the SSDs. 

When BigCache also enables buffering to use SSDs to 

store the intermediate results of the map phase, the performance 

of the benchmarks is further improved. However, the two 

benchmarks differ drastically in terms of the amount of 

improvement achieved by the SSD buffering. WordCount gets 

only another 11% reduction of runtime, whereas TeraSort’s 

improvement is doubled. This difference is because TeraSort 

produces much more intermediate results from the map phase 

and therefore benefits much more than WordCount. As a result, 

the total runtime of TeraSort is cut by more than half when both 

SSD caching and buffering are employed, whereas the total 

runtime of WordCount is reduced by more than one third, 

which is also a considerable improvement. 

The above results demonstrate that different applications 

may benefit differently from the use of SSD caching and 

buffering, which can be exploited to make better use of the 

limited SSD capacity shared by both caching and buffering. 

This observation will lead to our future work on more 

intelligent cache management for BigCache. 

C. Cache Performane Models 

The experiments discussed above assume that BigCache has 

enough capacity to hold the working set of the benchmarks. 

However, in a more realistic setting, the big-data applications 

may be more IO intensive than the benchmarks considered here, 

and there may be multiple applications running concurrently 

and contend for the cache capacity. Therefore, an application 

may have only part of its working set cached by the SSDs. 

  
Figure 1. WordCount performance with SSD caching and 

buffering  

 

Figure 2. TeraSort performance with SSD caching and 

buffering 
 

  

Figure 3. WordCount cache performance model 

 

Figure 4. TeraSort cache performance model 
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Related work [7] on main-memory-based caching assumes that 

a MapReduce application’s input has to be entirely cached or it 

will not get any speedup. We believe this All-or-Nothing 

assumption does not hold for large MapReduce applications 

which have multiple waves of map tasks, and BigCache is 

designed to be able to cache the partial working set of an 

application. Our design choice is validated by the next set of 

experiments. 

In these experiments, we enable only the caching (without 

buffering) in BigCache but vary the cache size to a certain 

percentage of the benchmarks’ input size, from 20% to 100%. 

Figures 3 and 4 illustrate the performance improvement over 

the native Hadoop with different cache sizes.  We can observe 

considerable improvement even when only 20% of the working 

set is cached, and the improvement becomes significant when 

the cache size grows to more than 40% of the working set size 

for both benchmarks. The speedup achieved by caching only 

partial input is also attributed to BigCache’s use of MRU 

replacement policy which recognizes MapReduce applications’ 

sequential read pattern and makes effective use of the limited 

cache space. These plots also show that the runtimes of both 

benchmarks fit nicely to simple linear models, which confirms 

the feasibility of creating accurate cache performance models 

for deciding an application’s cache allocation according to its 

performance requirement. 

V. CONCLUSIONS 

Big data systems are important platforms for driving data 
sciences in many different disciplines. Such systems have been 
traditionally built upon HDD-based storage to support the large 
volumes of data required by big-data applications. However, 
with the increasing demand on velocity, the speed of data access, 
and variety, the types of data, of modern big-data applications, 
HDD-based storage alone becomes insufficient. Fortunately, 
another emerging technology that comes to rescue is SSD-based 
storage which offer excellent performance to both sequential 
and random IO accesses. However, SSDs still have serious 
limitations in capacity, cost, and endurance, and must be 
incorporated into the big-data system architecture strategically, 
instead of entirely replacing HDDs. 

This paper presents BigCache, a first SSD-based caching 
and buffering solution for big-data systems. It can be seamlessly 
integrated into existing big-data systems and transparently 
accelerate the various phases of big-data applications, while still 
leveraging the size and cost of HDDs to provide the necessary 
volume and reliability. A prototype of the BigCache approach is 
created upon Hadoop for MapReduce applications. It is also 
evaluated experimentally using representative MapReduce 
applications, WordCount and TeraSort. The results show that 
BigCache can achieve considerable performance improvement 
(up to 14% runtime reduction) even when the SSD caches are 
cold and the SSD buffering is disabled. When the caches are 
warm, the improvement grows to up to 27%, and when the 
buffering is also enabled, it can achieve as high as 53% of 
runtime reduction. The results also show the ability of caching 
partial input and the choice of cache replacement policy in 
BigCache allows it to provide speedups to applications when 
their inputs cannot be entirely stored in the caches, which is 

important to the increasingly demanding big-data applications 
and consolidated big-data environments. 
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