
Performance Modeling of Virtual Machine Live Migration 

Yangyang Wu  Ming Zhao 
School of Computing and Information Sciences 

Florida International University 
Miami, FL, USA 

{ywu009, mzhao}@fiu.edu 
 
Abstract—System virtualization is becoming pervasive and it 
is enabling important new computing diagrams such as cloud 
computing. Live virtual machine (VM) migration is a unique 
capability of system virtualization which allows applications 
to be transparently moved across physical machines with a 
consistent state captured by their VMs. Although live VM 
migration is generally fast, it is a resource-intensive operation 
and can impact the application performance and resource 
usage of the migrating VM as well as other concurrent VMs. 
However, existing studies on live migration performance are 
often based on the assumption that there are sufficient 
resources on the source and destination hosts, which is often 
not the case for highly consolidated systems. As the scale of 
virtualized systems such as clouds continue to grow, the use of 
live migration becomes increasingly more important for 
managing performance and reliability in such systems. 
Therefore, it is key to understand the performance of live VM 
migration under different levels of resource availability. This 
paper addresses this need by creating performance models for 
live migration which can be used to predict a VM’s migration 
time given its application’s behavior and the resources 
available to the migration. A series of experiments were 
conducted on Xen to profile the time for migrating a DomU 
VM running different resource-intensive applications while 
Dom0 is allocated different CPU shares for processing the 
migration. Regression methods are then used to create the 
performance model based on the profiling data. The results 
show that the VM’s migration time is indeed substantially 
impacted by Dom0’s CPU allocation whereas the performance 
model can accurately capture this relationship with the 
coefficient of determination generally higher than 90%. 

I. INTRODUCTION 

System virtual machines (VMs [1][2][3]) are widely 
used in modern computer systems, from individual personal 
computers to large enterprise data centers. System 
virtualization provides a powerful abstraction for both 
application and resource provisioning, upon which shared 
physical resources can be flexibly allocated to VM-hosted 
applications and at the same time applications can be 
conveniently deployed within VM-based enclosures. The 
emergence of VMs has brought tremendous impact to the 
computing field, catalyzing important new paradigms such 
as cloud computing. Cloud systems are unique in their 
unprecedented elasticity, i.e., the ability to dynamically 
grow and shrink resources available to the hosted 
applications on demand. Such elasticity is generally 
enabled by virtualization and is the driving factor behind 
the success of the emerging commercial and academic 
cloud computing offerings [4][5][6].  

VM migration is one of the important capabilities of 
system virtualization, which allows applications to be 

transparently migrated along with their execution 
environments across physical machines. Live migration 
further allows the VM to be migrated almost without any 
interrupt to its application’s execution. VM migration is an 
important means for managing applications and resources 
in a large virtualized system. It enables resource usage to 
be dynamically balanced in the entire virtualized system 
across physical host boundaries, and it also allows 
applications to be dynamically relocated to improve 
performance and reliability. As the scale of virtualized 
systems such as clouds continue to grow, the use of VM 
migration, particularly live VM migration, becomes 
increasingly more important and frequent for optimizing 
application executions and resource usages in the systems. 

VM migration can be resource intensive on its own and 
specifically it can consume substantial CPU cycles and 
network bandwidths. Hence, one VM’s migration would 
compete for resources with other VMs’ application 
executions as well as their migrations. Meanwhile, the 
resources available to perform a VM migration would also 
affect the performance of the migration and consequently 
the performance of the VM’s application. However, 
existing studies on live migration performance are often 
based on the assumption that there are sufficient resources 
on the source and destination hosts [7][8][9], which is often 
not the case for highly consolidated systems. Therefore, it 
is important to understand the performance of VM 
migration under different levels of resource availability. 
With such knowledge, the management software in a 
virtualized system can take it into consideration when 
allocating resources and migrating VMs across the system 
according to the application and system optimization 
objectives.  

This paper addresses the above need by creating 
performance models for VM live migration which can be 
used to predict the migration time given the application 
behavior in the migrating VM and the resource available to 
the migration. A series of experiments were conducted on 
Xen-based VM environment [2] in order to create such a 
model through profiling and modeling. Specifically, the 
migration time of a VM running a CPU-, memory-, disk-
I/O-, or network-I/O-intensive benchmarks [10][11][12] is 
measured with different amount of CPU allocated to the 
Xen’s Dom0 which processes the migration. These data are 
used to train the performance model using regression 
methods. The results confirm that the VM’s live migration 
time indeed varies substantially as the amount of resource 
given to Dom0 changes. The results further demonstrate 
that the generated models can achieve good accuracy for 
predicting the migration times with the coefficients of 
determination generally higher than 90%. 



The rest of the paper is organized as follows: Section II 
introduces the background and related work; Section III 
describes the methodology of our approach; Section IV 
presents the experimental results; Section V offers 
additional discussions; and Section VI concludes this paper.  

II. BACKGROUND AND RELATED WORK 

System VMs are becoming pervasively used in today’s 
computer systems as they provide a powerful abstraction 
for application and resource provisioning. With such VMs, 
shared physical machine resources, including CPU, 
memory, and I/O devices, can be flexibly allocated to 
applications hosted on the VMs, whereas the applications 
can also be conveniently deployed along with VM provided 
encapsulation. System virtualization is enabled by the layer 
of software called Virtual Machine Monitor (VMM, a.k.a., 
hypervisor), which is responsible of multiplexing physical 
resources among the VMs. Full-virtualized VMs [1][3] 
present the same hardware interface to guest operating 
systems (OSes) as the physical machines and support 
unmodified OSes. Paravirtualized VMs [2] present a 
modified hardware interface modified for reducing 
virtualization overhead but they require the guests OSes to 
be modified as well.  

Virtualization is the key technology that enables the 
emerging cloud computing paradigm [4][5][6], because it 
allows resources to be allocated to different applications on 
demand and hides the complexity of resource sharing from 
cloud users. VMs are generally employed in different types 
of cloud systems as containers for hosting application 
execution environments and provisioning resources. For 
example, in Infrastructure-as-a-Service (IaaS) clouds [4], 
VMs are directly exposed to users to deliver a full 
computer infrastructure over Internet; In Platform-as-a-
Service (PaaS) clouds [6], VMs are also used by the clouds 
internally to manage resources across the application 
execution platforms delivered to users. 

VM migration is a unique capability of system 
virtualization which allows an application to be 
transparently moved from one physical host to another and 
to continue its execution after migration without any loss of 
progress. It is generally done by transferring the application 
along with its VM’s entire system state, including the state 
in CPU, memory, and sometimes disk too, from the source 
host to the destination host. VM migration is an important 
means for managing applications and resources in large-
scale virtualized data centers and cloud systems. It enables 
resource usage to be dynamically balanced in the entire 
virtualized system across physical host boundaries, and it 
also allows applications to be dynamically relocated to 
hosts that can provide faster or more reliable executions. 

There are mainly two types of migration strategies 
supported by modern VMMs. The first strategy, suspend-
copy-resume based migration [13][14], migrates a VM 
based on the VMM’s capability of suspending and 
resuming a VM. By suspending the VM, its entire state is 
dumped to persistent storage on the source host, which can 
be then copied and used on the destination host to resume 

the VM’s execution. This strategy is easy to implement, but 
it can introduce significant overhead to the application in 
the VM, because its execution is completely paused during 
the entire migration. The other strategy is live migration 
[7][15][16], which allows a VM to almost continuously run 
during the migration and the application in the VM to 
perceive no or only small interrupt to its execution. 

Xen live VM migration typically entails two phases, 
pre-copy and stop-and-copy. In the pre-copy phase, the VM 
is still running on source host while its memory pages are 
copied to the destination host. Every page that is modified 
after its previous transfer needs to be copied again to the 
destination host. In the stop-and-copy phase, the VM is 
stopped on the source host and all the remaining 
unsynchronized pages of the VM are copied at once to the 
destination host. After this phase, the VM is activated on 
the destination host and continues its execution.  

The performance of VM migration is often measured by 
two time-related metrics. The first one is down time which 
is the duration when the VM is completely stopped and its 
application’s service is entirely unavailable. This time 
corresponds to the length of the stop-and-copy phase in a 
live migration. Down time is a critical metric because it 
captures how much interrupt the users or applications of the 
VM perceive of the migration. Nonetheless, for an 
application with a small writable working set, the migration 
down time is typically short because most of the VM’s 
memory state is transferred during the pre-copy phase 
without interrupting the application.  

The other metric for measuring migration performance 
is migration time, which is the total time for all the 
involved migration phases. Migration time is also critical to 
both the virtualized system and applications. First, it 
decides how quickly the VM can be relocated to meet the 
system management objectives such as performance and 
reliability targets. Second, during the migration, the 
applications on both the source and destination hosts are 
impacted by the migration and their performance may 
degrade substantially [7][15]. From the perspective of the 
applications, the VM migration time is also their 
performance degradation time. Therefore, in this paper, we 
focus on the migration performance metric of total 
migration time and study its relationship with the 
migration’s resource availability. 

Live VM migration can consume substantial resources 
such as CPU cycles and I/O bandwidths on both the source 
and destination hosts, because it involves iterative copying 
of a VM’s memory contents across network. Consequently, 
resources available to the migration can have a significant 
impact on the total migration time [7][15]. The migration’s 
I/O bandwidth usage is dependent on the amount of state 
that needs to be transferred across the network, and the 
impact of network bandwidth allocation on the migration 
time is well studied in the literature [7]. Therefore, this 
paper considers mainly the CPU usage of VM migration 
and the modeling of migration performance under different 
CPU allocations on the source and destination hosts. 

Our previous work [8] studied how to predict the 
migration time for suspend-copy-resume based migration of 



VMs with different configurations, assuming that there are 
sufficient resources for performing the migration. This 
paper considers the modeling of more advanced live VM 
migration and it addresses the problem of predicting the 
migration time under different resource allocations for the 
migration. Related work also studied the performance of 
migration time given the available network bandwidth and 
the VM’s page dirty rate [7][9]. However, as shown in our 
results, the amount of CPU resource available to the 
migration can also substantially affect the migration time. 
Therefore, this paper studies this important factor and 
proposes to use migration performance models to capture 
its impact on migration performance. 

III. METHODOLOGY 

In this section, we describe the methodology used in 
this study. Our fundamental goal is to build a performance 
model for live VM migration which can accurately estimate 
the migration time based on the resource allocation and 
guide the resource management decisions for a virtualized 
data center or cloud system. Towards this goal, this paper 
models the relationship between resource allocation and 
migration time by profiling the migration of VMs running 
different types of highly resource-intensive benchmarks. 
Such performance models can then be used to predict the 
migration times or at least their upper bounds for VMs that 
host the real-world, typically less intensive applications.  
Specifically, Xen-based system virtualization and live VM 
migration are studied in this paper. Xen is a widely used 
x86 VMM which can support VMs with strong resource 
isolation and performance guarantee [2]. In a typical Xen 
environment, Dom0 is the privileged VM that has direct 
access to physical devices and manages the other non-
privileged VMs, called DomUs, on the same physical host. 

During a live VM migration, the Dom0s on both the 
source and destination hosts coordinate the transfer of the 
VM’s memory and other system related information. 
Therefore, CPU usages of Dom0s on the two hosts have an 
impact on how fast the live migration can be finished. 
However, Xen does not provide a direct way to monitor 
and control how much CPU is spent in Dom0 for a VM’s 
migration. In order to perform the proposed performance 
modeling for VM live migration, we control a migration’s 
CPU usage on a host by leveraging Xen’s ability to assign a 
specific amount of CPU to the entire Dom0. By controlling 
the amount of CPU given to Dom0, we can effectively limit 
the amount of CPU available to a VM’s migration. The 
assumption is that the Dom0’s CPU allocation is mainly 
used to process the target DomU VM’s activities so that it 
can reflect the level of resource available to this VM only. 
This assumption is valid in our experiments as our profiling 
is done in a carefully controlled environment where the 
entire physical host is dedicated the target DomU VM.  

The performance models created through this approach 
can be used to guide the resource allocation decisions in a 
virtualized system in two different ways. First, the models 
can be used to predict a specific VM’s migration time given 
the VM’s application behavior and the resources available 

to the migration. Without an exact control on the amount of 
resource used by Dom0 for a specific migration, we can 
still use the performance model to derive a lower bound of 
the migration time and understand its impact on the VM’s 
application’s performance and reliability. Second, the 
models can be also used to predict the necessary resource 
allocation for migrating a VM in order to meet its migration 
time target. Without an exact control on the resources used 
by Dom0 to process the concurrent migrations and other 
DomU activities, we can still use the models produce a 
lower bound on its total resource demand in order to meet 
all the migration time targets. 

In our future work, we will implement the necessary 
mechanisms in the Xen VMM for directly and precisely 
measuring and controlling the resources consumed by a 
specific VM’s migration. The performance modeling 
methodology taken by this paper would still apply with 
such direct mechanisms whereas the results of this paper 
would also provide key insights into the effectiveness of 
these mechanisms. 

We implemented our profiling experiments with a VM 
running four types of resource-intensive benchmarks during 
the VM’s live migration. The resources considered in this 
paper include CPU, memory, disk I/O, and network I/O. 
Specifically, in the experiments, we move a DomU VM 
from a source host to a destination host using Xen’s live 
migration functionality. The CPU usage of Dom0 on the 
hosts is controlled by setting the CPU cap parameter of 
Xen’s credit CPU scheduler [17]. Experiments included in 
this paper are based on the following configurations. Both 
the source and destination hosts have two 6-core 2.4GHZ 
Opteron CPUs and 32GB of memory. Xen 3.2.1 is installed 
on both servers to provide VM environments. The migrated 
VM has 1GB of memory and 4GB of disk using EXT3 file 
system, unless otherwise noted. The VM runs Ubuntu 
Hardy with the Linux version 2.6.24. To facilitate live 
migration, the VM image is stored on a network file system 
server accessible to both hosts. 

IV. EXPERIMENTAL ANALYSIS 

A. Migration of CPU-intensive VM 
If the live VM migration is indeed a CPU intensive 

operation, then a VM’s migration time would increase as 
the CPU available to the migration decreases. In this group 
of experiments, we study the impact of Dom0’s CPU 
allocation on a DomU VM’s migration time. The migrated 
VM runs a CPU-intensive benchmark [10] which does 
mainly intensive calculations without consuming much of 
other types of resources. We control its intensity by setting 
a different CPU cap on the DomU during the migration. 

Figure 1 shows that as the CPU allocated to Dom0 on 
the source host increases from 10% to 50%, the migration 
time drops dramatically, from about 100 seconds to about 
20 seconds. However, after Dom0’s CPU allocation 
exceeds 50%, the migration time stays at the same level of 
about 17 seconds. By monitoring Dom0’s actual CPU 
usage during the whole migration, we find out that when 
Dom0 is assigned more than 50% of CPU it only consumes 



at most 50%. Therefore, additional CPU allocation does not 
help further speed up the live migration. 

The results also show that the migration time is almost 
identical when the DomU’s CPU intensity changes from 
idle (without running the benchmark), 40%, to 80%. This 
observation can be explained by two factors. First, the CPU 
usages by Dom0 and DomU are well isolated without much 
interference. Second, there is abundant CPU for both Dom0 
and DomU to consume on this particular physical host 
which has 12 2.4GHz CPU cores.  

Based on these data we build a performance model for 
the migration of such a CPU-intensive VM using statistical 
modeling. Specifically, we use power regression to 
generate the model that best fits these data. Figure 2 
visualizes the modeling results when the VM runs a 40% 
CPU intensive workload, which shows that the produced 
model can well fit the experiment data. We also use the 
coefficients of determination, R², a metric often used to 
measure the accuracy of modeling. The value of R² ranges 
from 0 to 1, and the closer it is to 1 the more accurate the 
model is in capturing the input data. Specifically in this 
experiment, the value of R² for modeling the migration of a 
VM with 0%, 40%, and 80% CPU-intensity is 94.1%, 
93.99%, and 95.81% respectively. These results further 
quantitatively prove that the model can accurately capture 
the relationship between Dom0’s CPU allocation and 
DomU’s migration time. 

The above experiments were done when we controlled 
the CPU allocation to Dom0 on the source host. Moreover, 
the destination host’s Dom0 CPU allocation can also 

impact the VM’s migration time. To study this impact, we 
conducted another experiment by also setting different caps 
on the destination host’s Dom0. In this experiment, the 
migrating DomU VM is always given 100% of CPU. 

From the results in Figure 3 we can see that, no matter 
how much cap is set on the source host’s Dom0, the 
migration time always drops when the destination host’s 
Dom0 is given more CPU resource. The drop is significant 
when this cap is less than 50%.  After that, the decrease on 
migration time is not significant as the CPU allocation 
further increases, which is also due to the fact that the 
destination host’s Dom0 does not need more than 50% of 
CPU during the migration.  

The results also show that as we control the CPU 
allocation to the destination host’s Dom0, the CPU 
allocated to the source host’s Dom0 also affects the DomU 
VM’s migration time, particularly when the source host 
Dom0’s cap is less than 50%. Therefore, in order to achieve 
a desired migration time, both the source and destination 
hosts’ CPU resources need to be carefully managed, as they 
may be both under contention and can both affect the 
migration performance. However, for simplicity, in the rest 
of this paper, we only study the impact of the source host 
Dom0’s CPU allocation to the live migration time. 

Figure 4 shows the modeling results for varying CPU 
cap on the destination host’s Dom0 while the source host’s 
Dom0 has a CPU cap of 60%. The coefficient of 
determination for this modeling is 97.03%, which means 
that most of the data can be captured by this model. In the 
other models created when the source host’s Dom0 is given 

 
Figure 1 Migration time for a CPU-intensive VM with different CPU 

allocations to Dom0 on the source host 

 
Figure 2 Model for the migration time for a 40% CPU-intensive VM 

with different CPU allocation to the source host’s Dom0  

 
Figure 3 Migration time for a CPU-intensive DomU with different CPU 

allocations to Dom0s on the source and destination hosts 

 
Figure 4 Model for the migration time with 60% CPU to the source 
host’s Dom0 and different allocation to the destination host’s Dom0 

 



20%, 40%, and 100% of CPU, the coefficients of 
determination are 75%, 85.53%, and 97.72%, respectively. 

B. Migration of Memory-intensive VM 
In this subsection, we study the performance model for 

migrating VMs running memory-intensive applications. 
Specifically, we consider two types of memory operations, 
read and write. We created two synthetic benchmarks 
which continuously read and write, respectively, 1GB of 
data from memory. The DomU VM used in this group of 
experiments is configured with 2GB of memory. Both the 
memory read and write benchmarks would consume 
substantial memory bandwidth, whereas the migration also 
needs to transfer the VM’s memory state between the 
source and destination hosts. In addition, the write 
benchmark would incur substantial additional work on the 
VMM and Dom0, as the memory dirtied by it during the 
migration needs to be iteratively copied to the destination.  

First we want to study the impact of an application’s 
memory operation intensity on the VM’s migration time. 
To control the intensity of the memory benchmarks, we set 
different CPU caps to the DomU VM, because the more 
CPU cycles the VM can use the more memory operations 
its application can issue. We then migration this VM 
without any CPU cap on the Dom0s. The results in Figure 5 
show that when DomU is running an application that is 
memory read intensive, the migration time almost stays the 
same at about 20 seconds. There is no obvious increase on 
migration time when the memory read intensity increases. 
From this experiment, we do not see the impact of a VM’s 

memory bandwidth usage on its migration time. This 
observation can be at least partly explained by the fact that 
the amount of state that the migration needs to transfer is 
bounded the VM’s memory size as the memory read 
benchmark does not modify the VM’s memory pages at all. 

The results from migrating a VM running the memory 
write benchmark are more interesting and show a quite 
different pattern. When the CPU cap on the DomU VM is 
set less than 30%, the migration time increases quickly as 
its cap goes up. However, after the CPU cap is set more 
than 30%, the migration time stays almost the same, 
regardless of the further increase of CPU cap on the DomU 
VM. These results can be explained by how Xen transfers a 
VM’s memory state during the live migration. During the 
pre-copy phase, Xen will copy and transfer the memory 
state in several rounds. In each round, only the memory that 
has been dirtied after the previous round will be transferred 
again to the destination host. Normally when there is not 
many dirty memory pages left, Xen will move on to the 
stop-and-copy phase. However, in some extreme cases, like 
the one with the memory write benchmark, the memory is 
dirtied frequently, so transferring the dirtied memory pages 
iteratively will substantially slow down the migration 
process. When Xen recognizes this problem in the 
migration, it would immediately enter the stop-and-copy 
phase and transfer all the dirtied memory pages in a single 
round, in order to save the migration time. This is what 
happens in our experiment with the memory write 
application when the VM’s CPU cap is set at 30% or more. 
Because the VM’s memory pages are updated so frequently, 

 
Figure 5 Migration time for a memory-intensive VM with different CPU 

allocations to DomU on the source host 

 
Figure 6 Migration time for a memory-intensive VM with different CPU 

allocations to Dom0 on the source host 

 
Figure 7 Model for the migration time for a memory read intensive VM 

with different CPU allocation to the source host’s Dom0 

 
Figure 8 Model for the migration time for a memory write intensive VM 

with different CPU allocation to the source host’s Dom0 

  



it triggers Xen’s immediate stop-and-copy and as a result 
the VM’s migration time stays the same. 

 In the next two experiments, we study the impact of 
Dom0’s CPU availability to the DomU VM’s migration 
time by migrating the VM running the memory read or 
write benchmark with a 100% CPU cap on DomU and 
different caps on Dom0. Figure 6 shows that when DomU 
is running either the memory read or write benchmark, the 
migration time drops quickly as more CPU cycles are 
available for Dom0 to process the migration. In the 
meantime, running the memory write intensive benchmark 
on the VM always makes its migration much slower than 
running the memory read benchmark. 

Figure 7 and Figure 8 show the modeling results for the 
migration time of the VM running the memory read and 
write benchmark respectively. The coefficients of 
determination   (R²) are 96.34% and 97.08% which are both 
close to 1, showing good accuracy of these models. 

C. Migration of Disk I/O-intensive VM 
Because a DomU VM’s disk accesses have to be 

processed by Dom0 which has the actual access to the 
physical disk devices, a disk I/O intensive VM would 
involve substantial overhead in Dom0 when it is migrated. 
In this subsection, we study the impact of Dom0’s CPU 
allocation to the migration time for a VM running a disk 
I/O intensive application. Specifically, we run the fio 
benchmark [11] on the DomU VM to sequentially read an 
8GB file. The file cannot be cached in the DomU’s 1GB 
memory and we also drop the cache on Dom0, so the 
benchmark’s execution will create intensive I/Os to the 
physical disk. In this experiment, the VM’s disk size is 
increased to 20GB in order to store the file. The sequential 
read pattern is chosen to run the benchmark because it can 
generate intensive and consistent IOPS (I/O Operations Per 
Second) compared to sequential write or random read or 
write patterns. So it is useful for creating a performance 
model that can predict the upper bound migration time for a 
VM running disk I/O intensive applications. 

Figure 9 shows the relationship between the Dom0’s 
CPU cap and the DomU VM’s migration time. As more 
CPU cycles become available for Dom0 to handle the 
migration, the migration time reduces accordingly. 
However, after the cap goes more than 50%, there is no 
substantial change on migration time anymore, again due to 

the fact that Dom0 does not use more than 50% of CPU for 
the migration. We also use power regression to build a 
performance model for such a VM running the disk I/O-
intensive application. The modeling results are illustrated in 
Figure 10. With the coefficient of determination (R²) equal 
to 98.35%, most of the data points from experiments can fit 
in this model, meaning that if it can produce good accuracy 
when used to predict the VM’s live migration time. 

D. Migration of Network I/O-intensive VM 
Similarly to the above disk I/O intensive VM, a DomU 

VM running a network I/O intensive application would also 
incur additional overhead in Dom0 as the DomU’s network 
I/Os have to be handled by Dom0. In addition, transferring 
a VM’s state between different physical hosts requires 
substantial network bandwidth, so the available network 
bandwidth would affect the VM’s migration time. This 
latter impact is well studied in the related work [2]. So this 
group of experiments focuses on the impact of CPU 
allocation to Dom0 on the migration time for a DomU VM 
running a network I/O intensive application. 

We use TTCP [12] as the benchmark for generating 
continuous network I/Os between a sender and a receiver 
using UDP. We use a third physical machine to run another 
instance of TTCP which transfers a 512MB file to or from 
the TTCP running on the migration VM. The file is 
preloaded into the sender’s so no disk I/Os are involved in 
the experiments. During the two conducted experiments, 
the migrating VM is set up to be either a sender or receiver. 

 Being a sender or receiver during the live migration 
does not make much a difference on the VM’s migration 
time, as shown in Figure 11 and Figure 12. When we vary 
the cap set on Dom0 to control its CPU allocation, the 
migration time decreases as the cap goes up. When the cap 
is set more than 60%, although there is some decrease on 
migration time, it is not substantial. Noticed that when 
Dom0 has 100% access to its CPU resource, it consumes 
only about 60% of the CPU most of the time, so given 
more than 60% of CPU to Dom0 would not further help 
reduce the migration time.  

Given these experimental data, we created models for 
the two cases, where the migration VM acts as a sender or a 
receiver running a network I/O intensive application. The 
modeling results are shown in Figure 13 and Figure 14. The 
coefficients of determination (R²) of the models are both 

 
Figure 9 Migration time for a disk I/O-intensive VM with different CPU 

allocations to Dom0 on the source host 

 
Figure 10 Model for the migration time for a disk I/O-intensive VM with 

different CPU allocations to Dom0 on the source host 



close to 1, again indicating that most of the experimental 
data fit in the produced models. 

From the modeling results in the above subsections, we 
can also see that as a VM runs different types of resource-
intensive benchmark, its migration time is different even 
with the same amount of resource allocated to the 
migration. In particular, when the benchmark makes 
intensive use of memory write, disk I/O, or network I/O, its 
VM’s migration time is much longer than when it is only 
CPU-intensive. Therefore, when applying these models to 
predict a migration’s performance and resource demand, 
we also need to understand the resource usage of the 
application on the VM, which can be monitored through the 
typical profiling tools available in guest OSes and VMMs. 

E. Model Prediction 
Finally, we evaluate the prediction accuracy of the 

migration performance models created using our approach 
by using separate datasets for training the migration 

performance models and evaluate the prediction accuracy 
of these models. For each experiment, 5 training data points 
are evenly picked from the entire CPU allocation range and 
used to create the model, which is then used to predict the 
migration times for the other CPU allocation values in the 
test data. The predictions are compared to the measured 
migration times to compute the prediction errors. For the 
experiments of migrating CPU-intensive VMs, only the one 
with 80% CPU-intensive VM is evaluated here.  

The results are summarized in Table 1 and they show 
that the difference between the predicted and measured 
migration times is typically within a few seconds. The 
prediction accuracy is always good for migrating a CPU 
intensive VM. The prediction error is higher when the CPU 
allocation to Dom0 is low for migrating a memory-, disk-, 
or network-intensive VM. This result demonstrates that 
when Dom0 is under heavier contention from the DomU 
activities, its behavior becomes less predictable.  

V. DISCUSSION 

As demonstrated in the proceeding results, the resource 
intensity of a migrating VM has a substantial impact on its 
migration time. Therefore, an assumption made by our 
performance modeling approach is that the VM’s behavior 
stays stable during the period of the migration. Given the 
fact that live migration usually finishes within seconds for 
VMs hosting real-world applications, we believe that this is 
a reasonable assumption. The other assumption is that the 
platforms where the migration performance models are 

Table 1 Model Prediction Error 

VM Prediction Error (s) 
Average Median 

CPU-intensive 1.58 1.74 
Memory read intensive 7.63 3.33 
Memory write intensive 9.25 6.79 
Disk I/O intensive 4.01 2.97 

Network send intensive 3.53 3.16 
Network receive intensive 4.94 2.43 

 

 
Figure 11 Migration time for a network-send-intensive VM with 

different CPU allocations to Dom0 on the source host 

 
Figure 12 Migration time for a network-receive-intensive VM with 

different CPU allocations to Dom0 on the source host 

 
Figure 13 Model for the migration time for network-send-intensive VM 

with different CPU allocations to Dom0 on the source host 

 

 
Figure 14 Model for the migration time for network-receive-intensive 

VM with different CPU allocations to Dom0 on the source host 

 



trained and where they are used for prediction are the same. 
Because the differences in software (VMM) and hardware 
(CPU, memory, disk, and network) can affect a VM’s 
migration, cross-platform performance prediction is not 
trivial and will be considered in our future investigation. 

For live VM migration, both the availability of CPU 
cycles and the network bandwidth are major factors that 
can affect migration time. Although in this paper, we focus 
on only the impact of CPU availability, we have found out 
that, through other experiments, the use of CPU and 
network bandwidth are highly correlated during a migration.  
For example, when we fix only the CPU cap to Dom0, the 
network transmission rate is also relatively stable and it 
changes as the CPU caps varies. This observation implies 
that from the performance models created using only the 
CPU cap as the input, we can infer the appropriate network 
bandwidth cap and obtain the same migration performance. 
Therefore, it is unnecessary to take both CPU availability 
and network bandwidth availability to build performance 
models for live VM migration. This conclusion is also 
confirmed experimentally. 

Although this paper does not study the performance of 
migrating multiple VMs in parallel, its methodology of 
performance modeling can also be applied for that purpose. 
Moreover, performance models created from non-parallel 
migrations can be also used to provide an estimate for a 
parallel migration. On one hand, the prediction made for 
individual VM migrations using such models can provide a 
lower bound for when they are migrated in parallel. (Due to 
interference among concurrent migrations, they are likely 
to be slower than when they are migrated sequentially.) On 
the other hand, given the desired migration times for all the 
concurrently migrated VMs, we can also use these models 
to determine a lower bound for the total required resource, 
which is the sum of the individual migrations’ resource 
demand. We will conduct a more thorough study on the 
performance of parallel VM migrations in our future work. 

VI. CONCLUSION 

System virtualization is a powerful platform for 
provisioning applications and resources in the emerging 
computer systems such as utility data centers and cloud 
systems. Live VM migration is an important tool for 
managing such systems in various critical aspects such as 
performance and reliability. Understanding the role that the 
resource availability plays on the performance of live 
migration can help us make better decisions on when to 
migrate a VM and how to allocate the necessary resources. 
This paper is an effort towards this goal by creating a 
performance model that can be used to predict migration 
time and guide resource management decisions.  

Our approach is to profile the migration time for VMs 
running different representative benchmarks and then build 
the performance model using statistical methods such as 
regression. Specifically, we did a series of experiments by 
migrating a Xen-based VM running CPU, memory, or I/O-
intensive applications and allocating different amount of 
CPU share to the migration. The results demonstrate that 

the amount of resource available to live migration indeed 
has a substantial impact on the migration time. Nonetheless, 
the models created using this approach can precisely 
capture this relationship and can be effectively used to 
predict a VM’s live migration time.  
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