
Performance Modeling of Virtual Machine Live Migration

Yangyang Wu Ming Zhao
School of Computing and Information Sciences

Florida International University
Miami, FL, USA

{ywu009, mzhao}@fiu.edu

Abstract—System virtualization is becoming pervasive and it
is enabling important new computing diagrams such as cloud
computing. Live virtual machine (VM) migration is a unique
capability of system virtualization which allows applications
to be transparently moved across physical machines with a
consistent state captured by their VMs. Although live VM
migration is generally fast, it is a resource-intensive operation
and can impact the application performance and resource
usage of the migrating VM as well as other concurrent VMs.
However, existing studies on live migration performance are
often based on the assumption that there are sufficient
resources on the source and destination hosts, which is often
not the case for highly consolidated systems. As the scale of
virtualized systems such as clouds continue to grow, the use of
live migration becomes increasingly more important for
managing performance and reliability in such systems.
Therefore, it is key to understand the performance of live VM
migration under different levels of resource availability. This
paper addresses this need by creating performance models for
live migration which can be used to predict a VM’s migration
time given its application’s behavior and the resources
available to the migration. A series of experiments were
conducted on Xen to profile the time for migrating a DomU
VM running different resource-intensive applications while
Dom0 is allocated different CPU shares for processing the
migration. Regression methods are then used to create the
performance model based on the profiling data. The results
show that the VM’s migration time is indeed substantially
impacted by Dom0’s CPU allocation whereas the performance
model can accurately capture this relationship with the
coefficient of determination generally higher than 90%.

I. INTRODUCTION

System virtual machines (VMs [1][2][3]) are widely
used in modern computer systems, from individual personal
computers to large enterprise data centers. System
virtualization provides a powerful abstraction for both
application and resource provisioning, upon which shared
physical resources can be flexibly allocated to VM-hosted
applications and at the same time applications can be
conveniently deployed within VM-based enclosures. The
emergence of VMs has brought tremendous impact to the
computing field, catalyzing important new paradigms such
as cloud computing. Cloud systems are unique in their
unprecedented elasticity, i.e., the ability to dynamically
grow and shrink resources available to the hosted
applications on demand. Such elasticity is generally
enabled by virtualization and is the driving factor behind
the success of the emerging commercial and academic
cloud computing offerings [4][5][6].

VM migration is one of the important capabilities of
system virtualization, which allows applications to be

transparently migrated along with their execution
environments across physical machines. Live migration
further allows the VM to be migrated almost without any
interrupt to its application’s execution. VM migration is an
important means for managing applications and resources
in a large virtualized system. It enables resource usage to
be dynamically balanced in the entire virtualized system
across physical host boundaries, and it also allows
applications to be dynamically relocated to improve
performance and reliability. As the scale of virtualized
systems such as clouds continue to grow, the use of VM
migration, particularly live VM migration, becomes
increasingly more important and frequent for optimizing
application executions and resource usages in the systems.

VM migration can be resource intensive on its own and
specifically it can consume substantial CPU cycles and
network bandwidths. Hence, one VM’s migration would
compete for resources with other VMs’ application
executions as well as their migrations. Meanwhile, the
resources available to perform a VM migration would also
affect the performance of the migration and consequently
the performance of the VM’s application. However,
existing studies on live migration performance are often
based on the assumption that there are sufficient resources
on the source and destination hosts [7][8][9], which is often
not the case for highly consolidated systems. Therefore, it
is important to understand the performance of VM
migration under different levels of resource availability.
With such knowledge, the management software in a
virtualized system can take it into consideration when
allocating resources and migrating VMs across the system
according to the application and system optimization
objectives.

This paper addresses the above need by creating
performance models for VM live migration which can be
used to predict the migration time given the application
behavior in the migrating VM and the resource available to
the migration. A series of experiments were conducted on
Xen-based VM environment [2] in order to create such a
model through profiling and modeling. Specifically, the
migration time of a VM running a CPU-, memory-, disk-
I/O-, or network-I/O-intensive benchmarks [10][11][12] is
measured with different amount of CPU allocated to the
Xen’s Dom0 which processes the migration. These data are
used to train the performance model using regression
methods. The results confirm that the VM’s live migration
time indeed varies substantially as the amount of resource
given to Dom0 changes. The results further demonstrate
that the generated models can achieve good accuracy for
predicting the migration times with the coefficients of
determination generally higher than 90%.

The rest of the paper is organized as follows: Section II
introduces the background and related work; Section III
describes the methodology of our approach; Section IV
presents the experimental results; Section V offers
additional discussions; and Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

System VMs are becoming pervasively used in today’s
computer systems as they provide a powerful abstraction
for application and resource provisioning. With such VMs,
shared physical machine resources, including CPU,
memory, and I/O devices, can be flexibly allocated to
applications hosted on the VMs, whereas the applications
can also be conveniently deployed along with VM provided
encapsulation. System virtualization is enabled by the layer
of software called Virtual Machine Monitor (VMM, a.k.a.,
hypervisor), which is responsible of multiplexing physical
resources among the VMs. Full-virtualized VMs [1][3]
present the same hardware interface to guest operating
systems (OSes) as the physical machines and support
unmodified OSes. Paravirtualized VMs [2] present a
modified hardware interface modified for reducing
virtualization overhead but they require the guests OSes to
be modified as well.

Virtualization is the key technology that enables the
emerging cloud computing paradigm [4][5][6], because it
allows resources to be allocated to different applications on
demand and hides the complexity of resource sharing from
cloud users. VMs are generally employed in different types
of cloud systems as containers for hosting application
execution environments and provisioning resources. For
example, in Infrastructure-as-a-Service (IaaS) clouds [4],
VMs are directly exposed to users to deliver a full
computer infrastructure over Internet; In Platform-as-a-
Service (PaaS) clouds [6], VMs are also used by the clouds
internally to manage resources across the application
execution platforms delivered to users.

VM migration is a unique capability of system
virtualization which allows an application to be
transparently moved from one physical host to another and
to continue its execution after migration without any loss of
progress. It is generally done by transferring the application
along with its VM’s entire system state, including the state
in CPU, memory, and sometimes disk too, from the source
host to the destination host. VM migration is an important
means for managing applications and resources in large-
scale virtualized data centers and cloud systems. It enables
resource usage to be dynamically balanced in the entire
virtualized system across physical host boundaries, and it
also allows applications to be dynamically relocated to
hosts that can provide faster or more reliable executions.

There are mainly two types of migration strategies
supported by modern VMMs. The first strategy, suspend-
copy-resume based migration [13][14], migrates a VM
based on the VMM’s capability of suspending and
resuming a VM. By suspending the VM, its entire state is
dumped to persistent storage on the source host, which can
be then copied and used on the destination host to resume

the VM’s execution. This strategy is easy to implement, but
it can introduce significant overhead to the application in
the VM, because its execution is completely paused during
the entire migration. The other strategy is live migration
[7][15][16], which allows a VM to almost continuously run
during the migration and the application in the VM to
perceive no or only small interrupt to its execution.

Xen live VM migration typically entails two phases,
pre-copy and stop-and-copy. In the pre-copy phase, the VM
is still running on source host while its memory pages are
copied to the destination host. Every page that is modified
after its previous transfer needs to be copied again to the
destination host. In the stop-and-copy phase, the VM is
stopped on the source host and all the remaining
unsynchronized pages of the VM are copied at once to the
destination host. After this phase, the VM is activated on
the destination host and continues its execution.

The performance of VM migration is often measured by
two time-related metrics. The first one is down time which
is the duration when the VM is completely stopped and its
application’s service is entirely unavailable. This time
corresponds to the length of the stop-and-copy phase in a
live migration. Down time is a critical metric because it
captures how much interrupt the users or applications of the
VM perceive of the migration. Nonetheless, for an
application with a small writable working set, the migration
down time is typically short because most of the VM’s
memory state is transferred during the pre-copy phase
without interrupting the application.

The other metric for measuring migration performance
is migration time, which is the total time for all the
involved migration phases. Migration time is also critical to
both the virtualized system and applications. First, it
decides how quickly the VM can be relocated to meet the
system management objectives such as performance and
reliability targets. Second, during the migration, the
applications on both the source and destination hosts are
impacted by the migration and their performance may
degrade substantially [7][15]. From the perspective of the
applications, the VM migration time is also their
performance degradation time. Therefore, in this paper, we
focus on the migration performance metric of total
migration time and study its relationship with the
migration’s resource availability.

Live VM migration can consume substantial resources
such as CPU cycles and I/O bandwidths on both the source
and destination hosts, because it involves iterative copying
of a VM’s memory contents across network. Consequently,
resources available to the migration can have a significant
impact on the total migration time [7][15]. The migration’s
I/O bandwidth usage is dependent on the amount of state
that needs to be transferred across the network, and the
impact of network bandwidth allocation on the migration
time is well studied in the literature [7]. Therefore, this
paper considers mainly the CPU usage of VM migration
and the modeling of migration performance under different
CPU allocations on the source and destination hosts.

Our previous work [8] studied how to predict the
migration time for suspend-copy-resume based migration of

VMs with different configurations, assuming that there are
sufficient resources for performing the migration. This
paper considers the modeling of more advanced live VM
migration and it addresses the problem of predicting the
migration time under different resource allocations for the
migration. Related work also studied the performance of
migration time given the available network bandwidth and
the VM’s page dirty rate [7][9]. However, as shown in our
results, the amount of CPU resource available to the
migration can also substantially affect the migration time.
Therefore, this paper studies this important factor and
proposes to use migration performance models to capture
its impact on migration performance.

III. METHODOLOGY

In this section, we describe the methodology used in
this study. Our fundamental goal is to build a performance
model for live VM migration which can accurately estimate
the migration time based on the resource allocation and
guide the resource management decisions for a virtualized
data center or cloud system. Towards this goal, this paper
models the relationship between resource allocation and
migration time by profiling the migration of VMs running
different types of highly resource-intensive benchmarks.
Such performance models can then be used to predict the
migration times or at least their upper bounds for VMs that
host the real-world, typically less intensive applications.
Specifically, Xen-based system virtualization and live VM
migration are studied in this paper. Xen is a widely used
x86 VMM which can support VMs with strong resource
isolation and performance guarantee [2]. In a typical Xen
environment, Dom0 is the privileged VM that has direct
access to physical devices and manages the other non-
privileged VMs, called DomUs, on the same physical host.

During a live VM migration, the Dom0s on both the
source and destination hosts coordinate the transfer of the
VM’s memory and other system related information.
Therefore, CPU usages of Dom0s on the two hosts have an
impact on how fast the live migration can be finished.
However, Xen does not provide a direct way to monitor
and control how much CPU is spent in Dom0 for a VM’s
migration. In order to perform the proposed performance
modeling for VM live migration, we control a migration’s
CPU usage on a host by leveraging Xen’s ability to assign a
specific amount of CPU to the entire Dom0. By controlling
the amount of CPU given to Dom0, we can effectively limit
the amount of CPU available to a VM’s migration. The
assumption is that the Dom0’s CPU allocation is mainly
used to process the target DomU VM’s activities so that it
can reflect the level of resource available to this VM only.
This assumption is valid in our experiments as our profiling
is done in a carefully controlled environment where the
entire physical host is dedicated the target DomU VM.

The performance models created through this approach
can be used to guide the resource allocation decisions in a
virtualized system in two different ways. First, the models
can be used to predict a specific VM’s migration time given
the VM’s application behavior and the resources available

to the migration. Without an exact control on the amount of
resource used by Dom0 for a specific migration, we can
still use the performance model to derive a lower bound of
the migration time and understand its impact on the VM’s
application’s performance and reliability. Second, the
models can be also used to predict the necessary resource
allocation for migrating a VM in order to meet its migration
time target. Without an exact control on the resources used
by Dom0 to process the concurrent migrations and other
DomU activities, we can still use the models produce a
lower bound on its total resource demand in order to meet
all the migration time targets.

In our future work, we will implement the necessary
mechanisms in the Xen VMM for directly and precisely
measuring and controlling the resources consumed by a
specific VM’s migration. The performance modeling
methodology taken by this paper would still apply with
such direct mechanisms whereas the results of this paper
would also provide key insights into the effectiveness of
these mechanisms.

We implemented our profiling experiments with a VM
running four types of resource-intensive benchmarks during
the VM’s live migration. The resources considered in this
paper include CPU, memory, disk I/O, and network I/O.
Specifically, in the experiments, we move a DomU VM
from a source host to a destination host using Xen’s live
migration functionality. The CPU usage of Dom0 on the
hosts is controlled by setting the CPU cap parameter of
Xen’s credit CPU scheduler [17]. Experiments included in
this paper are based on the following configurations. Both
the source and destination hosts have two 6-core 2.4GHZ
Opteron CPUs and 32GB of memory. Xen 3.2.1 is installed
on both servers to provide VM environments. The migrated
VM has 1GB of memory and 4GB of disk using EXT3 file
system, unless otherwise noted. The VM runs Ubuntu
Hardy with the Linux version 2.6.24. To facilitate live
migration, the VM image is stored on a network file system
server accessible to both hosts.

IV. EXPERIMENTAL ANALYSIS

A. Migration of CPU-intensive VM
If the live VM migration is indeed a CPU intensive

operation, then a VM’s migration time would increase as
the CPU available to the migration decreases. In this group
of experiments, we study the impact of Dom0’s CPU
allocation on a DomU VM’s migration time. The migrated
VM runs a CPU-intensive benchmark [10] which does
mainly intensive calculations without consuming much of
other types of resources. We control its intensity by setting
a different CPU cap on the DomU during the migration.

Figure 1 shows that as the CPU allocated to Dom0 on
the source host increases from 10% to 50%, the migration
time drops dramatically, from about 100 seconds to about
20 seconds. However, after Dom0’s CPU allocation
exceeds 50%, the migration time stays at the same level of
about 17 seconds. By monitoring Dom0’s actual CPU
usage during the whole migration, we find out that when
Dom0 is assigned more than 50% of CPU it only consumes

at most 50%. Therefore, additional CPU allocation does not
help further speed up the live migration.

The results also show that the migration time is almost
identical when the DomU’s CPU intensity changes from
idle (without running the benchmark), 40%, to 80%. This
observation can be explained by two factors. First, the CPU
usages by Dom0 and DomU are well isolated without much
interference. Second, there is abundant CPU for both Dom0
and DomU to consume on this particular physical host
which has 12 2.4GHz CPU cores.

Based on these data we build a performance model for
the migration of such a CPU-intensive VM using statistical
modeling. Specifically, we use power regression to
generate the model that best fits these data. Figure 2
visualizes the modeling results when the VM runs a 40%
CPU intensive workload, which shows that the produced
model can well fit the experiment data. We also use the
coefficients of determination, R², a metric often used to
measure the accuracy of modeling. The value of R² ranges
from 0 to 1, and the closer it is to 1 the more accurate the
model is in capturing the input data. Specifically in this
experiment, the value of R² for modeling the migration of a
VM with 0%, 40%, and 80% CPU-intensity is 94.1%,
93.99%, and 95.81% respectively. These results further
quantitatively prove that the model can accurately capture
the relationship between Dom0’s CPU allocation and
DomU’s migration time.

The above experiments were done when we controlled
the CPU allocation to Dom0 on the source host. Moreover,
the destination host’s Dom0 CPU allocation can also

impact the VM’s migration time. To study this impact, we
conducted another experiment by also setting different caps
on the destination host’s Dom0. In this experiment, the
migrating DomU VM is always given 100% of CPU.

From the results in Figure 3 we can see that, no matter
how much cap is set on the source host’s Dom0, the
migration time always drops when the destination host’s
Dom0 is given more CPU resource. The drop is significant
when this cap is less than 50%. After that, the decrease on
migration time is not significant as the CPU allocation
further increases, which is also due to the fact that the
destination host’s Dom0 does not need more than 50% of
CPU during the migration.

The results also show that as we control the CPU
allocation to the destination host’s Dom0, the CPU
allocated to the source host’s Dom0 also affects the DomU
VM’s migration time, particularly when the source host
Dom0’s cap is less than 50%. Therefore, in order to achieve
a desired migration time, both the source and destination
hosts’ CPU resources need to be carefully managed, as they
may be both under contention and can both affect the
migration performance. However, for simplicity, in the rest
of this paper, we only study the impact of the source host
Dom0’s CPU allocation to the live migration time.

Figure 4 shows the modeling results for varying CPU
cap on the destination host’s Dom0 while the source host’s
Dom0 has a CPU cap of 60%. The coefficient of
determination for this modeling is 97.03%, which means
that most of the data can be captured by this model. In the
other models created when the source host’s Dom0 is given

Figure 1 Migration time for a CPU-intensive VM with different CPU

allocations to Dom0 on the source host

Figure 2 Model for the migration time for a 40% CPU-intensive VM

with different CPU allocation to the source host’s Dom0

Figure 3 Migration time for a CPU-intensive DomU with different CPU

allocations to Dom0s on the source and destination hosts

Figure 4 Model for the migration time with 60% CPU to the source
host’s Dom0 and different allocation to the destination host’s Dom0

20%, 40%, and 100% of CPU, the coefficients of
determination are 75%, 85.53%, and 97.72%, respectively.

B. Migration of Memory-intensive VM
In this subsection, we study the performance model for

migrating VMs running memory-intensive applications.
Specifically, we consider two types of memory operations,
read and write. We created two synthetic benchmarks
which continuously read and write, respectively, 1GB of
data from memory. The DomU VM used in this group of
experiments is configured with 2GB of memory. Both the
memory read and write benchmarks would consume
substantial memory bandwidth, whereas the migration also
needs to transfer the VM’s memory state between the
source and destination hosts. In addition, the write
benchmark would incur substantial additional work on the
VMM and Dom0, as the memory dirtied by it during the
migration needs to be iteratively copied to the destination.

First we want to study the impact of an application’s
memory operation intensity on the VM’s migration time.
To control the intensity of the memory benchmarks, we set
different CPU caps to the DomU VM, because the more
CPU cycles the VM can use the more memory operations
its application can issue. We then migration this VM
without any CPU cap on the Dom0s. The results in Figure 5
show that when DomU is running an application that is
memory read intensive, the migration time almost stays the
same at about 20 seconds. There is no obvious increase on
migration time when the memory read intensity increases.
From this experiment, we do not see the impact of a VM’s

memory bandwidth usage on its migration time. This
observation can be at least partly explained by the fact that
the amount of state that the migration needs to transfer is
bounded the VM’s memory size as the memory read
benchmark does not modify the VM’s memory pages at all.

The results from migrating a VM running the memory
write benchmark are more interesting and show a quite
different pattern. When the CPU cap on the DomU VM is
set less than 30%, the migration time increases quickly as
its cap goes up. However, after the CPU cap is set more
than 30%, the migration time stays almost the same,
regardless of the further increase of CPU cap on the DomU
VM. These results can be explained by how Xen transfers a
VM’s memory state during the live migration. During the
pre-copy phase, Xen will copy and transfer the memory
state in several rounds. In each round, only the memory that
has been dirtied after the previous round will be transferred
again to the destination host. Normally when there is not
many dirty memory pages left, Xen will move on to the
stop-and-copy phase. However, in some extreme cases, like
the one with the memory write benchmark, the memory is
dirtied frequently, so transferring the dirtied memory pages
iteratively will substantially slow down the migration
process. When Xen recognizes this problem in the
migration, it would immediately enter the stop-and-copy
phase and transfer all the dirtied memory pages in a single
round, in order to save the migration time. This is what
happens in our experiment with the memory write
application when the VM’s CPU cap is set at 30% or more.
Because the VM’s memory pages are updated so frequently,

Figure 5 Migration time for a memory-intensive VM with different CPU

allocations to DomU on the source host

Figure 6 Migration time for a memory-intensive VM with different CPU

allocations to Dom0 on the source host

Figure 7 Model for the migration time for a memory read intensive VM

with different CPU allocation to the source host’s Dom0

Figure 8 Model for the migration time for a memory write intensive VM

with different CPU allocation to the source host’s Dom0

it triggers Xen’s immediate stop-and-copy and as a result
the VM’s migration time stays the same.

 In the next two experiments, we study the impact of
Dom0’s CPU availability to the DomU VM’s migration
time by migrating the VM running the memory read or
write benchmark with a 100% CPU cap on DomU and
different caps on Dom0. Figure 6 shows that when DomU
is running either the memory read or write benchmark, the
migration time drops quickly as more CPU cycles are
available for Dom0 to process the migration. In the
meantime, running the memory write intensive benchmark
on the VM always makes its migration much slower than
running the memory read benchmark.

Figure 7 and Figure 8 show the modeling results for the
migration time of the VM running the memory read and
write benchmark respectively. The coefficients of
determination (R²) are 96.34% and 97.08% which are both
close to 1, showing good accuracy of these models.

C. Migration of Disk I/O-intensive VM
Because a DomU VM’s disk accesses have to be

processed by Dom0 which has the actual access to the
physical disk devices, a disk I/O intensive VM would
involve substantial overhead in Dom0 when it is migrated.
In this subsection, we study the impact of Dom0’s CPU
allocation to the migration time for a VM running a disk
I/O intensive application. Specifically, we run the fio
benchmark [11] on the DomU VM to sequentially read an
8GB file. The file cannot be cached in the DomU’s 1GB
memory and we also drop the cache on Dom0, so the
benchmark’s execution will create intensive I/Os to the
physical disk. In this experiment, the VM’s disk size is
increased to 20GB in order to store the file. The sequential
read pattern is chosen to run the benchmark because it can
generate intensive and consistent IOPS (I/O Operations Per
Second) compared to sequential write or random read or
write patterns. So it is useful for creating a performance
model that can predict the upper bound migration time for a
VM running disk I/O intensive applications.

Figure 9 shows the relationship between the Dom0’s
CPU cap and the DomU VM’s migration time. As more
CPU cycles become available for Dom0 to handle the
migration, the migration time reduces accordingly.
However, after the cap goes more than 50%, there is no
substantial change on migration time anymore, again due to

the fact that Dom0 does not use more than 50% of CPU for
the migration. We also use power regression to build a
performance model for such a VM running the disk I/O-
intensive application. The modeling results are illustrated in
Figure 10. With the coefficient of determination (R²) equal
to 98.35%, most of the data points from experiments can fit
in this model, meaning that if it can produce good accuracy
when used to predict the VM’s live migration time.

D. Migration of Network I/O-intensive VM
Similarly to the above disk I/O intensive VM, a DomU

VM running a network I/O intensive application would also
incur additional overhead in Dom0 as the DomU’s network
I/Os have to be handled by Dom0. In addition, transferring
a VM’s state between different physical hosts requires
substantial network bandwidth, so the available network
bandwidth would affect the VM’s migration time. This
latter impact is well studied in the related work [2]. So this
group of experiments focuses on the impact of CPU
allocation to Dom0 on the migration time for a DomU VM
running a network I/O intensive application.

We use TTCP [12] as the benchmark for generating
continuous network I/Os between a sender and a receiver
using UDP. We use a third physical machine to run another
instance of TTCP which transfers a 512MB file to or from
the TTCP running on the migration VM. The file is
preloaded into the sender’s so no disk I/Os are involved in
the experiments. During the two conducted experiments,
the migrating VM is set up to be either a sender or receiver.

 Being a sender or receiver during the live migration
does not make much a difference on the VM’s migration
time, as shown in Figure 11 and Figure 12. When we vary
the cap set on Dom0 to control its CPU allocation, the
migration time decreases as the cap goes up. When the cap
is set more than 60%, although there is some decrease on
migration time, it is not substantial. Noticed that when
Dom0 has 100% access to its CPU resource, it consumes
only about 60% of the CPU most of the time, so given
more than 60% of CPU to Dom0 would not further help
reduce the migration time.

Given these experimental data, we created models for
the two cases, where the migration VM acts as a sender or a
receiver running a network I/O intensive application. The
modeling results are shown in Figure 13 and Figure 14. The
coefficients of determination (R²) of the models are both

Figure 9 Migration time for a disk I/O-intensive VM with different CPU

allocations to Dom0 on the source host

Figure 10 Model for the migration time for a disk I/O-intensive VM with

different CPU allocations to Dom0 on the source host

close to 1, again indicating that most of the experimental
data fit in the produced models.

From the modeling results in the above subsections, we
can also see that as a VM runs different types of resource-
intensive benchmark, its migration time is different even
with the same amount of resource allocated to the
migration. In particular, when the benchmark makes
intensive use of memory write, disk I/O, or network I/O, its
VM’s migration time is much longer than when it is only
CPU-intensive. Therefore, when applying these models to
predict a migration’s performance and resource demand,
we also need to understand the resource usage of the
application on the VM, which can be monitored through the
typical profiling tools available in guest OSes and VMMs.

E. Model Prediction
Finally, we evaluate the prediction accuracy of the

migration performance models created using our approach
by using separate datasets for training the migration

performance models and evaluate the prediction accuracy
of these models. For each experiment, 5 training data points
are evenly picked from the entire CPU allocation range and
used to create the model, which is then used to predict the
migration times for the other CPU allocation values in the
test data. The predictions are compared to the measured
migration times to compute the prediction errors. For the
experiments of migrating CPU-intensive VMs, only the one
with 80% CPU-intensive VM is evaluated here.

The results are summarized in Table 1 and they show
that the difference between the predicted and measured
migration times is typically within a few seconds. The
prediction accuracy is always good for migrating a CPU
intensive VM. The prediction error is higher when the CPU
allocation to Dom0 is low for migrating a memory-, disk-,
or network-intensive VM. This result demonstrates that
when Dom0 is under heavier contention from the DomU
activities, its behavior becomes less predictable.

V. DISCUSSION

As demonstrated in the proceeding results, the resource
intensity of a migrating VM has a substantial impact on its
migration time. Therefore, an assumption made by our
performance modeling approach is that the VM’s behavior
stays stable during the period of the migration. Given the
fact that live migration usually finishes within seconds for
VMs hosting real-world applications, we believe that this is
a reasonable assumption. The other assumption is that the
platforms where the migration performance models are

Table 1 Model Prediction Error

VM Prediction Error (s)
Average Median

CPU-intensive 1.58 1.74
Memory read intensive 7.63 3.33
Memory write intensive 9.25 6.79
Disk I/O intensive 4.01 2.97

Network send intensive 3.53 3.16
Network receive intensive 4.94 2.43

Figure 11 Migration time for a network-send-intensive VM with

different CPU allocations to Dom0 on the source host

Figure 12 Migration time for a network-receive-intensive VM with

different CPU allocations to Dom0 on the source host

Figure 13 Model for the migration time for network-send-intensive VM

with different CPU allocations to Dom0 on the source host

Figure 14 Model for the migration time for network-receive-intensive

VM with different CPU allocations to Dom0 on the source host

trained and where they are used for prediction are the same.
Because the differences in software (VMM) and hardware
(CPU, memory, disk, and network) can affect a VM’s
migration, cross-platform performance prediction is not
trivial and will be considered in our future investigation.

For live VM migration, both the availability of CPU
cycles and the network bandwidth are major factors that
can affect migration time. Although in this paper, we focus
on only the impact of CPU availability, we have found out
that, through other experiments, the use of CPU and
network bandwidth are highly correlated during a migration.
For example, when we fix only the CPU cap to Dom0, the
network transmission rate is also relatively stable and it
changes as the CPU caps varies. This observation implies
that from the performance models created using only the
CPU cap as the input, we can infer the appropriate network
bandwidth cap and obtain the same migration performance.
Therefore, it is unnecessary to take both CPU availability
and network bandwidth availability to build performance
models for live VM migration. This conclusion is also
confirmed experimentally.

Although this paper does not study the performance of
migrating multiple VMs in parallel, its methodology of
performance modeling can also be applied for that purpose.
Moreover, performance models created from non-parallel
migrations can be also used to provide an estimate for a
parallel migration. On one hand, the prediction made for
individual VM migrations using such models can provide a
lower bound for when they are migrated in parallel. (Due to
interference among concurrent migrations, they are likely
to be slower than when they are migrated sequentially.) On
the other hand, given the desired migration times for all the
concurrently migrated VMs, we can also use these models
to determine a lower bound for the total required resource,
which is the sum of the individual migrations’ resource
demand. We will conduct a more thorough study on the
performance of parallel VM migrations in our future work.

VI. CONCLUSION

System virtualization is a powerful platform for
provisioning applications and resources in the emerging
computer systems such as utility data centers and cloud
systems. Live VM migration is an important tool for
managing such systems in various critical aspects such as
performance and reliability. Understanding the role that the
resource availability plays on the performance of live
migration can help us make better decisions on when to
migrate a VM and how to allocate the necessary resources.
This paper is an effort towards this goal by creating a
performance model that can be used to predict migration
time and guide resource management decisions.

Our approach is to profile the migration time for VMs
running different representative benchmarks and then build
the performance model using statistical methods such as
regression. Specifically, we did a series of experiments by
migrating a Xen-based VM running CPU, memory, or I/O-
intensive applications and allocating different amount of
CPU share to the migration. The results demonstrate that

the amount of resource available to live migration indeed
has a substantial impact on the migration time. Nonetheless,
the models created using this approach can precisely
capture this relationship and can be effectively used to
predict a VM’s live migration time.

ACKNOWLEDGEMENT

This research is partly sponsored by the National
Science Foundation under grant CCF-0938045 and the
Department of Homeland Security under grant 2010-ST-
062-000039. The authors are also thankful to the
anonymous reviewers for their constructive comments. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsors.

REFERENCES
[1] Carl A. Waldspurger, “Memory Resource Management in VMware

ESX Server,” Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, December 2002.

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield, “Xen
and the Art of Virtualization,” Proceedings of the 19th ACM
Symposium on Operating Systems Principles, October 19-22, 2003.

[3] Kernel Based Virtual Machine, URL: http://www.linux-
kvm.org/page/Main_Page.

[4] Amazon Elastic Compute Cloud (Amazon EC2), URL: http://
aws.amazon.com/ec2/.

[5] Windows Azure Platform, URL: http:// www.microsoft.com/
windowsazure/.

[6] Google App Engine, URL: http://code.google.com/appengine/.
[7] Christopher Clark, Keir Fraser, and H. Steven, “Live Migration of

Virtual Machines,” 2nd ACM/USENIX Symposium on Networked
Systems Design and Implementation, 2005.

[8] Ming Zhao and Renato J. Figueiredo, “Fast Transparent Migration
for Virtual Machines,” 2nd International Workshop on Virtualization
Technology in Distributed Computing, 2007.

[9] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper,
“Predicting the Performance of Virtual Machine Migration,” 18th
International Symposium on Modeling, Analysis and Simulation of
Computers and Telecommunication Systems, Aug. 2010.

[10] Isolation Benchmark Suite, URL: http://web2.clarkson.edu/class/
s644/isolation/.

[11] FIO Benchmark Tool, URL: http://freshmeat.net/projects/fio/.
[12] TTCP Benchmark Tool, URL: http://www.pcausa.com/Utilities/

pcattcp.htm.
[13] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and

M.Rosenblum, “Optimizing the Migration of Virtual Computers,” In
Proc. of the 5th Symposium on Operating Systems Design and
Implementation (OSDI-02), December 2002.

[14] M. Kozuch and M. Satyanarayanan, “Internet Suspend/Resume,” In
Proceedings of the IEEE Workshop on Mobile Computing Systems
and Applications, 2002.

[15] M Nelson, B. H. Lim, and G. Hutchins, “Fast Transparent Migration
for Virtual Machines,” USENIX Annual Technical Conf., 2005.

[16] Uri Lublin and Anthony Liguori, “KVM Live Migration,” KVM
Forum, 2007.

[17] Credit-Based CPU Scheduler, URL: http://wiki.xensource.com/
xenwiki/CreditScheduler.

http://portal.acm.org/citation.cfm?id=945462&CFID=6509043&CFTOKEN=90656368
http://portal.acm.org/citation.cfm?id=945462&CFID=6509043&CFTOKEN=90656368
http://portal.acm.org/citation.cfm?id=945462&CFID=6509043&CFTOKEN=90656368
http://portal.acm.org/citation.cfm?id=945462&CFID=6509043&CFTOKEN=90656368

	I. INTRODUCTION
	II. BACKGROUND AND RELATED WORK
	III. METHODOLOGY
	IV. EXPERIMENTAL ANALYSIS
	V. DISCUSSION
	VI. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

