

Multi-level VM Replication based Survivability for
Mission-critical Cloud Computing

Ming Zhao1, Francois D’Ugard1, Kevin A. Kwiat2, Charles A. Kamhoua2

1 Florida International University, School of Computing and Information Sciences, Miami, FL
2 Air Force Research Laboratory, Information Directorate, Cyber Assurance Branch, Rome, NY

Abstract—The elasticity and economics of cloud computing

offer significant benefits to mission-critical applications which

are increasingly complex and resource demanding. Cloud systems

also provide powerful tools such as virtual machine (VM) based

replication for defending mission-critical applications. However,

cloud-based mission-critical computing raises serious challenges

to mission assurance. VM-based consolidation brings different

applications to the same set of physical resources, increasing the

risk of one user compromising the mission of another. The

mission-critical application in a VM lacks the visibility and

control to detect and stop outside malicious attacks, whereas the

support for security isolation from existing cloud systems is also

limited. The objective of the research presented in this paper is to

address these challenges and improve the survivability of mission-

critical applications through the novel use of VM replication.

Specifically, this paper presents a new multi-level VM replication

approach which uses different types of VM clones to provide a

variety of protections to mission-critical applications, and

improve the survivability of the applications under accidental

faults and malicious attacks. In this approach, full VM clones are

employed to provide tolerance of attacks, decoy clones are created

to divert attacks, and honeypot clones are used to analyze attacks.

The paper also presents the prototypes of the proposed approach

implemented for the widely used OpenStack-based private cloud

systems and Amazon-EC2-based public cloud systems.

I. INTRODUCTION

Cloud computing systems emerge as important computing
platforms because of their elasticity—the ability to dynamically
grow and shrink the resources provisioned to an application on
demand, and economics—the ability for users to run their
applications at scale without up-front or long-term commitment
to the resources. Public clouds allow public users to rent
resources and run a wide variety of applications (e.g., [1][2]);
private clouds allow users from the same organization to run
their internal applications on shared resources (e.g., [3]). Like
many other applications, mission-critical applications can also
benefit from the elasticity and economics of cloud systems.
Modern mission-critical applications are increasingly complex
and demanding. Examples such as command and control (C2)
applications are often required to process large volumes of data
and make precise decisions with a stringent performance
requirement. As the cost of building and operating dedicated
computing platforms becomes prohibitive, it will be inevitable
to run mission-critical applications on shared resources from
private and public clouds.

To mission-critical applications, the benefits of clouds are
beyond just scalability and cost-effectiveness. Cyber-attackers
have already been known to use cloud resources to spread

malwares and launch attacks (e.g., [4][5]). It will be to the
disadvantage of users of mission-critical applications if they
cannot effectively use the power of cloud systems to defend
themselves—the game between defenders and attackers will be
asymmetric and the balance will tip towards the attackers.
Cloud systems in fact offer unique, powerful tools for
defending mission-critical applications. For example, a virtual
machine (VM) hosting the mission-critical application can be
replicated conveniently to tolerate attacks; a VM can be
transparently checkpointed and recovered in case of failure; and
a VM can also be dynamically migrated across cloud systems
to avoid attacks from affecting the application.

Cloud-based mission-critical computing is, however, a
double-edged sword. Because the VMs hosting different
applications share the same set of physical resources, they may
interfere with each other in complex and unpredictable ways.
Having VMs from different users computing and storing data
on the same hardware increases the risk of one user stealing
information or compromising the computing or data of another.
Further, in a public cloud, the VMs may belong to users from
different organizations, which worsens the security risks.
Nonetheless, the mission-critical application running in a VM
lacks the visibility and control outside of its VM to detect and
stop the malicious attacks, whereas the support for security
isolation from existing cloud systems is also quite limited.

The overarching goal of our research is to address the above
mentioned challenges for delivering mission assurance to
mission-critical applications on cloud systems, thereby
allowing such applications to benefit from cloud computing and
meet their demanding scalability and security requirements. As
a first step towards achieving this long-term goal, in this paper,
we study new VM-replication-based techniques for mission-
critical applications to survive attacks and accomplish missions
in cloud systems. We propose a multi-level VM replication
approach using different types of VM clones, including full
clones, decoy clones, and honeypot clones, to provide a variety
of protections to mission-critical applications. We also create a
VM replica management system that automatically manages
the creation and regeneration of these VM clones in cloud
systems. Finally, we implement proof-of-concept prototypes of
this multi-level VM replication approach on both typical public
cloud systems, based on Amazon EC2 [1], and private cloud
systems, based on OpenStack [3].

The rest of this paper is organized as follows. Section 2
discusses the background and related work. Section 3 presents
the multi-level VM replication approach. Section 4 discusses

Approved for Public Release; Distribution Unlimited: 88ABW-2014-
3491, dated 25 Jul 14. This research is sponsored by an Air Force Summer

Faculty Fellowship, an Air Force summer extension grant, the Department of

Defense award W911NF-13-1-0157, and the National Science Foundation
CAREER award CNS-125394.

the prototypes. Section 5 concludes the paper and outlines the
future work.

II. BACKGROUND AND RELATED WORK

A. Virtualization and Cloud Computing

The information technology landscape has been deeply
transformed by the resurgence of virtualization [6]. Initially
motivated by the need to support legacy systems and improve
the utilization of expensive mainframe systems in the early 70s,
modern virtualization technologies in the Internet era have
enabled resource consolidation, flexible resource management,
and on-demand provisioning of infrastructure-as-a-service—in
essence, providing the core technology that has paved the way
to the implementation and wide adoption of cloud computing.
The VMs considered in this paper are system-level VMs, which
virtualize an entire physical host’s resources, including CPU,
memory, and IO devices, and present virtual resources to the
guest OSes and applications. System virtualization is enabled
by the layer of software called virtual machine monitor (VMM,
or hypervisor), which is responsible for multiplexing physical
resources among the VMs (e.g., [7][8][9]).

Cloud computing is an emerging paradigm which has the
potential to finally realizing the society’s long-held dream of
delivering computing as a utility. Depending on the level of
delivered services, cloud offerings are often classified as
Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service. An IaaS cloud (e.g., [1]) provides a
user access to virtualized hardware, presented by a VMM and
encapsulated in a VM, where the user is able to deploy and run
arbitrary software including operating systems and applications
on the underlying shared hardware. A PaaS cloud (e.g., [2])
provides a user a language-specific platform (e.g., JVM, .Net)
to deploy and run arbitrary applications developed using the
given language on the underlying shared platform. A SaaS
cloud provides a user access to a particular application (e.g.,
web-based email, document editor) where the user can use the
functionality provided by the underlying shared application.
Depending on the model of deployment, cloud systems can also
be classified as public or private. Public clouds allow public
users to rent resources and run a wide variety of applications
[1][2]; private clouds allow users from the same organization to
run their internal applications on shared resources [3].

Virtualization is the key enabling technology of cloud
computing. VMs are directly exposed to users in an IaaS cloud;
they are also often used internally in PaaS and SaaS systems for
hosting the underlying platform and software and benefiting
from the use of virtualization. Although these different levels
of cloud services can be built separately, it is increasingly
common to build a high-level cloud service using resources
provided by a lower-level one (e.g., build a SaaS on resources
from PaaS and a PaaS on resources from IaaS), so that the
former can benefit from the elasticity and economics provided
by the latter. Therefore, although this paper focuses on VM-
based hosting of mission-critical applications in an IaaS setting,
its outcomes will also generate an impact to other models of
cloud computing.

Virtualization and cloud computing are increasingly
perceived as valuable to defense applications—from the

perspective of resource consolidation, increased efficiencies,
reduced power consumption, increased flexibility and agility in
deploying applications and workloads. Private clouds can be
custom-built to meet the stringent requirements of defense
applications (e.g., [10]). Public clouds can also be valuable to
defense applications because of their much cheaper cost and
better scalability. An analogy can be drawn from the use of
private versus public networks which are both found important
for defense communications. However, the use of cloud
systems for mission-critical applications also raises serious
challenges to mission assurance. A public cloud can be assumed
to be unsafe and insecure because of its multi-tenancy. Even in
a private cloud, virtualization-enabled consolidation brings
applications to the same set of shared physical resources and
makes them more tightly coupled and consequently more
vulnerable, compared to a non-virtualized environment where
each application runs on a dedicated host.

The goal of this paper is to study and develop novel
techniques that will enable virtualization technologies that
support mission-critical applications. The focus is on modern
system virtualization technologies available for commodity off-
the-shelf computing platforms, but the approaches investigated
in this paper are of general applicability. The proposed
techniques do not assume special support from the cloud
infrastructure and are hence applicable to both public and
private cloud systems.

B. Mission Assurance in Cloud Systems

Virtualization can be a powerful tool for enhancing mission
assurance, and it has been explored in different ways in the
literature. Intrusion detection can be realized at the VMM layer
with both good visibility into and isolation from the monitored
VMs because VMM can directly introspect the state of the VMs
while being protected from the VMs [11][12]. VMM can also
be used to log the executions of VMs and replay them for
analyzing intrusions to the VMs [13]. These solutions are
complementary to this paper’s proposed VM-replication-based
mission assurance techniques.

VMs can be used as honeypots which are carefully
monitored systems that allow attackers to interact so that their
behaviors can be analyzed for future security enhancement.
VM-based honeypots simplify the containment and isolation of
attacks, the reverting of a comprised honeypot to a clean state,
and the real-time monitoring of the honeypot. This paper
considers honeypot VMs as part of its proposed multi-level VM
replication based survivability approach. Related work in the
literature has studied techniques to reduce the overhead of
creating a large number of honeypots [14][15]. These
techniques are complementary to this paper’s focus on creating
realistic-looking and safe honeypots from mission-critical
VMs. Biedermann et al. proposed an approach to dynamically
extract a honeypot from an attacked VM via live cloning [16],
which however is difficult to ensure that all sensitive
information is stripped out. In contrast, this paper’s approach
ensures that the honeypots only look the same as the mission-
critical VMs from the resource usage perspective but do not
possess any sensitive code or data from the mission-critical
applications.

The use of virtualization and cloud computing is also a
double-edged sword to mission assurance. From the perspective
of a cloud user, there is no guarantee whether the underlying
VMM or the co-resident VMs are trustworthy. Various
solutions are proposed to address these threats. Li et al.
proposed several techniques to protect VMs from a untrusted
management VM, including modifying the VMM to restrict
access to the memory mappings of a VM by the management
VM, encrypting the VM’s memory pages and vCPU registers,
and verifying the hash value of the VM’s kernel image [17].
HyperSentry enables stealthy in-context measurement of
hypervisor integrity using a hardware channel to trigger the
measurement and using the system management mode to
protect the measurement agent’s base code and critical data
[18]. These solutions are complementary to this paper’s VM-
replication-based protection techniques which do not require
any change to the VMM or hardware.

A mission-critical VM may leak sensitive information to its
co-resident VMs through side channels caused by imperfect
isolation of shared resources among VMs. For example,
Ristenpart et al. implemented a side channel using shared L1 or
L2 cache to detect a co-resident VM’s keystroke activities by
measuring the load on the shared cache [19]. HomeAlone
instead uses the side channel to ensure that all co-resident VMs
are friendly VMs which coordinate to silence their activity in a
selected cache region so that non-friendly VMs reveal
themselves due to their cache activities [20]. This solution,
however, requires that all the friendly VMs to be co-resident
which is often difficult to achieve and makes them more
vulnerable to failures on the hardware and VMM that they all
share. In contrast, this paper proposes the use of decoy VM
clones that can mimic the behaviors of mission-critical VMs
and fool attackers who exploit the side channels.

III. MULTI-LEVEL VM REPLICATION BASED

SURVIVABILITY

Virtualization allows the computing and its execution
environment to be seamlessly encapsulated in a VM which can
be transparently replicated to tolerate failures caused by
malicious attacks. This unique capability is employed in our

proposed approach to improve the survivability of mission-
critical applications. Replication-based fault tolerance is well
understood and can be employed to improve the survivability
of a mission-critical application in cloud systems via VM
cloning. However, the use of full VM clones provides only
passive defense for surviving attacks, and it is expensive as its
resource cost grows linearly to the number of clones employed.
To address these limitations, we propose a multi-level VM
replication approach in this paper, which replicates a mission-
critical VM using different types of VM clones, including full
clones, decoy clones, and honeypot clones, and provides a
variety of protection to improve the application’s survivability
in clouds while making efficient use of resources (Figure 1).

A. Full VM Clones

In this approach, a full VM clone is a complete VM replica
containing the mission-critical application and its execution
environment. It is kept in sync with the other full clones so that
it can actually run the application and provide tolerance of
attacks. Voting algorithms (e.g., [21]) are employed to derive
the correct computing result from the results given by different
full clones, assuming attackers cannot compromise the majority
of the full clones without being detected. Synchronization
across the full clones is used to detect failed or compromised
clones, when they become unresponsive (detected by
heartbeats) or give wrong results (detected by voting). The
failed or compromised full clones will be automatically
regenerated to sustain the protection of the mission-critical
application. If the mission-critical application is stateless, the
regenerated clone can immediately join the computing given
the new input data. If the application is stateful, the regenerated
clone needs to be synchronized with the other clones before the
computing can resume. The new clone can be regenerated from
the existing full clones that are still functioning properly and
correctly. VM checkpointing can be employed to reduce
recovery time by periodically checkpointing the full clones so
that when a failure happens the regenerated clone and the
remaining clones can be rolled back to the most recent
checkpoint and resumed from there.

B. Decoy VM Clones

A decoy VM clone is a lean VM replica containing only the
necessary software to mimic the behaviors of running the
mission-critical application. It is used solely to divert attacks
from the real targets, the full VM clones, and waste attackers’
time and resources. It can be safely discarded if compromised.
Fake data are fed to a decoy clone to also mimic the
communication patterns of a full clone. An analogy to the use
of decoy VMs can be drawn from the chaff cloud spread by a
military aircraft, which are made of cheap materials but can
effectively fool the enemy’s radar and avoid the attack on the
aircraft. Although the use of false-target-based defense has also
been studied in the related work [22][23], this paper is the first
to study its real use in cloud-based mission-critical computing
for survivability.

A key challenge to creating decoy VMs is how to make
them realistic-looking enough to fool attackers while at the
same time cheap enough (in terms of resource usages) to be
employed at scale. From outside of the decoy VMs, they should

Figure 1. Multi-level VM replication based survivability for
mission-critical applications in cloud computing systems

cloud

D F

FF

D
H

Full clone for
tolerating failures

Honeypot clone for
analyzing attacks

Decoy clone for
diverting attacks

Secure
enclave

be indistinguishable from a real VM to attackers who are in the
co-resident VMs. But the inside software stack of the decoy
VMs can be reduced to save resource costs, because their
purposes are served when they are compromised. Therefore, the
key to decoy VMs is that they should look the same from the
attacker’s perspective while using minimum amount of
resources. Because the interfaces that an attacker can use to
observe a co-resident mission-critical VM are the side channels
provided by shared non-partitionable resources (e.g., CPU
caches), the decoy VMs need to behave in the same way only
in terms of the use of these resources, but not the partitionable
resources (e.g., CPU cycles, memory capacity). For example, to
fool an attacker who is monitoring the cache-based side
channel, the decoy VM only needs to load the cache, but not the
memory, in the same fashion as the mission-critical VM. As a
result, the decoys can use much less resources than the full
clones because the capacity of non-partitionable resources is
typically small and cheap to manipulate.

Specifically, this paper’s approach to generating realistic-
looking decoy clones is to create a customized cache stub which
can be tuned flexibly according to the cache profile observed
from the mission-critical application, thereby mimicking the
application’s cache behavior. Note that the cache stub needs to
mimic the cache behavior only statistically but not exactly so
that it will not leak any meaningful information that might
reveal the application’s true activities. To create such a cache
stub, we employ the techniques developed by the computer
architecture community (e.g., [24]) for profiling application
cache behaviors.

C. Honeypot VM Clones

A honeypot VM clone is a partial VM replica containing a
sanitized copy of the application and a hidden layer to monitor
attacks stealthily. Different from decoy VMs, the purpose of a
honeypot VM is to allow attackers to interact with it so that its
behaviors can be monitored and analyzed [25][26][27]. The
monitoring layer observes the behaviors of attackers and saves
such information for vulnerability analysis and protection
improvement. Therefore, a honeypot needs to continue
functioning even after it is intruded by an attacker. A key
question that needs to be addressed is how to create a sanitized
version of the mission-critical application, which still behaves
like the original application. The application in a honeypot VM
is stripped away of all sensitive information so it does not cause
any damage to the mission if the honeypot VM is compromised.
If the application’s code itself is not sensitive, it is possible to
simply use the same code in the honeypot while feeding it fake
data.

However, a mission-critical application often contains
sensitive logic such as the intelligence algorithm for processing
data, and thus cannot be used directly in the honeypot. To
address this requirement, we employ a fuzzy-logic-based VM
performance modeling technique [28] to create a stub program
for a honeypot VM that can mimic the resource usage behavior
of the mission-critical application without exposing the
application’s actual code to attackers. The fuzzy modeling
technique is able to create an accurate resource usage profile for
the mission-critical application, which will be used to
customize the stub so that it can generate the same, statistically

speaking, patterns in the honeypot VM’s use of CPU, memory,
and IOs. As a result, the attacker who is inside of the VM cannot
recognize the stub and cannot steal any sensitive information
while interacting with the honeypots.

As argued by Schneider and Birman [29], having
homogeneous clones of a mission-critical VM helps defend
against configuration attacks which exploit the errors in the
configuration of the mission-critical application and its
execution environment. It is much easier to thoroughly examine
a configuration and harden it compared to using many different
configurations for the same mission-critical application.
However, having a “monoculture” in VM clones makes the
mission-critical application more vulnerable to technology
attacks which exploit the programming or design errors in the
application. A monoculture also allows attackers to quickly
spread the damage and compromise the entire mission because
attacks that succeed on one clone are likely to succeed on all.
The use of multi-level VM clones studied in this paper helps
defend against such technology attacks as it employs diverse
types of clones which make it harder for attacks to spread and
compromise the mission, thereby providing support of both
monoculture and diversity for defending various types of
attacks in cloud systems.

IV. PROTOTYPES

As a proof-of-concept, we have implemented prototypes of
the proposed multi-level VM replication approach upon
representative private cloud and public cloud systems. In this
section, we summarize the key aspects of our prototypes.

A. OpenStack-based Private Cloud

OpenStack [3] is an open-source cloud computing platform
commonly used by various organizations for building private
cloud systems. OpenStack’s Service-Oriented Architecture
consists of a series of modules that manage processing, storage,
and networking resources of a cloud computing environment.
Integration among component services is achieved through
application programming interfaces (APIs); each service
exposes its API to other services and likewise each service can
consume from other services’ APIs. Our prototype utilizes the
APIs of mainly three OpenStack components, Nova, Glance,
and Keystone for creating and managing the different types of
replicas of mission-critical VMs in a private cloud. The Nova
compute service creates and manages compute resources; the
Glance service provides the interface for image discovery,
image retrieval, and image storage, and the Keystone Identity
service manages the authentication among each component
service. Our prototype uses the Grizzly release of OpenStack,
and it consists of a series of scripts written in Python which
interact with OpenStack via the aforementioned interfaces.

Given a user who wants to execute his/her application in the
cloud with multi-level replication in order to avoid and survive
attacks, our prototype works as follows. It starts by
authenticating against Keystone using the user’s credentials in
order to manage the VM replicas on behalf of the user. It then
requests Nova to create the instances of full clones, decoy
clones, and honeypot clones based on the VM images prepared
offline. The numbers of instances for each type of clones can be

specified by the user. A unique ID is assigned to each instance.
When creating the instances, the prototype also applies the SSH
key supplied by the user to the instances. If the key is not
supplied, a new key is generated automatically for the user.
Once the instances are started, the prototype can log into them
using the key to start the application and its stubs.

While the above created clone instances are executing,
some of them may fail due to malicious attacks or incidental
hardware or software faults. A failure is detected via the
heartbeats maintained across the instances on a regular basis or
the voting algorithm employed by the full clones. Note that we
do not assume that a compromised instance can always be
detected by the heartbeat mechanism. Nonetheless, the
redundant computing provided by the full clones improves the
application’s survivability against such attacks.

When a failed instance is detected, the prototype destroys
the failed instance and creates a new one in order to restore the
user-specified numbers of different types of replicas. However,
current OpenStack implementation does not provide the
interface to clone an existing VM instance—it allows only the
creation of a fresh instance which is then started and booted up
from scratch. Replication of a live instance is required for
restoring a full clone, because an instance started from scratch
cannot catch up with the progress that the rest of the clones have
already made in computing. Therefore, the restored instance
must be created from the remaining full clone instances. In
order to support such live replication in our prototype, we have
added a new API to OpenStack, which works as follows.

The live replication method first suspends all the remaining
instances to temporarily pause the computing and synchronize
their in-memory state to the host’s storage. It then replicates one
of the full clones by copying its memory state and disk state
stored on its host. It also provisions the replica with CPU,
memory, and I/O resources identical to the target instance being
replicated. Before resuming the new replica, it needs to do the
necessary bookkeeping. It assigns the new replica a unique ID
in order to identify it in OpenStack. Because OpenStack saves
an instance’s configuration file as part of its memory state when
suspending the instance, this configuration file needs to be
extracted out of the memory state, modified to reflect the new
instance’s identify, and injected back into the memory state,
before the new instance can be resumed and recognized by
OpenStack. Moreover, it needs to change the new replica’s
network configuration to avoid conflict with the existing one.
To do so, it assigns the new replica a unique MAC address in
its configuration, and log into the instance to modify the MAC
and apply the change by restarting the network. Finally, once
the bookkeeping is done, all the other replica instances are
resumed and the computing proceeds as normal.

B. Amazon EC2 based Public Cloud

We have also implemented a proof-of-concept prototype for the
proposed multi-level VM replication based survivability
approach on Amazon EC2 [1]. EC2 is one of the most widely
used public IaaS providers. Users can rent VM instances from
EC2 of different sizes, ranging from micro to extra-large, and
with different costs. These instances can be created from user-
uploaded VM images or customized based on EC2-provided

templates. The VMs can be stored on either Amazon’s EBS
[30] or S3 [31] storage service.

Because the interface exposed by Amazon EC2 is quite
similar to the interface of OpenStack, we omit most of the
discussion of our EC2-based prototype for brevity. One
limitation of applying our multi-level replication approach to a
public cloud is that we cannot change its interface to implement
the live replication discussed in the previous section. As a
result, a lost full clone instance can only be recovered by
starting a new instance from scratch. This scheme supports only
applications that are stateless, in which case the restored
instance can still join the remaining full clone instances for
computing.

V. CONCLUSIONS AND FUTURE WORK

Cloud computing offers serious challenges and at the same
time great opportunities to mission assurance. In this paper, we
have studied the use of VM replication to improve the
survivability of mission-critical applications in cloud systems
through a new multi-level VM replication approach. In this
approach, different types of VM clones, including full clones,
decoy clones, and honeypot clones are created to provide a
variety of protections to a mission-critical application. We have
implemented proof-of-concept prototypes on the widely used
OpenStack-based private cloud and Amazon EC2 based public
cloud. Although the prototypes are demonstrated to be working
in our preliminary testing, we will conduct more rigorous
evaluation on their performance and survivability in our future
work. In the long term, we will also consider how to leverage
other unique capabilities of VMs, such as live migration, to
further improve the survivability of mission-critical
applications in cloud computing.

The benefits of virtualization and cloud computing are
already well understood for many endeavors, but these
emerging technologies are still largely underexplored for
mission-critical applications. The outcome of our research will
enable a broad range of mission-critical applications on cloud
systems with mission assurance while under a variety of
malicious attacks. Our proposed approach does not make
assumptions on the trustworthiness of the cloud environment
and are hence applicable to both public clouds built for general
purposes and private clouds specially built for mission-critical
computing (e.g., [10]).

VI. REFERENCES

[1] Amazon Elastic Compute Cloud (Amazon EC2), URL:
http://aws.amazon.com/ec2/.

[2] Windows Azure Platform, URL:
http://www.microsoft.com/windowsazure/.

[3] OpenStack Open Source Cloud Computing Software.
URL: https://www.openstack.org/.

[4] “Hackers using cloud networks to launch powerful
attacks,” Homeland Security News Wire, URL:
http://www.homelandsecuritynewswire.com/hackers-
using-cloud-networks-launch-powerful-attacks.

[5] “Amazon.com Server Said to Have Been Used in Sony
Attack”, Bloomberg, URL:

http://www.bloomberg.com/news/2011-05-13/sony-
network-said-to-have-been-invaded-by-hackers-using-
amazon-com-server.html.

[6] R. Figueiredo, P. Dinda, J. Fortes, “Resource
Virtualization Renaissance”, IEEE Computer Magazine
38(5), Special Issue on Virtualization, pp. 28-31, May
2005.

[7] VMware Inc., URL: http://www.vmware.com.

[8] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the Art of Virtualization”, in Proc. of the ACM
Symposium on Operating Systems Principles (SOSP),
October 2003.

[9] Kernel Based Virtual Machine, URL: http://www.linux-
kvm.org/page/Main_Page.

[10] “Amazon Building Private Cloud for CIA”, Business
Insider, URL: http://www.businessinsider.com/amazon-
building-private-cloud-for-cia-2013

[11] Garfinkel, Tal, and Mendel Rosenblum, “A Virtual
Machine Introspection Based Architecture for Intrusion
Detection,” NDSS, 2003.

[12] Jiang, Xuxian, Xinyuan Wang, and Dongyan Xu,
“Stealthy Malware Detection through VMM-based Out-
Of-The-Box Semantic View Reconstruction,”
Proceedings of the 14th ACM Conference on Computer
and Communications Security,” 2007.

[13] Dunlap, George W., et al., “ReVirt: Enabling Intrusion
Analysis through Virtual-Machine Logging and Replay,”
ACM SIGOPS Operating Systems Review 36.SI (2002):
211-224.

[14] Vrable, Michael, et al., “Scalability, Fidelity, and
Containment in the Potemkin Virtual Honeyfarm,” ACM
SIGOPS Operating Systems Review, Vol. 39, No. 5,
ACM, 2005.

[15] Lengyel, Tamas K., Justin Neumann, Steve Maresca, and
Aggelos Kiayias, “Towards Hybrid Honeynets via Virtual
Machine Introspection and Cloning,” The 7th
International Conference on Network and System
Security (NSS’13), pp.164-177, 2-3 June 2013.

[16] Sebastian Biedermann, Martin Mink, and Stefan
Katzenbeisser. 2012. “Fast Dynamic Extracted Honeypots
in Cloud Computing.” In Proceedings of the 2012 ACM
Workshop on Cloud computing security workshop
(CCSW '12). ACM, New York, NY, USA, 13-18.

[17] Chunxiao Li, Anand Raghunathan, Niraj K. Jha, “A
Trusted Virtual Machine in an Untrusted Management
Environment,” IEEE Transactions on Services
Computing, vol. 5, no. 4, pp. 472-483, Fourth Quarter
2012.

[18] Ahmed M. Azab, Peng Ning, Zhi Wang, Xuxian Jiang,
Xiaolan Zhang, and Nathan C. Skalsky. 2010.
“HyperSentry: enabling stealthy in-context measurement
of hypervisor integrity.” In Proceedings of the 17th ACM
conference on Computer and communications security
(CCS '10). ACM, New York, NY, USA, 38-49.

[19] Ristenpart, Thomas, et al., “Hey, You, Get Off of My
Cloud: Exploring Information Leakage in Third-Party
Compute Clouds,” Proceedings of the 16th ACM
conference on Computer and communications security.
ACM, 2009.

[20] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K.
Reiter, “HomeAlone: Co-residency Detection in the
Cloud via Side-Channel Analysis,” In Proceedings of the
2011 IEEE Symposium on Security and Privacy (SP’11).
IEEE Computer Society, Washington, DC, USA, 313-
328.

[21] Wang, Li, et al., “Optimal Voting Strategy against
Rational Attackers,” 6th International Conference on Risk
and Security of Internet and Systems (CRiSIS), 2011.

[22] Levitin, Gregory, and Kjell Hausken, “False Targets
Efficiency in Defense Strategy,” European Journal of
Operational Research, 2009.

[23] Wang, Li, et al., “Optimal resource allocation for
protecting system availability against random cyber
attacks,” 3rd IEEE International Conference on Computer
Research and Development (ICCRD), 2011.

[24] Govindan, Sriram, et al., “Cuanta: Quantifying Effects of
Shared On-Chip Resource Interference for Consolidated
Virtual Machines,” Proceedings of the 2nd ACM
Symposium on Cloud Computing.

[25] Vrable, Michael, et al., “Scalability, Fidelity, and
Containment in the Potemkin Virtual Honeyfarm,” ACM
SIGOPS Operating Systems Review, Vol. 39, No. 5,
ACM, 2005.

[26] Lengyel, Tamas K., Justin Neumann, Steve Maresca, and
Aggelos Kiayias, “Towards Hybrid Honeynets via Virtual
Machine Introspection and Cloning,” The 7th
International Conference on Network and System
Security (NSS’13), pp.164-177, 2-3 June 2013.

[27] Sebastian Biedermann, Martin Mink, and Stefan
Katzenbeisser. 2012. “Fast Dynamic Extracted Honeypots
in Cloud Computing.” In Proceedings of the 2012 ACM
Workshop on Cloud computing security workshop
(CCSW’12).

[28] L. Wang, J. Xu, M. Zhao, Y. Tu, and J. Fortes, “Fuzzy
Modeling based Resource Management for Virtualized
Database Systems,” Proceedings of the 19th Annual
Meeting of the IEEE International Symposium on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS 2011), July
2011.

[29] Birman, Kenneth P., and Fred B. Schneider, “The
Monoculture Risk Put into Context,” IEEE Security &
Privacy, 2009.

[30] Amazon Elastic Block Store (EBS), URL:
http://aws.amazon.com/ebs/.

[31] Amazon Simple Storage Service (Amazon S3), URL:
http://aws.amazon.com/s3/.

http://aws.amazon.com/ebs/
http://aws.amazon.com/s3/

