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Abstract—The elasticity and economics of cloud computing 

offer significant benefits to mission-critical applications which 

are increasingly complex and resource demanding. Cloud systems 

also provide powerful tools such as virtual machine (VM) based 

replication for defending mission-critical applications. However, 

cloud-based mission-critical computing raises serious challenges 

to mission assurance. VM-based consolidation brings different 

applications to the same set of physical resources, increasing the 

risk of one user compromising the mission of another. The 

mission-critical application in a VM lacks the visibility and 

control to detect and stop outside malicious attacks, whereas the 

support for security isolation from existing cloud systems is also 

limited. The objective of the research presented in this paper is to 

address these challenges and improve the survivability of mission-

critical applications through the novel use of VM replication. 

Specifically, this paper presents a new multi-level VM replication 

approach which uses different types of VM clones to provide a 

variety of protections to mission-critical applications, and 

improve the survivability of the applications under accidental 

faults and malicious attacks. In this approach, full VM clones are 

employed to provide tolerance of attacks, decoy clones are created 

to divert attacks, and honeypot clones are used to analyze attacks. 

The paper also presents the prototypes of the proposed approach 

implemented for the widely used OpenStack-based private cloud 

systems and Amazon-EC2-based public cloud systems. 

I. INTRODUCTION 

Cloud computing systems emerge as important computing 
platforms because of their elasticity—the ability to dynamically 
grow and shrink the resources provisioned to an application on 
demand, and economics—the ability for users to run their 
applications at scale without up-front or long-term commitment 
to the resources. Public clouds allow public users to rent 
resources and run a wide variety of applications (e.g., [1][2]); 
private clouds allow users from the same organization to run 
their internal applications on shared resources (e.g., [3]). Like 
many other applications, mission-critical applications can also 
benefit from the elasticity and economics of cloud systems. 
Modern mission-critical applications are increasingly complex 
and demanding. Examples such as command and control (C2) 
applications are often required to process large volumes of data 
and make precise decisions with a stringent performance 
requirement. As the cost of building and operating dedicated 
computing platforms becomes prohibitive, it will be inevitable 
to run mission-critical applications on shared resources from 
private and public clouds. 

To mission-critical applications, the benefits of clouds are 
beyond just scalability and cost-effectiveness. Cyber-attackers 
have already been known to use cloud resources to spread 

malwares and launch attacks (e.g., [4][5]). It will be to the 
disadvantage of users of mission-critical applications if they 
cannot effectively use the power of cloud systems to defend 
themselves—the game between defenders and attackers will be 
asymmetric and the balance will tip towards the attackers. 
Cloud systems in fact offer unique, powerful tools for 
defending mission-critical applications. For example, a virtual 
machine (VM) hosting the mission-critical application can be 
replicated conveniently to tolerate attacks; a VM can be 
transparently checkpointed and recovered in case of failure; and 
a VM can also be dynamically migrated across cloud systems 
to avoid attacks from affecting the application. 

Cloud-based mission-critical computing is, however, a 
double-edged sword. Because the VMs hosting different 
applications share the same set of physical resources, they may 
interfere with each other in complex and unpredictable ways. 
Having VMs from different users computing and storing data 
on the same hardware increases the risk of one user stealing 
information or compromising the computing or data of another. 
Further, in a public cloud, the VMs may belong to users from 
different organizations, which worsens the security risks. 
Nonetheless, the mission-critical application running in a VM 
lacks the visibility and control outside of its VM to detect and 
stop the malicious attacks, whereas the support for security 
isolation from existing cloud systems is also quite limited. 

The overarching goal of our research is to address the above 
mentioned challenges for delivering mission assurance to 
mission-critical applications on cloud systems, thereby 
allowing such applications to benefit from cloud computing and 
meet their demanding scalability and security requirements. As 
a first step towards achieving this long-term goal, in this paper, 
we study new VM-replication-based techniques for mission-
critical applications to survive attacks and accomplish missions 
in cloud systems. We propose a multi-level VM replication 
approach using different types of VM clones, including full 
clones, decoy clones, and honeypot clones, to provide a variety 
of protections to mission-critical applications. We also create a 
VM replica management system that automatically manages 
the creation and regeneration of these VM clones in cloud 
systems. Finally, we implement proof-of-concept prototypes of 
this multi-level VM replication approach on both typical public 
cloud systems, based on Amazon EC2 [1], and private cloud 
systems, based on OpenStack [3].  

The rest of this paper is organized as follows. Section 2 
discusses the background and related work. Section 3 presents 
the multi-level VM replication approach. Section 4 discusses 
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the prototypes. Section 5 concludes the paper and outlines the 
future work. 

II. BACKGROUND AND RELATED WORK 

A. Virtualization and Cloud Computing 

The information technology landscape has been deeply 
transformed by the resurgence of virtualization [6]. Initially 
motivated by the need to support legacy systems and improve 
the utilization of expensive mainframe systems in the early 70s, 
modern virtualization technologies in the Internet era have 
enabled resource consolidation, flexible resource management, 
and on-demand provisioning of infrastructure-as-a-service—in 
essence, providing the core technology that has paved the way 
to the implementation and wide adoption of cloud computing. 
The VMs considered in this paper are system-level VMs, which 
virtualize an entire physical host’s resources, including CPU, 
memory, and IO devices, and present virtual resources to the 
guest OSes and applications. System virtualization is enabled 
by the layer of software called virtual machine monitor (VMM, 
or hypervisor), which is responsible for multiplexing physical 
resources among the VMs (e.g., [7][8][9]). 

Cloud computing is an emerging paradigm which has the 
potential to finally realizing the society’s long-held dream of 
delivering computing as a utility. Depending on the level of 
delivered services, cloud offerings are often classified as 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), 
and Software as a Service.  An IaaS cloud (e.g., [1]) provides a 
user access to virtualized hardware, presented by a VMM and 
encapsulated in a VM, where the user is able to deploy and run 
arbitrary software including operating systems and applications 
on the underlying shared hardware. A PaaS cloud (e.g., [2]) 
provides a user a language-specific platform (e.g., JVM, .Net) 
to deploy and run arbitrary applications developed using the 
given language on the underlying shared platform. A SaaS 
cloud provides a user access to a particular application (e.g., 
web-based email, document editor) where the user can use the 
functionality provided by the underlying shared application. 
Depending on the model of deployment, cloud systems can also 
be classified as public or private. Public clouds allow public 
users to rent resources and run a wide variety of applications 
[1][2]; private clouds allow users from the same organization to 
run their internal applications on shared resources [3]. 

Virtualization is the key enabling technology of cloud 
computing. VMs are directly exposed to users in an IaaS cloud; 
they are also often used internally in PaaS and SaaS systems for 
hosting the underlying platform and software and benefiting 
from the use of virtualization. Although these different levels 
of cloud services can be built separately, it is increasingly 
common to build a high-level cloud service using resources 
provided by a lower-level one (e.g., build a SaaS on resources 
from PaaS and a PaaS on resources from IaaS), so that the 
former can benefit from the elasticity and economics provided 
by the latter. Therefore, although this paper focuses on VM-
based hosting of mission-critical applications in an IaaS setting, 
its outcomes will also generate an impact to other models of 
cloud computing. 

Virtualization and cloud computing are increasingly 
perceived as valuable to defense applications—from the 

perspective of resource consolidation, increased efficiencies, 
reduced power consumption, increased flexibility and agility in 
deploying applications and workloads. Private clouds can be 
custom-built to meet the stringent requirements of defense 
applications (e.g., [10]). Public clouds can also be valuable to 
defense applications because of their much cheaper cost and 
better scalability. An analogy can be drawn from the use of 
private versus public networks which are both found important 
for defense communications. However, the use of cloud 
systems for mission-critical applications also raises serious 
challenges to mission assurance. A public cloud can be assumed 
to be unsafe and insecure because of its multi-tenancy. Even in 
a private cloud, virtualization-enabled consolidation brings 
applications to the same set of shared physical resources and 
makes them more tightly coupled and consequently more 
vulnerable, compared to a non-virtualized environment where 
each application runs on a dedicated host. 

The goal of this paper is to study and develop novel 
techniques that will enable virtualization technologies that 
support mission-critical applications. The focus is on modern 
system virtualization technologies available for commodity off-
the-shelf computing platforms, but the approaches investigated 
in this paper are of general applicability. The proposed 
techniques do not assume special support from the cloud 
infrastructure and are hence applicable to both public and 
private cloud systems. 

B. Mission Assurance in Cloud Systems 

Virtualization can be a powerful tool for enhancing mission 
assurance, and it has been explored in different ways in the 
literature. Intrusion detection can be realized at the VMM layer 
with both good visibility into and isolation from the monitored 
VMs because VMM can directly introspect the state of the VMs 
while being protected from the VMs [11][12]. VMM can also 
be used to log the executions of VMs and replay them for 
analyzing intrusions to the VMs [13]. These solutions are 
complementary to this paper’s proposed VM-replication-based 
mission assurance techniques. 

VMs can be used as honeypots which are carefully 
monitored systems that allow attackers to interact so that their 
behaviors can be analyzed for future security enhancement. 
VM-based honeypots simplify the containment and isolation of 
attacks, the reverting of a comprised honeypot to a clean state, 
and the real-time monitoring of the honeypot. This paper 
considers honeypot VMs as part of its proposed multi-level VM 
replication based survivability approach. Related work in the 
literature has studied techniques to reduce the overhead of 
creating a large number of honeypots [14][15]. These 
techniques are complementary to this paper’s focus on creating 
realistic-looking and safe honeypots from mission-critical 
VMs. Biedermann et al. proposed an approach to dynamically 
extract a honeypot from an attacked VM via live cloning [16], 
which however is difficult to ensure that all sensitive 
information is stripped out. In contrast, this paper’s approach 
ensures that the honeypots only look the same as the mission-
critical VMs from the resource usage perspective but do not 
possess any sensitive code or data from the mission-critical 
applications. 



 

 

The use of virtualization and cloud computing is also a 
double-edged sword to mission assurance. From the perspective 
of a cloud user, there is no guarantee whether the underlying 
VMM or the co-resident VMs are trustworthy. Various 
solutions are proposed to address these threats. Li et al. 
proposed several techniques to protect VMs from a untrusted 
management VM, including modifying the VMM to restrict 
access to the memory mappings of a VM by the management 
VM, encrypting the VM’s memory pages and vCPU registers, 
and verifying the hash value of the VM’s kernel image [17]. 
HyperSentry enables stealthy in-context measurement of 
hypervisor integrity using a hardware channel to trigger the 
measurement and using the system management mode to 
protect the measurement agent’s base code and critical data 
[18]. These solutions are complementary to this paper’s VM-
replication-based protection techniques which do not require 
any change to the VMM or hardware. 

A mission-critical VM may leak sensitive information to its 
co-resident VMs through side channels caused by imperfect 
isolation of shared resources among VMs. For example, 
Ristenpart et al. implemented a side channel using shared L1 or 
L2 cache to detect a co-resident VM’s keystroke activities by 
measuring the load on the shared cache [19]. HomeAlone 
instead uses the side channel to ensure that all co-resident VMs 
are friendly VMs which coordinate to silence their activity in a 
selected cache region so that non-friendly VMs reveal 
themselves due to their cache activities [20]. This solution, 
however, requires that all the friendly VMs to be co-resident 
which is often difficult to achieve and makes them more 
vulnerable to failures on the hardware and VMM that they all 
share. In contrast, this paper proposes the use of decoy VM 
clones that can mimic the behaviors of mission-critical VMs 
and fool attackers who exploit the side channels. 

III. MULTI-LEVEL VM REPLICATION BASED 

SURVIVABILITY 

Virtualization allows the computing and its execution 
environment to be seamlessly encapsulated in a VM which can 
be transparently replicated to tolerate failures caused by 
malicious attacks. This unique capability is employed in our 

proposed approach to improve the survivability of mission-
critical applications. Replication-based fault tolerance is well 
understood and can be employed to improve the survivability 
of a mission-critical application in cloud systems via VM 
cloning. However, the use of full VM clones provides only 
passive defense for surviving attacks, and it is expensive as its 
resource cost grows linearly to the number of clones employed. 
To address these limitations, we propose a multi-level VM 
replication approach in this paper, which replicates a mission-
critical VM using different types of VM clones, including full 
clones, decoy clones, and honeypot clones, and provides a 
variety of protection to improve the application’s survivability 
in clouds while making efficient use of resources (Figure 1). 

A. Full VM Clones 

In this approach, a full VM clone is a complete VM replica 
containing the mission-critical application and its execution 
environment. It is kept in sync with the other full clones so that 
it can actually run the application and provide tolerance of 
attacks. Voting algorithms (e.g., [21]) are employed to derive 
the correct computing result from the results given by different 
full clones, assuming attackers cannot compromise the majority 
of the full clones without being detected. Synchronization 
across the full clones is used to detect failed or compromised 
clones, when they become unresponsive (detected by 
heartbeats) or give wrong results (detected by voting). The 
failed or compromised full clones will be automatically 
regenerated to sustain the protection of the mission-critical 
application. If the mission-critical application is stateless, the 
regenerated clone can immediately join the computing given 
the new input data. If the application is stateful, the regenerated 
clone needs to be synchronized with the other clones before the 
computing can resume. The new clone can be regenerated from 
the existing full clones that are still functioning properly and 
correctly. VM checkpointing can be employed to reduce 
recovery time by periodically checkpointing the full clones so 
that when a failure happens the regenerated clone and the 
remaining clones can be rolled back to the most recent 
checkpoint and resumed from there.  

B. Decoy VM Clones 

A decoy VM clone is a lean VM replica containing only the 
necessary software to mimic the behaviors of running the 
mission-critical application. It is used solely to divert attacks 
from the real targets, the full VM clones, and waste attackers’ 
time and resources. It can be safely discarded if compromised. 
Fake data are fed to a decoy clone to also mimic the 
communication patterns of a full clone. An analogy to the use 
of decoy VMs can be drawn from the chaff cloud spread by a 
military aircraft, which are made of cheap materials but can 
effectively fool the enemy’s radar and avoid the attack on the 
aircraft. Although the use of false-target-based defense has also 
been studied in the related work [22][23], this paper is the first 
to study its real use in cloud-based mission-critical computing 
for survivability. 

A key challenge to creating decoy VMs is how to make 
them realistic-looking enough to fool attackers while at the 
same time cheap enough (in terms of resource usages) to be 
employed at scale. From outside of the decoy VMs, they should 

 

Figure 1. Multi-level VM replication based survivability for 
mission-critical applications in cloud computing systems 
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be indistinguishable from a real VM to attackers who are in the 
co-resident VMs. But the inside software stack of the decoy 
VMs can be reduced to save resource costs, because their 
purposes are served when they are compromised. Therefore, the 
key to decoy VMs is that they should look the same from the 
attacker’s perspective while using minimum amount of 
resources. Because the interfaces that an attacker can use to 
observe a co-resident mission-critical VM are the side channels 
provided by shared non-partitionable resources (e.g., CPU 
caches), the decoy VMs need to behave in the same way only 
in terms of the use of these resources, but not the partitionable 
resources (e.g., CPU cycles, memory capacity). For example, to 
fool an attacker who is monitoring the cache-based side 
channel, the decoy VM only needs to load the cache, but not the 
memory, in the same fashion as the mission-critical VM. As a 
result, the decoys can use much less resources than the full 
clones because the capacity of non-partitionable resources is 
typically small and cheap to manipulate.  

Specifically, this paper’s approach to generating realistic-
looking decoy clones is to create a customized cache stub which 
can be tuned flexibly according to the cache profile observed 
from the mission-critical application, thereby mimicking the 
application’s cache behavior. Note that the cache stub needs to 
mimic the cache behavior only statistically but not exactly so 
that it will not leak any meaningful information that might 
reveal the application’s true activities. To create such a cache 
stub, we employ the techniques developed by the computer 
architecture community (e.g., [24]) for profiling application 
cache behaviors. 

C. Honeypot VM Clones 

A honeypot VM clone is a partial VM replica containing a 
sanitized copy of the application and a hidden layer to monitor 
attacks stealthily. Different from decoy VMs, the purpose of a 
honeypot VM is to allow attackers to interact with it so that its 
behaviors can be monitored and analyzed [25][26][27]. The 
monitoring layer observes the behaviors of attackers and saves 
such information for vulnerability analysis and protection 
improvement. Therefore, a honeypot needs to continue 
functioning even after it is intruded by an attacker. A key 
question that needs to be addressed is how to create a sanitized 
version of the mission-critical application, which still behaves 
like the original application. The application in a honeypot VM 
is stripped away of all sensitive information so it does not cause 
any damage to the mission if the honeypot VM is compromised. 
If the application’s code itself is not sensitive, it is possible to 
simply use the same code in the honeypot while feeding it fake 
data.  

However, a mission-critical application often contains 
sensitive logic such as the intelligence algorithm for processing 
data, and thus cannot be used directly in the honeypot. To 
address this requirement, we employ a fuzzy-logic-based VM 
performance modeling technique [28] to create a stub program 
for a honeypot VM that can mimic the resource usage behavior 
of the mission-critical application without exposing the 
application’s actual code to attackers. The fuzzy modeling 
technique is able to create an accurate resource usage profile for 
the mission-critical application, which will be used to 
customize the stub so that it can generate the same, statistically 

speaking, patterns in the honeypot VM’s use of CPU, memory, 
and IOs. As a result, the attacker who is inside of the VM cannot 
recognize the stub and cannot steal any sensitive information 
while interacting with the honeypots. 

As argued by Schneider and Birman [29], having 
homogeneous clones of a mission-critical VM helps defend 
against configuration attacks which exploit the errors in the 
configuration of the mission-critical application and its 
execution environment. It is much easier to thoroughly examine 
a configuration and harden it compared to using many different 
configurations for the same mission-critical application. 
However, having a “monoculture” in VM clones makes the 
mission-critical application more vulnerable to technology 
attacks which exploit the programming or design errors in the 
application. A monoculture also allows attackers to quickly 
spread the damage and compromise the entire mission because 
attacks that succeed on one clone are likely to succeed on all. 
The use of multi-level VM clones studied in this paper helps 
defend against such technology attacks as it employs diverse 
types of clones which make it harder for attacks to spread and 
compromise the mission, thereby providing support of both 
monoculture and diversity for defending various types of 
attacks in cloud systems.   

IV. PROTOTYPES 

As a proof-of-concept, we have implemented prototypes of 
the proposed multi-level VM replication approach upon 
representative private cloud and public cloud systems. In this 
section, we summarize the key aspects of our prototypes. 

A. OpenStack-based Private Cloud 

OpenStack [3] is an open-source cloud computing platform 
commonly used by various organizations for building private 
cloud systems. OpenStack’s Service-Oriented Architecture 
consists of a series of modules that manage processing, storage, 
and networking resources of a cloud computing environment. 
Integration among component services is achieved through 
application programming interfaces (APIs); each service 
exposes its API to other services and likewise each service can 
consume from other services’ APIs. Our prototype utilizes the 
APIs of mainly three OpenStack components, Nova, Glance, 
and Keystone for creating and managing the different types of 
replicas of mission-critical VMs in a private cloud. The Nova 
compute service creates and manages compute resources; the 
Glance service provides the interface for image discovery, 
image retrieval, and image storage, and the Keystone Identity 
service manages the authentication among each component 
service. Our prototype uses the Grizzly release of OpenStack, 
and it consists of a series of scripts written in Python which 
interact with OpenStack via the aforementioned interfaces.    

Given a user who wants to execute his/her application in the 
cloud with multi-level replication in order to avoid and survive 
attacks, our prototype works as follows. It starts by 
authenticating against Keystone using the user’s credentials in 
order to manage the VM replicas on behalf of the user. It then 
requests Nova to create the instances of full clones, decoy 
clones, and honeypot clones based on the VM images prepared 
offline. The numbers of instances for each type of clones can be 



 

 

specified by the user. A unique ID is assigned to each instance. 
When creating the instances, the prototype also applies the SSH 
key supplied by the user to the instances. If the key is not 
supplied, a new key is generated automatically for the user. 
Once the instances are started, the prototype can log into them 
using the key to start the application and its stubs. 

While the above created clone instances are executing, 
some of them may fail due to malicious attacks or incidental 
hardware or software faults. A failure is detected via the 
heartbeats maintained across the instances on a regular basis or 
the voting algorithm employed by the full clones. Note that we 
do not assume that a compromised instance can always be 
detected by the heartbeat mechanism. Nonetheless, the 
redundant computing provided by the full clones improves the 
application’s survivability against such attacks.  

When a failed instance is detected, the prototype destroys 
the failed instance and creates a new one in order to restore the 
user-specified numbers of different types of replicas. However, 
current OpenStack implementation does not provide the 
interface to clone an existing VM instance—it allows only the 
creation of a fresh instance which is then started and booted up 
from scratch. Replication of a live instance is required for 
restoring a full clone, because an instance started from scratch 
cannot catch up with the progress that the rest of the clones have 
already made in computing. Therefore, the restored instance 
must be created from the remaining full clone instances. In 
order to support such live replication in our prototype, we have 
added a new API to OpenStack, which works as follows. 

The live replication method first suspends all the remaining 
instances to temporarily pause the computing and synchronize 
their in-memory state to the host’s storage. It then replicates one 
of the full clones by copying its memory state and disk state 
stored on its host. It also provisions the replica with CPU, 
memory, and I/O resources identical to the target instance being 
replicated. Before resuming the new replica, it needs to do the 
necessary bookkeeping. It assigns the new replica a unique ID 
in order to identify it in OpenStack. Because OpenStack saves 
an instance’s configuration file as part of its memory state when 
suspending the instance, this configuration file needs to be 
extracted out of the memory state, modified to reflect the new 
instance’s identify, and injected back into the memory state, 
before the new instance can be resumed and recognized by 
OpenStack. Moreover, it needs to change the new replica’s 
network configuration to avoid conflict with the existing one. 
To do so, it assigns the new replica a unique MAC address in 
its configuration, and log into the instance to modify the MAC 
and apply the change by restarting the network. Finally, once 
the bookkeeping is done, all the other replica instances are 
resumed and the computing proceeds as normal. 

B. Amazon EC2 based Public Cloud 

We have also implemented a proof-of-concept prototype for the 
proposed multi-level VM replication based survivability 
approach on Amazon EC2 [1]. EC2 is one of the most widely 
used public IaaS providers. Users can rent VM instances from 
EC2 of different sizes, ranging from micro to extra-large, and 
with different costs. These instances can be created from user-
uploaded VM images or customized based on EC2-provided 

templates. The VMs can be stored on either Amazon’s EBS 
[30] or S3 [31] storage service.  

Because the interface exposed by Amazon EC2 is quite 
similar to the interface of OpenStack, we omit most of the 
discussion of our EC2-based prototype for brevity. One 
limitation of applying our multi-level replication approach to a 
public cloud is that we cannot change its interface to implement 
the live replication discussed in the previous section. As a 
result, a lost full clone instance can only be recovered by 
starting a new instance from scratch. This scheme supports only 
applications that are stateless, in which case the restored 
instance can still join the remaining full clone instances for 
computing.  

V. CONCLUSIONS AND FUTURE WORK 

Cloud computing offers serious challenges and at the same 
time great opportunities to mission assurance. In this paper, we 
have studied the use of VM replication to improve the 
survivability of mission-critical applications in cloud systems 
through a new multi-level VM replication approach. In this 
approach, different types of VM clones, including full clones, 
decoy clones, and honeypot clones are created to provide a 
variety of protections to a mission-critical application. We have 
implemented proof-of-concept prototypes on the widely used 
OpenStack-based private cloud and Amazon EC2 based public 
cloud. Although the prototypes are demonstrated to be working 
in our preliminary testing, we will conduct more rigorous 
evaluation on their performance and survivability in our future 
work. In the long term, we will also consider how to leverage 
other unique capabilities of VMs, such as live migration, to 
further improve the survivability of mission-critical 
applications in cloud computing. 

The benefits of virtualization and cloud computing are 
already well understood for many endeavors, but these 
emerging technologies are still largely underexplored for 
mission-critical applications. The outcome of our research will 
enable a broad range of mission-critical applications on cloud 
systems with mission assurance while under a variety of 
malicious attacks. Our proposed approach does not make 
assumptions on the trustworthiness of the cloud environment 
and are hence applicable to both public clouds built for general 
purposes and private clouds specially built for mission-critical 
computing (e.g., [10]). 
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