
  

 

Abstract— The CyberWorkstation (CW) is an advanced 

cyber-infrastructure for Brain-Machine Interface (BMI) 

research. It allows the development, configuration and 

execution of BMI computational models using high-

performance computing resources. The CW’s concept is 

implemented using a software structure in which an 

“experiment engine” is used to coordinate all software modules 

needed to capture, communicate and process brain signals and 

motor-control commands. A generic BMI-model template, 

which specifies a common interface to the CW’s experiment 

engine, and a common communication protocol enable easy 

addition, removal or replacement of models without disrupting 

system operation. This paper reviews the essential components 

of the CW and shows how templates can facilitate the processes 

of BMI model development, testing and incorporation into the 

CW. It also discusses the ongoing work towards making this 

process infrastructure independent. 

I. INTRODUCTION 

RAIN-machine Interfaces (BMIs) are a promising   

technology for restoring communication and control to 

those with diseases or dysfunction of the nervous system. 

The objective of BMI research is to understand the mapping 

from a brain’s neural activity to behavior in order to produce 

commands to control artificial limbs. To discover unknown 

aspects of systems-based neural encoding and decoding for 

complex tasks, computationally challenging real-time 

modeling is needed to understand the interactions between 

multiple brain subsystems, learning and behaviors [1]. 

Toward this goal, we created an experimental test bed, 

called the BMI CyberWorkstation (CW), distributed across 

two research laboratories in the University of Florida (UF) 

campus to provide the necessary resources, create parallel 

execution environments and guarantee the real-time 

response needed for low latency sensorimotor control.  In 

our previous work [1,2], we have demonstrated how BMI 

control schemes (Recursive Least Square and Reinforcement 

Learning based BMI) can be implemented and tested in 

online and offline closed-loop experiments on the CW. 

Significant speed improvement in experiment execution has 

been observed when compared to the performance that can 

be achieved in a typical neurophysiology lab setting.  
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In this paper, we present the CW’s software techniques 

that enable its versatility in supporting BMIs using single or 

combinations of models (e.g. mixture of experts). 

Improvements of the model development framework are also 

discussed. This framework allows rapid creation, evaluation 

and integration of new BMI models, and in addition 

facilitates the maintenance of the CW. 

This paper is organized as follows. Challenges in building 

infrastructure to support closed-loop BMI experiments are 

discussed in Section II. Section III overviews the CW 

architecture. The BMI-model template and the CW’s 

experiment engine are described in Section IV. Section V 

presents improvements of the BMI model development 

framework. Section VI concludes on the importance of a 

flexible software development framework for BMI research.  

II. CHALLENGES OF REMOTE CLOSED-LOOP BMI 

EXPERIMENTS 

The working of a typical closed-loop BMI can be divided 

into three phases that occur periodically: data acquisition, 

data processing and prosthetic control.  

The data acquisition senses in-vivo brain signals; a feature 

commonly used to quantify these signals is single-unit action 

potentials or ―spikes‖ [3]. Analog-to-digital conversion and 

online digital signal processing (DSP) are required to detect 

spikes, and a sorting algorithm categorizes spikes according 

to the individual cells that produce them. The management 

of this phase is non-trivial because of the drastically varying 

complexity of real-time DSP computation, which depends 

on the type of neural data and neuro-scientific research 

purpose [4]. 

Next, the sorted spike train must be decoded using a model 

that translates patterns of neural data into the appropriate 

motor-control commands in the data processing phase. For 

complex neurological tasks, such as arm and hand 

movements in 3-dimensional space, an ensemble of 

concurrent movement models may be used instead of a 

single complex model [5]. Efficient parallel model execution 

in the cyber-infrastructure then becomes mandatory.  

Neural decoding output may be used directly as control 

commands for a prosthetic device or serve as high-level 

(abstract) instructions for a set of low-level controllers. 

Signals that capture the behavior of the prosthetic device 

(e.g. its trajectory end position), and resulting environment 

changes (e.g. object displacement) are provided as feedback 

to the live subject and brain models. This enables the subject 

to decide on future actions and the models to learn or adapt 

online, completing the closed-loop BMI operation.   
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Overall, the time taken by each BMI cycle includes the 

time taken by the above-described phases plus the time 

needed for communication among the tasks. In the general 

case, the locations of the data acquisition, data processing 

and prosthetic device can be distinct; potentially introducing 

significant communication delays that can violate real-time 

requirements of ongoing experiments when efficient and 

reliable network communication mechanisms are absent.  

The CW has been successfully used to conduct online and 

offline closed-loop BMI experiments that include in vivo 

data acquisition (in online experiments), reliable network 

communication with error checking and buffering 

mechanisms, parallel computation of models, and real-time 

robot control. Details of the CW mechanisms and case 

studies can be found in [1] and [2]. 

III. ARCHITECTURE OF THE CW 

Fig. 1 summarizes the CW’s architecture. The client-side 

CW, usually situated in a Neurophysiology laboratory, is 

responsible for data acquisition and prosthetic control. 

Through a high-speed network, the brain-activity data and 

necessary sensory feedback collected in the client side are 

transferred to the server side. The server-side CW, hosted in 

a Computing laboratory, processes the received data and 

returns the results back to the client-side CW for prosthetic 

control.  

The client-side CW includes BMI subjects, instrumental 

resources (e.g. implant electrodes, sensors, DSP devices, 

etc.) and a client program of the CW’s experiment engine. 

The client program provides coordination between the CW 

and BMI models during data acquisition and prosthetic 

control. The server-side CW consists of computational 

resources (e.g. computing units and data storage), 

middleware and graphical user interfaces. A portlet-based 

portal provides CW functionality through easy-to-use 

interfaces while hiding the complexity of the middleware.  

The middleware has an application layer and a service 

layer. The application layer contains all supported BMI 

models—abstracted from the middleware’s service layer by 

a model template described in Section IV.A. The service 

layer provides the following modules.  

 User Management enables user authentication and 

authorization. 

 Logging and Monitoring provides statistics and 

information about jobs and resources for other modules.  

 Resource Reservation and Allocation assign necessary 

resources to efficiently run experiments.  

 Server-side Experiment Engine launches and manages 

the experiments’ data processing phase.  

 Model Integration facilitates addition of newly 

developed models into the CW.  

 Network Transfer enables reliable real-time data 

communication between the client and server sides.  

 Data Management organizes safe and easy-to-retrieve 

data storage of experiments for post-processing.   

 Tools for data visualization, analysis and group 

collaboration enable follow-up reviews and studies of 

experiments and knowledge sharing among researchers.  

In the following section, we focus on the components of 

the architecture that 1) allow various developers to 

conveniently contribute their models and 2) enable users to 

re-use BMI models in online and offline studies. 

IV. THE CW’S SOFTWARE TECHNIQUES 

The CW is designed so that it can be re-used for different 

types of BMI experiments, eliminating the overhead of re-

building the software infrastructure needed for every BMI 

research experiment. The key is to allow flexible and 

efficient reconfiguration of the CW so that different models 

Fig. 1. The conceptual architecture of the BMI CyberWorkstation 



  

can be easily ―plugged in‖. The CW offers a ―plug-and-

play‖ experiment engine and enables the generalization of 

models by using a BMI-model template.  

A. Generic BMI Model Template 

The BMI model template, as shown in Fig. 2, consists of 

the model structure and the parameter interface. The model 

structure defines necessary subroutines corresponding to the 

previously described phases in BMI experiments (e.g. data 

acquisition, data processing and robotic control) and other 

management routines (e.g. initialization, loading input and 

cleanup, etc.) with deferred implementation.  The BMI Code 

Library makes available useful subroutines that can help 

developers to rapidly implement their models by reusing 

code. These subroutines have clearly defined input and 

output arguments and can be included as inline code in any 

BMI model implementation. For a given subroutine, BMI 

developers can provide their own code or reuse code from 

the library. The parameter interface is a set of parameters 

that the experiment engine needs in order to communicate 

with the model. The model-specific static and dynamic 

parameters are separated from the model code in parameter 

files, providing an easy way to test and modify 

constants/parameters and compare BMI models with 

different parameter settings. 

 The BMI template, defined in C++, allows different 

modeling approaches, which may require different inputs 

and outputs, to be implemented in BMI models but still be 

accessible by the experiment engine through the same 

subroutine calls and parameter names. The template offers 

easy model integration and maintenance since the model 

code is decomposed into a set of small, highly independent, 

closed subroutines, which can be called from another 

subroutine and can be separately compiled. Hence, this 

simplifies readability and ease of testing. 

The CW provides a code package that includes the model 

template, the code library and a blank model for new model 

development. Developers provide the implementation in 

subroutines according to the template; the CW can guarantee 

that the models will communicate and interact correctly with 

other components in the system. 

B. Plug-and-Play Experiment Engine 

The experiment engine is a client/server program. It 

coordinates BMI models and middleware service modules, 

needed to capture, communicate and process brain signals 

and motor-control commands. As shown in Fig. 3, multiple 

BMI models, such as RLS and RLBMI [1,2], and other 

service modules can be simultaneously connected to the 

experiment engine. This approach decouples all 

functionalities of the CW from each other and from the 

experiment engine, and allows these modules to be added or 

removed from the system with minimal changes to existing 

code of the experiment engine.  

The experiment engine is implemented as a set of C++ 

programs with message-passing library calls. When a user 

creates a new experiment in the CW, the middleware 

automatically generates an experiment-run file containing all 

necessary information (e.g. the experiment directory 

location, names of selected models, etc.) for other 

middleware modules and a job-submission request file. The 

server-side experiment engine reads the experiment-run file 

and submits the job request to instantiate parallel processes 

to execute user-selected models in the CW’s computing 

cluster.  Then both the client-side and server-side experiment 

engine set up necessary socket connections through the 

Network Transfer module. During the experiment, the 

engine interacts with BMI models using the model interface 

and structure (as described in the previous section), uses the 

Data Management module to record outputs, and provides a 

graphical view of output data via the Data Visualization 

module. Details of this interaction are shown in Fig. 3. An 

asterisk next to the step numbers denotes that the steps 

reiterate during a BMI experiment. 

V. THE BMI MODEL DEVELOPMENT FRAMEWORK 

In early versions of the CW, several parts of the model 

code were coupled to the experiment engine, so it was not 

easy to investigate alternative communication protocols or 

approaches to improve the performance of the CW in 

supporting real-time experiments. In addition to the 

redesigned interface of BMI models to our CW code, as 

presented in the previous section, we discuss in this section 

further improvements of the BMI model development 

framework.  

A. Model Implementation 

While BMI models developed in C++ can deliver efficient 

codes necessary for peak performance in real-time 

experiments, it is important to include an alternative 

language for other developers who cannot conveniently port 

their code to the language that they are not familiar with. To 

address this need, the template and the experiment engine 

have been extended to be compatible with BMI models 

implemented in MATLAB, which is the most commonly 

used language by the computational BMI research 

community. Having direct access to this environment within 

the CW will enable users to rapidly move from concept to 

real-time experimentation. 

Fig. 2. Generic BMI Model Template engine 

 



  

We are integrating a simple source code editor that 

provides a dual presentation of the BMI model code 

structure and the source code for a user-selected subroutine. 

This user interface facilitates automatic formatting of BMI-  

model codes (such that it follows model template 

specifications), and incorporates tools for developers to 

easily include code from the code library into their code.  

B. Model Testing 

The CW’s administrator needs to facilitate the validation 

and calibration of the new BMI model before its integration 

into the production system. With increasing numbers of 

developers, this process can become a bottleneck since it 

generally needs iterations of code development, model 

configuration, execution and analysis of model output.  

To reduce development time, the new CW design allows 

users to examine how well their model code works, using the 

portal interfaces without intervention from the CW 

administrator. The model integration module will generate 

an automated testing unit which clones the experiment 

engine with the new model plugged in. Test results become 

available in the user’s workspace to validate correctness. 

Direct model implementation and testing on the CW 

increase model compatibility and, as a result, model 

integration requires less effort. 

C. Model Integration and Maintenance 

With the use of the experiment engine and the model 

template, the integration of new models and their 

maintenance can be seamlessly done. Successfully tested 

models can be submitted to the production site, along with 

input and configuration files needed for integration. In the 

future, the CW will provide a user interface that links with 

the model testing procedure, which automatically generates 

necessary files for a model submission request for users. 

While the integration will still require the administrator’s 

intervention, it will be minimal.  

VI. CONCLUSIONS 

This paper presents three innovations in the CW system 

design, namely its software structure, the BMI model 

template and the experiment engine used in the CW’s model 

development framework. They enable the decoupling of the 

logic of BMI models from the underlying infrastructure and 

thus expedite the deployment of new models and 

experiments by the system users, while minimizing CW 

maintenance and management by system administrators.  

The template allows users to easily create their model code 

by re-parameterization and to instantiate appropriate 

subroutines specified in the template. The experiment engine 

offers a plug-and-play capability that allows different 

models to be flexibly plugged in the CW. The portal 

interface improvements assist and partially automate model 

implementation, testing and integration. We believe that our 

software techniques are key to the efficiency of the CW 

since they enable models from different backgrounds and 

approaches to be easily combined and linked to create new 

and interesting possibilities in BMI research.  
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Fig. 3. The simplified structure of the CW’s experiment engine  

 


