
Enabling Composite Applications through an
Asynchronous Shared Memory Interface

Douglas Otstott∗

dotst001@fiu.edu
Noah Evans†

noah.evans@gmail.com
Latchesar Ionkov†

lionkov@lanl.gov
Ming Zhao∗

mzhao@fiu.edu
Michael Lang†

mlang@lanl.gov

∗School of Computing and Information Sciences
Florida International University

Miami, FL, USA

†Ultrascale Systems Research Center
Los Alamos National Laboratory

Los Alamos, NM, USA

Abstract—In this work we address the growing need for
mechanisms for intranode application composition. We provide
a novel shared memory interface that allows composite applica-
tions, two or more coupled applications, to share internal data
structures without blocking. This allows independent progress
of the applications such that they can proceed in a parallel,
overlapped fashion. Composite applications using in-node shared
memory can reduce the amount of data to be communicated
between nodes, allowing data reduction or analytics to be
performed locally and in parallel. To validate our approach
we implemented our solution in Linux and used two proxy-
applications to demonstrate how applications can be coupled
and compare the performance to a traditional solution. We
also compared the impact of composite applications to the
performance of their unmodified versions. Our solution incurs
small overhead in HPC linux environments and significantly
outperforms preexisting approaches.

Keywords-shared memory; composite applications; operating
systems; memory management; checkpoint

I. INTRODUCTION

As HPC systems increase in scale, scientific workflows
utilizing them are becoming increasingly more complex. It
is no longer enough for these systems to support time-sharing
of nodes for computations and post-processing of simulation
results. One of the key drivers for this change is the explosion
of data produced by large-scale simulations. It is becoming
increasingly difficult to move the data from the supercomputer
to permanent storage and back again for additional processing
steps.

Composite applications consist of two or more distinct
applications coupled with scripting or glue-code to produce
an aggregated macro-code resulting in greater functionality by
absorbing additional processing steps. Such examples of cou-
pled applications include the Community Earth System Model
(CESM) [1], simulation paired with uncertainty quantification
(UQ) or visualization, and multi-scale physics.

Composite applications are currently being developed in an
ad-hoc manner with little system support. The driving need is
to quickly couple existing applications with a small amount
of glue-code to tie them together. This promotes replication
of work, leads to fragile frameworks which do not scale, and

can result in large amounts of data having to be moved off
node.

Our novel approach to remedy the lack of system support for
application composition is an asynchronous mechanism which
would allow consistent data to be accessed within a node
without interrupting the application. By leveraging copy-on-
write (COW) and virtual memory mappings, applications can
share data while preventing changes in one application’s data
set from immediately being reflected in the other. However,
applications can still push and pull changes between processes
when it becomes necessary.

To demonstrate this concept we developed a modification to
the Linux shared memory system. An early prototype – Trans-
parent Consistent Asynchronous Shared Memory (TCASM)
– was described in a previous workshop paper [2]. In this
work we further develop the prototype shared memory system
and demonstrate how it can be used to create loosely coupled
composite applications.

For our evaluation, we focus on two specific mini-
applications and couple them with a realistic non-blocking
checkpoint application and a simple analytics application to
prove the benefits of this approach. We focus on application-
specific checkpointing since it is the HPC community’s key
resilience mechanism and it is significantly impacted by the
cost of data movement.

II. BACKGROUND AND RELATED WORK

A. Need for Application Composition

As system sizes increase from petascale to exascale the data
associated with large simulations is exploding. The memory
footprint is huge, 32-64 petabytes [3]. This amount of data
is difficult to move to and from persistent storage which is
traditionally a parallel file system in HPC.

Currently in coupled physics, applications run sequentially,
passing data from one package to another, with each package
running on the whole allocation in turn. In future exascale
architectures it is expected that some of these simulations will
run in parallel rather than sequentially. One way to run these
simulations would be to share data on the node. This has the
advantage of reducing power, communication and may use

the provided parallelism of current and future processors with
large core counts more efficiently.

B. Related Application Coupling Techniques

Previous methods used for application composition in-
cluded: directly linking in co-applications, handing off data
through the use of a file on a shared file system, message
passing, and standard shared memory mechanisms.

Existing examples of application coupling are similar to
our solution, though not implemented directly in the OS. In-
transit coupling of applications involves writing intermediate
results to local storage where they are analyzed on the way
to permanent storage [4] – in this case applications are linked
by temporary files as is done in many-task frameworks like
Falkon [5]. The ADIOS infrastructure [6] allows applications
to be coupled by either using files, or with memory regions,
but in case of the latter, it uses RDMA to transfer data between
applications. In another work the authors rely on custom
scripting to couple a quantum Monte Carlo code with Qwalk, a
code to calculate the total energy, on a BlueGene/L system [7].

All of these examples could benefit from TCASM. TCASM
provides a shared memory interface with the following fea-
tures: asynchronous sharing, simple interface, process pro-
tection, attaching or detaching to a shared region at any
time, reduced memory footprints, and data set versioning for
scientific applications.

C. Other Related Work

Previous OS based methods to share memory between
processes include System-V or POSIX shared memory [8] and
tmpfs [9] - which allows shared files in a RAM disk. They do
not provide a mechanism to ensure that the data is consistent
and they require additional knowledge of all processes that
share the data in order to synchronize accesses to it.

Knem [10] is specifically designed for interprocess/intra-
node memory sharing for point-to-point communication and
collective operations, as seen in MPICH2. The Boost [11]
libraries have an interprocess section which includes message
queuing, memory sharing and file locking functionality. Xp-
mem [12] is an ongoing project that facilitates inter-process
memory sharing by allowing processes to map the virtual
address space of different processes running on the same node.
But all of these require synchronization between processes or
a multi-buffer framework constructed from these mechanisms.
Additionally, none of these support TCASM’s copy-on-write
functionality to simplify application programming.

III. DESIGN AND IMPLEMENTATION

A. TCASM Architectural Design

To explain our design we will use a simple yet typical
coupled application example, a producer application and an
observer application. The producer performs calculations on a
data set with a certain set of computational steps which are
then repeated for the next iteration. At the end of each set of
steps the data is in a consistent state. The other process, or
processes, called observers, can be started at anytime during

the application’s execution. Observers needs read access to a
consistent state of the data that does not change until they are
done processing it. They may work at a different rate than the
producer and always need to access the most recent consistent
state of the data.

Our goal with TCASM is to provide a copy-on-write (COW)
shared memory region, mapped by both the producer and
observer(s). In this way, the operating system mediates data
changes to present consistent data to the sharing processes
and reduces the amount of complexity in sharing data among
processes.

The simplest explanation of the TCASM approach is that it
provides a shared memory interface that avoids application
synchronization by letting the operating system intervene
when collisions on the data would occur. The operating system
then COWs the data to avoid these collisions. TCASM tries to
preserve the asynchronous aspect of multi-buffer approaches
and minimize the memory and coordination required among
the producer and observers. The basic premise is to avoid data
duplication by sharing the pages that contain unmodified data
among the multiple versions of the data set in memory.

In the worst case, if all pages in the data set are modified
every time and each observer is advancing at a unique rate, the
memory overhead will be equal to the number of observers
times the size of the shared region, as in a multi-buffer
implementation. However, our solution will still retain the
advantages of unsynchronized access due to the operating
system’s management of COW data. Also the granularity of
changes monitored between the two processes are reduced to
the size of a page.

Our main goal is to provide a clean and simple interface
for publishing data between distinct processes. We achieve
this by modifying the two existing shared memory functions
in Linux, mmap and msync. The implementation of TCASM
under Linux is detailed in previous paper [2].

Figure 1 depicts the interaction between producer and
observer and the shared memory region. Initially, the producer
and observer’s virtual memory pages point to an unmodified
shared memory file. On the far right of the diagram, the
producer is modifying a page, so a new page is allocated and
mapped in the producer’s virtual memory as per the standard
COW procedure. On the left, the producer has published
its changes, so the original pages must be preserved in the
observer’s address space. Pages are copied out of the shared
region and the observer’s virtual address space is updated to
reflect this new state. This allows observers to advance at
different rates than the producer and one another since they
always keep their own versions of the data.

With this method, the producer task incurs a COW overhead
for each page that it modifies. However, we argue that the
overhead of COW will be overshadowed by the lack of
explicit synchronization required to manually copy the data. In
addition, an expensive copy operation can be prevented if the
producer does not modify all pages in the shared region, giving
an advantage to the COW mechanism over unconditionally
copying the entire shared range of pages in a multi-buffer

Fig. 1: TCASM Architecture

solution. Furthermore, this implementation provides significant
decoupling between producers and observers. The only shared
structure is the data itself and the producer makes its progress
continuously without coordinating with observers which are
created or destroyed independently.

B. TCASM Application Interface

Using TCASM requires some simple application modifica-
tions. The data required by any observer needs to be placed
in shared regions. The code needs to be modified to publish
the new versions at points where data is consistent, by calling
msync. Simple application code would look as follows:

application (producer)
mmap (filename,data)
Enter Timing loop {
Do work ()
call msync() # to publish data version
}

co application (observer)
Enter Processing loop {
mmap (filename,data) # to get new data
Do work ()
call unmap()
}

For an MPI runtime, mapped filenames are generated to
align with MPI ranks such that the observers can deduce the
names from information they already have. A similar scheme
can be implemented for other runtimes.

The application using TCASM to share its data also needs
to provide some metadata to hold application-specific descrip-
tions of the structures to be shared. Information such as the
number of regions and their respective sizes, the variables and
their types, data versions, and important iterators from the
application, may be required in order to allow the observers
to interpret the data. For example, a checkpoint co-application
would need all of the information that is required to restart
the application from a checkpoint such as the input deck and
iterator values. For an analytics observer the extents and offsets
of the data structures of interest for the calculation would need
to be included. Any constants can be included here as well.
Using a defined data description standard such as HDF5 or
netCDF could easily be supported.

The initiating application has to provide this data set for the
observing applications. The application also needs to allocate
the data structures for publishing using mmap. We developed

Operation Latency
msync 0.98 microseconds/page
memcpy 0.63 microseconds/page
COW 2.71 microseconds/page

TABLE I

a C based FORTRAN library, and a custom allocator for C++
for this reason.

There are several FORTRAN wrapper functions to facilitate
the system calls and pointer arithmetic necessary to instantiate
data from shared memory. Since the interface is general,
developers who wish to use this interface need only allocate
c-type pointers (a data type in FORTRAN), and pass them to
one of the functions in the C library. These pointers can then
be used to allocate data types in FORTRAN.

For C++ the best solution was to implement a custom
memory allocator which would use mmap to create objects.
This way, any critical data could simply be initialized using
the shared memory allocator in place of the standard allocator.

IV. EVALUATION

A. Methodology

To evaluate the performance and applicability of our ap-
proach we employ custom micro-benchmarks to look at over-
heads and to compare various sharing mechanisms. We then
use proxy applications to investigate the performance benefits
of TCASM in two specific use cases; coupled with a check-
point utility co-application and an analytics co-application.

B. Performance Overhead

In this section, we report the observed performance depreda-
tion incurred by TCASM’s Copy-On-Write (COW) and msync
mechanisms using an in house benchmark application. Results
collected are summarized in Table I. Latency of calls to
memcpy are included for comparison. Time values presented
are aggregate times for contiguous data sets, represented as
time per page.

C. Comparison to Other Sharing Methods

In these experiments we test microbenchmarks using
TCASM, mmap, an in-line function call (func) and com-
position using a shared file (file). Producer and observer
overheads were compared against the same benchmark running
in isolation using a variety of composition mechanisms. Mmap
and xpmem were implemented with basic producer-consumer
queues and all were compared over increasing data sizes.
Figure 2 shows overhead of the composition mechanisms. The
missing points in the TCASM data are due to noise in the data.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100 1000 10000

O
v
e

rh
e

a
d

 (
s
)

Megabytes Shared

tcasm
mmap

func
file

Fig. 2: Comparison of sharing composition mechanisms rela-
tive to a producer not sharing any data

To further evaluate our implementation we also modified
two MPI based mini-apps (SNAP [13] and MiniFE [14]) to
instantiate critical data structures with mmap and publish con-
sistent data sets at regular intervals using msync. These mini-
apps are often used to evaluate how real scientific applications
will perform on new systems.

We evaluated both SNAP and MiniFE’s TCASM implemen-
tations against their unmodified implementations under various
parameters.

D. Checkpointing Use Case

We also identified use cases that demonstrate the viability
of the shared memory interface enabled by TCASM. First we
investigate an application with embedded checkpoint function-
ality decomposed into a separate simulation application and a
checkpoint utility co-application. We designed the checkpoint-
ing system to use TCASM to share critical data between the
producer and observer processes which would then forward
the data to a storage server where it would be persisted in
the file system. The data can later be used to restart a job, in
case of a failure. To reflect production HPC environments, the
observer incorporates a typical I/O forwarding layer to allow
data to be staged on remote nodes. Specifically, we consider
the IOFSL [15] forwarding library, a scalable I/O forwarding
framework consisting of a library for the client and a server
that resides on a remote node(s). The observer processes use
the IOFSL [15] forwarding library to forward the shared data
to a remote storage server. For comparison, we also modified
SNAP to use IOFSL directly without employing the TCASM
observers.

Figure 3 shows the run times of three flavors of MiniFE
(from left to right): 1) the original implementation, 2) an im-
plementation utilizing the custom memory allocator and sync-
ing shared memory at regular intervals, and 3) the TCASM
functional implementation (syncing at regular intervals) shar-
ing the node with TCASM observers designed to persist the
data necessary to fully restart MiniFE from its last consistent
state. TCASM allocation and regular syncing account for the
34% run time overhead while the presence of observers adds

 0

 200

 400

 600

 800

 1000

Unmodified Syncing Syncing with Checkpointing

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Fig. 3: MiniFE Performance: Unmodified compared to
TCASM syncing data every iteration and TCASM syncing
every iteration with a co-process copying the data off node.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

TCASM IOFSL Directly

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Fig. 4: Runtime of SNAP’s TCASM Implementation with
Checkpointing Observers compared to direct IOFSL Check-
pointing)

nothing to execution time.
Similar to Figure 3, Figure 4 reflects the performance

difference between the TCASM implementation of SNAP
running alongside the TCASM checkpointing observer, and
SNAP modified to do its own checkpointing after each iter-
ation. Clearly, there are significant performance gains from
leveraging shared memory for data sharing with the TCASM
implementation finishing in about 64% of the total run time
of direct checkpointing implementation. This particular exper-
iment was done on a a relatively small data set (500MB per
process across 32 MPI processes).

Finally, to demonstrate TCASM’s effectiveness at scale,
several experiments were conducted on 202 cluster nodes
using the PRObE system [16]. Figure 5 illustrates the relative
performance of 3 implementations of SNAP. The first, is
the original implementation of SNAP with 400 ranks running
across 200 nodes with one head node reserved for synchro-
nization. The second is the same set up with the TCASM
version of SNAP syncing every time it reaches a consistent

 0

 2000

 4000

 6000

 8000

 10000

 12000
C

o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Unmodified(400)
TCASM(400)

TCASM + IOFSL(200)
IOFSL Directly(32)

Fig. 5: Performance of SNAP, scaled on 200 and 400 compute
nodes

state, with and without a set of observers syncing to the final
node, which is reserved for persistent data storage. As the first
three bars in Figure 5 illustrate the difference is minuscule.
Since msync is a local operation, only affecting the memory
on the node its called on, its overhead is related to how many
processes are calling it, and how much data is being synced. In
this particular setup, the cost of two ranks calling msync on 1
Gigabyte simultaneously is negligible. The final bar represents
the same setup with an implementation of SNAP that writes to
the storage server directly. However, in this experiment, only
32 of the 400 processes are syncing during the course of the
experiment. Here, the real benefit of TCASM checkpointing
becomes evident.

E. In situ Analysis Use Case

 0

 500

 1000

 1500

 2000

 2500

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Integrated Spectrum Analysis(64)
Shared Memory Spectrum Analysis(64)
Shared Memory Spectrum Analysis(60)

Fig. 6: Runtime of SNAP with an added Spectrum Analysis
procedure added versus a TCASM implementation sharing
necessary data to an analytical observer

A second use case for TCASM is in situ data analysis. For
this case, we implemented a specialized TCASM observer to
calculate the energy spectrum of a given SNAP experiment for
each time step. At the end of each time step, SNAP publishes
the data necessary to calculate the energy spectrum along with

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 0 10 20 30 40 50 60 70 80 90 100

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
)

Megabytes

File Sharing
TCASM

Fig. 7: Runtime of SNAP using the file system to share data
as compared to TCASM

the necessary meta-data. An observer for each rank performs
the necessary calculations on its local data set and calls an MPI
collective operation to ascertain the global values. For testing
purposes, this data was simply printed to standard output. To
compare the performance of this implementation a module was
added to SNAP to compute the energy spectrum within SNAP
itself. The exact same code was used, with the exception of
the initialized variables. In SNAP, the data is simply passed
in or made available globally. In the observer, the data must
be allocated and initialized from shared memory. The rest of
the operations are identical.

Figure 6 shows the comparison between the two imple-
mentations, on a 64 core cluster node using process binding.
Using TCASM for spectrum analysis cuts the execute time
of SNAP in half. Again, in an attempt to isolate the compu-
tational cost and context switching noise between producers
and consumers, the number of ranks was dropped to 60 and
divided among the sockets. This resulted in slightly higher
execution time. Even with the computational overhead of the
analytical operations, it is still preferable to have more MPI
processes rather than provide process isolation.

Figure 7 shows SNAP’s completion time vs data size shared
with two versions; 1) data shared with TCASM, flat scaling;
2) data shared on the filesystem, poor scaling. The data
shared was for the spectrum calculation to show the benefit of
TCASM over ad-hoc composition on the filesystem.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented TCASM, an asynchronous shared
memory interface for coupling composite applications. We
discussed the design of the implementation using the memory
subsystem of Linux and showed the advantage of providing
a simple and transparent interface that allows sharing of
memory while minimizing the memory used and eliminating
synchronization between coupled processes.

We provided interfaces for scientific applications which
are predominately written in C, FORTRAN, or C++. These
contributions allow our work to be easily used by application
developers.

We also demonstrated real world use cases for TCASM by
using two scientific mini applications. SNAP and MiniFE were
modified to use shared memory and publish consistent states
at regular intervals. The resulting data was then used by an
”observer” to bleed it off to persistent storage servers via an IO
forwarding layer. The presence of the observer was shown to
have little impact on the performance of the application, while
some overhead was attributed to the cost of repeated calls to
msync and the overhead from copy-on-write. However, this
overhead is small in comparison to traditional checkpointing
techniques, where the application would have to temporarily
halt execution while its data is copied to persistent storage. In
this case we see a huge 11.96x improvement over traditional
checkpointing.

In addition, we developed an analytic observer to calculate
the energy spectrum of the flux array in the SNAP applica-
tion. We showed a performance improvement of 1.86 times,
again, due to the decoupling of the application computation
and the analytics calculation which allows for their overlap.
This approach would clearly be beneficial for many coupled
application scenarios, such as visualization, uncertainty quan-
tification, etc.

Hobbes [17], a new exascale OS, is currently under design
which supports composite applications. This work is currently
being integrated into Hobbes as well as being made available
to the Linux HPC community. We would also like to prove this
method with large-scale applications such as the Community
Earth System Model (CESM) [1] and other coupled physics
applications. We see this work as a valuable building block to
support dynamic run times for many-core processors.

ACKNOWLEDGMENTS

We thank Hakan Akkan for his initial development, and
Joe Zerr for his help with the SNAP mini-app in terms of
analytics and checkpointing. This work was performed at the
Ultrascale Systems Research Center (USRC) at Los Alamos
National Laboratory, and is supported by the U.S. Department
of Energy DE-FC02-06ER25750 and in part by the National
Science Foundation under awards CNS-1042537 and CNS-
1042543 (PRObE). http://www.nmc-probe.org/. The publica-
tion has been assigned the LANL identifier LA-UR-13-28104.
Douglas Otstott and Ming Zhao are supported by the National
Science Foundation grant CCF-0938045 and CAREER award
CNS-125394 and the Department of Homeland Security grant
2010-ST-062-000039.

REFERENCES

[1] P. R. Gent, G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke,
S. R. Jayne, D. M. Lawrence, R. B. Neale, P. J. Rasch, M. Vertenstein
et al., “The community climate system model version 4,” Journal of
Climate, vol. 24, no. 19, pp. 4973–4991, 2011.

[2] H. Akkan, L. Ionkov, and M. Lang, “Transparently consistent asyn-
chronous shared memory,” in Proceedings of the 3rd International
Workshop on Runtime and Operating Systems for Supercomputers.
ACM, 2013, p. 6.

[3] G. Grider, “Exascale fsio/storage/viz/data analysis can we get there? can
we afford to?” 2011.

[4] K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podhorszki, V. Vish-
wanath, N. Fabian, C. Docan, M. Parashar, M. Hereld et al., “Examples
of in transit visualization,” in Proceedings of the 2nd international
workshop on Petascal data analytics: challenges and opportunities.
ACM, 2011, pp. 1–6.

[5] I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde,
“Falkon: a fast and light-weight task execution framework,” in
Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
no. 43. Reno, NV: ACM Press, November 2007. [Online]. Available:
http://doi.acm.org/10.1145/1362622.1362680

[6] N. Podhorszki, S. Klasky, Q. Liu, C. Docan, M. Parashar, H. Abbasi,
J. Lofstead, K. Schwan, M. Wolf, F. Zheng et al., “Plasma fusion
code coupling using scalable i/o services and scientific workflows,” in
Proceedings of the 4th Workshop on Workflows in Support of Large-
Scale Science. ACM, 2009, p. 8.

[7] A. Sayed and H. El-Shishiny, “Computational experience with nano-
material science quantum monte carlo modeling on BlueGene/L,” in
MEMS, NANO, and Smart Systems (ICMENS), 2009 Fifth International
Conference on. IEEE, 2009, pp. 213–217.

[8] J. Moran, “Sunos virtual memory implementation,” in Proceedings of
the Spring 1988 European UNIX Users Group Conference, 1988.

[9] P. Snyder, “tmpfs: A virtual memory file system,” in Proceedings of the
Autumn 1990 EUUG Conference, 1990, pp. 241–248.

[10] B. Goglin and S. Moreaud, “Knem: A generic and scalable kernel-
assisted intra-node {MPI} communication framework,” Journal of
Parallel and Distributed Computing, vol. 73, no. 2, pp. 176 – 188,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0743731512002316

[11] “Boost C++ libaries,” 2007. [Online]. Available: http://www.boost.org/
[12] “xpmem: Cross-process memory mapping,” 2014. [Online]. Available:

https://code.google.com/p/xpmem/
[13] J. Zerr and R. Baker, “Snap: Sn (discrete ordinates) application proxy

- proxy description,” 2013. [Online]. Available: https://github.com/
losalamos/SNAP

[14] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving performance via mini-applications,” Sandia
National Laboratory, Technical Report SAND2009-5574, 2009.

[15] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross,
L. Ward, and P. Sadayappan, “Scalable i/o forwarding framework
for high-performance computing systems,” in Cluster Computing and
Workshops, 2009. CLUSTER’09. IEEE International Conference on.
IEEE, 2009, pp. 1–10.

[16] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd, “Probe: A
thousand-node experimental cluster for computer systems research,”
vol. 38, no. 3, June 2013. [Online]. Available: \url{https:
//www.usenix.org/publications/login/june-2013-volume-38-number-3/
probe-thousand-node-experimental-cluster-computer}

[17] R. Brightwell, R. Oldfield, A. B. Maccabe, and D. E. Bernholdt,
“Hobbes: Composition and virtualization as the foundations of an
extreme-scale os/r,” in Proceedings of the 3rd International Workshop
on Runtime and Operating Systems for Supercomputers. ACM, 2013,
p. 8.

