Dynamic Block-level Management for Cloud Computing Systems

Dulcardo Arteaga, Douglas Otstott, Dr. Ming Zhao
{darte003, dotst001, mzhao}@fiu.edu

School of Computing and Information Sciences
Florida International University
Introduction

- Block-level network storage commonly used in cloud systems
 - E.g., iSCSI, NBD, SAN
 - Provide virtual machine (VM) storage
 - Fast virtual machine migrations
 - Improved data availability
Problem Addressed

- Serious scalability issue as the size of cloud systems increases
- Bottleneck in shared network storage
- Performance interference across VMs

Goal: Improve I/O performance of VMs in cloud systems using caching
Proposed Solution

- Dynamic block-level client-side caching for cloud computing systems
 - Exploit data locality in VM data access
 - Utilize capacity and speed of storage (particularly SSDs) on the client-side
 - Implement via block-level virtualization to support different cloud storage systems
 - Support flexible, dynamic configuration of cache replacement and write policies
DM-cached based Caching

Cloud system using dm-cache based client-side block-level caching

Shared Cache
/dev/sdc

Target
/dev/lv-disk#

IP-SAN
/SAN

Shared Storage
Performance improved
Evaluation

- **Experiment setup:**
 - Eight VM hosts, each with SSD based cache; One shared iSCSI-based network storage server

IOzone

- 14x higher throughput for reread

Concurrent Booting

Up to 123% faster booting
Thanks!!

Effort partly sponsored by a gift donation from Cloud VPS, a leading cloud provider company in the Netherlands.