
IBIS : Interposed Big-data I/O Scheduler
Yiqi Xu Adrian Suarez Ming Zhao

Florida International University
{yxu006,asuar054,ming}@cs.fiu.edu

Abstract
Existing big-data systems (e.g., Hadoop/MapReduce) do
not expose management of shared storage I/O resources.
As such, application’s performance may degrade in un-
predictable ways under I/O contention, even with fair
sharing of computing resources. This paper proposes
IBIS, a new Interposed Big-data I/O Scheduler, to pro-
vide performance differentiation for competing applica-
tions’ I/Os in a shared MapReduce-type big-data system.
IBIS is implemented in Hadoop by interposing HDFS
I/Os and use an SFQ-based proportional-sharing algo-
rithm. Experiments show that the IBIS provides strong
performance isolation for one application against anoth-
er highly I/O-intensive application. IBIS also enforces
good proportional sharing of the global bandwidth a-
mong competing parallel applications, by coordinating
distributed IBIS schedulers to deal with the uneven dis-
tribution of local services in big-data systems.

1 Introduction
Big-data applications need to process and analyze mas-
sive amounts of data in parallel (e.g., MapReduce [2])
and often have complex I/O phases is highly distributed
across many data nodes. Thus, storage systems that can
provide high scalability and availability (e.g., Hadoop
HDFS [3]) needs to be SLA aware in the shared infras-
tructure. However, existing big-data systems do not ex-
pose management of shared storage I/O resources. As a
result, an application’s performance may degrade in un-
predictable ways when there is I/O contention.

This paper proposes IBIS, a new Interposed Big-data
I/O Scheduler, to provide performance differentiation for
competing applications’ I/Os in a shared MapReduce-
type big-data system. This scheduler solves the problem
of differentiating the I/Os among competing application-
s on individual data nodes and schedule them according
to the applications’ bandwidth demands. The proposed
IBIS scheduler is able to transparently intercept the I/Os
from big-data applications and schedule them on every
data node via an I/O interposition layer. IBIS also co-
ordinates I/O scheduling across distributed data nodes
to allocate the total storage service of the entire big-data
system to the parallel tasks of competing applications.

The IBIS prototype is implemented in Hadoop by in-
terposing HDFS I/Os and scheduling them using an SFQ-
based proportional-sharing algorithm [4]. Experimental
results show that with IBIS, an application’s performance
can be strongly isolated from the contention by a highly

I/O-intensive application (TeraGen) (< 5% slowdown in
total runtime), even with uneven available bandwidth on
different nodes.

2 Approach

IBIS is designed to effectively differentiate I/Os from
competing applications and allocate the shared storage
bandwidth on individual data nodes in a big-data sys-
tem. IBIS is based on virtualization principles (Figure 1),
where an indirection layer exposes the interfaces already
in use by the big-data system to access storage, allow-
ing applications to time-share the storage system with-
out modifications, while enforcing performance isolation
and differentiation among them. Step 1-5 corresponds
to map read, map output, reduce shuffle, reduce merge
and reduce write. We chose to introduce virtualization at
a DataNode layer of the storage hierarchy to gain more
control of I/O executions and utilization while support-
ing more diverse applications. The DFSClient interface
between the tasks and DataNode is modified to allow
application-specific information to be carried as part of
the request header of each block request issued by the
map/reduce task, transparent to the applications.

IBIS also efficiently coordinates the distributed I/O
schedulers across data nodes in order to allocate the
global storage bandwidth for the parallel tasks of ap-
plications in a big data system. The total service that an
application gets across the whole system is the sum of
the services that it obtains from every data node where
its tasks run. The amount of local service that it actu-
ally obtains from a data node varies across nodes and
over time and each local scheduler needs a global view
of aggregate I/O throughput to converge to the I/O shar-
ing ratio collectively on all data nodes. To address the
challenge of synchronization of global I/O view between
data nodes, the IBIS schedulers exchange their local I/O
service information and obtain global views of total I/O
services by piggybacking upon the existing RPCs be-
tween TaskTrackers and JobTrackers. The scalability of
this global coordination scheme is made possible by the
scalability of the JobTrackers (in YARN [1] for large
systems). Specifically, local scheduler adjusts the local
I/O service ratios among the tasks on its data node in or-
der to achieve global fairness of total I/O service among
competing parallel applications, by delaying those that
are above their global fair shares and promoting those
below their global fair shares.

1

GFS/HDFS

Local File System

map reduce map reduce

Interposed Storage Scheduler

 GFS/HDFS

Local File System

reduce map reduce map

⑤
Big Data
System

Interposed Storage Scheduler

DATANODE DATANODE

Global I/O Scheduling

Figure 1: Architecture of IBIS

0
100
200
300
400
500
600
700
800
900
1000

Alone
1/2
CPUs

With
TeraGen
Interfere

With
TeraGen
FIFO

With
TeraGen
1:16

With
TeraGen

1:8

With
TeraGen

1:4

With
TeraGen

1:2

With
TeraGen

1:1

With
TeraGen

2:1

With
TeraGen
(uneven)
1:16

With
TeraGen
(coord)
1:16

W
o

rd
C

o
u

n
t

R
u

n
n

ti
m

e
 reduce map

Figure 2: Runtime of WordCount with/without IBIS with
varying I/O sharing ratios (WordCount:TeraGen)

3 Evaluation
Hadoop-based IBIS prototype was implemented and e-
valuated on a testbed consisting of eight nodes each with
two six-core 2.4GHz AMD Opteron CPUs, 32GB of
RAM, and two 500GB 7.2K RPM SAS disks, intercon-
nected by a Gigabit Ethernet switch. All the nodes run
the Debian 4.3.5-4 Linux with the 3.2.20-amd64 kernel
and use EXT3 as the local file system. One of the eight
cluster nodes runs JobTracker, one as NameNode, and
the other six nodes as TaskTrackers as well as DataN-
odes. HDFS is configured to use one of the two disks on
available on each data node, while the other is used to
the data spilled directly to the local file system (map out-
puts and reduce inputs) to reduce self-interference. Each
node is assigned 10 map slots and 2 reduce slots, with
Hadoop fair scheduler turned on for equal share of slot-
s between two applications so the contention is purely
from I/O side.

Figure 2 show a comparison of different WordCoun-
t runtime when run alone(half CPUs) or against Tera-
Gen(two evenly using all CPUs). TeraGen’s I/O con-
tention caused more than 65% runtime increase to Word-
Count from the 1st (alone) bar to the 2nd bar although na-
tive Hadoop fair scheduler assigns the same number of
CPUs to both jobs. When applied a virtualization layer
with a depth of 4 in the 3rd(FIFO) bar, the depth control
of writes already shielded partial interference to Word-
Count, reducing the runtime by 21%. From the 4th bar
to the right we apply SFQ(D) gradually increasing the
share of TeraGen, and achieved within 105% of original
alone performance at the ratio of 2:1. The last two bars
shows with uneven available bandwidth on one of the
data nodes (introduced by another I/O intensive applica-
tion), uncoordinated (uneven) 1:16 target ratio cannot be
reached as when bandwidth is even (4th bar). By adjust-
ing unaffected nodes’ bandwidth share, coordinated case
on the rightmost bar(coord) can gain performance back.

Figure 3 collects per-second aggregate HDFS system
bandwidth allocated to WordCount and TeraGen, with-

0 200 400 600 800
Time (s)

0

100

200

300

400

500

600

700

I/O
U

sa
ge

(M
B

/s
)

TeraGen
WordCount

0 200 400 600 800
Time (s)

0

100

200

300

400

500

600

700

I/O
U

sa
ge

(M
B

/s
)

TeraGen
WordCount

Figure 3: WordCount aggregate I/O throughput under
TeraGen contention without and with IBIS (2:1)

out and with IBIS(2:1). TeraGen writes suppressing the
WordCount I/O without IBIS is on the top figure, while
bottom figure shows the effectiveness of IBIS by: 1) al-
lowing approximately 1/3 of the available bandwidth to
TeraGen and 2/3 to WordCount; 2) allowing TeraGen to
consume available bandwidth when WordCount issues
less I/O. As a result, WordCount’s I/Os are prioritized
on all the datanodes and completes faster by 40%.

4 Conclusion and Future Work
This paper proposes IBIS, an Interposed Big-data I/O
Scheduler, to provide global I/O performance differen-
tiation to big-data applications. Experimental evaluation
shows with IBIS, an application’s (WordCount) perfor-
mance can be strongly isolated from the contention gen-
erated by a highly I/O-intensive application (TeraGen)
(< 5% slowdown in total runtime). The results also show
that IBIS can effectively achieve specified sharing ratio
of the global bandwidth between two competing parallel
applications by coordination. In the future work, IBIS
will support the scheduling of other I/Os used by big-data
applications in addition to HDFS I/Os. The I/O schedul-
ing provided by IBIS will then be integrated with the ex-
isting CPU scheduling in big-data systems. Both types
of resources are essential to the different stages of big-
data applications and need to be managed holistically to
achieve the application-desired quality of service.

References
[1] Yet another resource negotiator.

hadoop.apache.org/docs/current/hadoop-yarn/.

[2] DEAN, J., AND GHEMAWAT, S. MapReduce: simplified data pro-
cessing on large clusters. In Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation -
Volume 6 (Berkeley, CA, USA, 2004), OSDI’04, USENIX Asso-
ciation, p. 10.

[3] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R.
The Hadoop Distributed File System. In 2010 IEEE 26th Sym-
posium on Mass Storage Systems and Technologies (MSST) (May
2010), IEEE, pp. 1–10.

[4] WANG, Y., AND MERCHANT, A. Proportional-share scheduling
for distributed storage systems. In FAST (2007), USENIX, pp. 47–
60.

2

