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ABSTRACT 

Virtualized systems such as utility datacenters and clouds are 

emerging as important new computing platforms with great 

potential to conveniently deliver computing across the Internet 

and efficiently utilize resources consolidated via virtualization.  

Resource management in virtualized systems remains a key 

challenge because of their intrinsically dynamic and complex 

nature, where the applications have dynamically changing 

workloads and virtual machines (VMs) compete for the shared 

resources in a convolved manner. To address this challenge, this 

paper proposes a new resource management approach that can 

effectively capture the nonlinear behaviors in VM resource usages 

through fuzzy modeling and quickly adapt to the changes in the 

virtualized system through predictive control. The resulting fuzzy-

model-predictive-control (FMPC) approach is capable of 

optimizing the VM-to-resource allocations according to high-level 

service differentiation or revenue maximization objectives. A 

prototype of this proposed approach was implemented for Xen-

based VM systems and evaluated using a typical online 

transaction benchmark (RUBiS). The results demonstrate that the 

proposed approach can efficiently allocate CPU resource to single 

or multiple VMs to achieve application- or system-level 

performance objective. 

1. INTRODUCTION 

Virtualized systems such as utility datacenters [27] and clouds 

[28][29] are emerging as promising new platforms that can 

significantly improve how resources are provisioned to 

applications and how computing is delivered to users. One the one 

hand, applications can be conveniently deployed via virtual 

machines (VMs) without being tied to any specific physical 

machine or constrained by any specific set of resources. On the 

other hand, resources can be consolidated and multiplexed across 

VM-hosted applications to increase utilization and reduce cost. 

The fundamental goal for resource management in such systems is 

that resources should be automatically and dynamically allocated 

to the applications’ VMs according to application-level objectives 

(e.g., QoS—Quality of Service) and system-level objectives (e.g., 

service differentiation, revenue maximization).  

In order to reach the above goal, resource management in 

virtualized systems needs to address the challenges raised by the 

intrinsically dynamic and complex resource usage behaviors in 

such systems. For example, when an application’s workload 

changes over time in intensity and composition of requests, its 

VM’s demands of different types of resources also change 

accordingly. As applications are consolidated to the same physical 

hosts via VMs, they also compete for the shared resources and 

interfere with each other. As a result, one application’s 

performance depends on not only its own VM’s resource usage 

but also others’ behaviors. Even if the application workloads stay 

relatively steady, service-level objectives (SLOs) may change 

over time and as a result resources might need to be reallocated.  

This paper proposes a new Fuzzy Model Predictive Control 

(FMPC) based approach to address these challenges in resource 

management. This approach is architected to answer two key 

questions: The first one asks how to accurately capture the 

complex relationship between resource allocation and application 

performance. The second asks how to adaptively optimize the VM 

resource allocation as changes occur dynamically in the system. 

Specifically in the approach described in this paper, a fuzzy-logic 

based modeling method is employed to learn the relationship 

between VM resource allocation and application performance, 

which can efficiently capture complex system behaviors without 

requiring any a priori knowledge. Then a predictive controller 

uses this model to predict the resource demand for all VMs and 

take the resource control actions that enable the system to quickly 

reach its optimization objective. These two phases work in a 

closed-loop manner where the model is constructed and updated 

online and resource allocations are adjusted dynamically in order 

to adapt to the changes in the system in a timely manner.  

This proposed approach was prototyped on Xen-based VM 

environments and evaluated using a typical online transaction 

benchmark (RUBiS [14]). The results demonstrate that it can 

accurately estimate the resource demand for a VM running 

dynamically changing workload and quickly achieve the desired 

QoS target. The results also show that more complex behaviors of 

resource competing VMs can also be captured by the proposed 

approach and the system-level objective can be quickly achieved 

and sustained in such a scenario. Compared to a typical linear 

model based MPC approach, the FMPC approach can obtain 5% 

better overall QoS as well as faster adaption to the changes. 

The rest of this paper is organized as follows. Section 2 describes 

the background and motivation. Section 3 discusses the detailed 

design and implementation of the proposed approach and Section 

4 presents an experimental evaluation. Section 5 examines the 

related work and Section 6 concludes this paper. 

2. BACKGROUND AND MOTIVATION 

2.1 Adaptive Virtual Resource Management 

Emerging virtualized systems such as utility datacenters and 

clouds promise to be important new computing platforms where 

applications could be executed efficiently and resources could be 

utilized efficiently. A key challenge to fulfilling this promise is to 

correctly understand an application’s VM’s resource demand 

based on its QoS target and effectively optimize the resource 

allocation across VMs based on resource-provider objectives. The 

major difficulty lies in the intrinsically dynamic and complex 

nature in the resource usage behaviors in such virtualized system. 

First, the dynamics in an application’s workload can lead to 

complex behaviors in its VM’s resource usages as its intensity and 

composition change over time. For instance, a web workload’s 

request rate varies depending on the time of day and the 

occurrence of events [26]; a database workload can also change in 



2 

 

terms of its composition of a wide variety of queries with different 

levels of CPU and I/O demands [18]. Second, interference among 

VMs hosted on the same physical machine can lead to complex 

nonlinear resource usage behaviors as they compete for various 

types of resources that cannot be strictly partitioned. For example, 

when co-hosted VMs compete for the shared last level cache or 

disk I/O bandwidth, the relationship between each VM’s resource 

allocation and its application’s performance is known to be 

nonlinear [11][25]. Finally, even if the application workloads stay 

relatively steady, their SLAs, which specify the QoS that they 

require and the cost that they are willing to pay, may change over 

time. Consequently, resources in the system need to be reallocated 

across different applications’ VMs in order to sustain the system-

level objective. As more applications become Internet-scale and 

resources become more consolidated, the above scenarios would 

also be increasingly common in a virtualized system. 

Different approaches have been studied for virtual resource 

management and they are examined in detail in Section 5. In 

particular, machine learning techniques can be employed to 

automatically learn the relationship between a VM’s resource 

allocation and its application’s performance; Control-theory 

techniques can be used to build a feedback loop into the resource 

management which can automatically adjust resource allocations 

and quickly reach the desired system objective. This paper 

proposes a new resource management approach based on the 

combination of these two types of techniques that can effectively 

capture the nonlinearly in virtualized system behaviors and 

quickly adapt to the changes in such behaviors, which are 

discussed in details in the following subsections. 

2.2 Fuzzy-logic based System Modeling 

This paper adopts a fuzzy-logic-based learning technique to model 

application performance and VM resource usage in a virtualized 

system such as utility datacenters and clouds, because fuzzy 

modeling is particularly suited to efficiently model systems with 

complex behaviors [7]. The technique combines fuzzy logic with 

mathematical equations to describe the discovered patterns of 

system behavior and to guide the control strategies of the system. 

A fuzzy model is a rule base which consists of a collection of 

fuzzy rules in the form of ―If x is A then y is B‖, where A and B 

are linguistic values defined by fuzzy sets with associated 

membership functions. These rules are trained using the input (x) 

and output (y) data observed from the system and together they 

represent the model representing the system behaviors. 

While building a fuzzy model, data clustering techniques (e.g., 

[13]) are often employed to discover the important features of the 

system and derive a concise representation of the system’s 

behavior. Each cluster is treated as a fuzzy set and then each set is 

associated with a fuzzy rule. As a result, only a small number of 

fuzzy rules are needed in the fuzzy model. The mapping from a 

given input to an output on a fuzzy rule base is called fuzzy 

inference, which entails the following steps: 1) Evaluation of 

antecedents: the input variables are fuzzified to the degree to 

which they belong to each of the appropriate fuzzy sets via the 

corresponding membership functions, 2) Implication to 

consequents: implication is performed on each fuzzy rule by 

modifying the fuzzy set in the consequent to the degree specified 

by the antecedent; 3) Aggregation of consequents: the outputs of 

all the fuzzy rules are aggregated into a single fuzzy set which is 

then inversely translated into a single numeric value through a 

defuzzification method.  

Note that the fuzzy modeling approach differs fundamentally from 

traditional rule-based system management approach [20][21]. The 

latter is based on the use of a set of event-condition-action rules 

which are triggered only when certain events happen and some 

preconditions are met. In such an approach, the rules are typically 

specified by system experts, which is often intractable to apply to 

a complex system because of the difficulty in defining thresholds 

and corrective actions for all possible system states. In contrast, a 

fuzzy model is built for the entire input space of the system and 

can be used for continuous control, where the fuzzy rules 

representing the model are created automatically from the 

observed input-output data. 

2.3 Model Predictive Control 

Model predictive control (MPC) [2] is an advanced control 

technique in which the controller takes control actions by 

optimizing an objective function that defines the objective of 

controlling the system. To enable the predictive capabilities of the 

control system, an explicit model that characterizes the system 

behaviors is leveraged to make predictions of system output over 

a specific future prediction horizon. Such modeling and 

optimization typically involved in MPC can be performed 

iteratively in an online fashion, where real-time data are used to 

update the model in the modeling phase and new optimal action is 

computed based on the model to adjust the system control. In this 

way, the system can adapt to the changes in the system behavior 

in a timely fashion. 

In contrast to an open-loop optimal control technique, the MPC 

system works in a closed-loop manner by feeding back the 

information on previous inputs and outputs to the controller at the 

end of each control period in order to keep track of prediction 

errors and control variations, so that on one hand the controller is 

able to make more informative control actions based on the 

feedbacks, while on the other hand the system is able to be driven 

back to the set-point target appropriately without large oscillations 

even in the presence of noise.  

MPC has been used by related work on VM resource management 

(examined in detail in Section 5), where most approaches adopt 

―black box‖ linear input-output models which are accurate enough 

to model nonlinear system behaviors within a limited region of 

control operation. In this paper, we propose to use fuzzy modeling 

to build the model in MPC which can capture the nonlinearity in 

system behaviors and perform optimized control over the entire 

operating space. We believe that such a fuzzy MPC approach has 

the potential to both capture the nonlinearity in a VM’s resource 

usage behaviors effectively and adapt to the dynamic changes in 

these behaviors in a timely manner.  

3. APPROACH 

Figure 1 illustrates the architecture of our proposed system which 

consists of four key modules, Application Sensors, Fuzzy Model 

Estimator, Optimizer, and Resource Allocator. As the applications 

are running on their VMs, the Application Sensors monitor the 

performance yi(t) from each application i and then send them to 

Fuzzy Model Estimator. The estimator collects all necessary 

information including current and historical application 

performance and VM resource allocations to create the fuzzy 

model for performance prediction. Such a model, which 

represents the relationship between the control input (resource 

allocations to the VMs) and the measured output (performance of 

the applications), is updated every control period. Based on the 

model, the Optimizer produces a resource allocation scheme for 
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the next time interval that optimizes the system according to a 

predefined objective function. Then the Resource Allocator 

adjusts the VM’s resource allocations accordingly. Together, 

these modules form a continuous feedback loop for the virtual 

resource management.  

3.1 Fuzzy Model Estimator 

The proposed FMPC is a fuzzy-model-based predictive control 

approach [2]. The major difference between FMPC and traditional 

MPC approaches lies in the modeling part. In FMPC, the fuzzy 

model estimator is responsible for building models that can 

describe complex system behaviors using fuzzy logic based 

method. The strength of this approach includes the following 

aspects: 1) it simplifies the learning of the complex models by 

describing nonlinearity using a set of linear sub models captured 

by the fuzzy rules; 2) it can perform optimized control over the 

entire operating space; 3) it inherits the benefits of traditional 

predictive control that can guarantee dynamic performance in a 

closed-loop system and achieve desired target in a stable manner. 

Consider a resource provider that hosts multiple applications by 

multiplexing multiple types of resources among them via VMs, a 

general MIMO model in MPC described by the following 

equation is used to build the time-varying relationship between 

resource allocations and application performance,  

                                       

where the input vector u(t) = [u1(t), u2(t), …, uN(t)]T represents the 

allocation of p types of controllable resources to the q 

applications’ VMs at time step t (N = pq), and the output vector 

y(t) = [y1(t), y2(t), …yq(t)]
T is referred to as the predicted 

performance of q applications at time step t. For example, if there 

are two applications whose performance relies on two types of 

resources, i.e. CPU and disk I/O, then u(t) is a 4-dimensional 

vector, [uCPU1(t), uCPU2(t), uIO1(t), uIO2(t)]
T.   

In traditional MPC approaches, linear models are applied to 

approximate the nonlinear behaviors around the current operating 

point, while m and n reflecting the impact of the previous inputs 

and outputs to current prediction are usually set to small values in 

order to reduce the complexity of the model, e.g., with m = 0, n = 

1, y(t) = Φ( u(t), y(t-1) ) = au(t) + by(t-1). 

In our proposed FMPC, the general Φ function from the control 

inputs to the system outputs is instantiated by a fuzzy model 

composed of a collection of Takagi-Sugeno fuzzy rules [7]  

                                   
                                                                       (1) 

In the premise Ai and Bi
 are fuzzy sets associated with the fuzzy 

rule Ri. Their corresponding membership functions µAi and µBi 

determine the membership grades of the control input vectors u(t) 

and y(t-1), respectively, which indicate the degree that they 

belong to the fuzzy sets. In the consequence, the output y(t) is a 

linear function of the current control input and the previous output 

with trainable parameter matrices ai and bi.  

The Estimator adopts an efficient one-pass clustering algorithm, 

subtractive clustering [13], to build a concise rule base with a 

small number of fuzzy rules that can effectively represent the 

VMs’ behaviors. Each cluster exemplifies a representative 

characteristic of the system behaviors and can be used to create a 

fuzzy rule accordingly. In this way, both the system structure and 

parameters are learned and adapted in real time from online data 

streams. The system model gradually evolves as opposed to 

having a fixed structure model, and the learning process is 

incremental and automatic. Owing to the speed of subtractive 

clustering and fuzzy modeling, this whole model updating process 

can be completed quickly within a fine-grained control interval. 

The Estimator is invoked by the Optimizer discussed below in 

every control step t to predict the performance for specific input 

values and assist it to search for the optimal allocation solution 

across the input space. The Estimator applies fuzzy inference to 

predict the output y(t) for a given control input < u(t),  y(t-1) > 

based on a trained fuzzy rule base with S fuzzy rules. It entails the 

following steps: 1) Evaluation of antecedents: the input variables 

are fuzzified to the degree,   , to which they belong to each of the 

fuzzy sets via the corresponding membership functions for each 

fuzzy rule Ri;2) Implication to consequents: implication is 

performed on each fuzzy rule by computing yi(t) based on the 

equation in the consequent of the rule; 3) Aggregation of 

consequents: the final prediction is performed as      
∑         

   , where the outputs yi(t) of all the fuzzy rules are 

aggregated into a single numeric value based on their 

corresponding membership grades   .  

3.2 Optimizer 

Generally, the objective function in MPC can be formulated as 

     ∑ ‖      |  ‖  
         ∑ ‖      |  ‖    

        (2)           

where P and M indicate the prediction and control horizon.     is 

the predictive error between y(t+i), the output of the next ith step 

predicted from the current time step t (using the fuzzy model 

produced by the Estimator), and the reference output yref(t+i) of 

the next ith step.    indicates the control effort. The importance 

of tracking accuracy in performance targeting and maintaining 

stability in control operation can be determined by tuning the Q(i) 

and R(i) factors for the two components of the equation. Larger Q 

factor will make the controller react aggressively to tracking 

errors in performance. Larger R factor will guarantee the stability 

of the system by preventing from large oscillation in the resulting 

resource allocation, but lead to slower response to the tracking 

error.  

To reduce the complexity of the problem, we choose an objective 

function with M = P = 1. In addition, in Equation 2, the 

performance of the q different applications, represented in y = 

[y1(t), y2(t), …yq(t)]
T, are treated with equal importance. In 

practice, applications concurrently hosted in a virtualized 

datacenter or cloud are often given different preferences, because 

they have different priorities or they generate different amounts of 

revenue to the system. Without loss of generality, we use a weight 

vector w = [w1(t), w2(t), …wq(t)]
T to represent the preferences 

Figure 1 The architecture of the FMPC control system 
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given to the applications. The objective function can be 

formulated as 

      ‖  (           )‖
 
   ‖(            )‖

 
 

  ∑[  (             )]
 
  ∑|             |
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where yref is the desired QoS target that can be set manually; 

    is the input space which specifies the allowable range for 

the input, particularly, the constraints on the total resource 

capacity; and u* represents the optimal set of inputs that 

minimizes the objective function. To simplify the computation, 

this optimization problem can be approximately decomposed into 

S sub-problems [1]. Each of them is associated with a fuzzy rule 

in the rule base and represents a typical constrained linear least-

squares problem that can be solved by a standard solver (e.g., 

lsqlin in MATLAB). Finally, all the sub-problem solvers are 

coordinated to derive the global optimization. Note that only a 

small number of rules will be produced by the clustering-based 

fuzzy modeling approach, so the computational effort is limited.   

As described above, the Estimator and Optimizer work together in 

an online closed-loop. The input-output data pair <u(t), y(t)> is 

measured and collected in every control period to train the fuzzy 

model. A MIMO fuzzy model can handle a coupled system with 

multi-input and multi-output to describe complex system behavior 

with implicitly contentions from system components. Once the 

model is established, it performs as a prediction tool for the 

controller to search for the optimal u(t+1) that promise the best 

y(t+1) at the end of each control period. 

4. EVALUATION 

4.1 Setup  

This section evaluates our proposed FMPC-based virtual resource 

management using a comprehensive benchmark hosted on a 

typical VM environment. The testbed is a quad-core Intel Q6600 

2.4GHz physical machine, which has 4GB RAM and 142GB 

SATA disk storage. Xen 3.3.1 is installed to provide the VMs, 

where the operating system for both Dom0 and DomU VMs is 

Ubuntu Linux 8.10 with paravirtualized kernel 2.6.18.8. Each 

DomU VM is configured with 2 virtual CPUs and 1.7G RAM. 

The FMPC controller is hosted on Dom0 with the remaining 

resources. In this evaluation we focus only on the management of 

CPU resource where the CPU allocation is done by setting CPU 

caps to VMs using Xen’s Credit CPU scheduler [19].  

The RUBiS benchmark used in our experiment models a multi-

tier online auction site that supports the core functionalities such 

as browsing, selling, and bidding [14]. To evaluate our 

controller’s accuracy and adaptability for modeling the complex 

behaviors of such a multi-tier application as a black box, the web-

tier and database-tier of one RUBiS instance are deployed on the 

same DomU VM with Apache Tomcat 4.1.40 and MySQL 5.0. 

Four additional client VMs, each configured with 1 CPU and 

512M RAM are hosted on another identical physical machine and 

they can launch up to 8000 emulated client sessions in total.  

The resource modeling and control period is set to 20 seconds in 

all the experiments. Here we consider the case when the predicted 

performance is only dependent on the current resource allocation. 

So Equation 1 is revised as                            
           In Equation 3, both u and y are normalized by their 

maximum values that the system can achieve; and the Q and R 

factor are both set to 1 in order to balance the importance between 

tracking accuracy and controlling stability.   

A Linear MPC (LMPC) based approach which leverages a linear 

auto-regressive-moving-average (ARMA) model [4] in the 

modeling part of MPC is used as a baseline. By comparing it to 

our FMPC-based approach, we can evaluate whether our proposed 

approach can estimate VM resource needs more accurately and 

achieve better level of service. For both approaches, as soon as the 

workload is launched, the controller starts with an initial resource 

allocation that is much less than the actual demand. The model is 

created from scratch once it collects the first few data points and 

afterwards it is updated in every control interval. In LMPC, the 

parameters for the linear model are estimated online using the 

recursive least squares method [15]; in FMPC, the fuzzy model is 

constructed by subtractive clustering where the parameters ai and 

bi  in each fuzzy rule are trained by neuro-adaptive learning [16]. 

4.2 Experiments with Changing Workload  

In the first experiment, we evaluate whether the FMPC approach 

can correctly allocate resource to a single VM according to its 

application’s QoS target and whether it can deal with dynamic 

changes in the application’s workload. We vary the RUBiS 

workload intensity by changing the number of concurrent client 

sessions, from 2400 to 3200 then to 4000. Each phase is kept for 

15 control intervals (300s). The corresponding throughput targets 

for each phase are set to 400, 500 and 600 requests/s. The fuzzy 

model adapts as the workload changes: during the first phase, only 

1 fuzzy rule is established in the rule base; by the end of the 

experiment, 2 rules are trained.   

Figure 3 shows the performance (throughput in requests per 

second) of RUBiS measured every control interval, from using 

our proposed FMPC approach to manage the VM resources versus 

using the LMPC approach. As we can see both approaches are 

able to track the changes in the workload at periods 15 and 30 and 

meet the specified QoS targets pretty closely. However, FMPC 

outperforms LMPC in several important aspects. First, the FMPC 

based approach is more accurate in meeting the specified QoS 

target. The average steady state error throughout all three phases 

is 2.3% for FMPC and 2.9% for LMPC; particularly in the third 

phase, the steady state error is 1.7% for FMPC 3.3% for LMPC.  

Second, the performance controlled by FMPC adapts faster than 

LMPC when a step change occurs in the workload intensity. The 

average settling time to within 5% of the steady state for all three 

phases is 3 control intervals in FMPC and 5 intervals in LMPC, 

where in each phase FMPC is 1 to 2 intervals faster than LMPC in 

settling time. This advantage is because that FMPC’s fuzzy 

modeling is more accurate than LMPC’s linear modeling when 

transition happens. Owing to the flexibility of FMPC, it tunes its 

model more adaptively than LMPC does. For example, instead of 

being restricted by a fixed linear shape mode of LMPC, FMPC 

can immediately add a new rule as soon as new data comes which 

cannot be fit into current model. As a result, LMPC suffers from 

more than 20% tracking error (1-y/yref) when the first transition 

occurs, whereas in FMPC there is almost no tracking error. 

Overall, the average of the performance across all three phases 

using FMPC is about 5% higher than using LMPC approach.  

To better analyze the results, Figure 4 shows the corresponding 

CPU allocations. With an initial CPU allocation of 50% the 

FMPC controller is able to detect resource under-provision as 

soon as the first target miss is observed and converge to an 
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optimal allocation for meeting the target within a few control 

intervals. In comparison, the LMPC acts at least one interval 

slower than FMPC in the first phase and two intervals slower in 

the second phase. In the third phase, the LMPC approach also 

allocates 14% more CPU than the FMPC approach. Such over 

provisioning could lead to loss of performance for other co-hosted 

VMs and loss of revenue for the entire virtualized system. 

In summary, the proposed FMPC controller can automatically 

track the reference QoS for an application by allocating the proper 

amount of resources to its VM. It also outperforms LMPC in 

terms of the adaptively and accuracy.  

4.3 Experiments with Interfering VMs  

In this experiment, we evaluate how the proposed FMPC 

controller manages the resource allocations to VMs that interfere 

with each other during their executions. This scenario is both 

interesting and challenging because the interference between the 

VMs result in correlation between their performance models while 

the level of interference is also dependent on one VM’s workload 

intensity. By experimenting with the RUBiS workload, we notice 

that having 2400 concurrent users for one VM-hosted RUBiS 

application would create a total CPU demand of 100% on the 

single dual-virtual-CPU VM which hosts both the web and 

database tiers of RUBiS. However, if we run two independent 

RUBiS VMs concurrently and host both VMs on the same pair of 

physical cores (using CPU affinity), then neither VM can achieve 

the same level performance when serving the same workload even 

though each of them can still get 100% of CPU. This observation 

confirms the existence of performance interference across VMs 

which commonly exists on a highly consolidated virtualized 

system. 

We evaluate the performance of our proposed FMPC approach in 

optimizing the system-level management objective and how it 

reacts to the dynamic changes in management policy. We use a 

two-input-two-output FMPC to control the resource allocations to 

the two VMs. The input variables are the CPU allocations to the 

two VMs and the outputs are the measured performance of the 

two RUBiS applications. As discussed in Section 3.2, we assign 

different weights w1 and w2, to the two VMs (w1 + w2 = 1), which 

represent the different priorities or impacts to revenue as 

determined by the application SLAs. So the objective function is: 

     [      (        )
 
      (        )

 
 ]  |     |  

where          
  denotes the CPU caps set to the two VMs. 

Since they share the same two physical cores, the total available 

CPU is 200%. The QoS target yrefi is set to 400 request/s for both 

RUBiS instances, which is the performance that it can achieve 

with 100% CPU and no interference. We fix the workload 

intensity for each VM to 2400 client sessions, but we change their 

weights (as shown in Figure 6) to represent the scenario where 

application SLAs change over time, in order to evaluate whether 

the proposed FMPC approach can always achieve optimal total 

revenue and how quickly it adapts to such dynamic changes.  

Figure 5 shows the CPU allocations to both application VMs 

made by our FMPC controller in the experiment. Initially, both 

VMs have equal CPU shares. In the first phase, VM1 got more 

CPU resource (around 140%) than VM2 (around 60%) because the 

former has a higher weight. Starting from the interval 16, as the 

weights change to 1:1, u1 decreases and u2 increases, both quickly 

converging to 100% of CPU as expected. During the third phase, 

VM1 is assigned less CPU (around 60%) than VM2 (around 140%) 

because VM2 now has a higher weight. Interesting, when one 

VM’s weight is set to three times of the other one, it does not get 

three times of resource allocation, because of the nonlinear 

relationship between VM resource allocation and application QoS.  

To demonstrate the effectiveness of the FMPC-based resource 

management, we compare it with the LMPC-based approach and 

another weight-based scheme which intuitively partitions the total 

resource to VMs based on their assigned weights (i.e., the CPU 

caps are set to 3:1, 1:1 and 1:3 for VM1:VM2 across the three 

phases ). The weighted total throughput that is aggregated by the 

weighted throughputs from all applications in the system is used 

 

Figure 3 Performance for workload with changing intensity  

 

Figure 4 CPU allocation for workload with changing intensity 

 

Figure 5 CPU allocations for interfering VMs 

  

Figure 6 Weighted total throughput of interfering VMs 
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as the performance metric in this experiment. The results in 

Figure 6 illustrate that the allocation decisions made by the FMPC 

controller substantially outperform the weight-based scheme 

across all three phases. During the first two phases, LMPC works 

as well as FMPC. However, in the third phase, FMPC generates 

about 4.7% more throughput in average than LMPC does. From 

the results, we can see that FMPC can achieve higher weighted 

total throughput, particularly in the first and third phases. 

Nonetheless, the FMPC approach can correctly capture these 

nonlinear behaviors and produce much better resource allocations. 

To further understand the impact of interference on VM 

performance, we use fuzzy modeling to build a global two-input 

two-output non-linear model given the entire input space for the 

two competing RUBiS VMs, where the two control inputs are the 

CPU allocations to the VMs and the two control outputs are the 

measured performance for the individual RUBiS instances hosted 

on the VMs. The model is created in the following way: while 

keeping the workloads concurrently running against the two VMs, 

the CPU cap set to each VM is varied from 0% to 200%. The 

model is trained offline based on a total of 350 data points 

collected from a set of evenly distributed cap values in this range. 

Each data point is 4-element tuple < cap1, cap2, y1, y2 >. The 

fitting error is 7.4%. 

For better illustration, we split this model into two 3-D models 

and illustrate them separately in Figure 7 and 8 each representing 

the behavior of one VM under the interference from the other. 

From the models, we can see that for each application, the 

performance is not only dependent on the CPU allocation to its 

hosting VM but also affected by the CPU cap set to the other VM. 

With the same value of cap set to one VM, its application’s 

performance will drop as the cap value of the other VM increases. 

Nonetheless, the fuzzy logic based modeling technique is able to 

capture more complex relationship between resource allocation 

and performance with the presence of interference resulted from 

co-hosted VMs.  

In summary, the FMPC approach is able to optimize the resource 

allocation for two interfering VMs and sustain it by quickly 

adapting to the changes in service-level policies. Meanwhile, the 

CPU usages for running FMPC and LMPC are both low (10.7% 

and 11.5% respectively). It takes about 10ms for FMPC to 

complete the modeling and optimization in each control loop.  

5. RELATED WORK 

Various solutions have been studied in the literature to address the 

problem of resource management in virtualized systems. Due to 

the limited space, here the discussion focuses on the two most 

relevant types of approaches. One type of approaches considers 

machine learning techniques to automatically learn the complex 

resource model for a virtualized system based on data observed 

from the system. For example, the CRAVE project employs 

simple regression analysis to predict the performance impact of 

memory allocation to VMs [22]; Wood et al. also use regression 

method to map a resource usage profile obtained on a physical 

system to one that can be used on a virtualized system [23]; The 

VCONF project has studied using reinforcement learning to 

automatically tune the CPU and memory configurations of a VM 

in order to achieve good performance for its hosted application 

[24]; Kund et al. employ artificial neural networks to build 

performance models that consider both resource allocation to 

VMs and resource interference between VMs [25]. 

Another type of approaches applies control theory [30] to 

automatically adjust VM resource allocation in order to achieve 

the desired system-level objective. In particular, linear MIMO 

MPC has been studied for datacenter resource management where 

multiple applications are sharing a common pool of resources.  

For example, Liu et al. consider the complex interactions and 

dependencies among different application tiers hosted on VMs 

and optimize their CPU allocations in order to achieve QoS 

differentiation among the multi-tier applications. Its follow-up 

work [4] builds an online ARMA model for each application to 

represent the relationship between the allocations of multiple 

resources and normalized performance when the application tiers 

are hosted on VMs spanning across physical nodes. Linear MPC 

has also been studied to capture the last-level cache interference 

between concurrent VMs and compensate its performance impact 

[10]. In the related work on other aspects of system management, 

Wang et al. uses MPC to optimize the power consumption for 

multiple servers [8]; Lu et al. applies MPC to the control of CPU 

utilization in a highly coupled distributed real-time system [3]. 

Our proposed FMPC approach combines the strengths of 

machine-learning and control-theory techniques in virtual 

resource management. Compared to other modeling based 

approaches, the FMPC approach can be effectively applied online 

and quickly adapt to changes in system behaviors. Typical model-

based approaches require substantial data for training the model 

which is difficult to do online. Even if a model can be built 

offline, it is difficult to adapt it online when the system behavior 

changes. Compared to other MPC-based approaches, the FMPC 

approach can well capture nonlinear system behavior without 

 

Figure 7 The 3-D fuzzy model for VM1 

  

  

Figure 8 The 3-D fuzzy model for VM2 
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much learning overhead. In a typical linear-model-based MPC 

approach, a linear model is assumed to approximate the nonlinear 

behavior within a limited region of an operation point while it can 

be updated adaptively as the system moves from one operating 

point to another. However, as demonstrated by our experiment 

results, the FMPC approach can more accurately capture the 

system behavior with a nonlinear fuzzy model and it can perform 

optimized control continuously over the entire operating space. 

6. CONCLUSION AND FUTURE WORK 

This paper presents a new fuzzy modeling based predictive 

control (FMPC) approach that can automatically manage the 

resources in a virtualized system based on the system-level 

objective. This approach is based on the combination of fuzzy-

logic based modeling for capturing complex system behaviors and 

MPC-based resource control for agile system optimization and 

adaption to changes in the system. Experiments based on a typical 

online transaction benchmark demonstrate that this approach can 

accurately estimate the resource allocation for a VM hosting 

changing workload and achieve the desired QoS. The results also 

show that it can capture the complex behaviors of resource 

competing VMs and optimize their resource allocations in such a 

scenario. Compared to traditional linear modeling based MPC, the 

FMPC approach is shown to be better in terms of the obtained 

QoS and the speed to achieve the application or system target. 

Currently we are evaluating this approach on the management of 

both CPU cycles and I/O bandwidth for VMs with more complex 

resource usage and contention. We will evaluate the effectiveness 

of our approach for applications with SLOs specified by response 

times, instead of throughput, and more interesting nonlinear 

behaviors. We also plan to evaluate our prototype on larger 

virtualized systems and test its scalability. In our future work, we 

will extend this work to provide cross-physical-host resource 

management that considers VM migration as an additional means 

of resource control and support VMs with correlated performance 

requirements. 
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