
1

Adaptive Virtual Resource Management with Fuzzy Model
Predictive Control

 



ABSTRACT

Virtualized systems such as utility datacenters and clouds are

emerging as important new computing platforms with great

potential to conveniently deliver computing across the Internet

and efficiently utilize resources consolidated via virtualization.

Resource management in virtualized systems remains a key

challenge because of their intrinsically dynamic and complex

nature, where the applications have dynamically changing

workloads and virtual machines (VMs) compete for the shared

resources in a convolved manner. To address this challenge, this

paper proposes a new resource management approach that can

effectively capture the nonlinear behaviors in VM resource usages

through fuzzy modeling and quickly adapt to the changes in the

virtualized system through predictive control. The resulting fuzzy-

model-predictive-control (FMPC) approach is capable of

optimizing the VM-to-resource allocations according to high-level

service differentiation or revenue maximization objectives. A

prototype of this proposed approach was implemented for Xen-

based VM systems and evaluated using a typical online

transaction benchmark (RUBiS). The results demonstrate that the

proposed approach can efficiently allocate CPU resource to single

or multiple VMs to achieve application- or system-level

performance objective.

1. INTRODUCTION

Virtualized systems such as utility datacenters [27] and clouds

[28][29] are emerging as promising new platforms that can

significantly improve how resources are provisioned to

applications and how computing is delivered to users. One the one

hand, applications can be conveniently deployed via virtual

machines (VMs) without being tied to any specific physical

machine or constrained by any specific set of resources. On the

other hand, resources can be consolidated and multiplexed across

VM-hosted applications to increase utilization and reduce cost.

The fundamental goal for resource management in such systems is

that resources should be automatically and dynamically allocated

to the applications’ VMs according to application-level objectives

(e.g., QoS—Quality of Service) and system-level objectives (e.g.,

service differentiation, revenue maximization).

In order to reach the above goal, resource management in

virtualized systems needs to address the challenges raised by the

intrinsically dynamic and complex resource usage behaviors in

such systems. For example, when an application’s workload

changes over time in intensity and composition of requests, its

VM’s demands of different types of resources also change

accordingly. As applications are consolidated to the same physical

hosts via VMs, they also compete for the shared resources and

interfere with each other. As a result, one application’s

performance depends on not only its own VM’s resource usage

but also others’ behaviors. Even if the application workloads stay

relatively steady, service-level objectives (SLOs) may change

over time and as a result resources might need to be reallocated.

This paper proposes a new Fuzzy Model Predictive Control

(FMPC) based approach to address these challenges in resource

management. This approach is architected to answer two key

questions: The first one asks how to accurately capture the

complex relationship between resource allocation and application

performance. The second asks how to adaptively optimize the VM

resource allocation as changes occur dynamically in the system.

Specifically in the approach described in this paper, a fuzzy-logic

based modeling method is employed to learn the relationship

between VM resource allocation and application performance,

which can efficiently capture complex system behaviors without

requiring any a priori knowledge. Then a predictive controller

uses this model to predict the resource demand for all VMs and

take the resource control actions that enable the system to quickly

reach its optimization objective. These two phases work in a

closed-loop manner where the model is constructed and updated

online and resource allocations are adjusted dynamically in order

to adapt to the changes in the system in a timely manner.

This proposed approach was prototyped on Xen-based VM

environments and evaluated using a typical online transaction

benchmark (RUBiS [14]). The results demonstrate that it can

accurately estimate the resource demand for a VM running

dynamically changing workload and quickly achieve the desired

QoS target. The results also show that more complex behaviors of

resource competing VMs can also be captured by the proposed

approach and the system-level objective can be quickly achieved

and sustained in such a scenario. Compared to a typical linear

model based MPC approach, the FMPC approach can obtain 5%

better overall QoS as well as faster adaption to the changes.

The rest of this paper is organized as follows. Section 2 describes

the background and motivation. Section 3 discusses the detailed

design and implementation of the proposed approach and Section

4 presents an experimental evaluation. Section 5 examines the

related work and Section 6 concludes this paper.

2. BACKGROUND AND MOTIVATION

2.1 Adaptive Virtual Resource Management

Emerging virtualized systems such as utility datacenters and

clouds promise to be important new computing platforms where

applications could be executed efficiently and resources could be

utilized efficiently. A key challenge to fulfilling this promise is to

correctly understand an application’s VM’s resource demand

based on its QoS target and effectively optimize the resource

allocation across VMs based on resource-provider objectives. The

major difficulty lies in the intrinsically dynamic and complex

nature in the resource usage behaviors in such virtualized system.

First, the dynamics in an application’s workload can lead to

complex behaviors in its VM’s resource usages as its intensity and

composition change over time. For instance, a web workload’s

request rate varies depending on the time of day and the

occurrence of events [26]; a database workload can also change in

2

terms of its composition of a wide variety of queries with different

levels of CPU and I/O demands [18]. Second, interference among

VMs hosted on the same physical machine can lead to complex

nonlinear resource usage behaviors as they compete for various

types of resources that cannot be strictly partitioned. For example,

when co-hosted VMs compete for the shared last level cache or

disk I/O bandwidth, the relationship between each VM’s resource

allocation and its application’s performance is known to be

nonlinear [11][25]. Finally, even if the application workloads stay

relatively steady, their SLAs, which specify the QoS that they

require and the cost that they are willing to pay, may change over

time. Consequently, resources in the system need to be reallocated

across different applications’ VMs in order to sustain the system-

level objective. As more applications become Internet-scale and

resources become more consolidated, the above scenarios would

also be increasingly common in a virtualized system.

Different approaches have been studied for virtual resource

management and they are examined in detail in Section 5. In

particular, machine learning techniques can be employed to

automatically learn the relationship between a VM’s resource

allocation and its application’s performance; Control-theory

techniques can be used to build a feedback loop into the resource

management which can automatically adjust resource allocations

and quickly reach the desired system objective. This paper

proposes a new resource management approach based on the

combination of these two types of techniques that can effectively

capture the nonlinearly in virtualized system behaviors and

quickly adapt to the changes in such behaviors, which are

discussed in details in the following subsections.

2.2 Fuzzy-logic based System Modeling

This paper adopts a fuzzy-logic-based learning technique to model

application performance and VM resource usage in a virtualized

system such as utility datacenters and clouds, because fuzzy

modeling is particularly suited to efficiently model systems with

complex behaviors [7]. The technique combines fuzzy logic with

mathematical equations to describe the discovered patterns of

system behavior and to guide the control strategies of the system.

A fuzzy model is a rule base which consists of a collection of

fuzzy rules in the form of ―If x is A then y is B‖, where A and B

are linguistic values defined by fuzzy sets with associated

membership functions. These rules are trained using the input (x)

and output (y) data observed from the system and together they

represent the model representing the system behaviors.

While building a fuzzy model, data clustering techniques (e.g.,

[13]) are often employed to discover the important features of the

system and derive a concise representation of the system’s

behavior. Each cluster is treated as a fuzzy set and then each set is

associated with a fuzzy rule. As a result, only a small number of

fuzzy rules are needed in the fuzzy model. The mapping from a

given input to an output on a fuzzy rule base is called fuzzy

inference, which entails the following steps: 1) Evaluation of

antecedents: the input variables are fuzzified to the degree to

which they belong to each of the appropriate fuzzy sets via the

corresponding membership functions, 2) Implication to

consequents: implication is performed on each fuzzy rule by

modifying the fuzzy set in the consequent to the degree specified

by the antecedent; 3) Aggregation of consequents: the outputs of

all the fuzzy rules are aggregated into a single fuzzy set which is

then inversely translated into a single numeric value through a

defuzzification method.

Note that the fuzzy modeling approach differs fundamentally from

traditional rule-based system management approach [20][21]. The

latter is based on the use of a set of event-condition-action rules

which are triggered only when certain events happen and some

preconditions are met. In such an approach, the rules are typically

specified by system experts, which is often intractable to apply to

a complex system because of the difficulty in defining thresholds

and corrective actions for all possible system states. In contrast, a

fuzzy model is built for the entire input space of the system and

can be used for continuous control, where the fuzzy rules

representing the model are created automatically from the

observed input-output data.

2.3 Model Predictive Control

Model predictive control (MPC) [2] is an advanced control

technique in which the controller takes control actions by

optimizing an objective function that defines the objective of

controlling the system. To enable the predictive capabilities of the

control system, an explicit model that characterizes the system

behaviors is leveraged to make predictions of system output over

a specific future prediction horizon. Such modeling and

optimization typically involved in MPC can be performed

iteratively in an online fashion, where real-time data are used to

update the model in the modeling phase and new optimal action is

computed based on the model to adjust the system control. In this

way, the system can adapt to the changes in the system behavior

in a timely fashion.

In contrast to an open-loop optimal control technique, the MPC

system works in a closed-loop manner by feeding back the

information on previous inputs and outputs to the controller at the

end of each control period in order to keep track of prediction

errors and control variations, so that on one hand the controller is

able to make more informative control actions based on the

feedbacks, while on the other hand the system is able to be driven

back to the set-point target appropriately without large oscillations

even in the presence of noise.

MPC has been used by related work on VM resource management

(examined in detail in Section 5), where most approaches adopt

―black box‖ linear input-output models which are accurate enough

to model nonlinear system behaviors within a limited region of

control operation. In this paper, we propose to use fuzzy modeling

to build the model in MPC which can capture the nonlinearity in

system behaviors and perform optimized control over the entire

operating space. We believe that such a fuzzy MPC approach has

the potential to both capture the nonlinearity in a VM’s resource

usage behaviors effectively and adapt to the dynamic changes in

these behaviors in a timely manner.

3. APPROACH

Figure 1 illustrates the architecture of our proposed system which

consists of four key modules, Application Sensors, Fuzzy Model

Estimator, Optimizer, and Resource Allocator. As the applications

are running on their VMs, the Application Sensors monitor the

performance yi(t) from each application i and then send them to

Fuzzy Model Estimator. The estimator collects all necessary

information including current and historical application

performance and VM resource allocations to create the fuzzy

model for performance prediction. Such a model, which

represents the relationship between the control input (resource

allocations to the VMs) and the measured output (performance of

the applications), is updated every control period. Based on the

model, the Optimizer produces a resource allocation scheme for

3

the next time interval that optimizes the system according to a

predefined objective function. Then the Resource Allocator

adjusts the VM’s resource allocations accordingly. Together,

these modules form a continuous feedback loop for the virtual

resource management.

3.1 Fuzzy Model Estimator

The proposed FMPC is a fuzzy-model-based predictive control

approach [2]. The major difference between FMPC and traditional

MPC approaches lies in the modeling part. In FMPC, the fuzzy

model estimator is responsible for building models that can

describe complex system behaviors using fuzzy logic based

method. The strength of this approach includes the following

aspects: 1) it simplifies the learning of the complex models by

describing nonlinearity using a set of linear sub models captured

by the fuzzy rules; 2) it can perform optimized control over the

entire operating space; 3) it inherits the benefits of traditional

predictive control that can guarantee dynamic performance in a

closed-loop system and achieve desired target in a stable manner.

Consider a resource provider that hosts multiple applications by

multiplexing multiple types of resources among them via VMs, a

general MIMO model in MPC described by the following

equation is used to build the time-varying relationship between

resource allocations and application performance,

where the input vector u(t) = [u1(t), u2(t), …, uN(t)]T represents the

allocation of p types of controllable resources to the q

applications’ VMs at time step t (N = pq), and the output vector

y(t) = [y1(t), y2(t), …yq(t)]
T is referred to as the predicted

performance of q applications at time step t. For example, if there

are two applications whose performance relies on two types of

resources, i.e. CPU and disk I/O, then u(t) is a 4-dimensional

vector, [uCPU1(t), uCPU2(t), uIO1(t), uIO2(t)]
T.

In traditional MPC approaches, linear models are applied to

approximate the nonlinear behaviors around the current operating

point, while m and n reflecting the impact of the previous inputs

and outputs to current prediction are usually set to small values in

order to reduce the complexity of the model, e.g., with m = 0, n =

1, y(t) = Φ(u(t), y(t-1)) = au(t) + by(t-1).

In our proposed FMPC, the general Φ function from the control

inputs to the system outputs is instantiated by a fuzzy model

composed of a collection of Takagi-Sugeno fuzzy rules [7]

 (1)

In the premise Ai and Bi
 are fuzzy sets associated with the fuzzy

rule Ri. Their corresponding membership functions µAi and µBi

determine the membership grades of the control input vectors u(t)

and y(t-1), respectively, which indicate the degree that they

belong to the fuzzy sets. In the consequence, the output y(t) is a

linear function of the current control input and the previous output

with trainable parameter matrices ai and bi.

The Estimator adopts an efficient one-pass clustering algorithm,

subtractive clustering [13], to build a concise rule base with a

small number of fuzzy rules that can effectively represent the

VMs’ behaviors. Each cluster exemplifies a representative

characteristic of the system behaviors and can be used to create a

fuzzy rule accordingly. In this way, both the system structure and

parameters are learned and adapted in real time from online data

streams. The system model gradually evolves as opposed to

having a fixed structure model, and the learning process is

incremental and automatic. Owing to the speed of subtractive

clustering and fuzzy modeling, this whole model updating process

can be completed quickly within a fine-grained control interval.

The Estimator is invoked by the Optimizer discussed below in

every control step t to predict the performance for specific input

values and assist it to search for the optimal allocation solution

across the input space. The Estimator applies fuzzy inference to

predict the output y(t) for a given control input < u(t), y(t-1) >

based on a trained fuzzy rule base with S fuzzy rules. It entails the

following steps: 1) Evaluation of antecedents: the input variables

are fuzzified to the degree, , to which they belong to each of the

fuzzy sets via the corresponding membership functions for each

fuzzy rule Ri;2) Implication to consequents: implication is

performed on each fuzzy rule by computing yi(t) based on the

equation in the consequent of the rule; 3) Aggregation of

consequents: the final prediction is performed as
∑

 , where the outputs yi(t) of all the fuzzy rules are

aggregated into a single numeric value based on their

corresponding membership grades .

3.2 Optimizer

Generally, the objective function in MPC can be formulated as

 ∑ ‖ | ‖
 ∑ ‖ | ‖

 (2)

where P and M indicate the prediction and control horizon. is

the predictive error between y(t+i), the output of the next ith step

predicted from the current time step t (using the fuzzy model

produced by the Estimator), and the reference output yref(t+i) of

the next ith step. indicates the control effort. The importance

of tracking accuracy in performance targeting and maintaining

stability in control operation can be determined by tuning the Q(i)

and R(i) factors for the two components of the equation. Larger Q

factor will make the controller react aggressively to tracking

errors in performance. Larger R factor will guarantee the stability

of the system by preventing from large oscillation in the resulting

resource allocation, but lead to slower response to the tracking

error.

To reduce the complexity of the problem, we choose an objective

function with M = P = 1. In addition, in Equation 2, the

performance of the q different applications, represented in y =

[y1(t), y2(t), …yq(t)]
T, are treated with equal importance. In

practice, applications concurrently hosted in a virtualized

datacenter or cloud are often given different preferences, because

they have different priorities or they generate different amounts of

revenue to the system. Without loss of generality, we use a weight

vector w = [w1(t), w2(t), …wq(t)]
T to represent the preferences

Figure 1 The architecture of the FMPC control system

4

given to the applications. The objective function can be

formulated as

 ‖ ()‖

 ‖()‖

 ∑[()]

 ∑| |

(3)

where yref is the desired QoS target that can be set manually;

 is the input space which specifies the allowable range for

the input, particularly, the constraints on the total resource

capacity; and u* represents the optimal set of inputs that

minimizes the objective function. To simplify the computation,

this optimization problem can be approximately decomposed into

S sub-problems [1]. Each of them is associated with a fuzzy rule

in the rule base and represents a typical constrained linear least-

squares problem that can be solved by a standard solver (e.g.,

lsqlin in MATLAB). Finally, all the sub-problem solvers are

coordinated to derive the global optimization. Note that only a

small number of rules will be produced by the clustering-based

fuzzy modeling approach, so the computational effort is limited.

As described above, the Estimator and Optimizer work together in

an online closed-loop. The input-output data pair <u(t), y(t)> is

measured and collected in every control period to train the fuzzy

model. A MIMO fuzzy model can handle a coupled system with

multi-input and multi-output to describe complex system behavior

with implicitly contentions from system components. Once the

model is established, it performs as a prediction tool for the

controller to search for the optimal u(t+1) that promise the best

y(t+1) at the end of each control period.

4. EVALUATION

4.1 Setup

This section evaluates our proposed FMPC-based virtual resource

management using a comprehensive benchmark hosted on a

typical VM environment. The testbed is a quad-core Intel Q6600

2.4GHz physical machine, which has 4GB RAM and 142GB

SATA disk storage. Xen 3.3.1 is installed to provide the VMs,

where the operating system for both Dom0 and DomU VMs is

Ubuntu Linux 8.10 with paravirtualized kernel 2.6.18.8. Each

DomU VM is configured with 2 virtual CPUs and 1.7G RAM.

The FMPC controller is hosted on Dom0 with the remaining

resources. In this evaluation we focus only on the management of

CPU resource where the CPU allocation is done by setting CPU

caps to VMs using Xen’s Credit CPU scheduler [19].

The RUBiS benchmark used in our experiment models a multi-

tier online auction site that supports the core functionalities such

as browsing, selling, and bidding [14]. To evaluate our

controller’s accuracy and adaptability for modeling the complex

behaviors of such a multi-tier application as a black box, the web-

tier and database-tier of one RUBiS instance are deployed on the

same DomU VM with Apache Tomcat 4.1.40 and MySQL 5.0.

Four additional client VMs, each configured with 1 CPU and

512M RAM are hosted on another identical physical machine and

they can launch up to 8000 emulated client sessions in total.

The resource modeling and control period is set to 20 seconds in

all the experiments. Here we consider the case when the predicted

performance is only dependent on the current resource allocation.

So Equation 1 is revised as
 In Equation 3, both u and y are normalized by their

maximum values that the system can achieve; and the Q and R

factor are both set to 1 in order to balance the importance between

tracking accuracy and controlling stability.

A Linear MPC (LMPC) based approach which leverages a linear

auto-regressive-moving-average (ARMA) model [4] in the

modeling part of MPC is used as a baseline. By comparing it to

our FMPC-based approach, we can evaluate whether our proposed

approach can estimate VM resource needs more accurately and

achieve better level of service. For both approaches, as soon as the

workload is launched, the controller starts with an initial resource

allocation that is much less than the actual demand. The model is

created from scratch once it collects the first few data points and

afterwards it is updated in every control interval. In LMPC, the

parameters for the linear model are estimated online using the

recursive least squares method [15]; in FMPC, the fuzzy model is

constructed by subtractive clustering where the parameters ai and

bi in each fuzzy rule are trained by neuro-adaptive learning [16].

4.2 Experiments with Changing Workload

In the first experiment, we evaluate whether the FMPC approach

can correctly allocate resource to a single VM according to its

application’s QoS target and whether it can deal with dynamic

changes in the application’s workload. We vary the RUBiS

workload intensity by changing the number of concurrent client

sessions, from 2400 to 3200 then to 4000. Each phase is kept for

15 control intervals (300s). The corresponding throughput targets

for each phase are set to 400, 500 and 600 requests/s. The fuzzy

model adapts as the workload changes: during the first phase, only

1 fuzzy rule is established in the rule base; by the end of the

experiment, 2 rules are trained.

Figure 3 shows the performance (throughput in requests per

second) of RUBiS measured every control interval, from using

our proposed FMPC approach to manage the VM resources versus

using the LMPC approach. As we can see both approaches are

able to track the changes in the workload at periods 15 and 30 and

meet the specified QoS targets pretty closely. However, FMPC

outperforms LMPC in several important aspects. First, the FMPC

based approach is more accurate in meeting the specified QoS

target. The average steady state error throughout all three phases

is 2.3% for FMPC and 2.9% for LMPC; particularly in the third

phase, the steady state error is 1.7% for FMPC 3.3% for LMPC.

Second, the performance controlled by FMPC adapts faster than

LMPC when a step change occurs in the workload intensity. The

average settling time to within 5% of the steady state for all three

phases is 3 control intervals in FMPC and 5 intervals in LMPC,

where in each phase FMPC is 1 to 2 intervals faster than LMPC in

settling time. This advantage is because that FMPC’s fuzzy

modeling is more accurate than LMPC’s linear modeling when

transition happens. Owing to the flexibility of FMPC, it tunes its

model more adaptively than LMPC does. For example, instead of

being restricted by a fixed linear shape mode of LMPC, FMPC

can immediately add a new rule as soon as new data comes which

cannot be fit into current model. As a result, LMPC suffers from

more than 20% tracking error (1-y/yref) when the first transition

occurs, whereas in FMPC there is almost no tracking error.

Overall, the average of the performance across all three phases

using FMPC is about 5% higher than using LMPC approach.

To better analyze the results, Figure 4 shows the corresponding

CPU allocations. With an initial CPU allocation of 50% the

FMPC controller is able to detect resource under-provision as

soon as the first target miss is observed and converge to an

5

optimal allocation for meeting the target within a few control

intervals. In comparison, the LMPC acts at least one interval

slower than FMPC in the first phase and two intervals slower in

the second phase. In the third phase, the LMPC approach also

allocates 14% more CPU than the FMPC approach. Such over

provisioning could lead to loss of performance for other co-hosted

VMs and loss of revenue for the entire virtualized system.

In summary, the proposed FMPC controller can automatically

track the reference QoS for an application by allocating the proper

amount of resources to its VM. It also outperforms LMPC in

terms of the adaptively and accuracy.

4.3 Experiments with Interfering VMs

In this experiment, we evaluate how the proposed FMPC

controller manages the resource allocations to VMs that interfere

with each other during their executions. This scenario is both

interesting and challenging because the interference between the

VMs result in correlation between their performance models while

the level of interference is also dependent on one VM’s workload

intensity. By experimenting with the RUBiS workload, we notice

that having 2400 concurrent users for one VM-hosted RUBiS

application would create a total CPU demand of 100% on the

single dual-virtual-CPU VM which hosts both the web and

database tiers of RUBiS. However, if we run two independent

RUBiS VMs concurrently and host both VMs on the same pair of

physical cores (using CPU affinity), then neither VM can achieve

the same level performance when serving the same workload even

though each of them can still get 100% of CPU. This observation

confirms the existence of performance interference across VMs

which commonly exists on a highly consolidated virtualized

system.

We evaluate the performance of our proposed FMPC approach in

optimizing the system-level management objective and how it

reacts to the dynamic changes in management policy. We use a

two-input-two-output FMPC to control the resource allocations to

the two VMs. The input variables are the CPU allocations to the

two VMs and the outputs are the measured performance of the

two RUBiS applications. As discussed in Section 3.2, we assign

different weights w1 and w2, to the two VMs (w1 + w2 = 1), which

represent the different priorities or impacts to revenue as

determined by the application SLAs. So the objective function is:

 [()

 ()

] | |

where
 denotes the CPU caps set to the two VMs.

Since they share the same two physical cores, the total available

CPU is 200%. The QoS target yrefi is set to 400 request/s for both

RUBiS instances, which is the performance that it can achieve

with 100% CPU and no interference. We fix the workload

intensity for each VM to 2400 client sessions, but we change their

weights (as shown in Figure 6) to represent the scenario where

application SLAs change over time, in order to evaluate whether

the proposed FMPC approach can always achieve optimal total

revenue and how quickly it adapts to such dynamic changes.

Figure 5 shows the CPU allocations to both application VMs

made by our FMPC controller in the experiment. Initially, both

VMs have equal CPU shares. In the first phase, VM1 got more

CPU resource (around 140%) than VM2 (around 60%) because the

former has a higher weight. Starting from the interval 16, as the

weights change to 1:1, u1 decreases and u2 increases, both quickly

converging to 100% of CPU as expected. During the third phase,

VM1 is assigned less CPU (around 60%) than VM2 (around 140%)

because VM2 now has a higher weight. Interesting, when one

VM’s weight is set to three times of the other one, it does not get

three times of resource allocation, because of the nonlinear

relationship between VM resource allocation and application QoS.

To demonstrate the effectiveness of the FMPC-based resource

management, we compare it with the LMPC-based approach and

another weight-based scheme which intuitively partitions the total

resource to VMs based on their assigned weights (i.e., the CPU

caps are set to 3:1, 1:1 and 1:3 for VM1:VM2 across the three

phases). The weighted total throughput that is aggregated by the

weighted throughputs from all applications in the system is used

Figure 3 Performance for workload with changing intensity

Figure 4 CPU allocation for workload with changing intensity

Figure 5 CPU allocations for interfering VMs

Figure 6 Weighted total throughput of interfering VMs

6

as the performance metric in this experiment. The results in

Figure 6 illustrate that the allocation decisions made by the FMPC

controller substantially outperform the weight-based scheme

across all three phases. During the first two phases, LMPC works

as well as FMPC. However, in the third phase, FMPC generates

about 4.7% more throughput in average than LMPC does. From

the results, we can see that FMPC can achieve higher weighted

total throughput, particularly in the first and third phases.

Nonetheless, the FMPC approach can correctly capture these

nonlinear behaviors and produce much better resource allocations.

To further understand the impact of interference on VM

performance, we use fuzzy modeling to build a global two-input

two-output non-linear model given the entire input space for the

two competing RUBiS VMs, where the two control inputs are the

CPU allocations to the VMs and the two control outputs are the

measured performance for the individual RUBiS instances hosted

on the VMs. The model is created in the following way: while

keeping the workloads concurrently running against the two VMs,

the CPU cap set to each VM is varied from 0% to 200%. The

model is trained offline based on a total of 350 data points

collected from a set of evenly distributed cap values in this range.

Each data point is 4-element tuple < cap1, cap2, y1, y2 >. The

fitting error is 7.4%.

For better illustration, we split this model into two 3-D models

and illustrate them separately in Figure 7 and 8 each representing

the behavior of one VM under the interference from the other.

From the models, we can see that for each application, the

performance is not only dependent on the CPU allocation to its

hosting VM but also affected by the CPU cap set to the other VM.

With the same value of cap set to one VM, its application’s

performance will drop as the cap value of the other VM increases.

Nonetheless, the fuzzy logic based modeling technique is able to

capture more complex relationship between resource allocation

and performance with the presence of interference resulted from

co-hosted VMs.

In summary, the FMPC approach is able to optimize the resource

allocation for two interfering VMs and sustain it by quickly

adapting to the changes in service-level policies. Meanwhile, the

CPU usages for running FMPC and LMPC are both low (10.7%

and 11.5% respectively). It takes about 10ms for FMPC to

complete the modeling and optimization in each control loop.

5. RELATED WORK

Various solutions have been studied in the literature to address the

problem of resource management in virtualized systems. Due to

the limited space, here the discussion focuses on the two most

relevant types of approaches. One type of approaches considers

machine learning techniques to automatically learn the complex

resource model for a virtualized system based on data observed

from the system. For example, the CRAVE project employs

simple regression analysis to predict the performance impact of

memory allocation to VMs [22]; Wood et al. also use regression

method to map a resource usage profile obtained on a physical

system to one that can be used on a virtualized system [23]; The

VCONF project has studied using reinforcement learning to

automatically tune the CPU and memory configurations of a VM

in order to achieve good performance for its hosted application

[24]; Kund et al. employ artificial neural networks to build

performance models that consider both resource allocation to

VMs and resource interference between VMs [25].

Another type of approaches applies control theory [30] to

automatically adjust VM resource allocation in order to achieve

the desired system-level objective. In particular, linear MIMO

MPC has been studied for datacenter resource management where

multiple applications are sharing a common pool of resources.

For example, Liu et al. consider the complex interactions and

dependencies among different application tiers hosted on VMs

and optimize their CPU allocations in order to achieve QoS

differentiation among the multi-tier applications. Its follow-up

work [4] builds an online ARMA model for each application to

represent the relationship between the allocations of multiple

resources and normalized performance when the application tiers

are hosted on VMs spanning across physical nodes. Linear MPC

has also been studied to capture the last-level cache interference

between concurrent VMs and compensate its performance impact

[10]. In the related work on other aspects of system management,

Wang et al. uses MPC to optimize the power consumption for

multiple servers [8]; Lu et al. applies MPC to the control of CPU

utilization in a highly coupled distributed real-time system [3].

Our proposed FMPC approach combines the strengths of

machine-learning and control-theory techniques in virtual

resource management. Compared to other modeling based

approaches, the FMPC approach can be effectively applied online

and quickly adapt to changes in system behaviors. Typical model-

based approaches require substantial data for training the model

which is difficult to do online. Even if a model can be built

offline, it is difficult to adapt it online when the system behavior

changes. Compared to other MPC-based approaches, the FMPC

approach can well capture nonlinear system behavior without

Figure 7 The 3-D fuzzy model for VM1

Figure 8 The 3-D fuzzy model for VM2

7

much learning overhead. In a typical linear-model-based MPC

approach, a linear model is assumed to approximate the nonlinear

behavior within a limited region of an operation point while it can

be updated adaptively as the system moves from one operating

point to another. However, as demonstrated by our experiment

results, the FMPC approach can more accurately capture the

system behavior with a nonlinear fuzzy model and it can perform

optimized control continuously over the entire operating space.

6. CONCLUSION AND FUTURE WORK

This paper presents a new fuzzy modeling based predictive

control (FMPC) approach that can automatically manage the

resources in a virtualized system based on the system-level

objective. This approach is based on the combination of fuzzy-

logic based modeling for capturing complex system behaviors and

MPC-based resource control for agile system optimization and

adaption to changes in the system. Experiments based on a typical

online transaction benchmark demonstrate that this approach can

accurately estimate the resource allocation for a VM hosting

changing workload and achieve the desired QoS. The results also

show that it can capture the complex behaviors of resource

competing VMs and optimize their resource allocations in such a

scenario. Compared to traditional linear modeling based MPC, the

FMPC approach is shown to be better in terms of the obtained

QoS and the speed to achieve the application or system target.

Currently we are evaluating this approach on the management of

both CPU cycles and I/O bandwidth for VMs with more complex

resource usage and contention. We will evaluate the effectiveness

of our approach for applications with SLOs specified by response

times, instead of throughput, and more interesting nonlinear

behaviors. We also plan to evaluate our prototype on larger

virtualized systems and test its scalability. In our future work, we

will extend this work to provide cross-physical-host resource

management that considers VM migration as an additional means

of resource control and support VMs with correlated performance

requirements.

7. ACKNOWLEDGEMENT

This research is sponsored by National Science Foundation under

grant CCF-0938045, OCI-0910812, IIP-0932023, CNS-0855123,

and IIP-0758596 and Department of Homeland Security under

grant 2010-ST-062-000039. The authors are also thankful to the

anonymous reviewers for their useful comments. Any opinions,

findings and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the

views of the sponsors.

8. REFERENCES

[1] Y. L. Huang et al., ―Fuzzy Model Predictive Control,‖ IEEE

Transactions on Fuzzy Systems, Vol. 8, No. 6, 2000.

[2] J. Maciejowski, ―Predictive Control with Constraints,‖

Prentice Hall, 1 edition, 2002.

[3] C. Lu et al., ―Feedback Utilization Control in Distributed

Real-Time Systems with End-To-End Tasks,‖ TPDS, 2005.

[4] P. Padala et al., ―Automated Control of Multiple Virtualized

Resources,‖ Proceedings of EuroSys, 2009.

[5] J. D. Morningred et al., ―An Adaptive Nonlinear Predictive

Controller,‖ Chem. Eng. Sci., vol. 47,pp. 755–762, 1992.

[6] L. A. Zadeh, ―Fuzzy Sets‖, Information and Control, 1965.

[7] T. Takagi, M. Sugeno, ―Fuzzy identification of systems and

its application to modeling and control,‖ TSMC, 1985.

[8] Xiaorui Wang et al., ―MIMO Power Control for High-

Density Servers in an Enclosure,‖ TPDS, 2010.

[9] X. Liu et al, ―Optimal Multivariate Control for Differentiated

Services on a Shared Hosting Platform,‖ CDC, 2007.

[10] R.Nathuji et al., ―Q-Clouds: Managing Performance

Interference Effects for QoS-Aware Clouds,‖ EuroSys, 2010.

[11] Diwaker Gupta et al., ―Enforcing Performance Isolation

Across Virtual Machines in Xen,‖ Middleware, 2006.

[12] J.N. Matthews et al., ―Quantifying the Performance Isolation

Properties of Virtualization Systems,‖ ExpCS, 2007.

[13] S. Chiu, ―Fuzzy Model Identification Based on Cluster

Estimation,‖ Journal of Intelligent and Fuzzy Systems, 1994.

[14] C. Amza et al., ―Specification and Implementation of

Dynamic Web Site Benchmarks,‖ WWC, 2002.

[15] K. Astrom, B. Wittenmark, ―Adaptive Control,‖ 1995.

[16] Neuro-adaptive Learning, URL: http://www.mathworks.com/

help/toolbox/fuzzy/fp715dup12.html.

[17] Jing Xu et al., ―Autonomic Resource Management in

Virtualized Data Centers Using Fuzzy-logic-based Control‖,

Cluster Computing, Vol. 11, No. 3, Pages: 213-227, 2008.

[18] L. Wang et al., ―Autonomic Resource Management for

Virtualized Database Hosting Systems,‖ Tech. Report, 2009.

[19] Credit-Based CPU Scheduler, URL:

http://wiki.xensource.com/xenwiki/CreditScheduler.

[20] HP-UX Workload Manager, http://docs.hp.com/en/5990-

8153/ch05s12.html

[21] J. Rolia et al., ―Configuring Workload Manager Control

Parameters for Resource Pools,‖ NOMS, April 2006.

[22] J. Wildstrom et al., ―CARVE: A Cognitive Agent for

Resource Value Estimation‖, ICAC, 2008.

[23] T. Wood et al., ―Profiling and Modeling Resource Usage of

Virtualized Applications,‖ Middleware, 2008.

[24] J. Rao et al., ―VCONF: A Reinforcement Learning Approach

to Virtual Machines Auto-configuration‖, ICAC, 2009.

[25] S. Kundu et al., ―Application Performance Modeling in a

Virtualized Environment,‖ HPCA, 2010.

[26] 1998 World Cup Web Site Access Logs, URL:

http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

[27] M. Kallahalla et al., ―SoftUDC: A Software-based Data

Center for Utility Computing,‖ Computer, 2004.

[28] Amazon Elastic Compute Cloud (Amazon EC2), URL:

http:// aws.amazon.com/ec2/.

[29] Windows Azure Platform, URL: http://

www.microsoft.com/windowsazure/.

[30] T. Abdelzaher et al., ―Introduction to Control Theory and its

Application to Computing Systems, Performance Modeling

and Engineering ―, Springer, 2008.

