
 

 

Modeling VM Performance Interference with Fuzzy MIMO 
Model 

ABSTRACT 

Virtual machines (VM) can be a powerful platform for 

multiplexing resources for applications workloads on demand in 

datacenters and cloud systems. However, it remains challenging 

for the resource management in such a virtualized system to 

deliver performance guarantees because of the contention on non-

partitionable sources such as last-level CPU cache, memory 

bandwidth, and on-disk buffer, which introduces performance 

interference between co-hosted VMs and cannot be directly 

controlled. To address this challenge, this paper proposes to use 

fuzzy modeling to establish a multi-input-multi-output 

performance model for co-hosted VMs in order to capture their 

coupling. Based on the model, the level of contention on the 

competing resources is quantified by the model parameters, and 

can be used to guide VM placement and resource allocation 

decisions. Experimental evaluations on application benchmarks 

TPC-H and RUBiS demonstrate that this fuzzy modeling 

approach can detect and quantify the interference from VMs 

competing for both CPU and I/O; it can better capture the 

variation of such contention compared to a linear model. 

 

1. INTRODUCTION 

Emerging virtualized systems such as utility datacenters and 

clouds promise to be important new computing platforms where 

resources could be utilized efficiently. However, virtualization-

based high consolidation presents a unique challenge in that 

virtualized applications interfere with each other’s performance in 

dynamic and complex ways. In addition to the resources that can 

be controlled, consolidated virtual machines (VM) also compete 

for resources that cannot be well partitioned such as shared last 

level cache (LLC), memory bandwidth, and on-disk buffer. For 

example, as our previous work [16] and the related work [4] 

show, a VM’s performance can vary substantially when the level 

of cache contention changes from the co-hosted VMs. Such 

contention makes it difficult to deliver application-desired 

performance guarantees in virtualized systems because one VM’s 

performance is coupled with others on the same host and it can 

vary substantially even if the VM’s allocation of partitionable 

resources is fixed.  

Therefore, it is important to identify and quantify the contention 

on non-partitionable resources between VMs in order to optimize 

the resource management of a virtualized system. First, although 

there is no mechanism to directly control the contention generated 

from non-partitionable resources, the impact to application 

performance can be indirectly controlled through the allocations 

of the partitionable resources. For example, when CPU is highly 

utilized, there can be more contention on shared last-level CPU 

cache; when disk I/O is intensive, there can be more contention on 

the shared disk buffer. Second, a good understanding of non-

partitionable resource contention can help optimize the VM 

placement decision in a way that the contention among co-located 

VMs is minimized and the performance of the entire virtualized 

system is maximized.  

This paper proposes a new multi-input-multi-output (MIMO) 

fuzzy modeling approach to accurately identify and quantify the 

contention on non-partitionable resources between VMs. The 

proposed approach learns the relationship between multiple co-

hosted VMs’ resource allocations and the multiple applications’ 

performance by establishing an MIMO model using a set of fuzzy 

rules. In such a fuzzy model, each rule characterizes a certain 

aspect of the system using a simple sub linear model, whereas 

with all the rules aggregated together it can efficiently capture 

complex VM behaviors and system dependencies without 

requiring any a priori knowledge.  

This proposed approach is evaluated on Xen-based VM 

environments using typical online transaction (RUBiS [7]) and 

database benchmarks (TPC-H [17]). The result demonstrates that 

the fuzzy MIMO model is able to capture the interference between 

VMs which share the non-partitionable resources in terms of both 

CPU and I/O and further quantify the level of contention on such 

shared resources. Compared to a typical linear modeling 

approach, the fuzzy modeling approach can obtain up to 22% 

better accuracy in capturing performance interference and 

successfully reflect the variation in contention. 

The rest of this paper is organized as follows. Section 2 describes 

the background and motivation. Section 3 discusses the proposed 

approach in details and Section 4 presents an experimental 

evaluation. Section 5 examines the related work and Section 6 

concludes this paper. 

2. BACKGROUND AND MOTIVATION 

2.1 Resource Management in Virtualized System 

One of the key tasks in a resource management solution for a 

virtualized system is to correctly understand the relationship 

between the resource allocations to VMs and the performance of 

hosted applications. With the understanding of such system 

behaviors, it can accurately allocate resource demand based on the 

application’s Quality of Service (QoS) target and further 

effectively optimize the resource allocation across VMs based on 

resource-provider objectives. However, the major difficulty lies in 

the following aspects. 

First, the challenge remains in allocating partitionable resource on 

an application’s demand. The resources that can be well 

partitioned include CPU cycles, memory capacity, and I/O 

bandwidth. The dynamics in an application’s workload can lead to 

complex behaviors in multi-types of resource consumptions by its 

hosting. Both the intensity and composition of the application 

workload may change over time. For instance, adjusting CPU 

allocations to a web workload’s request rate depending on the 

time of day and the occurrence of events [15]; varying both CPU 

and I/O allocations to a database VM when the query workload 



 

 

changes in its composition of a wide variety of queries with 

different levels of CPU and I/O demands[11].  

Second, the contention on non-partitionable resources, such as 

shared CPU cache, memory bandwidth, and disk buffer, causes 

interference among co-hosted VMs. It can also lead to complex 

and dynamic resource usage behaviors as they compete for 

various types of resources that cannot be strictly partitioned. For 

example, when co-hosted VMs compete for the shared LLC and 

memory bandwidth, the relationship between each VM’s resource 

allocation and its application’s performance is known to be 

nonlinear [4][5][14]. Such contention can also vary dynamically 

as the VM workload change over time. As a result, a VM’s 

performance cannot be effectively predicted and managed, even if 

the partitionable resources can be well-controlled. 

Our prior work has studied fuzzy-logic-based VM modeling 

approach and shown that it can accurately and efficiently capture 

the nonlinear behaviors from the aforementioned first aspect 

[10][11][18]. Fuzzy models that capture VMs’ demands of 

partitionable resources for meeting their QoS targets are employed 

to guide resource allocations in a virtualized system. Due to the 

speed and adaptability of this approach, the fuzzy models can be 

used and updated at the same time based on the data observed 

online. To further extend such a fuzzy-modeling-based resource 

management approach, this paper addresses the aforementioned 

second aspect and proposes to use MIMO fuzzy modeling to 

capture the coupling behaviors of multiple co-hosted VMs caused 

by non-partitionable resource contention.  

2.2 Motivating Example 

In this section, we use concrete examples to provide evidence of 

how the interference from non-partitionable resources affects the 

performance of applications that compete for them.  

In the first example, two CPU-intensive workloads derived from 

RUBiS benchmarks are running concurrently on two separate 

VMs that are competing for the same CPU core. Figure 1 shows 

the performance degradation of one of the applications by fixing 

the CPU allocation to its own VM but varying the CPU cap to 

another (w.r.t. the case that single VM runs alone without CPU 

cap). Note that the total amount of CPU allocation is kept under 

the total CPU capacity (100%). From the result we can see that 

the CPU cap of VM2 affects the application performance on VM1 

significantly, e.g., the performance of VM1’s application drops up 

to 32% as the amount of CPU resource given to the other VM 

increases up to 60% even if its own CPU allocation is fixed at 

40%.  

In the second example, two TPC-H based database workloads are 

running on two separate VMs that are sharing the same disk I/O 

buffer. Similarly, we control the I/O resources by varying the 

maximum I/O bandwidth available to individual VMs. Figure 2 

demonstrates the performance of one VM affected by the I/O 

allocations set to the other VM. The result indicates that the 

contention on non-partitionable I/O resources can also lead to 

complex interference behaviors between the VMs that are 

competing for it. For example, the performance of VM1 at a low 

I/O cap (5MB/s) is almost not affected by the I/O allocations to 

VM2; whereas, the performance degradation can be up to 34% 

when the two I/O caps are with both high values.     

Furthermore, the results from both CPU and I/O interference 

imply that the behaviors of VMs can be highly complicated when 

such resource contention is involved; and the dynamics in 

interference resulted from ever-changing degree of contention 

intensity cannot be described by any linear pattern.  

3. APPROACH 

3.1 Fuzzy MIMO Model  

Based on the preliminary work [18] of fuzzy-logic-based single 

VM performance model which implicitly shows that a VM’s 

performance can vary substantially when the level of cache 

contention changes from the co-hosted VMs, we propose to apply 

new multi-input-multi-output (MIMO) fuzzy model to 

simultaneously capture the more dynamic behaviors of multiple 

co-hosted VMs and their complex resource contention.  

Consider a resource provider that hosts multiple applications by 

multiplexing multiple types of resources among them via VMs, a 

general MIMO model to build the time-varying relationship 

between resource allocations and application performance can be 

described in the following equation,  

                                      

where the input vector u(t) = [u1(t), u2(t), …, uN(t)]T represents the 

allocation of p types of controllable resources to the q 

applications’ VMs at time step t (N = pq), and the output vector 

y(t) = [y1(t), y2(t), …yq(t)]
T is referred to as the predicted 

performance of q applications at time step t. For example, if there 

are two applications whose performance relies on two types of 

resources, i.e., CPU and disk I/O, then u(t) is a 4-dimensional 

vector, [uCPU1(t), uCPU2(t), uIO1(t), uIO2(t)]
T. Hence, function Φ(.) 

captures the mapping between the VM resource allocations to the 

application performance. m and n which indicate the dependence 

on the previous inputs and outputs to current estimation, are 

usually set to small values (e.g., m=0, n=1) in order to reduce the 

complexity of the model.    

Traditionally, linear models are usually adopted to approximate 

the nonlinear behaviors around the current operating point. The 

general form of the model then can be described as y(t) = au(t) + 

by(t-1), where parameter matrices a and b can be trained using 

simple regression. In our proposed fuzzy MIMO model, the 

general function from the control inputs to the system outputs can 

 

Figure 1. The performance interference of VM1 with CPU 

contention 

 

Figure 2. The performance interference of VM1 with I/O 

contention 



 

 

be instantiated by a collection of Takagi-Sugeno fuzzy rules [2] in 

the form of:   

                                   
                                                                       (1) 

In the premise Ai and Bi
 are fuzzy sets associated with the fuzzy 

rule Ri. Their corresponding membership functions µAi and µBi 

determine the membership grades of the control input vectors u(t) 

and y(t-1), respectively, which indicate the degree that they 

belong to the fuzzy sets. In the consequence, the output y(t) can be 

any function of the inputs. In most cases, it takes a linear form 

with trainable parameter matrices ai and bi.  

Both the model structure (the number of rules) and parameters 

(the parameters of each rule) are automatically trained from 

observed data. Each rule in a fuzzy model characterizes a certain 

aspect of the system using a simple linear model whereas with all 

the rules aggregated together the model can effectively capture 

nonlinear behaviors. More details discussed in the following 

subsections. 

3.2 Model Creation 

To build a concise rule base with a small number of fuzzy rules 

that can effectively represent the VMs’ behaviors, one of the 

common algorithms adopted is subtractive clustering [6], an 

efficient one-pass clustering algorithm. Without pre-defining the 

number of rules and the fuzzy sets in each rule needed to model 

the system, it automatically exemplifies representative system 

characteristics by clustering the training data. Consequently, the 

number of clusters decides the size of rule base where each cluster 

is associated with the fuzzy set for input in the premise of the rule.     

Such a model is created and updated online in a way that at the 

end of every interval, the current performance measurement y(t) 

with the corresponding resource allocations u(t) are collected and 

used as part of the training dataset for learning the fuzzy model 

for the next interval. Owing to the low computation overhead of 

subtractive clustering, the updating of the model can be completed 

quickly within a small control interval (e.g., 10s). Since the 

clustering technique is not restricted by the size of the training set, 

the model can be flexibly initialized based on only a few data 

points which represent a limited input-output space. For example, 

a model with only one fuzzy rule can be learned based on two 

data points, which represents a simple linear surface. However, 

the model graduadlly evolves into a more accurate one with more 

rules that reflect finer-grained system behaviors as the data size 

grows over time. During this process, model inaccuracy is quickly 

corrected as the data reflecting the system’s actual behavior is 

used to immediately update the model. 

3.3 Model Prediction  

A well-trained fuzzy MIMO model is used to estimate the 

consequence performance output y(t) for a given control input < 

u(t),  y(t-1) >. Fuzzy inference is applied to produce the prediction 

based on existing fuzzy rule base with S fuzzy rules. It entails the 

following steps: 1) Evaluation of antecedents: the input variables 

are fuzzified to the degree,   , to which they belong to each of the 

fuzzy sets via the corresponding membership functions for each 

fuzzy rule Ri;2) Implication to consequents: implication is 

performed on each fuzzy rule by computing yi(t) based on the 

equation in the consequent of the rule; 3) Aggregation of 

consequents: the final prediction is performed as      
∑         

   , where the outputs yi(t) of all the fuzzy rules are 

aggregated into a single numeric value based on their 

corresponding membership grades   . 

In a typical resource management system, the performance model 

is usually employed by controller to search for the best allocation 

schema that achieves certain global objective, e.g., optimizing the 

overall VM performance. In such a process, the model prediction 

is invoked iteratively by all possible allocation candidates in order 

to find the optimum across the multi-input space. 

3.4 Interference Modeling  

With the global knowledge of resource allocation solution to all 

VMs in the system, a MIMO model is able to capture the coupling 

between all the co-hosted VMs’ resource allocations and 

performance when the contentions on both the partitionable and 

non-partitionable resources exist. The former can be well-

addressed by keeping the sum of the required allocations under 

available resource capacity. The latter is not obvious but can still 

be implicitly reflected in a MIMO model. For example, if a linear 

model is used in a 2-VM system with only one type of resource 

involved, then it can be described in the following: 

[
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]             (2) 

If there is no contention on non-partitionable resources, there 

should be no coupling across different VMs in the MIMO model, 

and the non-diagonal elements of matrix a should have non-zero 

values only on the diagonal elements aij= 0 where i≠j. Otherwise, 

there will be non-zero values on the non-diagonal elements and 

their magnitude should represent the level of such interference. 

However, in such a linear MIMO model, the interference level can 

only be quantified by a constant factor aij which means the 

application performance is linearly affected by both its own 

allocation share and the others. 

When using the proposed fuzzy modeling, it can describe complex 

interference behaviors more accurately. Since the MIMO model is 

defined by a set of fuzzy rules, where each rule Ri can define a 

sub linear model representing a constant coupling relationship 

using a matrix ai. The final matrix a is the weighted aggregation 

of all individual ai from the rules base where the weights are the 

membership degrees of the input to the rules. For a given u(t), 

  ∑            
                                  (3) 

As u(t) changes, the degree of interference may also vary, which  

captures that as the allocations of partitionable resources changes, 

the interference from non-partitionable resources can vary. For 

example, when CPU is highly utilized, there can be more 

contention on shared last-level CPU cache; when disk I/O is 

intensive, there can be more contention on the shared disk buffer 

(as demonstrated in our motivation examples in Section 2.2). 

Therefore, the fuzzy model can not only identify such contention 

but also well capture its variable behavior, whereas the linear 

model cannot. 

4. EVALUATION 

4.1 Setup  

This section evaluates our proposed FMPC-based modeling of 

VM interference using representative benchmarks hosted on a 

typical VM environment. The testbed is an Intel Core i7 physical 

machine, which has quad 3.4GHz CPUs, 4GB RAM, 8MB LLC 

and 500GB SATA disk storage. Each i7 core is also 

hyperthreaded, presenting two separate logical cores to the system 

software. The processor private and shared cache sizes are 



 

 

illustrated in Figure 3. Xen 3.4 is installed to provide the VMs, 

where the operating system for both Dom0 and DomU VMs is 

CentOS Linux 5.4 with paravirtualized kernel 2.6.18. Each DomU 

VM is configured with 1 or 2 virtual CPUs and 1G RAM. The 

management of CPU allocation is done by setting CPU caps to 

VMs using Xen’s Credit CPU scheduler [12] and the I/O 

allocation is done by Linux’s dm-ioband controller [19].  

Two benchmarks are used in our experiment. The RUBiS 

benchmark models a multi-tier online auction site that supports 

the core functionalities such as browsing, selling, and bidding [7]. 

To generate collocated workloads with high CPU contention, the 

multiple tiers of one RUBiS instance are deployed on the same 

DomU VM, including a web-tier of Apache Tomcat 4.1.40, a 

database-tier of MySQL 5.0 and 30 separate client sessions, each 

of which emulates the browsing behaviors of a single user on the 

website. The TPC-H benchmark which provides representative 

queries to compute complex business logic and involves the 

processing of large volumes of data is used to create I/O intensive 

workloads and create I/O contention on the shared physical disk.   

Here we consider the case when the predicted performance is only 

dependent on the current resource allocation. So a general fuzzy 

rule of the performance model is revised as                  
                        

A linear MIMO performance model,             , is built 

using linear regression based on the same set of training data used 

to train the fuzzy model. It is used as a baseline to compare to our 

fuzzy-modeling-based. The parameters for the linear model are 

estimated using the least squares method [8]. The fuzzy model is 

constructed by subtractive clustering where the parameters ai and 

bi in each fuzzy rule are trained by neuro-adaptive learning [9]. 

4.2 CPU Interference  

The hyperthreaded Intel i7 processor allows us to create three 

different interesting CPU contention cases: 1) The VMs are 

hosted on the same logical core and compete for the shared 

resources (pipeline, private caches and LLC) of a logical core; 2) 

The VMs are hosted on a pair of logical cores presented by the 

same physical core, so they compete for the shared resources of a 

physical core; 3) The VMs are hosted on a pair of logical cores 

from different physical cores and compete for only the shared 

LLC (and memory bandwidth). In the subsection, we evaluate the 

level of contention for all these three cases.  

In the first experiment, we evaluate the effectiveness of fuzzy 

modeling in describing the VMs’ performance interference from 

CPU contentions. The impact of sharing CPU LLC among VMs 

on hosting applications’ performance is studied by running 2 

RUBiS VMs with equal workload intensity. Both VMs are pinned 

on the same logical CPU core and share for a total amount of 

100% CPU. To create different degrees of contention, we keep the 

workloads concurrently running with constant intensity on both 

VMs but vary the CPU cap value set to each VM. For each 

setting, we keep them running for 15 control intervals (300s) and 

measure the throughput as performance metric in every interval. 

We collect the training data points for building the performance 

model, which is a set of control input and measured output pairs 

[u, y]. The input is the two cap values u = [cap1 cap2]T chosen 

from a set of evenly distributed values in the range from 30% to 

80%. The sum of CPU caps is kept under 100% in order to 

prevent from CPU oversubscribing so that we can observe the 

impact of contention on non-partitionable resources. The 

performance model is trained based on a total of 200 data points. 

Figure 4 compares two 2-input-1-output performance models for 

one of the VM trained by fuzzy modeling and linear regression.  

From the results we can see the linear surface with a fitting error 

of 14.28% does not capture all data points as accurately as the 

fuzzy model which has a much smaller fitting error of 5.9%. 

In the second experiment, we launch 3 VMs concurrently and let 

them compete for the same pair of logical cores. Two different 

settings are considered: the two logical cores sharing the same 

physical core, denoted as same_core; the two cores associated 

with separate physical cores, denoted as diff_core. Similarly, in 

both cases, we vary the CPU caps to all 3 VMs but keep the total 

CPU caps less than 200%. The control inputs for a performance 

model are the CPU allocations to all three VMs u = [u1 u2 u3]T 

and the outputs are measured corresponding average throughputs 

collected from each VM at every control period y = [y1 y2 y3]T.  

To better understand the different contention level on non-

partitionable CPU cache, we compare two linear performance 

models between the same_core case and the diff_core case. To 

better visualize their difference, we use two 3-D surfaces to 

compare the performance impact on VM1 from cap1 and cap3 in 

both cases. A similar comparison on the impact from cap1 and 

cap2 is omitted due to lack of space. It is observed that the 

performance of VM1 in the diff_core case has less dependence 

than in same_core on the allocations to other VMs. The results 

imply that the VMs running on the same physical core exhibit 

higher degree of coupling than the ones running on separate cores.   

The fuzzy performance model is built based on the same training 

data, which consists of 14 fuzzy rules. For better illustrate the 

 

Figure 3 The architecture of Core i7-2600 

 Figure 4 VM1’s performance with contention on logical core 

 



 

 

resulting fuzzy model, we extract a 3-D surface for VM1 in the 

same_core case, showing the behaviors of VM1 under the 

interference from VM3, as illustrated in Figure 6. A similar 

surface is observed for the interference from VM2 and obmitted 

here. From the non-linear surfaces, we can see that the 

performance of VM1 is not only dependent on its own CPU 

allocation but also affected by the CPU caps set to the other VM. 

With the same value of cap set to one VM, its application’s 

performance will drop as the cap value of the other VM increases. 

It also shows that the degree of interference can vary as the 

allocations fall into different input regions. Similar surfaces 

generated from diff_core case are omitted due to the space 

limitation. Figure 7 extracts from a fuzzy model the degrees of 

VM1’s performance interference from VM3 by calculating the 

weighted sum of degree of interference from all rules given a 

specific input, as shown in Eq. 3. Although the generated fuzzy 

models for diff_core and same_core share the same input space 

and produce the same number of fuzzy rules, the results in the 

figure demonstrate that the variation in interference behaviors can 

be also well reflected as the input falls into different region. In 

contrast, the linear model can only represent the interference by a 

constant factor, specifically, the interference from VM3 to VM1 is 

0.19 and 0.63 for diff_core and same_core respectively.  

4.3 I/O Interference  

In this section, we study the performance interference from co-

hosted VMs that are competing for disk I/O. We use two VMs 

each running a TPC-H instance. In order to control the disk I/O 

bandwidth of these VMs separately, each VM is launched from an 

image that is stored on a separate partition of the same physical 

disk. We run an I/O-intensive workload on both VMs using the 

TPC-H Q6 query which accesses a 200MB database table. 

Similarly, we keep the two I/O-intensive workloads concurrently 

running with constant intensity on these two VMs while varying 

the I/O bandwidth available to both VMs. Each run is performed 

with a different pair of the I/O caps set to both VMs ranging from 

5MB/s to 45MB/s. We measure the execution time ei of the 

workload on VMi. The input vector for training the performance 

model is the I/O allocations to both VMs, i.e., u = [cap1 cap2]T, 

while the outputs y is a vector of [1/e1 1/e2]
T.  

Based on a total of 50 training data points, a 2-input-2-output 

fuzzy model which includes 7 fuzzy rules is constructed with a 

small fitting error of 0.04%. Figure 8 illustrates the fuzzy model 

using a 3-D surface generated for one of the VM. From the 

resulting model, we can see that the input I/O allocations to VM1 

and VM2 affect the VM1’s performance in different manners. On 

one hand, VM1’s performance is substantially improved as its 

own I/O allocation increases; on the other hand, the higher the I/O 

allocation to VM2, the more VM1’s performance is affected, 

especially at higher values of both I/O caps where the contention 

on shared disk buffers is more intense. As a comparison, the linear 

model trained from the same dataset in Figure 8 can only reflect 

the rough trend in interference, but poorly capture the entire input 

data set with a fitting error of 22.6%.   

4.4 Interference Prediction 

In this section, we study how to apply the fuzzy model to predict 

the performance interference in order to guide VM placement for 

performance improvement. Assuming VM migration is 

worthwhile only if there is substantial performance improvement 

for the remaining VMs. In order to decide which VM and when to 

migrate, it is important to predict how much of the performance 
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Figure 6. VM1’s performance with contention on physical 

core when VM2’s cap fixed 

 

Figure 7 Interference degrees from CPU contention 

 

Figure 8. VM1’s performance with I/O contention from VM2 



 

 

for a specific VM is affected by each of the other VMs. Then the 

migration strategy can be to move the VM whose interference 

degree to others is the highest or exceeds a given threshold. 

We build a fuzzy model for 3 VMs initially running on the same 

host and competing for the same CPU, both VM1 and VM2 run 

the RUBiS workload, while VM3 runs a CPU-bound program that 

is not cache intensive. As another CPU becomes available, two 

placement schemes are considered: 1) VM1-VM2: co-locating the 

two RUBiS VMs while migrating VM3 out; 2) VM1-VM3: co-

locating the two different VMs while migrating VM2 out. The 

performance impacts on VM1 using these two schemes are 

predicted by calculating the interference degrees of VM2 and 

VM3 to VM1 separately using the model (Eq. 3). 

First, the model prediction shows that VM2 has larger interference 

to VM1 compared to VM3 for all given inputs because it causes 

more cache contention. We confirm this by comparing the actual 

performance of VM1 from the two schemes. Second, the 

predicted interference degree is also able to correctly quantify the 

level of performance impact. As illustrated in Figure 9, the degree 

of interference of VM3 to VM1 vs. VM2 to VM1 obtained from 

the model is consistent with the amount of actual performance 

degradation caused by co-locating VM3 with VM1 vs. VM2 with 

VM1. Hence, this knowledge is valuable to guide VM placement 

in order to minimize interference and optimize performance. 

5. RELATED WORK 

Various approaches have been studied in the literature to address 

the challenges of system modeling in resource management for 

virtualized systems. In particular, linear modeling approaches 

have been extensively applied to deal with the most common 

scenarios. For example, a linear MIMO [3] model is employed in 

a feedback control management system to capture interactions and 

dependencies among multi-tier applications sharing the common 

pool of resources; its extended work [1] builds the online linear 

ARMA model for each application when the application tiers are 

hosted on VMs spanning across physical nodes. In a model 

predictive control system, Nathuji et al apply a general linear 

function to capture the last-level cache interference between 

concurrent VMs and compensate its performance impact [4].    

Other machine learning techniques have also been considered to 

automatically learn the complex resource model for a virtualized 

system based on data observed from the system. For example, the 

VCONF project has studied using reinforcement learning to 

automatically tune the CPU and memory configurations of a VM 

in order to achieve good performance for its hosted application 

[13]; Kund et al. employ artificial neural networks to build 

performance models that consider both resource allocation to 

VMs and resource interference between VMs [14]. 

In comparison, this paper focuses on using fuzzy modeling 

approach to build MIMO model for performance interference 

between multiple VMs competing for non-partitionable resources, 

which is shown to be more accurate in quantifying the level of 

resource contention and more flexibly in evolving model structure 

without any prior knowledge from the system.  

6. CONCLUSION  

This paper presents a new fuzzy modeling approach to establish a 

multi-input-multi-output performance model for co-hosted VMs 

in order to capture the coupling among VMs on shared non-

partitionable resources. Based on the model, the level of 

contention on the competing resources is detected and quantified 

by the model parameters. Experimental evaluation using TPC-H 

and RUBiS benchmarks demonstrate that this fuzzy modeling 

approach can detect the interference from contention on both CPU 

and I/O non-partitionable resources and successfully capture the 

variation of such contention compared to a linear model. In future 

work, we will apply this approach to resource management of 

virtualized systems by optimizing VM placement and resource 

allocations based on the knowledge of non-partitionable resources 

contention.   
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Figure 9 Relative performance degradation of VM1 when co-

located with VM3 vs. with VM2 
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