

Modeling VM Performance Interference with Fuzzy MIMO
Model

ABSTRACT

Virtual machines (VM) can be a powerful platform for

multiplexing resources for applications workloads on demand in

datacenters and cloud systems. However, it remains challenging

for the resource management in such a virtualized system to

deliver performance guarantees because of the contention on non-

partitionable sources such as last-level CPU cache, memory

bandwidth, and on-disk buffer, which introduces performance

interference between co-hosted VMs and cannot be directly

controlled. To address this challenge, this paper proposes to use

fuzzy modeling to establish a multi-input-multi-output

performance model for co-hosted VMs in order to capture their

coupling. Based on the model, the level of contention on the

competing resources is quantified by the model parameters, and

can be used to guide VM placement and resource allocation

decisions. Experimental evaluations on application benchmarks

TPC-H and RUBiS demonstrate that this fuzzy modeling

approach can detect and quantify the interference from VMs

competing for both CPU and I/O; it can better capture the

variation of such contention compared to a linear model.

1. INTRODUCTION

Emerging virtualized systems such as utility datacenters and

clouds promise to be important new computing platforms where

resources could be utilized efficiently. However, virtualization-

based high consolidation presents a unique challenge in that

virtualized applications interfere with each other’s performance in

dynamic and complex ways. In addition to the resources that can

be controlled, consolidated virtual machines (VM) also compete

for resources that cannot be well partitioned such as shared last

level cache (LLC), memory bandwidth, and on-disk buffer. For

example, as our previous work [16] and the related work [4]

show, a VM’s performance can vary substantially when the level

of cache contention changes from the co-hosted VMs. Such

contention makes it difficult to deliver application-desired

performance guarantees in virtualized systems because one VM’s

performance is coupled with others on the same host and it can

vary substantially even if the VM’s allocation of partitionable

resources is fixed.

Therefore, it is important to identify and quantify the contention

on non-partitionable resources between VMs in order to optimize

the resource management of a virtualized system. First, although

there is no mechanism to directly control the contention generated

from non-partitionable resources, the impact to application

performance can be indirectly controlled through the allocations

of the partitionable resources. For example, when CPU is highly

utilized, there can be more contention on shared last-level CPU

cache; when disk I/O is intensive, there can be more contention on

the shared disk buffer. Second, a good understanding of non-

partitionable resource contention can help optimize the VM

placement decision in a way that the contention among co-located

VMs is minimized and the performance of the entire virtualized

system is maximized.

This paper proposes a new multi-input-multi-output (MIMO)

fuzzy modeling approach to accurately identify and quantify the

contention on non-partitionable resources between VMs. The

proposed approach learns the relationship between multiple co-

hosted VMs’ resource allocations and the multiple applications’

performance by establishing an MIMO model using a set of fuzzy

rules. In such a fuzzy model, each rule characterizes a certain

aspect of the system using a simple sub linear model, whereas

with all the rules aggregated together it can efficiently capture

complex VM behaviors and system dependencies without

requiring any a priori knowledge.

This proposed approach is evaluated on Xen-based VM

environments using typical online transaction (RUBiS [7]) and

database benchmarks (TPC-H [17]). The result demonstrates that

the fuzzy MIMO model is able to capture the interference between

VMs which share the non-partitionable resources in terms of both

CPU and I/O and further quantify the level of contention on such

shared resources. Compared to a typical linear modeling

approach, the fuzzy modeling approach can obtain up to 22%

better accuracy in capturing performance interference and

successfully reflect the variation in contention.

The rest of this paper is organized as follows. Section 2 describes

the background and motivation. Section 3 discusses the proposed

approach in details and Section 4 presents an experimental

evaluation. Section 5 examines the related work and Section 6

concludes this paper.

2. BACKGROUND AND MOTIVATION

2.1 Resource Management in Virtualized System

One of the key tasks in a resource management solution for a

virtualized system is to correctly understand the relationship

between the resource allocations to VMs and the performance of

hosted applications. With the understanding of such system

behaviors, it can accurately allocate resource demand based on the

application’s Quality of Service (QoS) target and further

effectively optimize the resource allocation across VMs based on

resource-provider objectives. However, the major difficulty lies in

the following aspects.

First, the challenge remains in allocating partitionable resource on

an application’s demand. The resources that can be well

partitioned include CPU cycles, memory capacity, and I/O

bandwidth. The dynamics in an application’s workload can lead to

complex behaviors in multi-types of resource consumptions by its

hosting. Both the intensity and composition of the application

workload may change over time. For instance, adjusting CPU

allocations to a web workload’s request rate depending on the

time of day and the occurrence of events [15]; varying both CPU

and I/O allocations to a database VM when the query workload

changes in its composition of a wide variety of queries with

different levels of CPU and I/O demands[11].

Second, the contention on non-partitionable resources, such as

shared CPU cache, memory bandwidth, and disk buffer, causes

interference among co-hosted VMs. It can also lead to complex

and dynamic resource usage behaviors as they compete for

various types of resources that cannot be strictly partitioned. For

example, when co-hosted VMs compete for the shared LLC and

memory bandwidth, the relationship between each VM’s resource

allocation and its application’s performance is known to be

nonlinear [4][5][14]. Such contention can also vary dynamically

as the VM workload change over time. As a result, a VM’s

performance cannot be effectively predicted and managed, even if

the partitionable resources can be well-controlled.

Our prior work has studied fuzzy-logic-based VM modeling

approach and shown that it can accurately and efficiently capture

the nonlinear behaviors from the aforementioned first aspect

[10][11][18]. Fuzzy models that capture VMs’ demands of

partitionable resources for meeting their QoS targets are employed

to guide resource allocations in a virtualized system. Due to the

speed and adaptability of this approach, the fuzzy models can be

used and updated at the same time based on the data observed

online. To further extend such a fuzzy-modeling-based resource

management approach, this paper addresses the aforementioned

second aspect and proposes to use MIMO fuzzy modeling to

capture the coupling behaviors of multiple co-hosted VMs caused

by non-partitionable resource contention.

2.2 Motivating Example

In this section, we use concrete examples to provide evidence of

how the interference from non-partitionable resources affects the

performance of applications that compete for them.

In the first example, two CPU-intensive workloads derived from

RUBiS benchmarks are running concurrently on two separate

VMs that are competing for the same CPU core. Figure 1 shows

the performance degradation of one of the applications by fixing

the CPU allocation to its own VM but varying the CPU cap to

another (w.r.t. the case that single VM runs alone without CPU

cap). Note that the total amount of CPU allocation is kept under

the total CPU capacity (100%). From the result we can see that

the CPU cap of VM2 affects the application performance on VM1

significantly, e.g., the performance of VM1’s application drops up

to 32% as the amount of CPU resource given to the other VM

increases up to 60% even if its own CPU allocation is fixed at

40%.

In the second example, two TPC-H based database workloads are

running on two separate VMs that are sharing the same disk I/O

buffer. Similarly, we control the I/O resources by varying the

maximum I/O bandwidth available to individual VMs. Figure 2

demonstrates the performance of one VM affected by the I/O

allocations set to the other VM. The result indicates that the

contention on non-partitionable I/O resources can also lead to

complex interference behaviors between the VMs that are

competing for it. For example, the performance of VM1 at a low

I/O cap (5MB/s) is almost not affected by the I/O allocations to

VM2; whereas, the performance degradation can be up to 34%

when the two I/O caps are with both high values.

Furthermore, the results from both CPU and I/O interference

imply that the behaviors of VMs can be highly complicated when

such resource contention is involved; and the dynamics in

interference resulted from ever-changing degree of contention

intensity cannot be described by any linear pattern.

3. APPROACH

3.1 Fuzzy MIMO Model

Based on the preliminary work [18] of fuzzy-logic-based single

VM performance model which implicitly shows that a VM’s

performance can vary substantially when the level of cache

contention changes from the co-hosted VMs, we propose to apply

new multi-input-multi-output (MIMO) fuzzy model to

simultaneously capture the more dynamic behaviors of multiple

co-hosted VMs and their complex resource contention.

Consider a resource provider that hosts multiple applications by

multiplexing multiple types of resources among them via VMs, a

general MIMO model to build the time-varying relationship

between resource allocations and application performance can be

described in the following equation,

where the input vector u(t) = [u1(t), u2(t), …, uN(t)]T represents the

allocation of p types of controllable resources to the q

applications’ VMs at time step t (N = pq), and the output vector

y(t) = [y1(t), y2(t), …yq(t)]
T is referred to as the predicted

performance of q applications at time step t. For example, if there

are two applications whose performance relies on two types of

resources, i.e., CPU and disk I/O, then u(t) is a 4-dimensional

vector, [uCPU1(t), uCPU2(t), uIO1(t), uIO2(t)]
T. Hence, function Φ(.)

captures the mapping between the VM resource allocations to the

application performance. m and n which indicate the dependence

on the previous inputs and outputs to current estimation, are

usually set to small values (e.g., m=0, n=1) in order to reduce the

complexity of the model.

Traditionally, linear models are usually adopted to approximate

the nonlinear behaviors around the current operating point. The

general form of the model then can be described as y(t) = au(t) +

by(t-1), where parameter matrices a and b can be trained using

simple regression. In our proposed fuzzy MIMO model, the

general function from the control inputs to the system outputs can

Figure 1. The performance interference of VM1 with CPU

contention

Figure 2. The performance interference of VM1 with I/O

contention

be instantiated by a collection of Takagi-Sugeno fuzzy rules [2] in

the form of:

 (1)

In the premise Ai and Bi
 are fuzzy sets associated with the fuzzy

rule Ri. Their corresponding membership functions µAi and µBi

determine the membership grades of the control input vectors u(t)

and y(t-1), respectively, which indicate the degree that they

belong to the fuzzy sets. In the consequence, the output y(t) can be

any function of the inputs. In most cases, it takes a linear form

with trainable parameter matrices ai and bi.

Both the model structure (the number of rules) and parameters

(the parameters of each rule) are automatically trained from

observed data. Each rule in a fuzzy model characterizes a certain

aspect of the system using a simple linear model whereas with all

the rules aggregated together the model can effectively capture

nonlinear behaviors. More details discussed in the following

subsections.

3.2 Model Creation

To build a concise rule base with a small number of fuzzy rules

that can effectively represent the VMs’ behaviors, one of the

common algorithms adopted is subtractive clustering [6], an

efficient one-pass clustering algorithm. Without pre-defining the

number of rules and the fuzzy sets in each rule needed to model

the system, it automatically exemplifies representative system

characteristics by clustering the training data. Consequently, the

number of clusters decides the size of rule base where each cluster

is associated with the fuzzy set for input in the premise of the rule.

Such a model is created and updated online in a way that at the

end of every interval, the current performance measurement y(t)

with the corresponding resource allocations u(t) are collected and

used as part of the training dataset for learning the fuzzy model

for the next interval. Owing to the low computation overhead of

subtractive clustering, the updating of the model can be completed

quickly within a small control interval (e.g., 10s). Since the

clustering technique is not restricted by the size of the training set,

the model can be flexibly initialized based on only a few data

points which represent a limited input-output space. For example,

a model with only one fuzzy rule can be learned based on two

data points, which represents a simple linear surface. However,

the model graduadlly evolves into a more accurate one with more

rules that reflect finer-grained system behaviors as the data size

grows over time. During this process, model inaccuracy is quickly

corrected as the data reflecting the system’s actual behavior is

used to immediately update the model.

3.3 Model Prediction

A well-trained fuzzy MIMO model is used to estimate the

consequence performance output y(t) for a given control input <

u(t), y(t-1) >. Fuzzy inference is applied to produce the prediction

based on existing fuzzy rule base with S fuzzy rules. It entails the

following steps: 1) Evaluation of antecedents: the input variables

are fuzzified to the degree, , to which they belong to each of the

fuzzy sets via the corresponding membership functions for each

fuzzy rule Ri;2) Implication to consequents: implication is

performed on each fuzzy rule by computing yi(t) based on the

equation in the consequent of the rule; 3) Aggregation of

consequents: the final prediction is performed as
∑

 , where the outputs yi(t) of all the fuzzy rules are

aggregated into a single numeric value based on their

corresponding membership grades .

In a typical resource management system, the performance model

is usually employed by controller to search for the best allocation

schema that achieves certain global objective, e.g., optimizing the

overall VM performance. In such a process, the model prediction

is invoked iteratively by all possible allocation candidates in order

to find the optimum across the multi-input space.

3.4 Interference Modeling

With the global knowledge of resource allocation solution to all

VMs in the system, a MIMO model is able to capture the coupling

between all the co-hosted VMs’ resource allocations and

performance when the contentions on both the partitionable and

non-partitionable resources exist. The former can be well-

addressed by keeping the sum of the required allocations under

available resource capacity. The latter is not obvious but can still

be implicitly reflected in a MIMO model. For example, if a linear

model is used in a 2-VM system with only one type of resource

involved, then it can be described in the following:

[

] [

] [

] [

] (2)

If there is no contention on non-partitionable resources, there

should be no coupling across different VMs in the MIMO model,

and the non-diagonal elements of matrix a should have non-zero

values only on the diagonal elements aij= 0 where i≠j. Otherwise,

there will be non-zero values on the non-diagonal elements and

their magnitude should represent the level of such interference.

However, in such a linear MIMO model, the interference level can

only be quantified by a constant factor aij which means the

application performance is linearly affected by both its own

allocation share and the others.

When using the proposed fuzzy modeling, it can describe complex

interference behaviors more accurately. Since the MIMO model is

defined by a set of fuzzy rules, where each rule Ri can define a

sub linear model representing a constant coupling relationship

using a matrix ai. The final matrix a is the weighted aggregation

of all individual ai from the rules base where the weights are the

membership degrees of the input to the rules. For a given u(t),

 ∑
 (3)

As u(t) changes, the degree of interference may also vary, which

captures that as the allocations of partitionable resources changes,

the interference from non-partitionable resources can vary. For

example, when CPU is highly utilized, there can be more

contention on shared last-level CPU cache; when disk I/O is

intensive, there can be more contention on the shared disk buffer

(as demonstrated in our motivation examples in Section 2.2).

Therefore, the fuzzy model can not only identify such contention

but also well capture its variable behavior, whereas the linear

model cannot.

4. EVALUATION

4.1 Setup

This section evaluates our proposed FMPC-based modeling of

VM interference using representative benchmarks hosted on a

typical VM environment. The testbed is an Intel Core i7 physical

machine, which has quad 3.4GHz CPUs, 4GB RAM, 8MB LLC

and 500GB SATA disk storage. Each i7 core is also

hyperthreaded, presenting two separate logical cores to the system

software. The processor private and shared cache sizes are

illustrated in Figure 3. Xen 3.4 is installed to provide the VMs,

where the operating system for both Dom0 and DomU VMs is

CentOS Linux 5.4 with paravirtualized kernel 2.6.18. Each DomU

VM is configured with 1 or 2 virtual CPUs and 1G RAM. The

management of CPU allocation is done by setting CPU caps to

VMs using Xen’s Credit CPU scheduler [12] and the I/O

allocation is done by Linux’s dm-ioband controller [19].

Two benchmarks are used in our experiment. The RUBiS

benchmark models a multi-tier online auction site that supports

the core functionalities such as browsing, selling, and bidding [7].

To generate collocated workloads with high CPU contention, the

multiple tiers of one RUBiS instance are deployed on the same

DomU VM, including a web-tier of Apache Tomcat 4.1.40, a

database-tier of MySQL 5.0 and 30 separate client sessions, each

of which emulates the browsing behaviors of a single user on the

website. The TPC-H benchmark which provides representative

queries to compute complex business logic and involves the

processing of large volumes of data is used to create I/O intensive

workloads and create I/O contention on the shared physical disk.

Here we consider the case when the predicted performance is only

dependent on the current resource allocation. So a general fuzzy

rule of the performance model is revised as

A linear MIMO performance model, , is built

using linear regression based on the same set of training data used

to train the fuzzy model. It is used as a baseline to compare to our

fuzzy-modeling-based. The parameters for the linear model are

estimated using the least squares method [8]. The fuzzy model is

constructed by subtractive clustering where the parameters ai and

bi in each fuzzy rule are trained by neuro-adaptive learning [9].

4.2 CPU Interference

The hyperthreaded Intel i7 processor allows us to create three

different interesting CPU contention cases: 1) The VMs are

hosted on the same logical core and compete for the shared

resources (pipeline, private caches and LLC) of a logical core; 2)

The VMs are hosted on a pair of logical cores presented by the

same physical core, so they compete for the shared resources of a

physical core; 3) The VMs are hosted on a pair of logical cores

from different physical cores and compete for only the shared

LLC (and memory bandwidth). In the subsection, we evaluate the

level of contention for all these three cases.

In the first experiment, we evaluate the effectiveness of fuzzy

modeling in describing the VMs’ performance interference from

CPU contentions. The impact of sharing CPU LLC among VMs

on hosting applications’ performance is studied by running 2

RUBiS VMs with equal workload intensity. Both VMs are pinned

on the same logical CPU core and share for a total amount of

100% CPU. To create different degrees of contention, we keep the

workloads concurrently running with constant intensity on both

VMs but vary the CPU cap value set to each VM. For each

setting, we keep them running for 15 control intervals (300s) and

measure the throughput as performance metric in every interval.

We collect the training data points for building the performance

model, which is a set of control input and measured output pairs

[u, y]. The input is the two cap values u = [cap1 cap2]T chosen

from a set of evenly distributed values in the range from 30% to

80%. The sum of CPU caps is kept under 100% in order to

prevent from CPU oversubscribing so that we can observe the

impact of contention on non-partitionable resources. The

performance model is trained based on a total of 200 data points.

Figure 4 compares two 2-input-1-output performance models for

one of the VM trained by fuzzy modeling and linear regression.

From the results we can see the linear surface with a fitting error

of 14.28% does not capture all data points as accurately as the

fuzzy model which has a much smaller fitting error of 5.9%.

In the second experiment, we launch 3 VMs concurrently and let

them compete for the same pair of logical cores. Two different

settings are considered: the two logical cores sharing the same

physical core, denoted as same_core; the two cores associated

with separate physical cores, denoted as diff_core. Similarly, in

both cases, we vary the CPU caps to all 3 VMs but keep the total

CPU caps less than 200%. The control inputs for a performance

model are the CPU allocations to all three VMs u = [u1 u2 u3]T

and the outputs are measured corresponding average throughputs

collected from each VM at every control period y = [y1 y2 y3]T.

To better understand the different contention level on non-

partitionable CPU cache, we compare two linear performance

models between the same_core case and the diff_core case. To

better visualize their difference, we use two 3-D surfaces to

compare the performance impact on VM1 from cap1 and cap3 in

both cases. A similar comparison on the impact from cap1 and

cap2 is omitted due to lack of space. It is observed that the

performance of VM1 in the diff_core case has less dependence

than in same_core on the allocations to other VMs. The results

imply that the VMs running on the same physical core exhibit

higher degree of coupling than the ones running on separate cores.

The fuzzy performance model is built based on the same training

data, which consists of 14 fuzzy rules. For better illustrate the

Figure 3 The architecture of Core i7-2600

 Figure 4 VM1’s performance with contention on logical core

resulting fuzzy model, we extract a 3-D surface for VM1 in the

same_core case, showing the behaviors of VM1 under the

interference from VM3, as illustrated in Figure 6. A similar

surface is observed for the interference from VM2 and obmitted

here. From the non-linear surfaces, we can see that the

performance of VM1 is not only dependent on its own CPU

allocation but also affected by the CPU caps set to the other VM.

With the same value of cap set to one VM, its application’s

performance will drop as the cap value of the other VM increases.

It also shows that the degree of interference can vary as the

allocations fall into different input regions. Similar surfaces

generated from diff_core case are omitted due to the space

limitation. Figure 7 extracts from a fuzzy model the degrees of

VM1’s performance interference from VM3 by calculating the

weighted sum of degree of interference from all rules given a

specific input, as shown in Eq. 3. Although the generated fuzzy

models for diff_core and same_core share the same input space

and produce the same number of fuzzy rules, the results in the

figure demonstrate that the variation in interference behaviors can

be also well reflected as the input falls into different region. In

contrast, the linear model can only represent the interference by a

constant factor, specifically, the interference from VM3 to VM1 is

0.19 and 0.63 for diff_core and same_core respectively.

4.3 I/O Interference

In this section, we study the performance interference from co-

hosted VMs that are competing for disk I/O. We use two VMs

each running a TPC-H instance. In order to control the disk I/O

bandwidth of these VMs separately, each VM is launched from an

image that is stored on a separate partition of the same physical

disk. We run an I/O-intensive workload on both VMs using the

TPC-H Q6 query which accesses a 200MB database table.

Similarly, we keep the two I/O-intensive workloads concurrently

running with constant intensity on these two VMs while varying

the I/O bandwidth available to both VMs. Each run is performed

with a different pair of the I/O caps set to both VMs ranging from

5MB/s to 45MB/s. We measure the execution time ei of the

workload on VMi. The input vector for training the performance

model is the I/O allocations to both VMs, i.e., u = [cap1 cap2]T,

while the outputs y is a vector of [1/e1 1/e2]
T.

Based on a total of 50 training data points, a 2-input-2-output

fuzzy model which includes 7 fuzzy rules is constructed with a

small fitting error of 0.04%. Figure 8 illustrates the fuzzy model

using a 3-D surface generated for one of the VM. From the

resulting model, we can see that the input I/O allocations to VM1

and VM2 affect the VM1’s performance in different manners. On

one hand, VM1’s performance is substantially improved as its

own I/O allocation increases; on the other hand, the higher the I/O

allocation to VM2, the more VM1’s performance is affected,

especially at higher values of both I/O caps where the contention

on shared disk buffers is more intense. As a comparison, the linear

model trained from the same dataset in Figure 8 can only reflect

the rough trend in interference, but poorly capture the entire input

data set with a fitting error of 22.6%.

4.4 Interference Prediction

In this section, we study how to apply the fuzzy model to predict

the performance interference in order to guide VM placement for

performance improvement. Assuming VM migration is

worthwhile only if there is substantial performance improvement

for the remaining VMs. In order to decide which VM and when to

migrate, it is important to predict how much of the performance

 Figure 5 Performance comparison on interference from VM3

Figure 6. VM1’s performance with contention on physical

core when VM2’s cap fixed

Figure 7 Interference degrees from CPU contention

Figure 8. VM1’s performance with I/O contention from VM2

for a specific VM is affected by each of the other VMs. Then the

migration strategy can be to move the VM whose interference

degree to others is the highest or exceeds a given threshold.

We build a fuzzy model for 3 VMs initially running on the same

host and competing for the same CPU, both VM1 and VM2 run

the RUBiS workload, while VM3 runs a CPU-bound program that

is not cache intensive. As another CPU becomes available, two

placement schemes are considered: 1) VM1-VM2: co-locating the

two RUBiS VMs while migrating VM3 out; 2) VM1-VM3: co-

locating the two different VMs while migrating VM2 out. The

performance impacts on VM1 using these two schemes are

predicted by calculating the interference degrees of VM2 and

VM3 to VM1 separately using the model (Eq. 3).

First, the model prediction shows that VM2 has larger interference

to VM1 compared to VM3 for all given inputs because it causes

more cache contention. We confirm this by comparing the actual

performance of VM1 from the two schemes. Second, the

predicted interference degree is also able to correctly quantify the

level of performance impact. As illustrated in Figure 9, the degree

of interference of VM3 to VM1 vs. VM2 to VM1 obtained from

the model is consistent with the amount of actual performance

degradation caused by co-locating VM3 with VM1 vs. VM2 with

VM1. Hence, this knowledge is valuable to guide VM placement

in order to minimize interference and optimize performance.

5. RELATED WORK

Various approaches have been studied in the literature to address

the challenges of system modeling in resource management for

virtualized systems. In particular, linear modeling approaches

have been extensively applied to deal with the most common

scenarios. For example, a linear MIMO [3] model is employed in

a feedback control management system to capture interactions and

dependencies among multi-tier applications sharing the common

pool of resources; its extended work [1] builds the online linear

ARMA model for each application when the application tiers are

hosted on VMs spanning across physical nodes. In a model

predictive control system, Nathuji et al apply a general linear

function to capture the last-level cache interference between

concurrent VMs and compensate its performance impact [4].

Other machine learning techniques have also been considered to

automatically learn the complex resource model for a virtualized

system based on data observed from the system. For example, the

VCONF project has studied using reinforcement learning to

automatically tune the CPU and memory configurations of a VM

in order to achieve good performance for its hosted application

[13]; Kund et al. employ artificial neural networks to build

performance models that consider both resource allocation to

VMs and resource interference between VMs [14].

In comparison, this paper focuses on using fuzzy modeling

approach to build MIMO model for performance interference

between multiple VMs competing for non-partitionable resources,

which is shown to be more accurate in quantifying the level of

resource contention and more flexibly in evolving model structure

without any prior knowledge from the system.

6. CONCLUSION

This paper presents a new fuzzy modeling approach to establish a

multi-input-multi-output performance model for co-hosted VMs

in order to capture the coupling among VMs on shared non-

partitionable resources. Based on the model, the level of

contention on the competing resources is detected and quantified

by the model parameters. Experimental evaluation using TPC-H

and RUBiS benchmarks demonstrate that this fuzzy modeling

approach can detect the interference from contention on both CPU

and I/O non-partitionable resources and successfully capture the

variation of such contention compared to a linear model. In future

work, we will apply this approach to resource management of

virtualized systems by optimizing VM placement and resource

allocations based on the knowledge of non-partitionable resources

contention.

7. REFERENCES

[1] P. Padala et al., “Automated Control of Multiple Virtualized

Resources,” Proceedings of EuroSys, 2009.

[2] T. Takagi, M. Sugeno, “Fuzzy identification of systems and

its application to modeling and control,” TSMC, 1985.

[3] X. Liu et al, “Optimal Multivariate Control for Differentiated

Services on a Shared Hosting Platform,” CDC, 2007.

[4] R.Nathuji et al., “Q-Clouds: Managing Performance

Interference Effects for QoS-Aware Clouds,” EuroSys, 2010.

[5] Diwaker Gupta et al., “Enforcing Performance Isolation

Across Virtual Machines in Xen,” Middleware, 2006.

[6] S. Chiu, “Fuzzy Model Identification Based on Cluster

Estimation,” Journal of Intelligent and Fuzzy Systems, 1994.

[7] C. Amza et al., “Specification and Implementation of

Dynamic Web Site Benchmarks,” WWC, 2002.

[8] K. Astrom, B. Wittenmark, “Adaptive Control,” 1995.

[9] Neuro-adaptive Learning, URL: http://www.mathworks.com/

help/toolbox/fuzzy/fp715dup12.html.

[10] Jing Xu et al., “Autonomic Resource Management in

Virtualized Data Centers Using Fuzzy-logic-based Control”,

Cluster Computing, 2008.

[11] L. Wang, et al., “Fuzzy Modeling based Resource

Management for Virtualized Database Systems,”

MASCOTS, 2011.

[12] Credit-Based CPU Scheduler, URL:

http://wiki.xensource.com/xenwiki/CreditScheduler.

[13] J. Rao et al., “VCONF: A Reinforcement Learning Approach

to Virtual Machines Auto-configuration”, ICAC, 2009.

[14] S. Kundu et al., “Application Performance Modeling in a

Virtualized Environment,” HPCA, 2010.

[15] 1998 World Cup Web Site Access Logs, URL:

http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

[16] D. Arteaga et al., “Cooperative Virtual Machine Scheduling

on Multi-core Multi-threading Systems — A Feasibility

Study,” MASVDC, 2010.

[17] TPC-H Benchmark Specification, http://www.tcp.org.

[18] L. Wang et al., “Adaptive Virtual Resource Management

with Fuzzy Model Predictive Control,” FeBID 2011.

[19] Dm-ioband: http://sourceforge.net/apps/trac/ioband/wiki/dm-

ioband

Figure 9 Relative performance degradation of VM1 when co-

located with VM3 vs. with VM2

http://www.tcp.org/

