
Two-level Throughput and Latency IO Control for Parallel File Systems

Yiqi Xu
Florida International University

Ming Zhao
Florida International University

Abstract
Existing parallel file systems are unable to provide both
throughput and response time guarantees for concurrent
parallel applications. This limitation prevents different,
competing applications from getting their desired perfor-
mance as high-performance computing (HPC) systems
continue to scale up and be used in a shared environ-
ment. This paper presents a new two-level scheduler for
parallel storage systems, a new solution to address this
challenge based on a distributed performance virtualiza-
tion layer for parallel file systems (vPFS). It provides
both bandwidth proportional sharing and response time
guarantees by addressing them at different levels of the
scheduler in a cooperative manner. The utility and per-
formance of this scheduler are studied on PVFS2, a wide-
ly used parallel file system. An experimental evaluation
using a typical HPC benchmark (IOR) shows that when
the storage is not overloaded, requests complete with-
in 95th percentile response time bound during 90% of
the time. The scheduler can further favor more latency-
sensitive application under overloaded case.

1 Introduction

High-performance computing (HPC) systems are key to
solving challenging problems in many science and en-
gineering domains. In these systems, high-performance
I/O is achieved through the use of parallel storage sys-
tems. Applications in an HPC system share access to the
storage infrastructure through a parallel file system based
software layer [3, 10, 2, 13]. The I/O Quality of Ser-
vice (QoS) each application gets from the storage system
determines how fast it can access its data and is critical
to its performance guarantee. In a large HPC system, it
is common to have multiple applications running at the

This work is supported by National Science Foundation grants
CCF-0937973 and CCF-0938045.

same time while sharing and competing for the shared
storage. The sharing applications may have distinct I/O
characteristics and demands which result in significant
performance interference among them.

While the differentiation of applications and their
respective throughput needs are addressed in previous
work [14], a limitation of existing parallel storage man-
agement is the inability to satisfy both I/O bandwidth
and latency needs — current work can only guarantee
proportional sharing of bandwidth for the entire system
with good utilization. This limitation prevents applica-
tions from efficiently utilizing the HPC resources while
achieving their different desired QoS, especially for ap-
plications that are sensitive to delays such as visualiza-
tion. This problem will become even more serious with
the increasing scale of HPC systems and the increas-
ing complexity and number of applications running con-
currently on these systems. It presents a hurdle for the
further scale-up of HPC systems to support many large,
data-intensive applications.

This paper presents a new scheduler upon vPFS [14] to
address these challenges through the virtualization of ex-
isting parallel file systems, achieving more comprehen-
sive application-QoS-driven storage resource manage-
ment. The virtualization layer differentiates parallel I/Os
received from different application and dispatch them
to the underlying storage system according to schedul-
ing algorithms which can be created for different storage
management objectives.

Specifically, this paper proposes a two-level schedul-
ing algorithm, in which the upper level controls admis-
sion to achieve proportional bandwidth sharing, and the
lower level guarantees the deadline only if the client
complies with the agreed peak throughput. Proportion-
al sharing algorithms and two-level I/O schedulers have
been applied to different storage systems [12, 8, 14, 15],
but, to the best of our knowledge, this paper is the first
to study the effectiveness of both bandwidth and latency
guarantees on typical HPC parallel storage systems.

1

A prototype of the proposed two-level scheduler was
developed upon PVFS2 [2], a widely used parallel file
system implementation. It was evaluated with experi-
ments using a typical HPC I/O benchmark IOR [1]. The
results demonstrate that the latency guarantees can be
met in addition to proportional bandwidth sharing for ap-
plications on parallel storage systems. Preliminary ex-
periments show that requests complete within 95th per-
centile response time bound during 90% of the time
when the storage is not overloaded and can favor more
latency-sensitive application under overloaded case.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the motivation and background; Sec-
tion 3 describes the design and implementations; Sec-
tion 4 discusses the evaluation; Section 5 examines the
related work; and Section 6 concludes our current work
and presents future directions.

2 Background and Motivation

In a typical HPC system, applications access their data on
a parallel storage system that mainly consists of a paral-
lel file system (PFS) and its associated storage networks
and devices. PFS provides the bridge between the com-
pute and storage infrastructures which are typically con-
nected via a high-speed network. To be cost-effective,
the storage system always tends to be utilized than idle.
That means the applications will contend for limited re-
sources and be backlogged.

QoS deliverd to an application in a typical storage sys-
tem is usually defined as a combination of one or more of
the following metrics: throughput share in % (or weight,
proportion of the total bandwidth currently available in
the system)), throughput reservation (minimum band-
width/throughput) or throughput cap (maximum lim-
it bandwidth/throughput)), and latency (response time).
The I/O bandwidth that an application gets from the s-
torage system determines how fast it can access its data
and is critical to its QoS, while latency of an application
is the major performance concern for highly interactive
applications.

For example, a large data mining application process-
es data in bulks. Thus it may need a stable, constant
throughput regardless of I/O response time; a hurricane
forecast may need far more throughput during a smaller
period of time due to emergency; an interactive applica-
tion such as visualization software may need relatively
low throughput but the requires bounded response time.

Figure 1 shows a scientific application benchmark – B-
TIO’s runtime decrease because of I/O interference from
another benchmark IOR. The left data set is 4.7GB with
large I/Os (Large BTIO) while the right data set is 400M-
B with very small I/Os (Small BTIO). We measure the
throughput achieved during two types of BTIOs’ run

31.17%

3.1%

58.76%

11.24%

0

10

20

30

40

50

60

Large BTIO Small BTIO

I/
O

 T
h

ro
u

gh
p

u
t

(M
B

/s
)

Native - Standalone

Native - with IOR

vPFS - DSFQ

Figure 1: The slowdown of throughput to different kinds
of applications due to their I/O size. Left 3 bars repre-
sent an application with 1M reads and writes. The right
3 bars represent an application with I/Os of several hun-
dred bytes each.

when 1) it is running alone (Native-Standalone); 2) it
is running concurrently with IOR (Native-with IOR); 3)
it is running concurrently with IOR and vPFS frame-
work enabling Distributed SFQ scheduler which favors
BTIO (vPFS-DSFQ). The figure shows that Large B-
TIO’s throughput is slowed down by 68.83% while S-
mall BTIO’s throughput is slowed down by 96.9%. This
shows that the interactivity of Small BTIO matters more
to the final application’s runtime than Large BTIO.

While we can apply SFQ-family algorithm to improve
the QoS of BTIO, the increase is much more limited for
the Small BTIO than for Large BTIO. The restoration
of these two are 58.76% for Large BTIO while merely
11.24% for Small BTIO. The reason behind the Smal-
l BTIO’s tendency to under-perform is two fold: First,
the vulnerability of performance loss in Small BTIO is
because traditional proportional sharing algorithms does
not recognize the deadline requirement for small I/Os.
Second, the difficulty in restoring the original perfor-
mance of Small BTIO using SFQ-based algorithms is
because the fixed depth does not capture the available
storage bandwidth to serve more concurrent I/Os.

For performance loss, the scheduler should respec-
t deadlines of I/Os; for under-utilization, the scheduler
should manage both throughput usage and latency us-
age. Throughput usage can be directly reflected by using
request size for cost estimation, while the latency usage
should be indicated by how many more I/Os from any ap-
plication can be dispatched while maintaining all flows’
latency guarantees.

Current parallel storage systems offer minimal QoS
for competing applications running in the compute n-
odes. As the above motivation example concludes, the
applications’ diversity in their I/O resource demands
the parallel storage system to faithfully provision both

2

C1 C2 C3 ∙∙∙ Cm

(EDF)

Spareness Status
QoS Status

High Level

Low Level

(Outstanding
Requests)

Storage Utility

I/O Completion

d
ep

th

Monitor

Controller

Dispatcher

IO Stats

Order

Stats Collection

Stats Collection

(Distributed-SFQ via vPFS)

QoS
Synchronizer

Figure 2: The distributed version of a latency-driven and
throughput-driven scheduler for many parallel storage n-
odes via vPFS framework

throughput and latency needs for those applications. The
parallelism nature of parallel storage systems also de-
mand lightweight synchronization in order for parallel
nodes to coordinate admission control together.

3 Two-level I/O Control Architecture

We use a tuple of throughput and latency for QoS defini-
tion. A (t, l) tuple indicates that the latency target l will
be maintained if application’s issue rate does not exceed
t. Otherwise only t may be provisioned. In this scheme,
throughput and latency control are both integral parts of
the complete QoS targets for the applications. The archi-
tecture takes both application workload and performance
requirement into consideration and uses a feedback con-
trol loop to improve the queue depth.

Our previous work proposed vPFS [14] to provide
QoS-driven management of parallel storage systmes
through the virtualization of existing parallel file sys-
tems. It is based on 1) the capture of parallel file sys-
tem I/O requests prior to their dispatch to the parallel
storage system, 2) queuing of I/O request streams on
a per-application basis, 3) scheduling of the queued re-
quests according to application-specific bandwidth and
response time allocations, 4) a proxy-based user-level
virtualization design which enables the above parallel
I/O interposition and scheduling transparently to existing
parallel file system implementations and to applications.
Such virtual parallel file systems can be dynamically and
transparently created upon shared parallel file systems on
a per-application basis, where each virtual parallel file
system gets a specific share of the total bandwidth as a

first priority, and desired response time as a second pri-
ority.

Based upon the vPFS framework, we propose a two-
level scheduler architecture to simultaneously control
both I/O throughput and latency for applications on par-
allel file systems (Figure 2). The design embodies a
high-level scheduler for throughput control and low-level
scheduler for latency control.

3.1 High-level Scheduler for Throughput

Throughput fairness is realized by an enhanced version
of DSFQ [12] on the higher level of the scheduler (Fig-
ure 2), which achieves proportional bandwidth sharing
of applications’ distributed I/Os by synchronizing global
service information among all the participating storage
nodes. Two global synchronization schemes are studied.
The threshold-based broadcasting scheme proves to be
effective for parallel storage as long as it uses a reason-
able broadcast frequency. The layout-based scheme fur-
ther takes advantage of parallel I/O application’s work-
load characteristics: large I/Os and uniformly distributed
layouts. It only needs to broadcast a layout factor (e.g.,
the number of servers in use) for each application to the
other servers, substantially reducing the broadcast fre-
quency. It can then infer global service using the appli-
cation’s file layout information without any further syn-
chronization.

To ensure fairness, each application is first tagged in
the high-level throughput controller with i (1 ≤ i ≤ m),
where m is the number of applications. Within each ap-
plication each request is further tagged with an monoton-
ically increasing start tag which will determine its global
order in the single dispatch queue. When the requests are
continuously queued, these tags are fixed intervals apart
and the interval for each application differentiates their
service rate.

We re-designed DSFQ algorithm to use its previous
depth D as a credit variable — the depth is not restored
whenever a request completes; nor is it restored accord-
ing to the number of requests completed. Instead, it only
fills its depth to the fullest upon the notice of the low-
level scheduler explained later. D is replenished whenev-
er idleness is found in the storage and is equal to ∑

m
i=1 ti,

and it is interpreted as throughput instead of slots.
Masking DSFQ as a credit-based rate controller has

several benefits: first, the proportional sharing of DSFQ
on vPFS is effective on parallel storage systems in terms
of global service guarantee compared with a single stor-
age node case; second, vPFS provides readily efficient
global synchronization scheme if needed by lower level;
third, refilling D is synchronous immediately among all
applications while maintaining the fairness.

3

3.2 Low-level Scheduler for Latency

After receiving requests from the high level scheduler,
I/O latency control is realized on the lower level of the
two-level scheduler, which combines an EDF real-time
scheduler with a feedback-control loop [15] in the con-
troller. The EDF scheduler has a single adaptive queue
length for all classes. According to little’s law: queue
length = throughput × latency, a small queue length
helps achieve small latency but may curb the throughput
thus under-utilizing the storage. A large queue length
could improve utilization by allowing larger throughput
but may also undermine latency bound.

3.2.1 Feedback Control Loop

The controller carves continuous service into fixed inter-
vals called time windows. It manages the EDF sched-
uler’s behavior in each time window to achieve 95th per-
centile response time as well as optimal utilization. The
control-feedback loop can be described briefly as fol-
lows: First, the monitor senses the actual 95th percentile
response time, the number of queued requests in the EDF
scheduler, and the number of requests completed by the
storage. Second, the controller determines whether in the
next time window the storage as a black box is overload-
ed or underloaded. Third, the controller changes the EDF
queue’s depth based on its prediction. Fourth, the storage
provides feedback from this time window’s depth change
to the next time window.

3.2.2 Detailed Controller Logic

Specifically, the following three criteria are used to de-
termine the queue length change: 1) for each class (or
application), the maximum depth iLO

RT allowed without
violating the deadline; 2) the minimum depth LO to en-
sure any request with deadline falling in the time window
is completed; 3) the upper bound depth LO for utiliza-
tion if the latency need is continuously met and utiliza-
tion should be raised. Define X to be number of requests
completed in last time window and LO to be the current
queue depth.

If the current time window is underloaded, to obtain

iLO
RT , we multiply LO with an coefficient Ei =

DO
i (k)

T O
i (k)

=

Di−MT E
i (k+1)

T O
i (k)

, where k is the current time window. DO
i (k)

is the class i’s request deadline, approximated by the d-
ifference between their class deadline Di and the mean
waiting time in the EDF queue (MT E

i (k+1)) in the nex-
t time window (using last value prediction to estimate,
assuming storage capacity does not change abruptly).
T O

i (k) represents the 95th percentile response time of
class i in time window k. Multiply LO and LO with LO

X to

predict capacity in the next time window. If iLO
RT < LO,

the storage is overloaded next. Otherwise the storage
stays underloaded, but it adjusts its queue depth based
on the actual need. If iLO

RT > LO, LO is the candidate.
If iLO

RT < LO or LO
max ≥ LO , iLO

RT is the candidate. If
iLO

RT ≥ LO and LO
max < LO, LO is used, where LO

max is the
maximum number of outstanding requests in the current
time window.

If the current time window is overloaded, Ei is multi-
plied by LO

max. If the number of requests in the storage
and those in the scheduler and arriving in the next time
window is greater than X , the depth stays infinite. If X
is larger than number of requests that needs to be satis-
fied regarding their deadlines until the end of next time
window, we choose the maximum between iLO

RT and LO.
The final depth will be obtained from a minimal queue

depth among all classes of applications to achieve both
utilization and latency requirement in each time window.

3.3 Storage-level Spareness
When there is idleness in the storage, the depth is re-
covered to serve more requests without violating laten-
cy; when the storage is found to be overloaded, the depth
is recovered more aggressively (by using infinite depth)
to prevent cascading the further delay of subsequent re-
quests. The recovery of depth of DSFQ in Section 3.1 is
triggered when spareness is found, when request arrives
in the high-level scheduler and spareness is checked, or
when a credit time window expires.

The storage typically has variable capacity, but its i-
dleness is calculated based on a difference between the
current workload depth at the storage side and the cur-
rent time window’s queue threshold (iLO

RT). In underload
case, if the former is less than 0.9 times the latter (to
provide margin for inaccuracies), the low level monitor
reports its idleness to order upper level D refilling.

4 Preliminary Evaluation

4.1 Setup
The hardware setup is as follows. We use one physical
node to run two MPI applications. This node has two
2.4GHz six-core Intel Xeon CPUs, 24GB of RAM, one
500GB 7.2K SAS disk and is used to generate up to 64
MPI processes. We use another physical node to run the
parallel file system PVFS2 server, which has two six-
core 2.4GHz AMD Opteron CPUs, 32GB of RAM, one
500GB 7.2K RPM SAS disk. PVFS 2.8.2 is configured
with the default settings. The underlying local file system
is EXT3 with the default settings.

The proposed two-level scheduler was evaluated us-
ing IOR, a highly configurable I/O workload generator

4

which simulates large-scale scientific applications per-
forming checkpointing. The response time is measured
inside IOR clients by counting the difference between the
I/O completion time and I/O issue time. By tracking this
latency, we can have an understanding of the feedback-
control algorithm used in the scheduler.

4.2 Results

Two IOR instances run concurrently, each with 32
processes continuously writing 1MB requests. The
respective service-level objectives (SLOs) for App1
and App2 are (100ms, 40MB/s) and (300ms, 20MB/s).
App1 issues I/Os with an on-off pattern every 50 seconds
with 50MB/s issue rate; App2 issues I/O with gradually
increasing rate from 20MB/s to 50 MB/s which violates
the SLO from the start. The achieved issue rates (in
MB/s) of both application are shown in Figure 3. The
storage’s service capacity is roughly at 50MB/s.

4.2.1 Adaptive Queue Depth

Figure 4 shows the scheduler can transit between over-
load and steady cases. First, when App1 is suddenly on,
storage receives far more I/O requests than can be com-
pleted in the last time window (the storage’s capacity is
roughly at 50MB/s). The scheduler is able to transit from
small depths (below 20) which guarantees latency, to in-
finite depth (100) to gain throughput regardless of the
risk of missing a small number of deadlines. Second, the
large queue length is transitioned to small length because
both throughput and latency are enforced on App2 when
App1 is not on during the first 600s. This can be proved
by the three drops between the first four “on” periods of
App1 where depth reaches on the top twice, each fol-
lowed by one drop. From the 5th “on” period after 600s,
there is only one drop, because the combined issue rate
from the two applications exceeds their SLO agreements
and scheduler chose to favor throughput and the queue
length stays high more frequently.

Figure 4 also shows that the scheduler can determine a
good depth value in steady cases. First, at the end of first
4 “on” periods, the depth can always drop to around 15, a
different value than 32 (the concurrency of App2), mean-
ing that the scheduler can choose a reasonable storage
concurrency to honor adequate throughput, regardless of
the application concurrency. Second, at the 5th “on” pe-
riod with both App1 and App2 in the system in Figure 3,
the storage system is saturated. Thus, the issue rate is not
able to increase anymore because each IOR issues a new
request after the previous one finishes. The correspond-
ing queue length in Figure 4 remains high from the 850th

to the 1000th time window.

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450 500

I/
O

Is
su

e
R

at
e

(M
B

/s
)

Time (s)

App 1
App 2

Figure 3: Issue rate for two IORs.

4.2.2 Latency

Figure 5 records 95th response time each second, ob-
served from IOR clients. It shows the effectiveness of the
response time control for App1 and App2 under constant
overload case because the storage’s capacity is rough-
ly at 50MB/s. Although neither App1 or App2’s issue
rate exceeds storage capacity, both break their respec-
tive throughput agreement from the start. In the first 200
seconds, 90% of 95th percentile response time is with-
in 300ms for both applications, while 100ms is far more
difficult to meet for either application. However, App1
appears 10 times more than App2 within periods that are
compliant to 100ms. After 200 seconds, an increasing
number of periods’ 95th percentile response time go be-
yond 300ms because of the increased total issue rate.

To ensure work-conserving and utilization, the band-
width proportional sharing is reflected by application’s
respective agreement on throughput if they conform. In
our setup, however, both applications violate their agree-
ments. By design, whenever App1 is on, combined issue
rate is more than the storage can handle well. Both appli-
cations get throughput equal to the issue rates (instead of
being proportional to their agreed rates between the two
applications), and do not necessarily get compliant laten-
cy, because the scheduler tries to maximize throughput to
end the overloaded case as soon as possible.

Whenever App1 is off, the system can handle the issue
rate of App2 until starting from the 350th second when
App2’s issue rate also exceeds the storage capacity. This
is confirmed by the increase in the outliers in Figure 5 af-
ter the 500s, where more I/Os’ latencies are out of bound
(many of them are far away above 1000ms).

5 Related Work

Storage resource management has been studied in relat-
ed work in order to service competing I/O workloads and
meet their desired throughput and latency goals. Such

5

0

20

40

60

80

100

0 200 400 600 800 1000

E
D

F
Q

ue
ue

L
en

gt
h

EDF time window (500ms)

Figure 4: EDF queue length on a server.

0

200

400

600

800

1000

0 100 200 300 400 500 600

95
th

Pe
rc

en
til

e
R

es
po

ns
e

Ti
m

e
(m

s)

Time (s)

Figure 5: 95th percentile response time from two IORs.

management can be embedded in the shared storage re-
sources’ internal scheduler (e.g., disk schedulers) (Cel-
lo [11], Stonehenge [7], YFQ [4], PVFS [2]), which has
direct control over the resource but requires the internal
scheduler to be accessible and modifiable. The manage-
ment can also be implemented via virtualization by in-
terposing a layer between clients and their shared storage
resources (Façade [9], SLEDS [5] [8], SFQ(D) [8], GVF-
S [16]). This approach does not need any knowledge
of the storage resource’ internals or any changes to its
implementation. It is transparent to the existing storage
deployments and supports different types of storage sys-
tems. vPFS [14] takes this approach to virtualize parallel
file systems and achieve proportional bandwidth sharing.
This paper further proposes a new two-level scheduler
upon vPFS that controls both I/O throughput and latency
for applications on parallel file systems.

Various scheduling algorithms have been investigat-
ed in related storage management solutions. They em-
ploy techniques such as virtual clocks, leaky bucket-
s, and credits for proportional sharing, earliest-deadline
first (EDF) scheduling to guarantee latency bounds,
feedback-control with request rate throttling, adaptive

control of request queue lengths based on latency mea-
surements, and scheduling of multi-layer storage re-
sources based on online modeling. The effectiveness of
these scheduling algorithms is unknown for a HPC par-
allel storage system. In particular, our two-level schedul-
ing algorithm is inspired by the related work [15] which
achieves throughout and latency control for a central-
ized storage system. This paper differentiates in that 1)
it adopts an enhanced DSFQ algorithm as for the upper
layer which provides sound, theoretically provable glob-
al fairness guarantees, 2) and it accomplishes throughout
and latency control for parallel file system based storage.

The majority of the storage resource schedulers in the
literature focuses on the allocation of a single storage re-
source (e.g., a storage server, device, or a cluster of in-
terchangeable storage resources) and addresses the local
throughput or latency objectives. LexAS [6] was pro-
posed for fair bandwidth scheduling on a storage system
with parallel disks, but the I/Os are not stripped and the
scheduling is done with a centralized controller. DS-
FQ [12] is a distributed algorithm that can realize to-
tal service proportional sharing across all the storage re-
sources that satisfy workload requests. However, it faces
challenges of efficient global scheduling when applied to
a HPC parallel storage system, which are addressed by
the vPFS and the enhanced algorithms enabled upon it.

6 Conclusions and Future Work

Modern HPC systems are shared by an increasing num-
ber of types of data-intensive applications with diverse
I/O workloads. Currently there is no complete solution to
the faithful provisioning of those application’s I/O needs
for both throughput and latency guarantees, resulting in
unpredictable performance. This paper presents a two-
level I/O scheduler for both throughput and latency con-
trol on a parallel file system. The scheduler was imple-
mented upon vPFS, our previous virtualization frame-
work on parallel storage systems. It combines DSFQ and
EDF algorithms and coordinates distributed scheduling
among multiple storage nodes. The experiments demon-
strate that it can choose optimal queue depth for both
throughput and latency. The feedback-control algorith-
m in the scheduler can effectively respond to workload
changes along with storage capacity change.

In the future we will optimize the scheduling of I/Os
of different sizes. We will also manage I/O latency ag-
gregated from multiple storage nodes via a distributed
version of EDF algorithm.

References
[1] IOR parallel file system benchmark.

[2] PVFS2, parallel virtualized file system.

6

[3] Lustre file system: High-performance storage architecture and
scalable cluster file system. White Paper, October 2009.

[4] BRUNO, J., BRUSTOLONI, J., GABBER, E., OZDEN, B., AND
SILBERSCHATZ, A. Disk scheduling with quality of service
guarantees. In Proceedings of the IEEE International Conference
on Multimedia Computing and Systems - Volume 2 (Washington,
DC, USA, 1999), ICMCS ’99, IEEE Computer Society, pp. 400–.

[5] CHAMBLISS, D., ALVAREZ, G., PANDEY, P., JADAV, D., X-
U, J., MENON, R., AND LEE, T. Performance virtualization
for large-scale storage systems. In Reliable Distributed System-
s, 2003. Proceedings. 22nd International Symposium on (oct.
2003), pp. 109 – 118.

[6] GULATI, A., AND VARMAN, P. Lexicographic qos scheduling
for parallel i/o. In Proceedings of the seventeenth annual ACM
symposium on Parallelism in algorithms and architectures (New
York, NY, USA, 2005), SPAA ’05, ACM, pp. 29–38.

[7] HUANG, L., PENG, G., AND CHIUEH, T.-C. Multi-dimensional
storage virtualization. In Proceedings of the joint international
conference on Measurement and modeling of computer system-
s (New York, NY, USA, 2004), SIGMETRICS ’04/Performance
’04, ACM, pp. 14–24.

[8] JIN, W., CHASE, J. S., AND KAUR, J. Interposed proportional
sharing for a storage service utility. SIGMETRICS Perform. Eval.
Rev. 32 (June 2004), 37–48.

[9] LUMB, C. R., MERCHANT, A., AND ALVAREZ, G. A. Façade:
Virtual storage devices with performance guarantees. In Proceed-
ings of the 2nd USENIX Conference on File and Storage Tech-
nologies (Berkeley, CA, USA, 2003), FAST ’03, USENIX Asso-
ciation, pp. 131–144.

[10] SCHMUCK, F., AND HASKIN, R. GPFS: A shared-disk file
system for large computing clusters. In Proceedings of the 1st
USENIX Conference on File and Storage Technologies (Berke-
ley, CA, USA, 2002), FAST ’02, USENIX Association.

[11] SHENOY, P. J., AND VIN, H. M. Cello: a disk scheduling frame-
work for next generation operating systems. In Proceedings of
the 1998 ACM SIGMETRICS joint international conference on
Measurement and modeling of computer systems (New York, NY,
USA, 1998), SIGMETRICS ’98/PERFORMANCE ’98, ACM, p-
p. 44–55.

[12] WANG, Y., AND MERCHANT, A. Proportional-share schedul-
ing for distributed storage systems. In Proceedings of the 5th
USENIX conference on File and Storage Technologies (Berkeley,
CA, USA, 2007), USENIX Association, pp. 4–4.

[13] WELCH, B., UNANGST, M., ABBASI, Z., GIBSON, G.,
MUELLER, B., SMALL, J., ZELENKA, J., AND ZHOU, B. Scal-
able performance of the Panasas parallel file system. In Proceed-
ings of the 6th USENIX Conference on File and Storage Tech-
nologies (Berkeley, CA, USA, 2008), FAST’08, USENIX Asso-
ciation, pp. 2:1–2:17.

[14] XU, Y., ARTEAGA, D., ZHAO, M., LIU, Y., FIGUEIREDO, R.,
AND SEELAM, S. vpfs: Bandwidth virtualization of parallel stor-
age systems. In Mass Storage Systems and Technologies (MSST),
2012 IEEE 28th Symposium on (2012), pp. 1–12.

[15] ZHANG, J., SIVASUBRAMANIAM, A., WANG, Q., RISKA, A.,
AND RIEDEL, E. Storage performance virtualization via through-
put and latency control. Trans. Storage 2 (August 2006), 283–
308.

[16] ZHAO, M., ZHANG, J., AND FIGUEIREDO, R. J. Distributed
file system virtualization techniques supporting on-demand virtu-
al machine environments for grid computing. Cluster Computing
9, 1 (Jan. 2006), 45–56.

7

