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ABSTRACT 

Existing resource management solutions in datacenters and cloud 

systems typically treat VMs as black boxes when making resource 

allocation decisions. This paper advocates the cooperation 

between VM host- and guest-layer schedulers for optimizing the 

resource management and application performance. It presents an 

approach to such cross-layer optimization upon fuzzy-modeling-

based resource management. This approach exploits guest-layer 

application knowledge to capture workload characteristics and 

improve VM modeling, and enables the host-layer scheduler to 

feedback resource allocation decision and adapt guest-layer 

application configuration. As a case study, this approach is 

applied to virtualized databases which have challenging dynamic, 

complex resource usage behaviors. Specifically, it characterizes 

query workloads based on a database’s internal cost estimation 

and adapts query executions by tuning the cost model parameters 

according to changing resource availability. A prototype of the 

proposed approach is implemented on Xen VMs and evaluated 

using workloads based on TPC-H and RUBiS. The results show 

that with guest-to-host workload characterization, resources can 

be efficiently allocated to database VMs serving workloads with 

changing intensity and composition while meeting Quality-of-

Service (QoS) targets. For TPC-H, the prediction error for VM 

resource demand is less than 3.5%; for RUBiS, the response time 

target is met for 92% of the time. Both significantly outperform 

the resource allocation scheme without workload characterization. 

With host-to-guest database adaptation, the performance of TPC-

H-based workloads is also improved by 17% when the VM’s 

available I/O bandwidth is reduced due to contention.  

Categories and Subject Descriptors 
C.4 [Performance of System]: Modeling techniques; 

I.5.1 [Pattern Recognition]: Models – fuzzy set 

Keywords 
Autonomic computing, Fuzzy modeling, Resource management, 

Virtualization 

1. INTRODUCTION 
With the rapid growth of computational power on compute 

servers and the fast maturing of x86 virtualization technologies, 

virtual machines (VMs [1][2]) are becoming increasingly 

important in supporting efficient and flexible application and 

resource provisioning. Virtualization is the key enabling 

technology for building agile datacenters and emerging cloud 

systems [3][4]. It allows a single physical server to be carved into 

multiple virtual resource containers, each delivering a powerful, 

secure, customizable, and portable execution environment for 

applications. As the level of VM-based consolidation continues to 

grow, there is an increasingly urgent need for virtualized systems 

to deliver better Quality-of-Service (QoS) guarantees, so that 

users are comfortable in running their applications on the shared 

infrastructure. However, currently such systems cannot meet 

stringent performance requirements, particular not for applications 

with dynamic and complex behaviors. Consequently, examples 

such as cloud systems cannot support QoS-based Service Level 

Agreements (SLA), whereas users often have to purchase 

unnecessary resources for their VMs. 

Existing resource management solutions typically treat VMs as 

black boxes when making resource allocation decisions. The host-

layer VM scheduler is agnostic of the guest-layer application-

specific resource scheduling, whereas a guest-layer application 

scheduler is unaware of the host-layer VM resource allocation. 

Although such transparency is important for reasons such as 

portability and legacy support, it also prevents the resource 

management effectively providing application-desired QoS. On 

one hand, the knowledge of an application’s workload 

characteristics can help the host-layer resource management to 

better understand the VM’s resource demand and meet the 

application’s QoS target. On the other hand, the knowledge of the 

host’s VM allocation decision can help the guest-layer resource 

management understand the actual resource availability and adapt 

its scheduling to improve application performance. 

Therefore, this paper proposes cross-layer optimization in VM 

resource management which allows certain awareness and 

cooperation between host and guest in order to improve 

application performance and meet its QoS target. Specifically, this 

paper studies two aspects of such cross-layer optimization. First, 

guest-to-host optimization exploits guest-layer application 

knowledge to capture dynamic workload characteristics and 

improve the modeling of VM resource usage. Second, host-to-

guest optimization enables the host-layer scheduler to feedback 

resource allocation decision and adapt guest-layer application 

configuration. These two aspects of cross-layer optimization are 

integrated into a fuzzy-modeling-based resource management 

system [5] which uses fuzzy logic to model VM resource demand 

online and allocate resource dynamically according to application 

QoS requirement. 

This paper considers virtualized databases as an interesting and 

challenging case study. Databases often serve complex and 

dynamic workloads which consist of a variety of queries with 

different types and amounts of resource demand. Moreover, 

databases typically employ sophisticated optimization schemes 

which adapt query executions according to their resource 

availability. Hence, applying cross-layer optimization to the 
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resource management of virtualized databases can be a convincing 

showcase of our proposed approach. Specifically in this case 

study, the proposed cross-layer optimization approach performs 

workload characterization based on database’s internal cost model 

and adapts query executions by tuning the cost model parameters 

according to changing resource availability. 

This proposed system is prototyped on Xen-based VM 

environments and evaluated by experiments using typical 

database workloads created based on TPC-H [6] and RUBiS [7] 

benchmarks. The results show that the fuzzy-modeling-based 

resource allocation with guest-to-host workload characterization 

can accurately predict the resource needs for complex application 

workloads. For TPC-H, it achieves less than 3.5% error for 

predicting VM resource demand; for RUBiS, it meets the response 

time target for 92% of the time. Both substantially outperform the 

resource allocation scheme without workload characterization, in 

terms of both application QoS and resource efficiency. Moreover, 

the results also show that our proposed approach of host-to-guest 

application adaptation effectively optimizes the database’s query 

execution when the VM’s resource availability changes due to I/O 

contention. The performance of a TPC-H workload is improved 

by about 17% compared to the scheme without such adaptation. 

To the best of our knowledge, this paper is the first to study cross-

layer optimization in VM resource management, considering both 

guest-to-host workload characterization and host-to-guest 

application adaptation. The case study demonstrates the 

effectiveness of this approach and provides an experimental 

evaluation. Compared to existing VM resource management 

solutions, this approach can accurately capture complex resource 

usage behavior for virtualize applications, timely adapt to 

dynamic changes in workloads, and optimize their performance 

under varying resource availability. In the rest of the paper, 

Section 2 presents the motivating examples, Section 3 introduces 

the background on fuzzy-modeling-based resource management, 

Section 4 and 5 present the general approach of cross-layer 

optimization and its case study on virtualized databases, Section 6 

discusses the evaluation, Section 7 examines the related work, and 

Section 8 concludes the paper. 

2. MOTIVATING EXAMPLES 
In this section, we use several examples to motivate the need of 

cross-layer optimization in VM resource management, including 

both guest-to-host workload characterization and host-to-guest 

application adaptation. 

2.1 Guest-to-Host Workload Characterization 
For the first aspect of cross-layer resource management, we use an 

example to demonstrate that it is necessary for the host-layer VM 

scheduler to use the knowledge from guest-layer for workload 

characterization. Coarse-grained workload information such as the 

request rate or number of concurrent users can be easily obtained 

without knowledge about application internals. However, this 

information is no longer sufficient when the application workload 

consists of different types of requests with diverse usage of 

multiple types of resources. Here we use a concrete example 

based on a typical multi-tier OLTP benchmark, RUBiS [7] to 

demonstrate this limitation (Figure 1 and 2).  

We fix the RUBiS’ database tier’s query workload intensity by 

running 300 concurrent client sessions in RUBiS. But we vary the 

composition of the query workload by increasing the ratio 

between bidding and browsing requests to the web tier, which 

corresponds to the ratio between read and write queries to the 

database tier. The entire experiment lasts for 600 seconds, starting 

with a browsing-only mix and then shifting to a 30%-bidding mix 

from the 300th second. The QoS target for this workload is set to 

800ms. Without being aware of the changes in workload 

composition, the amount of resources needed by the RUBiS VM 

is estimated based solely on the workload intensity. Hence only 

60KB/s I/O bandwidth is allocated to the RUBiS VM throughout 

the entire experiment (Figure 1). This allocation is enough for the 

workload to meet the QoS target in the first 300 seconds when the 

workload is not I/O intensive; but it leads to many QoS violations 

in the second 300 seconds due to the under-provisioning of I/O 

bandwidth (Figure 2). To address this problem, this paper 

proposes to exploit application-specific knowledge of workload 

characteristics in terms of different types of requests in order to 

make more accurate allocation decisions.  

2.2  Host-to-Guest Application Adaptation 
We use other examples from virtualized databases to show the 

advantage of feeding back the information of resource availability 

from host- to guest-layer. We run a workload consisting of single 

copy of TPC-H query Q8 on a 3GB database VM, and manually 

set the database cost model parameters given different resource 

capacity. Figure 3 and 4 compare the query performance using 

two representative settings of the cost model parameters,  

seq_page_cost and random_page_cost. Both parameters 

characterize the database’s execution environment: the former 

defines the cost of fetching a page from disk using sequential 

reads whereas the latter, usually more costly, defines the cost of a 

non-sequential disk page fetch. Changing these parameters affects 

the database performance indirectly by influencing the database’s 

internal query cost estimation. Lower value of seq_page_cost 

reduces the cost of a plan with more sequential scans on the 

tables; lower value of random_page_cost reduces the cost of a 

plan with more random scans, e.g., index scans. Therefore, 

changing the ratio between these two parameters affects the 

database’s preference on different execution plans. 

In the first example (Figure 3), Q8 runs on a cold database VM, as 

the I/O bandwidth allocated to the VM is reduced from 5000 to 

1000 KB/s. Both database configurations suffer from performance 

degradation with reduced available I/O bandwidth. However, 

when the available I/O bandwidth is high, the configuration that 

    

 Figure 1 I/O Allocation for a changing 
mix in RUBiS 

Figure 2 Performance for a changing 
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Figure 3 Execution time of TPC-H Q8 

with varying I/O allocation 
Figure 4 Execution time of TPC-H Q8 

with varying memory allocation 

  

  



favors sequential scan outperforms that favors random scan (by 

89% at 5000KB/s). When the I/O bandwidth is throttled, the 

latter’s performance is only slightly affected and as a result it is 

1.9 times better than the former at 1000 KB/s. The second 

example performed in a warm database VM shows similar 

behavior of Q8 performance but with respect to changing memory 

availability (Figure 4). When the available memory is low, the 

sequential-preferable DBMS configuration is drastically faster (by 

14 times) because only a small amount of indices or tables can be 

cached in memory. As the memory allocation increases from 640 

to 768MB, the indices can be effectively cached and consequently 

the index-preferable configuration’s performance substantially 

outperforms the sequential-preferable configuration (by 3 times). 

The above examples show strong evidence of the importance of 

host-to-guest optimization. If the database cost parameters can be 

adjusted dynamically to reflect the actual resource availability to 

the VM, the database performance can be further improved.  

3. Fuzzy-modeling-based VM Resource Management 
The main challenges to VM resource management are how to 

efficiently allocate resources to VMs and how to do so 

automatically and continuously. To address these challenges, our 

previous work [5][8] proposed fuzzy-modeling-based resource 

management to learn a VM’s resource demand and allocate 

resources according to its QoS target in an autonomic manner. 

Fuzzy logic is used to create a VM’s resource usage model 

automatically from data observed from the system without 

assuming any a priori knowledge about the system’s structure. It 

is shown to be able to effectively capture complex, nonlinear 

resource usage behaviors in a virtualized system. 

Figure 5 illustrates the architecture of our fuzzy-modeling-based 

resource management system. It consists of four key modules. As 

a workload executes on the VM, the Application and VM Sensors 

monitor the workload W(t), its performance P(t), and the VM’s 

resource usage R(t). The Adaptive Learner creates and updates a 

fuzzy model that represents the relationship between a workload 

and its VM’s resource needs. With this model and the current 

workload W(t), the Resource Predictor estimates the resource 

needs for time t+1 and the Resource Allocator adjusts the 

allocation accordingly. Together, these modules form a closed-

loop for the VM’s resource control and optimization. 

Fuzzy logic is employed to build the model based on the qualified 

input-output data pairs, <W(t), R(t)> whose workload performance 

P(t) meet the desired QoS target. Both the workload input W(t) 

and the resource usage output R(t) can be vectors with multiple 

dimensions. This model captures the relationship between the 

application’s workload and the VM’s resource demand for 

meeting the QoS target. With the fuzzy model created by the 

Adaptive Learner, the Resource Predictor performs fuzzy 

inference to generate an estimate of the resource needs R given 

the workload input W. This estimation is then sent to the Resource 

Allocator to guide the VM’s resource allocation. More details on 

fuzzy modeling can be found in our previous work [5][8]. 

In this paper we propose to further improve this existing fuzzy-

modeling-based resource management system by incorporating 

cross-layer optimization between the VM host and guest, which is 

discussed in detail in the rest of this paper. 

4. GENERAL APPROCAH TO CROSS-

LAYER OPTIMIZATION 
The goal of cross-layer optimization is to enable VM host- and 

guest-layer resource schedulers to communicate scheduling-

related information and collaboratively improve the performance 

of a virtualized application and satisfy its QoS requirement. 

Existing resource management solutions typically treat VMs as 

black boxes when making resource allocations. The host-layer 

VM scheduler is agnostic of the guest-layer application-specific 

resource scheduling, whereas a guest-level application scheduler 

is also unaware of the host-layer VM resource allocation. Such 

transparency is important for reasons such as portability and 

legacy support, but for applications requiring strong QoS 

guarantees, a tradeoff can be made to allow certain awareness and 

cooperation between host and guest for meeting the QoS target.  

Such cross-layer optimization is two-fold. First, the host-layer 

scheduler can leverage the guest-layer application-specific 

knowledge to improve the VM resource allocation decisions. 

Second, the guest-layer scheduler can adapt its application-

specific scheduling based on the host-layer VM resource 

allocation to improve the application performance under changing 

resource availability. We will describe the general approach to 

both of these aspects of cross-layer optimization in this section. 

4.1 Guest-to-Host Optimization  
The guest-to-host aspect of our proposed cross-layer optimization 

is to exploit the guest-layer application-specific information to 

improve the understanding of the VM workload’s resource usage 

patterns. Such knowledge will enable the host-layer resource 

scheduler to more accurately estimate the VM’s resource demands 

and more agilely adapt to its workload changes. We propose to 

analyze an application’s workload by describing it in terms of the 

characteristics that are relevant to its VM resource usage 

behaviors. Such characteristics provide important inputs to the 

effective modeling and prediction of the VM’s resource needs. A 

commonly used workload characteristic is its overall intensity 

such as the total request rate or total number of online users. As 

shown in the motivating examples (Section 2.1), this characteristic 

alone is not sufficient for a real-world workload that consists of 

requests with diverse use of resources. As another example, a web 

workload consisting of only static web page has distinct resource 

needs versus one containing also considerable dynamic web page 

requests, even if their total request rates are exactly the same (the 

former consumes mainly CPU while the latter requires also 

substantial I/O bandwidth). Hence, it is important to characterize a 

workload’s composition of different types of requests in terms of 

their resource usage patterns. But such characterization is difficult 

to do in existing resource management solutions which treat VMs 

as black boxes where application-specific knowledge is hidden.  

To address this problem, we propose cross-layer optimization 

which allows a host-layer scheduler to exploit a guest-layer 

application’s knowledge to understand the resource usage patterns 

of its received requests in the workload. For example, for web 
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workloads, the web server’s knowledge can be exploited to 

understand whether the received HTTP requests are targeting 

static or dynamic content. Such characterization of workload 

composition is key to understanding the VM’s demands of CPU 

and I/O resources. For the workloads that contain more complex 

requests, such as in Online Analytical Processing (OLAP), more 

sophisticated application knowledge is required to analyze their 

resource usage patterns. We propose to characterize such 

workloads by leveraging the application’s internal cost model, 

which is discussed in detail in Section 5.  

The characterization of each individual request’s resource usage 

pattern can be aggregated to describe the entire workload’s 

resource usage characteristics. However, for workloads containing 

vast diversity of requests, it is impractical to describe all requests 

in the workload characterization. A concise representation is 

needed to effectively compress the information of all requests, 

which is critical to ensure low overhead and high robustness of 

the characterization. We propose to use data clustering techniques 

to group a workload’s queries into clusters, so that those within a 

cluster are more similar in terms of their resource requirements to 

each other than the ones from different clusters. Assuming after 

the clustering a workload consists of m different groups of 

requests (r1, … rm), the entire workload can then be characterized 

by the request rates of all these groups (Wr1,…, Wrm), where each 

group represents a distinct resource usage pattern. 

Many well established offline clustering algorithms are available 

for use, such as K-means, hierarchical clustering, subtractive 

clustering, etc. However, because of the dynamic nature of real-

world workloads, the request cluster analysis should be carried out 

in an online fashion. To achieve this, we propose online, adaptive 

request clustering for an online, dynamic VM system, in which 

the clustering is performed in a way that is self-learning and self-

adapting, without needing the number of clusters to be pre-

specified. The basic idea is to perform one-pass, non-iterative 

clustering of a stream of requests using a method such as 

subtractive clustering. The procedure starts with an empty set of 

clusters and creates the first cluster with the first request sample 

assumed to be the cluster center. As more request samples come 

in, either a new cluster is added with the center based on the new 

data, or an existing cluster is removed or updated based on certain 

criteria (e.g., the radius set in subtractive clustering [9]). Such a 

clustering approach has the ability to gradually adapt to the 

changing data patterns. It can be applied to the data set of any size 

and allows flexible clustering with an evolving shape so that it can 

better match the current data distribution. 

The above proposed workload characterization process will be 

performed online periodically (e.g., every 10s), in which the 

recently received requests will be used to update the workload’s 

current clustering results. In this way, the characterization does 

not need a priori knowledge about all the queries that compose 

the workload, and it can dynamically adapt to the changing 

workload composition.   

4.2 Host-to-Guest Optimization 
The host-to-guest aspect of our proposed cross-layer optimization 

is to feed back the host-layer VM resource allocation decision and 

enable the guest-layer application-specific scheduling to adapt for 

better performance. Many applications need to be tuned to 

optimize their performance based on the resource availability of 

the hosting system. For example, a web server needs to tune 

parameters such as the number of concurrent threads based on its 

host’s available memory. A database needs to tune its internal cost 

model (e.g., the CPU and I/O costs of processing a tuple) based on 

its host’s resource availability so that it can correctly estimate the 

costs of different query execution plans and select the most 

efficient one to use. A web search engine may change its 

crawling, indexing, or searching strategies as the resource 

availability varies. When resource is constrained, it may crawler 

over only a portion of available web pages, restrict the depth of 

parsing and indexing on the searched contents, and return a 

limited number of best matching results to the users. Another 

example application is a simulator that can tune the modeling 

resolution based on its host’s resource availability to increase the 

simulation accuracy or speed up the simulation progress [10].  

When such an application is hosted on a physical machine, it 

needs to be tuned only once during the initial deployment. 

However, on a VM, the resource availability can vary over time, 

because of 1) changing resource contention from other co-hosted 

VMs as they come and go dynamically and their workloads vary 

over time; 2) changing resource allocation policy such as VM 

priorities or Service-level Agreements (SLAs). Nonetheless, the 

changing resource availability to a VM is hidden to the 

application in existing VM resource management solutions. As a 

result, the application is stuck with the initial configuration 

assuming a resource availability that is no longer valid. It cannot 

adapt itself to use a configuration that is more efficient in 

application performance and/or resource utilization when the 

VM’s resource becomes either under pressure or abundant. 

To address this problem, we propose cross-layer optimization for 

the host-layer scheduler to feedback the resource allocation 

decision to the guest-layer and automatically adapt the latter’s 

configuration for improved performance given the current 

resource availability. The general approach to this host-to-guest 

optimization can be formally described as follows. Assuming that 

there are M different types of resources, such as memory, CPU 

capacity, or I/O bandwidth, Ri=[Ri1, …RiM] represents the amount 

of resource of different types available for workload Wi of 

application i. The goal of the optimization is to find a feasible set 

of configuration parameters, denoted as Ci, of the application i 

that the performance of the workload Pi is optimized, given the 

VM’s current resource availability Ri. In order to enable such 

adaption, we need to have a means of mapping different recourse 

allocations to the corresponding optimal parameter settings. 

Although this mapping is application specific, there are some 

general steps.   

1) Find out the set of possible parameters Ci = [ci1,.. cik, cin] that 

contributes to the application i’s performance. For each 

parameters cik, we need to determine a function that defines cik 

as a function of Ri, i.e., fik(Ri). 

2) Given a certain resource allocation, run a general workload of 

the virtualized application for the mapping process. Iterate a 

variety of settings for cik over its value range and measure the 

application performance. Collect the setting cik_opt with the 

best performance.  

3) Repeat Step 2 under different candidate resource allocations 

over the possible range.  

4) Collect the data pairs <cik_opt , Ri> for each allocation, and 

perform regression analysis on the set of the data to fit the 

function cik_opt = fik(Ri).     

Once such a mapping is built for an application, the resource 

availability to the VM can be directly fed back to enable the 

application’s adaptation.  

The aforementioned two aspects of cross-layer optimization are 

integrated with our existing fuzzy-modeling-based VM resource 

management middleware. For guest-to-host optimization, the 



workload is characterized by Application Sensor based on 

application-specific knowledge, which is used by the Adaptive 

Learner for better modeling and predicting the VM’s resource 

usage behavior. For host-to-guest optimization, as Resource 

Allocator adjusts the allocation based on the prediction given by 

the fuzzy model, it also feeds back this decision to the VM for the 

application to tune its parameters for better performance. The 

resulting autonomic resource management system can not only 

automatically allocate resources to VMs based on their dynamic 

workload demand but also adaptively improve application 

performance even when the system is overloaded. 

5. CASE STUDY 
In this section, we take virtualized databases as an interesting and 

challenging case study of our proposed cross-layer resource 

management approach. Traditionally, databases are hosted on 

dedicated physical servers that have sufficient hardware resources 

to satisfy their expected peak workloads with desired QoS. 

However, this is often inefficient for the real-world situations in 

many application domains such as e-business [11] and stream data 

management [12], where the workloads are intrinsically dynamic 

in terms of their bursty arrival patterns and ever-changing unit 

processing costs. Using VMs to host databases can effectively 

address this limitation. It allows a database to transparently share 

the consolidated resources with other applications, where a 

database’s resource usage can elastically grow and shrink based 

on the dynamic demand of its workload.  

The cross-host-guest cooperation for a virtualized database is 

implemented as follows. For guest-to-host optimization, a 

database proxy served as the Application Sensor is deployed on 

the host to intercept the incoming query requests to the database 

VM and characterize the workload composition by classifying the 

queries. For host-to-guest optimization, a daemon running on the 

guest periodically obtains resource allocation decision from the 

Resource Allocator, looks up the corresponding optimal database 

parameters, and sends an administrative query to the database to 

change the parameters accordingly. 

5.1 Guest-to-Host Workload Characterization 
Databases are a challenging application because of their highly 

complex and dynamic resource usage behaviors. Database queries 

can be both CPU and I/O intensive and a typical database 

workload can have a diverse variety of such queries with 

dynamically changing composition. Nonetheless, a database’s 

internal query optimizer has intimate knowledge of a query 

resource usage pattern. Such knowledge can be extracted from the 

database and used to classify queries for characterizing the entire 

workload in terms of its resource demands. The result of the 

workload characterization can be then used as input to the VM’s 

fuzzy model to improve its accuracy and adaptability under 

dynamic changes of the workload. Typically, the query cost is 

defined as a function of the amount of resource usages estimated 

by the database, which can be extracted as a vector of different 

resource costs. Note that the database’s cost estimation cannot be 

directly used to infer its VM’s resource needs because, first, its 

accuracy is often limited [13], and second, it does not capture the 

entire VM’s resource needs. 

Specifically, we use PostgreSQL database system as an example 

to demonstrate our proposed guest-to-host optimization on 

workload characterization. The internal cost model in PostgreSQL 

is defined as a function of a set of database cost parameters, 

denoted as CostD(C) where C=[c1, c2,.., cm]. Each cost parameter 

represents the unit cost of either CPU or I/O usage associated with 

an operation in the database. For example, sequential_page_cost 

and random_page_cost represent the overhead of a single 

sequential and non-sequential I/O to fetch a page from disk, 

respectively; cpu_tuple_cost estimates the CPU cost of processing 

each row in a table. The total cost that aggregates the costs of all 

operations in a query plan can be broken down into two parts: the 

total CPU cost and the total I/O cost. Each query can be expressed 

as a 2-dimention cost vector <CostCPU, CostI/O >.  

To characterize a workload, the Application Sensor first extracts 

the cost vector for all unique queries in a workload from database 

and then performs subtractive clustering [9] on the set of query 

cost vectors collected. By setting the radius of a cluster r, any pair 

of the query vectors with distance d<r will fall into the same 

cluster indicating queries with similar resource usage patterns. 

Finally, as the workload runs, the Application Sensor measures 

query intensity online by counting the request rate for each 

individual cluster. For example, a workload mix W consists of N 

queries, and after clustering only K clusters are generated where 

K<<N. The workload can be abstracted as a vector of arrival rates 

of these clusters <C1, C2, …, CK>. Then the above arrival rate 

vector that reflects the current characteristics of the workload is 

periodically fed to the Adaptive Learner as an input for modeling 

the VM’s current usage behavior. At the same time, the workload 

characterization of current time t is also used as the input for the 

Resource Predictor to estimate the resource demand of the next 

time step t+1 based on the assumption that no abrupt change 

happens to the workload within one period of time. 

5.2 Host-to-Guest Database Adaptation 
Databases are a typical application that has a complex internal 

self-scheduling and self-optimization mechanism which can 

optimize its performance based on its knowledge about the 

outside environment. Based on the given resource capacity, a 

database’s query optimizer can automatically evaluate different 

query execution plans and choose the most efficient one to 

execute queries. As the availability of resources changes, critical 

parameters on which the query optimizer depends on for cost 

evaluation should also be updated accordingly, which will lead to 

better resource utilization and more efficient query executions. 

Specifically, a database usually uses the aforementioned cost 

model CostD(C), defined as a function of a set of parameters C, to 

estimate the costs for all possible query execution plans. Each 

parameter ck in the cost model serves as a cost factor related to a 

certain type of operation in query processing such as table 

scanning and tuple processing. Appropriate values on these 

parameters that reflect the actual VM resource availability will 

help the query planner choose the most efficient operations. 

Taking PostgreSQL as an example, as shown in Section 2.2, the 

query optimizer will switch from a sequential scan to an index 

scan for processing the TPC-H query Q8 as the relative value of 

rand_page_cost to sequential_page_cost decreases. Such tuning 

is necessary when the I/O contention happens and more efficient 

scanning method is desired given the limited I/O bandwidth. 

To tune the cost parameters given changing resource availability, 

we need to find the mapping from the resource allocation to the 

optimal parameter values. Because all the cost parameters in a 

cost model are factors normalized on the same scale, only the 

changes in their relative values will result in alternative query 

execution plan. Therefore we focus on building the mapping 

between the ratio of those cost parameters and the resource 

allocation to the VM. For example, to investigate the impact of 

I/O allocation on the scanning methods, the ratio of the 

aforementioned two I/O cost parameters is considered. We 



generate a simple query that needs to read all the rows from a 

large table. The query is executed by different plans using 

sequential scan vs. random scan iteratively with different amount 

of I/O allocation. The performance obtained from the changing 

I/O allocation is observed for each scanning plan. Since the total 

cost of each plan is mainly resulted from the scanning operations, 

other types of processing overhead can be ignored. We then 

normalize the performance of different plans and consider them as 

the estimation of the I/O cost parameters for different I/O 

allocation. In this way, a mapping is built between the I/O 

allocation and I/O cost parameters, which is consistent with the 

actual performance observed with the corresponding plans. 

In addition to those parameters that reflect the knowledge about 

the database’s execution environment, there are also other types of 

parameters used in database-level scheduling that defines the 

database’s own limit for certain type of resource usage. For 

instance in PostgreSQL, the parameter shared_buffers changes the 

amount of memory that the database uses for caching data. A 

reasonable setting value of shared_buffers should be proportional 

to (e.g., ¼) the amount of memory allocated to its VM.    

6. EVALUATION 

6.1 Setup 
This section evaluates our approach using representative database 

workloads hosted on a typical VM environment. The testbed is a 

Dell PowerEdge 2970 server equipped with two six-core 2.4GHz 

AMD Opteron CPUs, 32GB of RAM, and one 500GB 7.2 RPM 

SAS disk. Xen 3.3.1 is installed to provide the VMs, where the 

operating system for both Dom0 and DomU VMs is Ubuntu 

Linux 8.10 with paravirtualized kernel 2.6.18.8. The evaluated 

databases are hosted on DomUs, while our resource management 

system is hosted on Dom0. In all experiments, the management 

system monitors and controls the database VM’s usage of both 

CPU cycles and disk I/O bandwidth every 10 seconds. In the VM 

Sensor, resource monitoring is done using xentop and iostat, 

where the I/O bandwidth usage is considered as the sum of reads 

and writes per period of time. In the Application Sensor, a 

database proxy deployed on Dom0 is used to measure the 

performance of the database VM. The Resource Allocator uses 

Xen’s credit CPU scheduler to assign CPU allocations and 

Linux’s dm-ioband I/O controller to set the cap for disk I/O 

bandwidth [14].  

Two typical database benchmarks, TPC-H and RUBiS, are used in 

our experiments for different purposes. Experiments designed on 

TPC-H are aimed to show the accuracy of our approach in 

modeling resource consumption behaviors for highly complex 

workloads. For RUBiS, it is to show the effectiveness of our 

solution in adapting to more random changes in the system. The 

performance metrics is average query response time measured 

every 10s. Three different resource allocation schemes are 

compared: 1) The fuzzy-modeling-based allocation with cross-

layer optimization which includes guest-to-host workload 

characterization and host-to-guest database tuning; 2) The fuzzy-

modeling-based allocation without cross-layer optimization; 3) 

The traditional peak-load-based allocation which statically 

allocates a fixed amount of resources based on the peak workload 

demand. By comparing the VM’s resource usage and the 

benchmark’s performance between these cases, we evaluate 

whether our proposed cross-layer optimization approach can 

allocate resources more efficiently while meeting the desired QoS 

target or improving its performance. 

6.2 Guest to Host Optimization 
6.2.1 TPC-H Experiments 
TPC-H provides 22 representative queries of business decision 

support systems, which involve the processing of large volumes of 

data with a high degree of complexity. Based on these queries, we 

construct synthetic workloads with varying demands of different 

types of resources. With peak-load based allocation, 100% CPU 

and 10MB/s I/O are allocated to the database VM statically. With 

fuzzy-modeling-based allocation, there are two phases involved. 

In the training phase, the fuzzy model is learned without resource 

restrictions, while in the testing phase the model is applied to 

predict the resource demand and control the resource allocation. 

The evaluation of more realistic workloads with online training is 

discussed in Section 6.2.2. The database used here is PostgresSQL 

8.1.3 with 2GB of data on a VM with one CPU and 1GB RAM. 

To characterize the TPC-H workload, subtractive clustering is 

performed on all the 22 queries based on their cost vectors, where 

a small radius of 0.1 is used in the clustering to derive tight 

clusters. The result identifies four clusters. Cluster I containing 

single query Q1 and Cluster II containing single query Q18 

represent highly and moderately CPU-intensive queries, 

respectively. Cluster III including Q4, Q6, Q15, and Q12 

represents highly I/O-intensive queries. Cluster IV including most 

of the remaining queries represents simple queries which are 

neither CPU nor I/O intensive. This result is experimentally 

verified by the actual resource usages when running the queries 

separately on the database VM. The only exception is Q22 which 

is identified as another single-query cluster and estimated by the 

database’s cost model as both CPU and I/O intensive. However, 

its actual usage of CPU and I/O is very low, similarly to the 

queries in Cluster III, which confirms our discussion in Section 

5.1 that the database’s query cost estimation cannot be used 

directly to infer the VM’s resource needs.  

6.2.1.1 CPU-intensive Workload 
The first experiment is based on a CPU-intensive workload 

consisting of Cluster I and II queries, Q1 and Q18. The 

workload’s total request rate is varied from 20 to 50 

request/minute while the percentage of Cluster I is also varied 

from 0% to 80%. About 20 data points with different 

combinations of request rate and cluster ratio evenly selected from 

both input ranges are used to train the VM’s fuzzy model. With 

workload characterization (fuzzy modeling w/ char), both the 

request rate and cluster ratio are considered as the input for the 

CPU usage modeling. In contrast, without workload 

characterization (fuzzy modeling w/o char), only the request rate is 

used for the input and the ratio factor is ignored. To evaluate these 

two models, the workload is run with a different set of request rate 

and cluster ratio combinations (totally 60 data points) while the 

models are used to control the VM’s resource allocation. 

Figure 6(a) compares the VM CPU allocations given by these two 

models against the actual CPU usage of the VM when the 

resource is allocated based on peak load. Figure 6(b) compares the 

workload performance under these two CPU allocation schemes 

against the ideal performance under peak-load-based allocation. 

The result shows that the CPU allocation given by the fuzzy 

model created with workload characterization closely follows the 

VM’s actual demand; the average error is below 2.3%. The model 

created without workload characterization can lead to significant 

under- or over-provision; the average error is about 36.7%. The 

difference in CPU allocation accuracy leads to significant 

difference in the query workload’s performance. When using the 



model created with workload charactrization, the query response 

time is always at the same level as the peak-load-based allocation; 

the difference is less than 2s. When using the model created 

without workload characterization, in some case it leads to up to 

27s delay in response time with a 15% under-provision of CPU; in 

another case, it results in an over-provision of CPU by 15.7% but 

achieves a response time only 0.6s better than the former scheme. 

6.2.1.2 CPU/IO-intensive Workload 
In the second experiment, we study a more interesting and 

challenging workload which includes not only CPU-intensive (Q1 

from Cluster I) but also I/O-intensive queries (Q18 from Cluster II 

and Q6 from Cluster III). As the workload runs, the total 

percentage of Cluster I+II in the entire workload is varied from 

0.1 to 0.9 (the ratio between Cluster I and Cluster II is fixed) and 

the total request rate also varies from 20 to 80 request/minute. 

Similarly, different sets of data points are evenly taken from these 

data ranges for training (450 data points) and testing (120 data 

points). The experiment is performed separately using fuzzy-

modeling-based resource allocation w/ and w/o characterization. 

The former captures the workload using a vector [Request rate, 

Percentage of Cluster I+II] as the input, while the latter considers 

only the total request rate of the workload. Both CPU and I/O are 

controlled in the two cases.  

Figure 7(a) and (b) compare the VM CPU and I/O allocations in 

these two cases against the actual CPU and I/O usages of the VM 

when the resource is allocated based on peak load. Figure 7(c) 

compares the workload performance of these two allocation 

schemes against the ideal performance under peak-load-based 

allocation. The results show that the fuzzy modeling with 

workload characterization method can predict the VM’s actual 

demand with an average error of 3.5% for both CPU and I/O 

allocations. It is more accurate than the case without 

characterization in which the average error is about 37% for CPU 

and 73% for I/O. As a result, in the former case it always achieves 

the same level of performance as the peak-load-based allocation, 

with only a 1.5s delay in average response time; while in the latter 

case, the response time is always worse than the peak-load-based 

case. In the worst case, it produces either a 36% under-provision 

of CPU which causes a 15s delay or a 27% under-provision of I/O 

for 11s additional delay. Noticed that the performance in the 

without characterization case is always worse than the other two 

cases due to the misprediction of VM resource demand: although 

over-provision of either CPU or I/O does happen, the demands for 

CPU and I/O cannot be both met at the same time.    

6.2.2 RUBiS Experiments 
RUBiS models an online auction site that supports the core 

functionalities such as browsing, selling, and bidding [7]. A 

typical two-tier setup is used to set up RUBiS, where the web tier 

and database tier are deployed on separated VMs. The web-tier 

VM hosts Apache Tomcat 4.1.40 with RUBiS and its clients while 

the database-tier VM hosts MySQL 5.0 with 1.1 GB of data. Both 

VMs are configured with one CPU and 1GB RAM.  

Compared to the synthetic workloads used in the above TPC-H 

experiments, here we constructed more realistic workloads, based 

on real traces from the 1998 World Cup site [15], one of the 

public traces widely used in related research for creating realistic 

workloads [16][17]. In order to emphasize of the variation in 

workload composition, the workload’s intensity is kept constant 

(the number of concurrent client sessions to the web tier is fixed at 

800) while its composition is varied based on the pattern in a 

typical one-day hourly trace from the World Cup site. We identify 

the read and write requests in the World Cup trace based on the 

“Get” and “Post” methods, respectively, used in each request. The 

ratio of the read and write requests in this trace is then mapped to 

the ratio of the browsing and bidding requests in the RUBiS 

workload (Figure 8(a)), which corresponds to the SELECT to 

INSERT/UPDATE ratio of its database workload.  

We compare the performance of the fuzzy model created with 

workload characterization versus without it. The former considers 

both the workload’s intensity and composition as the input to the 

modeling whereas the latter considers only the intensity. The 

composition can be captured by the ratio of two types of queries, 

the SELECT queries, which are read-only, and the INSERT and 
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UPDATE queries, which are writes to the database. These 

characteristics are captured by interposing a MySQL proxy before 

the database tier. Since this experiment is performed completely 

online, only the first 10 data points collected are used to initialize 

the VM’s fuzzy model. Afterwards the model is used to allocate 

resources right away and in the meantime it is updated with new 

observed data every 10s.  

The desired QoS target for these workloads is defined according 

to the performance of the database VM under the peak-load-based 

resource allocation which statically assigns 70% CPU and 

320KB/s disk I/O bandwidth. In the experiment, the QoS target is 

set to 100ms for the average response time within each period. A 

10% margin is added to the resource allocation predicted by the 

fuzzy model. When the QoS target cannot be met due to 

inaccuracy in the model, a backup policy is invoked to allocate a 

fixed amount of I/O bandwidth (500KB/s) to the VM temporarily. 

This backup mechanism allows the performance loss to be quickly 

recovered and ensures that the model can be timely updated to 

reflect the VM’s current resource needs. It is invoked when two 

consecutive QoS violations occur and revoked after the QoS 

target are met again for three consecutive periods of time. 

Afterwards, the fuzzy model updated with the new measurements 

is used again for guiding the resource allocation.  

Figure 8(b) and (c) show the I/O predictions and allocations using 

a fuzzy model created with/without workload characterization, 

respectively, for the changing composition RUBiS workload. 

Figure 8(d) compares the corresponding performance in both 

cases with the pre-set QoS target. For the fuzzy modeling with 

workload characterization, it is able to predict the VM’s resource 

needs throughout most of the experiment and require only a few 

(3 times) invocations of the backup allocation policy. It can 

quickly react to the changes in workload composition and deliver 

the desired QoS for 92% of the time; the average response time is 

44.9ms throughout the entire experiment. However, without 

characterization, the QoS target is violated for 15% of the time, 

and the backup policy is triggered twice more often (7 times). The 

resulting average response time of 119.5ms cannot meet the QoS 

target, almost 3 times worse than the one with characterization. 

6.3 Combining both Guest-to-Host and Host-

to-Guest Optimizations 
This experiment demonstrates the effectiveness of our cross-layer 

resource management by combining guest-to-host workload 

characterization and host-to-guest database tuning for an OLAP-

like database workload. 

To construct a more interesting workload, we mix multiple copies 

of Q1, Q4, Q6, and Q14 from TPC-H queries. To make these 

queries more diverse in resource usage patterns, distinct query 

copies are derived from Q4, Q6, and Q14 by modifying the 

condition in the where cause in the original query statements. 

Each copy touches a different section of the involved tables and 

the data accessed by different copies is evenly distributed within 

the range of a table. In this way, the intensity in I/O can be easily 

varied by changing the total number of these copies, while the 

CPU intensity is varied by changing the number of copies of 

original Q1. The experiment is performed in two phases. In Phase 

1, the workload intensity is fixed by running 18 copies of queries 

in total but the composition is varied by changing the percentage 

of Q1’s copies from 17% then to 50% and finally to 83%. In 

Phase 2, an I/O cap from 3000 to 1000KB/s is set to the VM to 

simulate different levels of I/O contention from other VMs while 

the workload composition is kept constant with 83% of Q1. 

Using our proposed approach with cross-layer optimization, 

during Phase 1, it models the VM’s resource demand using the 

workload characterization result, [Request rate, Percentage of 

Cluster I], as the input (two types of queries are classified: Q1 as 

the CPU-intensive query and the others as the I/O intensive). This 

model is then used to allocate resources to the VM in the absence 

of contention. When the experiment transits to Phase 2 and I/O 

contention is introduced into the system, our approach feeds the 

I/O bandwidth pressure back to the guest layer by tuning the 

database parameters according to the resource availability as 

discussed in Section 5.2. In comparison, we repeat the experiment 

using fuzzy-modeling-based resource allocation without cross-

layer optimization. In this case, during Phase1, only the workload 

intensity is used to create the fuzzy model; during Phase 2, the 

database configuration is not adapted and kept static as in Phase 1. 

Figure 9 compares the database performance under fuzzy-

modeling-based resource allocation with cross-layer optimization 

(Cross-layer Opt) and without it (Non-Opt) versus the ideal 

performance under peak-load-based resource allocation (Peak-

load-based). From the result we can see that in Phase 1, the 
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performance in Cross-layer Opt closely follows the one under 

peak-load-based allocation. It is as much as seven times better 

than that in Non-Opt which results in a 98% average performance 

degradation. In Phase 2, both approaches suffer from the reduced 

I/O bandwidth. However, the Cross-layer Opt case still achieves 

about 17% performance improvement than the Non-Opt case. The 

host-to-guest feedback enables the database query optimizer to 

switch from a bitmap-scan preferable plan to an index-scan 

preferable plan for all I/O intensive queries by tuning the I/O cost 

parameters sequential_page_cost vs. random_page_cost from the 

original 1:4 ratio to 1:1 as the I/O cap decreases from 3MB/s to 

1MB/s. This adaptation improves the query performance 

significantly because the index-scan preferable query plan 

requires less I/O bandwidth than the bitmap-scan preferable one.     

7. RELATED WORK 
Various solutions have been studied in the literature to address the 

problem of automatically deciding a VM’s resource allocation 

based on its hosted application’s demand and QoS requirement. In 

particular, different machine learning algorithms have been 

considered to model VM resource usages. For example, a simple 

regression method is used to predict the performance impact of 

VM memory allocation [18]; Reinforcement learning is used to 

automatically tune VM resource configuration [19]; Artificial 

neural networks are used to model the nonlinear behaviors for a 

variety of applications when their VMs are under I/O contention 

[20]; our previous work [5][8] proposed to use fuzzy logic to 

model the relationship between application workload and VM 

resource demand, which is shown to be both fast and accurate for 

modeling systems with complex behaviors. Unlike the traditional 

solutions which treat VM as a black box, this paper’s application-

aware approach takes advantage of application-specific 

knowledge to capture the workload patterns so that the VM model 

can accurately predict its demand and quickly adapt to the 

changes in application workload. 

Classical feedback control theory has also been used to adjust VM 

resource allocations according to the application’s performance 

requirement. Linear multi-input-multi-output (MIMO) models are 

often used for performance modeling, for example, to allocate 

CPU resource for Web servers [21][22], to manage the 

performance interference of competing VMs [25], and in more 

complicated cases, to allocate multiple types of resources to multi-

tier applications [23][24]. Although such linear models can be 

updated adaptively as the system moves from one operating point 

to another, their accuracy and speed are limited for capturing 

complex nonlinear behaviors existing in VMs. In contrast, the 

fuzzy-modeling-based approach proposed in this paper can 

effectively capture such behaviors and the modeling is shown to 

be fast. In fact, our previous work as well as others [26] proposed 

a fuzzy-model-based predictive controller, which embeds fuzzy-

modeling into a predictive control system, shows promising 

results for both effectively capturing complex system behaviors 

and quickly adapting to changes in the system [27]. 

In the related research on workload-aware resource management, 

R. Singh et al. proposed a mix-aware provisioning solution for 

allocating server capacity to the bottleneck-tier in datacenters 

serving workloads with changes in both volume and mix [28]. It 

employs k-means clustering to characterize workload mix and 

queuing models for predicting server capacity. In comparison, our 

proposed approach exploits application-specific knowledge to 

effectively characterize workloads, employs fuzzy modeling to 

accurately capture  VM resource usage, and supports finer-

grained allocations of multiple types of resources including both 

CPU and I/O. Furthermore, in addition to extracting knowledge 

from the guest to host for better understanding of application 

resource demand, our approach also delivers the allocation 

decisions from host to guest for the application to better adapt to 

resource availability changes.      

In the related work on virtualized database resource management, 

Soror et al. proposed using calibrated database query cost model 

to estimate the VM resource demand [29]. It considers a workload 

as a static entity consisting of a fixed set of queries, so the 

resource allocation decision is made for the entire workload 

according to the overall performance requirement. To deal with 

the inaccuracy in database cost models, it employs online 

refinement by assuming a linear VM resource usage model. In 

contrast, our proposed approach uses database cost model only as 

a tool to discover workload composition, but not for directly 

estimating VM resource demand, thereby avoiding the well-

known inaccuracy inherent to database cost models. Our approach 

also more realistically treats a workload as a non-stationary time 

series and considers fine-grained query performance needs. The 

VM’s complex resource usage model is automatically learned and 

adapted online without any a priori assumption.    

Other related autonomous database work [30][31][32] focuses 

only on a database’s internal tuning and query optimization, but 

not the resource allocation to an entire database VM. Previous 

work [33][34] points out workload characterization as the key to 

understanding the resource intensity of a database workload. This 

paper incorporates both of the two aspects of work in the fuzzy-

modeling-based resource management of virtualized databases. It 

improves the static workload characterization method by allowing 

online and adaptive characterization and optimizes the 

performance of virtualized databases by further tuning database 

parameters according to the adjustment in resource allocations.  

8. CONCLUSION AND FUTURE WORK 
This paper proposes a new VM resource management approach 

based on fuzzy modeling and cross-host-guest optimization. It 

enables the communication between VM host- and guest-layer 

schedulers and allows them to collaboratively optimize the 

resource allocation and application performance. The host-layer 

scheduler exploits guest-layer application-specific information to 

characterize VM workload and model its resource demand. The 

guest-layer scheduler uses the host-layer feedback to understand 

the changing resource availability and adapt its configuration 

accordingly. As a challenging case study, this cross-layer 

optimization approach is applied to the resource management of 

virtualized databases. It uses a database’s cost estimation for 

workload characterization and adapts the database by tuning its 

cost model parameters according to its resource availability.  

A prototype of this approach is implemented on Xen-based VMs 

and evaluated using typical database workloads based on TPC-H 
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and RUBiS. The results demonstrate that the cross-layer 

optimization approach significantly outperforms the application-

unaware one which treats VMs as black boxes. It can efficiently 

allocate both CPU and I/O resources to database VMs serving 

workloads with dynamically changing intensity and composition 

while meeting QoS targets or improving the performance when 

under resource pressure.  

The proposed cross-layer optimization requires certain awareness 

between virtualization software and virtualized application. Such 

awareness breaks the transparency offered by traditional full 

virtualization, but we advocate that this tradeoff is necessary for 

business- and mission-critical applications to achieve their desired 

QoS on virtualized systems. The benefit of this tradeoff is 

demonstrated by our initial results reported in this paper. The 

underlying argument is the same as that drives the success of 

paravirtualization [2] which sacrifices complete transparency for 

lighter-weight and more efficient virtualization. Although not 

every virtualized application is capable of adapting its behavior 

according to changing resource availability, we believe it will 

become a necessity for critical applications as virtualization 

becomes pervasive. In our future work, we will study how to 

create a concise and generic interface for cross-layer optimization 

that can support diverse guest OSes and applications. 
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