
Application-aware Cross-layer Virtual Machine Resource
Management

Lixi Wang Jing Xu Ming Zhao

School of Computing and Information Sciences
Florida International University, Miami, FL, USA

{lwang007,jxu,ming}@cs.fiu.edu

ABSTRACT

Existing resource management solutions in datacenters and cloud

systems typically treat VMs as black boxes when making resource

allocation decisions. This paper advocates the cooperation

between VM host- and guest-layer schedulers for optimizing the

resource management and application performance. It presents an

approach to such cross-layer optimization upon fuzzy-modeling-

based resource management. This approach exploits guest-layer

application knowledge to capture workload characteristics and

improve VM modeling, and enables the host-layer scheduler to

feedback resource allocation decision and adapt guest-layer

application configuration. As a case study, this approach is

applied to virtualized databases which have challenging dynamic,

complex resource usage behaviors. Specifically, it characterizes

query workloads based on a database’s internal cost estimation

and adapts query executions by tuning the cost model parameters

according to changing resource availability. A prototype of the

proposed approach is implemented on Xen VMs and evaluated

using workloads based on TPC-H and RUBiS. The results show

that with guest-to-host workload characterization, resources can

be efficiently allocated to database VMs serving workloads with

changing intensity and composition while meeting Quality-of-

Service (QoS) targets. For TPC-H, the prediction error for VM

resource demand is less than 3.5%; for RUBiS, the response time

target is met for 92% of the time. Both significantly outperform

the resource allocation scheme without workload characterization.

With host-to-guest database adaptation, the performance of TPC-

H-based workloads is also improved by 17% when the VM’s

available I/O bandwidth is reduced due to contention.

Categories and Subject Descriptors
C.4 [Performance of System]: Modeling techniques;

I.5.1 [Pattern Recognition]: Models – fuzzy set

Keywords
Autonomic computing, Fuzzy modeling, Resource management,

Virtualization

1. INTRODUCTION
With the rapid growth of computational power on compute

servers and the fast maturing of x86 virtualization technologies,

virtual machines (VMs [1][2]) are becoming increasingly

important in supporting efficient and flexible application and

resource provisioning. Virtualization is the key enabling

technology for building agile datacenters and emerging cloud

systems [3][4]. It allows a single physical server to be carved into

multiple virtual resource containers, each delivering a powerful,

secure, customizable, and portable execution environment for

applications. As the level of VM-based consolidation continues to

grow, there is an increasingly urgent need for virtualized systems

to deliver better Quality-of-Service (QoS) guarantees, so that

users are comfortable in running their applications on the shared

infrastructure. However, currently such systems cannot meet

stringent performance requirements, particular not for applications

with dynamic and complex behaviors. Consequently, examples

such as cloud systems cannot support QoS-based Service Level

Agreements (SLA), whereas users often have to purchase

unnecessary resources for their VMs.

Existing resource management solutions typically treat VMs as

black boxes when making resource allocation decisions. The host-

layer VM scheduler is agnostic of the guest-layer application-

specific resource scheduling, whereas a guest-layer application

scheduler is unaware of the host-layer VM resource allocation.

Although such transparency is important for reasons such as

portability and legacy support, it also prevents the resource

management effectively providing application-desired QoS. On

one hand, the knowledge of an application’s workload

characteristics can help the host-layer resource management to

better understand the VM’s resource demand and meet the

application’s QoS target. On the other hand, the knowledge of the

host’s VM allocation decision can help the guest-layer resource

management understand the actual resource availability and adapt

its scheduling to improve application performance.

Therefore, this paper proposes cross-layer optimization in VM

resource management which allows certain awareness and

cooperation between host and guest in order to improve

application performance and meet its QoS target. Specifically, this

paper studies two aspects of such cross-layer optimization. First,

guest-to-host optimization exploits guest-layer application

knowledge to capture dynamic workload characteristics and

improve the modeling of VM resource usage. Second, host-to-

guest optimization enables the host-layer scheduler to feedback

resource allocation decision and adapt guest-layer application

configuration. These two aspects of cross-layer optimization are

integrated into a fuzzy-modeling-based resource management

system [5] which uses fuzzy logic to model VM resource demand

online and allocate resource dynamically according to application

QoS requirement.

This paper considers virtualized databases as an interesting and

challenging case study. Databases often serve complex and

dynamic workloads which consist of a variety of queries with

different types and amounts of resource demand. Moreover,

databases typically employ sophisticated optimization schemes

which adapt query executions according to their resource

availability. Hence, applying cross-layer optimization to the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICAC’12, September 18–20, 2012, San Jose, California, USA.
Copyright 2012 ACM 978-1-4503-1520-3/12/09...$15.00.

resource management of virtualized databases can be a convincing

showcase of our proposed approach. Specifically in this case

study, the proposed cross-layer optimization approach performs

workload characterization based on database’s internal cost model

and adapts query executions by tuning the cost model parameters

according to changing resource availability.

This proposed system is prototyped on Xen-based VM

environments and evaluated by experiments using typical

database workloads created based on TPC-H [6] and RUBiS [7]

benchmarks. The results show that the fuzzy-modeling-based

resource allocation with guest-to-host workload characterization

can accurately predict the resource needs for complex application

workloads. For TPC-H, it achieves less than 3.5% error for

predicting VM resource demand; for RUBiS, it meets the response

time target for 92% of the time. Both substantially outperform the

resource allocation scheme without workload characterization, in

terms of both application QoS and resource efficiency. Moreover,

the results also show that our proposed approach of host-to-guest

application adaptation effectively optimizes the database’s query

execution when the VM’s resource availability changes due to I/O

contention. The performance of a TPC-H workload is improved

by about 17% compared to the scheme without such adaptation.

To the best of our knowledge, this paper is the first to study cross-

layer optimization in VM resource management, considering both

guest-to-host workload characterization and host-to-guest

application adaptation. The case study demonstrates the

effectiveness of this approach and provides an experimental

evaluation. Compared to existing VM resource management

solutions, this approach can accurately capture complex resource

usage behavior for virtualize applications, timely adapt to

dynamic changes in workloads, and optimize their performance

under varying resource availability. In the rest of the paper,

Section 2 presents the motivating examples, Section 3 introduces

the background on fuzzy-modeling-based resource management,

Section 4 and 5 present the general approach of cross-layer

optimization and its case study on virtualized databases, Section 6

discusses the evaluation, Section 7 examines the related work, and

Section 8 concludes the paper.

2. MOTIVATING EXAMPLES
In this section, we use several examples to motivate the need of

cross-layer optimization in VM resource management, including

both guest-to-host workload characterization and host-to-guest

application adaptation.

2.1 Guest-to-Host Workload Characterization
For the first aspect of cross-layer resource management, we use an

example to demonstrate that it is necessary for the host-layer VM

scheduler to use the knowledge from guest-layer for workload

characterization. Coarse-grained workload information such as the

request rate or number of concurrent users can be easily obtained

without knowledge about application internals. However, this

information is no longer sufficient when the application workload

consists of different types of requests with diverse usage of

multiple types of resources. Here we use a concrete example

based on a typical multi-tier OLTP benchmark, RUBiS [7] to

demonstrate this limitation (Figure 1 and 2).

We fix the RUBiS’ database tier’s query workload intensity by

running 300 concurrent client sessions in RUBiS. But we vary the

composition of the query workload by increasing the ratio

between bidding and browsing requests to the web tier, which

corresponds to the ratio between read and write queries to the

database tier. The entire experiment lasts for 600 seconds, starting

with a browsing-only mix and then shifting to a 30%-bidding mix

from the 300th second. The QoS target for this workload is set to

800ms. Without being aware of the changes in workload

composition, the amount of resources needed by the RUBiS VM

is estimated based solely on the workload intensity. Hence only

60KB/s I/O bandwidth is allocated to the RUBiS VM throughout

the entire experiment (Figure 1). This allocation is enough for the

workload to meet the QoS target in the first 300 seconds when the

workload is not I/O intensive; but it leads to many QoS violations

in the second 300 seconds due to the under-provisioning of I/O

bandwidth (Figure 2). To address this problem, this paper

proposes to exploit application-specific knowledge of workload

characteristics in terms of different types of requests in order to

make more accurate allocation decisions.

2.2 Host-to-Guest Application Adaptation
We use other examples from virtualized databases to show the

advantage of feeding back the information of resource availability

from host- to guest-layer. We run a workload consisting of single

copy of TPC-H query Q8 on a 3GB database VM, and manually

set the database cost model parameters given different resource

capacity. Figure 3 and 4 compare the query performance using

two representative settings of the cost model parameters,

seq_page_cost and random_page_cost. Both parameters

characterize the database’s execution environment: the former

defines the cost of fetching a page from disk using sequential

reads whereas the latter, usually more costly, defines the cost of a

non-sequential disk page fetch. Changing these parameters affects

the database performance indirectly by influencing the database’s

internal query cost estimation. Lower value of seq_page_cost

reduces the cost of a plan with more sequential scans on the

tables; lower value of random_page_cost reduces the cost of a

plan with more random scans, e.g., index scans. Therefore,

changing the ratio between these two parameters affects the

database’s preference on different execution plans.

In the first example (Figure 3), Q8 runs on a cold database VM, as

the I/O bandwidth allocated to the VM is reduced from 5000 to

1000 KB/s. Both database configurations suffer from performance

degradation with reduced available I/O bandwidth. However,

when the available I/O bandwidth is high, the configuration that

 Figure 1 I/O Allocation for a changing
mix in RUBiS

Figure 2 Performance for a changing
mix in RUBiS

Figure 3 Execution time of TPC-H Q8

with varying I/O allocation
Figure 4 Execution time of TPC-H Q8

with varying memory allocation

favors sequential scan outperforms that favors random scan (by

89% at 5000KB/s). When the I/O bandwidth is throttled, the

latter’s performance is only slightly affected and as a result it is

1.9 times better than the former at 1000 KB/s. The second

example performed in a warm database VM shows similar

behavior of Q8 performance but with respect to changing memory

availability (Figure 4). When the available memory is low, the

sequential-preferable DBMS configuration is drastically faster (by

14 times) because only a small amount of indices or tables can be

cached in memory. As the memory allocation increases from 640

to 768MB, the indices can be effectively cached and consequently

the index-preferable configuration’s performance substantially

outperforms the sequential-preferable configuration (by 3 times).

The above examples show strong evidence of the importance of

host-to-guest optimization. If the database cost parameters can be

adjusted dynamically to reflect the actual resource availability to

the VM, the database performance can be further improved.

3. Fuzzy-modeling-based VM Resource Management
The main challenges to VM resource management are how to

efficiently allocate resources to VMs and how to do so

automatically and continuously. To address these challenges, our

previous work [5][8] proposed fuzzy-modeling-based resource

management to learn a VM’s resource demand and allocate

resources according to its QoS target in an autonomic manner.

Fuzzy logic is used to create a VM’s resource usage model

automatically from data observed from the system without

assuming any a priori knowledge about the system’s structure. It

is shown to be able to effectively capture complex, nonlinear

resource usage behaviors in a virtualized system.

Figure 5 illustrates the architecture of our fuzzy-modeling-based

resource management system. It consists of four key modules. As

a workload executes on the VM, the Application and VM Sensors

monitor the workload W(t), its performance P(t), and the VM’s

resource usage R(t). The Adaptive Learner creates and updates a

fuzzy model that represents the relationship between a workload

and its VM’s resource needs. With this model and the current

workload W(t), the Resource Predictor estimates the resource

needs for time t+1 and the Resource Allocator adjusts the

allocation accordingly. Together, these modules form a closed-

loop for the VM’s resource control and optimization.

Fuzzy logic is employed to build the model based on the qualified

input-output data pairs, <W(t), R(t)> whose workload performance

P(t) meet the desired QoS target. Both the workload input W(t)

and the resource usage output R(t) can be vectors with multiple

dimensions. This model captures the relationship between the

application’s workload and the VM’s resource demand for

meeting the QoS target. With the fuzzy model created by the

Adaptive Learner, the Resource Predictor performs fuzzy

inference to generate an estimate of the resource needs R given

the workload input W. This estimation is then sent to the Resource

Allocator to guide the VM’s resource allocation. More details on

fuzzy modeling can be found in our previous work [5][8].

In this paper we propose to further improve this existing fuzzy-

modeling-based resource management system by incorporating

cross-layer optimization between the VM host and guest, which is

discussed in detail in the rest of this paper.

4. GENERAL APPROCAH TO CROSS-

LAYER OPTIMIZATION
The goal of cross-layer optimization is to enable VM host- and

guest-layer resource schedulers to communicate scheduling-

related information and collaboratively improve the performance

of a virtualized application and satisfy its QoS requirement.

Existing resource management solutions typically treat VMs as

black boxes when making resource allocations. The host-layer

VM scheduler is agnostic of the guest-layer application-specific

resource scheduling, whereas a guest-level application scheduler

is also unaware of the host-layer VM resource allocation. Such

transparency is important for reasons such as portability and

legacy support, but for applications requiring strong QoS

guarantees, a tradeoff can be made to allow certain awareness and

cooperation between host and guest for meeting the QoS target.

Such cross-layer optimization is two-fold. First, the host-layer

scheduler can leverage the guest-layer application-specific

knowledge to improve the VM resource allocation decisions.

Second, the guest-layer scheduler can adapt its application-

specific scheduling based on the host-layer VM resource

allocation to improve the application performance under changing

resource availability. We will describe the general approach to

both of these aspects of cross-layer optimization in this section.

4.1 Guest-to-Host Optimization
The guest-to-host aspect of our proposed cross-layer optimization

is to exploit the guest-layer application-specific information to

improve the understanding of the VM workload’s resource usage

patterns. Such knowledge will enable the host-layer resource

scheduler to more accurately estimate the VM’s resource demands

and more agilely adapt to its workload changes. We propose to

analyze an application’s workload by describing it in terms of the

characteristics that are relevant to its VM resource usage

behaviors. Such characteristics provide important inputs to the

effective modeling and prediction of the VM’s resource needs. A

commonly used workload characteristic is its overall intensity

such as the total request rate or total number of online users. As

shown in the motivating examples (Section 2.1), this characteristic

alone is not sufficient for a real-world workload that consists of

requests with diverse use of resources. As another example, a web

workload consisting of only static web page has distinct resource

needs versus one containing also considerable dynamic web page

requests, even if their total request rates are exactly the same (the

former consumes mainly CPU while the latter requires also

substantial I/O bandwidth). Hence, it is important to characterize a

workload’s composition of different types of requests in terms of

their resource usage patterns. But such characterization is difficult

to do in existing resource management solutions which treat VMs

as black boxes where application-specific knowledge is hidden.

To address this problem, we propose cross-layer optimization

which allows a host-layer scheduler to exploit a guest-layer

application’s knowledge to understand the resource usage patterns

of its received requests in the workload. For example, for web

Figure 5 Architecture of cross-layer optimization on fuzzy-modeling-

based resource management system

workloads, the web server’s knowledge can be exploited to

understand whether the received HTTP requests are targeting

static or dynamic content. Such characterization of workload

composition is key to understanding the VM’s demands of CPU

and I/O resources. For the workloads that contain more complex

requests, such as in Online Analytical Processing (OLAP), more

sophisticated application knowledge is required to analyze their

resource usage patterns. We propose to characterize such

workloads by leveraging the application’s internal cost model,

which is discussed in detail in Section 5.

The characterization of each individual request’s resource usage

pattern can be aggregated to describe the entire workload’s

resource usage characteristics. However, for workloads containing

vast diversity of requests, it is impractical to describe all requests

in the workload characterization. A concise representation is

needed to effectively compress the information of all requests,

which is critical to ensure low overhead and high robustness of

the characterization. We propose to use data clustering techniques

to group a workload’s queries into clusters, so that those within a

cluster are more similar in terms of their resource requirements to

each other than the ones from different clusters. Assuming after

the clustering a workload consists of m different groups of

requests (r1, … rm), the entire workload can then be characterized

by the request rates of all these groups (Wr1,…, Wrm), where each

group represents a distinct resource usage pattern.

Many well established offline clustering algorithms are available

for use, such as K-means, hierarchical clustering, subtractive

clustering, etc. However, because of the dynamic nature of real-

world workloads, the request cluster analysis should be carried out

in an online fashion. To achieve this, we propose online, adaptive

request clustering for an online, dynamic VM system, in which

the clustering is performed in a way that is self-learning and self-

adapting, without needing the number of clusters to be pre-

specified. The basic idea is to perform one-pass, non-iterative

clustering of a stream of requests using a method such as

subtractive clustering. The procedure starts with an empty set of

clusters and creates the first cluster with the first request sample

assumed to be the cluster center. As more request samples come

in, either a new cluster is added with the center based on the new

data, or an existing cluster is removed or updated based on certain

criteria (e.g., the radius set in subtractive clustering [9]). Such a

clustering approach has the ability to gradually adapt to the

changing data patterns. It can be applied to the data set of any size

and allows flexible clustering with an evolving shape so that it can

better match the current data distribution.

The above proposed workload characterization process will be

performed online periodically (e.g., every 10s), in which the

recently received requests will be used to update the workload’s

current clustering results. In this way, the characterization does

not need a priori knowledge about all the queries that compose

the workload, and it can dynamically adapt to the changing

workload composition.

4.2 Host-to-Guest Optimization
The host-to-guest aspect of our proposed cross-layer optimization

is to feed back the host-layer VM resource allocation decision and

enable the guest-layer application-specific scheduling to adapt for

better performance. Many applications need to be tuned to

optimize their performance based on the resource availability of

the hosting system. For example, a web server needs to tune

parameters such as the number of concurrent threads based on its

host’s available memory. A database needs to tune its internal cost

model (e.g., the CPU and I/O costs of processing a tuple) based on

its host’s resource availability so that it can correctly estimate the

costs of different query execution plans and select the most

efficient one to use. A web search engine may change its

crawling, indexing, or searching strategies as the resource

availability varies. When resource is constrained, it may crawler

over only a portion of available web pages, restrict the depth of

parsing and indexing on the searched contents, and return a

limited number of best matching results to the users. Another

example application is a simulator that can tune the modeling

resolution based on its host’s resource availability to increase the

simulation accuracy or speed up the simulation progress [10].

When such an application is hosted on a physical machine, it

needs to be tuned only once during the initial deployment.

However, on a VM, the resource availability can vary over time,

because of 1) changing resource contention from other co-hosted

VMs as they come and go dynamically and their workloads vary

over time; 2) changing resource allocation policy such as VM

priorities or Service-level Agreements (SLAs). Nonetheless, the

changing resource availability to a VM is hidden to the

application in existing VM resource management solutions. As a

result, the application is stuck with the initial configuration

assuming a resource availability that is no longer valid. It cannot

adapt itself to use a configuration that is more efficient in

application performance and/or resource utilization when the

VM’s resource becomes either under pressure or abundant.

To address this problem, we propose cross-layer optimization for

the host-layer scheduler to feedback the resource allocation

decision to the guest-layer and automatically adapt the latter’s

configuration for improved performance given the current

resource availability. The general approach to this host-to-guest

optimization can be formally described as follows. Assuming that

there are M different types of resources, such as memory, CPU

capacity, or I/O bandwidth, Ri=[Ri1, …RiM] represents the amount

of resource of different types available for workload Wi of

application i. The goal of the optimization is to find a feasible set

of configuration parameters, denoted as Ci, of the application i

that the performance of the workload Pi is optimized, given the

VM’s current resource availability Ri. In order to enable such

adaption, we need to have a means of mapping different recourse

allocations to the corresponding optimal parameter settings.

Although this mapping is application specific, there are some

general steps.

1) Find out the set of possible parameters Ci = [ci1,.. cik, cin] that

contributes to the application i’s performance. For each

parameters cik, we need to determine a function that defines cik

as a function of Ri, i.e., fik(Ri).

2) Given a certain resource allocation, run a general workload of

the virtualized application for the mapping process. Iterate a

variety of settings for cik over its value range and measure the

application performance. Collect the setting cik_opt with the

best performance.

3) Repeat Step 2 under different candidate resource allocations

over the possible range.

4) Collect the data pairs <cik_opt , Ri> for each allocation, and

perform regression analysis on the set of the data to fit the

function cik_opt = fik(Ri).

Once such a mapping is built for an application, the resource

availability to the VM can be directly fed back to enable the

application’s adaptation.

The aforementioned two aspects of cross-layer optimization are

integrated with our existing fuzzy-modeling-based VM resource

management middleware. For guest-to-host optimization, the

workload is characterized by Application Sensor based on

application-specific knowledge, which is used by the Adaptive

Learner for better modeling and predicting the VM’s resource

usage behavior. For host-to-guest optimization, as Resource

Allocator adjusts the allocation based on the prediction given by

the fuzzy model, it also feeds back this decision to the VM for the

application to tune its parameters for better performance. The

resulting autonomic resource management system can not only

automatically allocate resources to VMs based on their dynamic

workload demand but also adaptively improve application

performance even when the system is overloaded.

5. CASE STUDY
In this section, we take virtualized databases as an interesting and

challenging case study of our proposed cross-layer resource

management approach. Traditionally, databases are hosted on

dedicated physical servers that have sufficient hardware resources

to satisfy their expected peak workloads with desired QoS.

However, this is often inefficient for the real-world situations in

many application domains such as e-business [11] and stream data

management [12], where the workloads are intrinsically dynamic

in terms of their bursty arrival patterns and ever-changing unit

processing costs. Using VMs to host databases can effectively

address this limitation. It allows a database to transparently share

the consolidated resources with other applications, where a

database’s resource usage can elastically grow and shrink based

on the dynamic demand of its workload.

The cross-host-guest cooperation for a virtualized database is

implemented as follows. For guest-to-host optimization, a

database proxy served as the Application Sensor is deployed on

the host to intercept the incoming query requests to the database

VM and characterize the workload composition by classifying the

queries. For host-to-guest optimization, a daemon running on the

guest periodically obtains resource allocation decision from the

Resource Allocator, looks up the corresponding optimal database

parameters, and sends an administrative query to the database to

change the parameters accordingly.

5.1 Guest-to-Host Workload Characterization
Databases are a challenging application because of their highly

complex and dynamic resource usage behaviors. Database queries

can be both CPU and I/O intensive and a typical database

workload can have a diverse variety of such queries with

dynamically changing composition. Nonetheless, a database’s

internal query optimizer has intimate knowledge of a query

resource usage pattern. Such knowledge can be extracted from the

database and used to classify queries for characterizing the entire

workload in terms of its resource demands. The result of the

workload characterization can be then used as input to the VM’s

fuzzy model to improve its accuracy and adaptability under

dynamic changes of the workload. Typically, the query cost is

defined as a function of the amount of resource usages estimated

by the database, which can be extracted as a vector of different

resource costs. Note that the database’s cost estimation cannot be

directly used to infer its VM’s resource needs because, first, its

accuracy is often limited [13], and second, it does not capture the

entire VM’s resource needs.

Specifically, we use PostgreSQL database system as an example

to demonstrate our proposed guest-to-host optimization on

workload characterization. The internal cost model in PostgreSQL

is defined as a function of a set of database cost parameters,

denoted as CostD(C) where C=[c1, c2,.., cm]. Each cost parameter

represents the unit cost of either CPU or I/O usage associated with

an operation in the database. For example, sequential_page_cost

and random_page_cost represent the overhead of a single

sequential and non-sequential I/O to fetch a page from disk,

respectively; cpu_tuple_cost estimates the CPU cost of processing

each row in a table. The total cost that aggregates the costs of all

operations in a query plan can be broken down into two parts: the

total CPU cost and the total I/O cost. Each query can be expressed

as a 2-dimention cost vector <CostCPU, CostI/O >.

To characterize a workload, the Application Sensor first extracts

the cost vector for all unique queries in a workload from database

and then performs subtractive clustering [9] on the set of query

cost vectors collected. By setting the radius of a cluster r, any pair

of the query vectors with distance d<r will fall into the same

cluster indicating queries with similar resource usage patterns.

Finally, as the workload runs, the Application Sensor measures

query intensity online by counting the request rate for each

individual cluster. For example, a workload mix W consists of N

queries, and after clustering only K clusters are generated where

K<<N. The workload can be abstracted as a vector of arrival rates

of these clusters <C1, C2, …, CK>. Then the above arrival rate

vector that reflects the current characteristics of the workload is

periodically fed to the Adaptive Learner as an input for modeling

the VM’s current usage behavior. At the same time, the workload

characterization of current time t is also used as the input for the

Resource Predictor to estimate the resource demand of the next

time step t+1 based on the assumption that no abrupt change

happens to the workload within one period of time.

5.2 Host-to-Guest Database Adaptation
Databases are a typical application that has a complex internal

self-scheduling and self-optimization mechanism which can

optimize its performance based on its knowledge about the

outside environment. Based on the given resource capacity, a

database’s query optimizer can automatically evaluate different

query execution plans and choose the most efficient one to

execute queries. As the availability of resources changes, critical

parameters on which the query optimizer depends on for cost

evaluation should also be updated accordingly, which will lead to

better resource utilization and more efficient query executions.

Specifically, a database usually uses the aforementioned cost

model CostD(C), defined as a function of a set of parameters C, to

estimate the costs for all possible query execution plans. Each

parameter ck in the cost model serves as a cost factor related to a

certain type of operation in query processing such as table

scanning and tuple processing. Appropriate values on these

parameters that reflect the actual VM resource availability will

help the query planner choose the most efficient operations.

Taking PostgreSQL as an example, as shown in Section 2.2, the

query optimizer will switch from a sequential scan to an index

scan for processing the TPC-H query Q8 as the relative value of

rand_page_cost to sequential_page_cost decreases. Such tuning

is necessary when the I/O contention happens and more efficient

scanning method is desired given the limited I/O bandwidth.

To tune the cost parameters given changing resource availability,

we need to find the mapping from the resource allocation to the

optimal parameter values. Because all the cost parameters in a

cost model are factors normalized on the same scale, only the

changes in their relative values will result in alternative query

execution plan. Therefore we focus on building the mapping

between the ratio of those cost parameters and the resource

allocation to the VM. For example, to investigate the impact of

I/O allocation on the scanning methods, the ratio of the

aforementioned two I/O cost parameters is considered. We

generate a simple query that needs to read all the rows from a

large table. The query is executed by different plans using

sequential scan vs. random scan iteratively with different amount

of I/O allocation. The performance obtained from the changing

I/O allocation is observed for each scanning plan. Since the total

cost of each plan is mainly resulted from the scanning operations,

other types of processing overhead can be ignored. We then

normalize the performance of different plans and consider them as

the estimation of the I/O cost parameters for different I/O

allocation. In this way, a mapping is built between the I/O

allocation and I/O cost parameters, which is consistent with the

actual performance observed with the corresponding plans.

In addition to those parameters that reflect the knowledge about

the database’s execution environment, there are also other types of

parameters used in database-level scheduling that defines the

database’s own limit for certain type of resource usage. For

instance in PostgreSQL, the parameter shared_buffers changes the

amount of memory that the database uses for caching data. A

reasonable setting value of shared_buffers should be proportional

to (e.g., ¼) the amount of memory allocated to its VM.

6. EVALUATION

6.1 Setup
This section evaluates our approach using representative database

workloads hosted on a typical VM environment. The testbed is a

Dell PowerEdge 2970 server equipped with two six-core 2.4GHz

AMD Opteron CPUs, 32GB of RAM, and one 500GB 7.2 RPM

SAS disk. Xen 3.3.1 is installed to provide the VMs, where the

operating system for both Dom0 and DomU VMs is Ubuntu

Linux 8.10 with paravirtualized kernel 2.6.18.8. The evaluated

databases are hosted on DomUs, while our resource management

system is hosted on Dom0. In all experiments, the management

system monitors and controls the database VM’s usage of both

CPU cycles and disk I/O bandwidth every 10 seconds. In the VM

Sensor, resource monitoring is done using xentop and iostat,

where the I/O bandwidth usage is considered as the sum of reads

and writes per period of time. In the Application Sensor, a

database proxy deployed on Dom0 is used to measure the

performance of the database VM. The Resource Allocator uses

Xen’s credit CPU scheduler to assign CPU allocations and

Linux’s dm-ioband I/O controller to set the cap for disk I/O

bandwidth [14].

Two typical database benchmarks, TPC-H and RUBiS, are used in

our experiments for different purposes. Experiments designed on

TPC-H are aimed to show the accuracy of our approach in

modeling resource consumption behaviors for highly complex

workloads. For RUBiS, it is to show the effectiveness of our

solution in adapting to more random changes in the system. The

performance metrics is average query response time measured

every 10s. Three different resource allocation schemes are

compared: 1) The fuzzy-modeling-based allocation with cross-

layer optimization which includes guest-to-host workload

characterization and host-to-guest database tuning; 2) The fuzzy-

modeling-based allocation without cross-layer optimization; 3)

The traditional peak-load-based allocation which statically

allocates a fixed amount of resources based on the peak workload

demand. By comparing the VM’s resource usage and the

benchmark’s performance between these cases, we evaluate

whether our proposed cross-layer optimization approach can

allocate resources more efficiently while meeting the desired QoS

target or improving its performance.

6.2 Guest to Host Optimization
6.2.1 TPC-H Experiments
TPC-H provides 22 representative queries of business decision

support systems, which involve the processing of large volumes of

data with a high degree of complexity. Based on these queries, we

construct synthetic workloads with varying demands of different

types of resources. With peak-load based allocation, 100% CPU

and 10MB/s I/O are allocated to the database VM statically. With

fuzzy-modeling-based allocation, there are two phases involved.

In the training phase, the fuzzy model is learned without resource

restrictions, while in the testing phase the model is applied to

predict the resource demand and control the resource allocation.

The evaluation of more realistic workloads with online training is

discussed in Section 6.2.2. The database used here is PostgresSQL

8.1.3 with 2GB of data on a VM with one CPU and 1GB RAM.

To characterize the TPC-H workload, subtractive clustering is

performed on all the 22 queries based on their cost vectors, where

a small radius of 0.1 is used in the clustering to derive tight

clusters. The result identifies four clusters. Cluster I containing

single query Q1 and Cluster II containing single query Q18

represent highly and moderately CPU-intensive queries,

respectively. Cluster III including Q4, Q6, Q15, and Q12

represents highly I/O-intensive queries. Cluster IV including most

of the remaining queries represents simple queries which are

neither CPU nor I/O intensive. This result is experimentally

verified by the actual resource usages when running the queries

separately on the database VM. The only exception is Q22 which

is identified as another single-query cluster and estimated by the

database’s cost model as both CPU and I/O intensive. However,

its actual usage of CPU and I/O is very low, similarly to the

queries in Cluster III, which confirms our discussion in Section

5.1 that the database’s query cost estimation cannot be used

directly to infer the VM’s resource needs.

6.2.1.1 CPU-intensive Workload
The first experiment is based on a CPU-intensive workload

consisting of Cluster I and II queries, Q1 and Q18. The

workload’s total request rate is varied from 20 to 50

request/minute while the percentage of Cluster I is also varied

from 0% to 80%. About 20 data points with different

combinations of request rate and cluster ratio evenly selected from

both input ranges are used to train the VM’s fuzzy model. With

workload characterization (fuzzy modeling w/ char), both the

request rate and cluster ratio are considered as the input for the

CPU usage modeling. In contrast, without workload

characterization (fuzzy modeling w/o char), only the request rate is

used for the input and the ratio factor is ignored. To evaluate these

two models, the workload is run with a different set of request rate

and cluster ratio combinations (totally 60 data points) while the

models are used to control the VM’s resource allocation.

Figure 6(a) compares the VM CPU allocations given by these two

models against the actual CPU usage of the VM when the

resource is allocated based on peak load. Figure 6(b) compares the

workload performance under these two CPU allocation schemes

against the ideal performance under peak-load-based allocation.

The result shows that the CPU allocation given by the fuzzy

model created with workload characterization closely follows the

VM’s actual demand; the average error is below 2.3%. The model

created without workload characterization can lead to significant

under- or over-provision; the average error is about 36.7%. The

difference in CPU allocation accuracy leads to significant

difference in the query workload’s performance. When using the

model created with workload charactrization, the query response

time is always at the same level as the peak-load-based allocation;

the difference is less than 2s. When using the model created

without workload characterization, in some case it leads to up to

27s delay in response time with a 15% under-provision of CPU; in

another case, it results in an over-provision of CPU by 15.7% but

achieves a response time only 0.6s better than the former scheme.

6.2.1.2 CPU/IO-intensive Workload
In the second experiment, we study a more interesting and

challenging workload which includes not only CPU-intensive (Q1

from Cluster I) but also I/O-intensive queries (Q18 from Cluster II

and Q6 from Cluster III). As the workload runs, the total

percentage of Cluster I+II in the entire workload is varied from

0.1 to 0.9 (the ratio between Cluster I and Cluster II is fixed) and

the total request rate also varies from 20 to 80 request/minute.

Similarly, different sets of data points are evenly taken from these

data ranges for training (450 data points) and testing (120 data

points). The experiment is performed separately using fuzzy-

modeling-based resource allocation w/ and w/o characterization.

The former captures the workload using a vector [Request rate,

Percentage of Cluster I+II] as the input, while the latter considers

only the total request rate of the workload. Both CPU and I/O are

controlled in the two cases.

Figure 7(a) and (b) compare the VM CPU and I/O allocations in

these two cases against the actual CPU and I/O usages of the VM

when the resource is allocated based on peak load. Figure 7(c)

compares the workload performance of these two allocation

schemes against the ideal performance under peak-load-based

allocation. The results show that the fuzzy modeling with

workload characterization method can predict the VM’s actual

demand with an average error of 3.5% for both CPU and I/O

allocations. It is more accurate than the case without

characterization in which the average error is about 37% for CPU

and 73% for I/O. As a result, in the former case it always achieves

the same level of performance as the peak-load-based allocation,

with only a 1.5s delay in average response time; while in the latter

case, the response time is always worse than the peak-load-based

case. In the worst case, it produces either a 36% under-provision

of CPU which causes a 15s delay or a 27% under-provision of I/O

for 11s additional delay. Noticed that the performance in the

without characterization case is always worse than the other two

cases due to the misprediction of VM resource demand: although

over-provision of either CPU or I/O does happen, the demands for

CPU and I/O cannot be both met at the same time.

6.2.2 RUBiS Experiments
RUBiS models an online auction site that supports the core

functionalities such as browsing, selling, and bidding [7]. A

typical two-tier setup is used to set up RUBiS, where the web tier

and database tier are deployed on separated VMs. The web-tier

VM hosts Apache Tomcat 4.1.40 with RUBiS and its clients while

the database-tier VM hosts MySQL 5.0 with 1.1 GB of data. Both

VMs are configured with one CPU and 1GB RAM.

Compared to the synthetic workloads used in the above TPC-H

experiments, here we constructed more realistic workloads, based

on real traces from the 1998 World Cup site [15], one of the

public traces widely used in related research for creating realistic

workloads [16][17]. In order to emphasize of the variation in

workload composition, the workload’s intensity is kept constant

(the number of concurrent client sessions to the web tier is fixed at

800) while its composition is varied based on the pattern in a

typical one-day hourly trace from the World Cup site. We identify

the read and write requests in the World Cup trace based on the

“Get” and “Post” methods, respectively, used in each request. The

ratio of the read and write requests in this trace is then mapped to

the ratio of the browsing and bidding requests in the RUBiS

workload (Figure 8(a)), which corresponds to the SELECT to

INSERT/UPDATE ratio of its database workload.

We compare the performance of the fuzzy model created with

workload characterization versus without it. The former considers

both the workload’s intensity and composition as the input to the

modeling whereas the latter considers only the intensity. The

composition can be captured by the ratio of two types of queries,

the SELECT queries, which are read-only, and the INSERT and

Figure 7(a) CPU allocations for a CPU/IO-intensive TPC-H workload

Figure 7(b) I/O allocations for a CPU/IO-intensive TPC-H workload

Figure 7(c) Performance for a CPU/IO-intensive TPC-H workload

Figure 6(a) CPU allocations for a CPU-intensive TPC-H workload

Figure 6(b) Performance for a CPU-intensive TPC-H workload

UPDATE queries, which are writes to the database. These

characteristics are captured by interposing a MySQL proxy before

the database tier. Since this experiment is performed completely

online, only the first 10 data points collected are used to initialize

the VM’s fuzzy model. Afterwards the model is used to allocate

resources right away and in the meantime it is updated with new

observed data every 10s.

The desired QoS target for these workloads is defined according

to the performance of the database VM under the peak-load-based

resource allocation which statically assigns 70% CPU and

320KB/s disk I/O bandwidth. In the experiment, the QoS target is

set to 100ms for the average response time within each period. A

10% margin is added to the resource allocation predicted by the

fuzzy model. When the QoS target cannot be met due to

inaccuracy in the model, a backup policy is invoked to allocate a

fixed amount of I/O bandwidth (500KB/s) to the VM temporarily.

This backup mechanism allows the performance loss to be quickly

recovered and ensures that the model can be timely updated to

reflect the VM’s current resource needs. It is invoked when two

consecutive QoS violations occur and revoked after the QoS

target are met again for three consecutive periods of time.

Afterwards, the fuzzy model updated with the new measurements

is used again for guiding the resource allocation.

Figure 8(b) and (c) show the I/O predictions and allocations using

a fuzzy model created with/without workload characterization,

respectively, for the changing composition RUBiS workload.

Figure 8(d) compares the corresponding performance in both

cases with the pre-set QoS target. For the fuzzy modeling with

workload characterization, it is able to predict the VM’s resource

needs throughout most of the experiment and require only a few

(3 times) invocations of the backup allocation policy. It can

quickly react to the changes in workload composition and deliver

the desired QoS for 92% of the time; the average response time is

44.9ms throughout the entire experiment. However, without

characterization, the QoS target is violated for 15% of the time,

and the backup policy is triggered twice more often (7 times). The

resulting average response time of 119.5ms cannot meet the QoS

target, almost 3 times worse than the one with characterization.

6.3 Combining both Guest-to-Host and Host-

to-Guest Optimizations
This experiment demonstrates the effectiveness of our cross-layer

resource management by combining guest-to-host workload

characterization and host-to-guest database tuning for an OLAP-

like database workload.

To construct a more interesting workload, we mix multiple copies

of Q1, Q4, Q6, and Q14 from TPC-H queries. To make these

queries more diverse in resource usage patterns, distinct query

copies are derived from Q4, Q6, and Q14 by modifying the

condition in the where cause in the original query statements.

Each copy touches a different section of the involved tables and

the data accessed by different copies is evenly distributed within

the range of a table. In this way, the intensity in I/O can be easily

varied by changing the total number of these copies, while the

CPU intensity is varied by changing the number of copies of

original Q1. The experiment is performed in two phases. In Phase

1, the workload intensity is fixed by running 18 copies of queries

in total but the composition is varied by changing the percentage

of Q1’s copies from 17% then to 50% and finally to 83%. In

Phase 2, an I/O cap from 3000 to 1000KB/s is set to the VM to

simulate different levels of I/O contention from other VMs while

the workload composition is kept constant with 83% of Q1.

Using our proposed approach with cross-layer optimization,

during Phase 1, it models the VM’s resource demand using the

workload characterization result, [Request rate, Percentage of

Cluster I], as the input (two types of queries are classified: Q1 as

the CPU-intensive query and the others as the I/O intensive). This

model is then used to allocate resources to the VM in the absence

of contention. When the experiment transits to Phase 2 and I/O

contention is introduced into the system, our approach feeds the

I/O bandwidth pressure back to the guest layer by tuning the

database parameters according to the resource availability as

discussed in Section 5.2. In comparison, we repeat the experiment

using fuzzy-modeling-based resource allocation without cross-

layer optimization. In this case, during Phase1, only the workload

intensity is used to create the fuzzy model; during Phase 2, the

database configuration is not adapted and kept static as in Phase 1.

Figure 9 compares the database performance under fuzzy-

modeling-based resource allocation with cross-layer optimization

(Cross-layer Opt) and without it (Non-Opt) versus the ideal

performance under peak-load-based resource allocation (Peak-

load-based). From the result we can see that in Phase 1, the

Figure 8(a). Trace for RUBiS with changing composition

Figure 8(b). I/O allocations with workload characterization

Figure 8(c). I/O allocations without workload characterization

Figure 8(d). Performance comparisons for RUBiS workload

performance in Cross-layer Opt closely follows the one under

peak-load-based allocation. It is as much as seven times better

than that in Non-Opt which results in a 98% average performance

degradation. In Phase 2, both approaches suffer from the reduced

I/O bandwidth. However, the Cross-layer Opt case still achieves

about 17% performance improvement than the Non-Opt case. The

host-to-guest feedback enables the database query optimizer to

switch from a bitmap-scan preferable plan to an index-scan

preferable plan for all I/O intensive queries by tuning the I/O cost

parameters sequential_page_cost vs. random_page_cost from the

original 1:4 ratio to 1:1 as the I/O cap decreases from 3MB/s to

1MB/s. This adaptation improves the query performance

significantly because the index-scan preferable query plan

requires less I/O bandwidth than the bitmap-scan preferable one.

7. RELATED WORK
Various solutions have been studied in the literature to address the

problem of automatically deciding a VM’s resource allocation

based on its hosted application’s demand and QoS requirement. In

particular, different machine learning algorithms have been

considered to model VM resource usages. For example, a simple

regression method is used to predict the performance impact of

VM memory allocation [18]; Reinforcement learning is used to

automatically tune VM resource configuration [19]; Artificial

neural networks are used to model the nonlinear behaviors for a

variety of applications when their VMs are under I/O contention

[20]; our previous work [5][8] proposed to use fuzzy logic to

model the relationship between application workload and VM

resource demand, which is shown to be both fast and accurate for

modeling systems with complex behaviors. Unlike the traditional

solutions which treat VM as a black box, this paper’s application-

aware approach takes advantage of application-specific

knowledge to capture the workload patterns so that the VM model

can accurately predict its demand and quickly adapt to the

changes in application workload.

Classical feedback control theory has also been used to adjust VM

resource allocations according to the application’s performance

requirement. Linear multi-input-multi-output (MIMO) models are

often used for performance modeling, for example, to allocate

CPU resource for Web servers [21][22], to manage the

performance interference of competing VMs [25], and in more

complicated cases, to allocate multiple types of resources to multi-

tier applications [23][24]. Although such linear models can be

updated adaptively as the system moves from one operating point

to another, their accuracy and speed are limited for capturing

complex nonlinear behaviors existing in VMs. In contrast, the

fuzzy-modeling-based approach proposed in this paper can

effectively capture such behaviors and the modeling is shown to

be fast. In fact, our previous work as well as others [26] proposed

a fuzzy-model-based predictive controller, which embeds fuzzy-

modeling into a predictive control system, shows promising

results for both effectively capturing complex system behaviors

and quickly adapting to changes in the system [27].

In the related research on workload-aware resource management,

R. Singh et al. proposed a mix-aware provisioning solution for

allocating server capacity to the bottleneck-tier in datacenters

serving workloads with changes in both volume and mix [28]. It

employs k-means clustering to characterize workload mix and

queuing models for predicting server capacity. In comparison, our

proposed approach exploits application-specific knowledge to

effectively characterize workloads, employs fuzzy modeling to

accurately capture VM resource usage, and supports finer-

grained allocations of multiple types of resources including both

CPU and I/O. Furthermore, in addition to extracting knowledge

from the guest to host for better understanding of application

resource demand, our approach also delivers the allocation

decisions from host to guest for the application to better adapt to

resource availability changes.

In the related work on virtualized database resource management,

Soror et al. proposed using calibrated database query cost model

to estimate the VM resource demand [29]. It considers a workload

as a static entity consisting of a fixed set of queries, so the

resource allocation decision is made for the entire workload

according to the overall performance requirement. To deal with

the inaccuracy in database cost models, it employs online

refinement by assuming a linear VM resource usage model. In

contrast, our proposed approach uses database cost model only as

a tool to discover workload composition, but not for directly

estimating VM resource demand, thereby avoiding the well-

known inaccuracy inherent to database cost models. Our approach

also more realistically treats a workload as a non-stationary time

series and considers fine-grained query performance needs. The

VM’s complex resource usage model is automatically learned and

adapted online without any a priori assumption.

Other related autonomous database work [30][31][32] focuses

only on a database’s internal tuning and query optimization, but

not the resource allocation to an entire database VM. Previous

work [33][34] points out workload characterization as the key to

understanding the resource intensity of a database workload. This

paper incorporates both of the two aspects of work in the fuzzy-

modeling-based resource management of virtualized databases. It

improves the static workload characterization method by allowing

online and adaptive characterization and optimizes the

performance of virtualized databases by further tuning database

parameters according to the adjustment in resource allocations.

8. CONCLUSION AND FUTURE WORK
This paper proposes a new VM resource management approach

based on fuzzy modeling and cross-host-guest optimization. It

enables the communication between VM host- and guest-layer

schedulers and allows them to collaboratively optimize the

resource allocation and application performance. The host-layer

scheduler exploits guest-layer application-specific information to

characterize VM workload and model its resource demand. The

guest-layer scheduler uses the host-layer feedback to understand

the changing resource availability and adapt its configuration

accordingly. As a challenging case study, this cross-layer

optimization approach is applied to the resource management of

virtualized databases. It uses a database’s cost estimation for

workload characterization and adapts the database by tuning its

cost model parameters according to its resource availability.

A prototype of this approach is implemented on Xen-based VMs

and evaluated using typical database workloads based on TPC-H

Figure 9 Performance of a TPC-H workload with both guest-to-host

and host-to-guest optimizations

and RUBiS. The results demonstrate that the cross-layer

optimization approach significantly outperforms the application-

unaware one which treats VMs as black boxes. It can efficiently

allocate both CPU and I/O resources to database VMs serving

workloads with dynamically changing intensity and composition

while meeting QoS targets or improving the performance when

under resource pressure.

The proposed cross-layer optimization requires certain awareness

between virtualization software and virtualized application. Such

awareness breaks the transparency offered by traditional full

virtualization, but we advocate that this tradeoff is necessary for

business- and mission-critical applications to achieve their desired

QoS on virtualized systems. The benefit of this tradeoff is

demonstrated by our initial results reported in this paper. The

underlying argument is the same as that drives the success of

paravirtualization [2] which sacrifices complete transparency for

lighter-weight and more efficient virtualization. Although not

every virtualized application is capable of adapting its behavior

according to changing resource availability, we believe it will

become a necessity for critical applications as virtualization

becomes pervasive. In our future work, we will study how to

create a concise and generic interface for cross-layer optimization

that can support diverse guest OSes and applications.

9. ACKNOWLEDGMENTS
This research is sponsored by National Science Foundation under

grant CCF-0938045 and Department of Homeland Security grant

2010-ST-062-000039. The authors are also thankful to the

anonymous reviewers for their useful comments to improve the

quality of the paper.

REFERENCES
[1] VMware, URL: http://www.vmware.com.

[2] P. Barham, Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,

A., Neugebauer, R., Pratt, I. and Warfield, A, “Xen and the

Art of Virtualization”, SOSP, 2003.

[3] Amazon Elastic Compute Cloud, URL:

http://aws.amazon.com/ec2/.

[4] Windows Azure, URL:

http://www.microsoft.com/windowsazure/.

[5] L. Wang, J. Xu, M. Zhao, Y. Tu and J. A.B. Fortes, “Fuzzy

Modeling Based Resource Management for Virtualized

Database Systems”, MASCOTS, 2011.

[6] TPC-H Benchmark Specification, URL: http://www. tcp. org.

[7] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K.

Rajamani and W. Zwaenepoel, “Specification and

Implementation of Dynamic Web Site Benchmarks”, WWC-

5, 2002.

[8] J. Xu, M. Zhao and J. Fortes, “Autonomic Resource

Management in Virtualized Data Centers Using Fuzzy-logic-

based Control”, Cluster Computing, 2008.

[9] S. Chiu, “Fuzzy Model Identification Based on Cluster

Estimation”, Journal of Intelligent and Fuzzy Systems, 1994.

[10] J. Liu, R. Rangaswami, and M. Zhao, “Model-Driven

Network Emulation With Virtual Time Machine”, Winter

Simulation Conference, December 2010.

[11] A. Chen, P. Goes, A. Gupta and J. Marsden, “Heuristics for

Selecting Robust Database Structures with Dynamic Query

Patterns”, EJOR, 2006.

[12] M. Wang, T. Madhyastha, N. Chan, S. Papadimitriou and C.

Faloutsos, “Data Mining Meets Performance Evaluation:

Fast Algorithms for Modeling Bursty Traffic”, ICDE, 2002.

[13] S. Chaudhuri, “Relational Query Optimization – Data

Management Meets Statistical Estimation”, Communications

of ACM, 2009.

[14] dm-ioband, URL: http://sourceforge.net/apps/trac/ioband.

[15] M. Arlitt and T. Jin, “Workload Characterization of the 1998

World Cup Web Site,” in HP Technical Report, 1999.

[16] Z. Gong and X. Gu, “PAC: Pattern-driven Application

Consolidation for Efficient Cloud Computing”, MASCOTS,

2010.

[17] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting and C. Pu,

“Mistral: Dynamically Managing Power, Performance, and

Adaptation Cost in Cloud Infrastructures”, ICDCS, 2010.

[18] J. Wildstrom, P. Stone and E. Witchel, “CARVE: A

Cognitive Agent for Resource Value Estimation”, ICAC,

2008.

[19] J. Rao, X. Bu, C. Xu, L. Wang and G. Yin, “VCONF: A

Reinforcement Learning Approach to Virtual Machines

Auto-configuration”, ICAC, 2009.

[20] S. Kundu, R. Rangaswami, K. Dutta and M. Zhao,

“Application Performance Modeling in a Virtualized

Environment,” HPCA, 2010.

[21] X. Liu, X. Zhu, S. Singhal and M. Arlitt, “Adaptive

Entitlement Control of Resource Containers on Shared

Servers”, IM, 2005.

[22] Z. Wang, X. Zhu and S. Singhal, “Utilization and SLO-

Based Control for Dynamic Sizing of Resource Partitions”,

DSOM, 2005.

[23] P. Padala, K. Hou, K. Shin, X. Zhu, M. Uysal, Z. Wang, S.

Singhal and A. Merchant, “Automated Control of Multiple

Virtualized Resources”, SIGOPS/EuroSys, 2009.

[24] X. Liu, X. Zhu, P. Padala, Z. Wang and S. Singhal,“Optimal

Multivariate Control for Differentiated Services on a Shared

Hosting Platform”, CDC, 2007.

[25] R.Nathuji and A. Kansal, “Q-Clouds: Managing Performance

Interference Effects for QoS-Aware Clouds”, Eurosys, 2010.

[26] P. Lama and X. Zhou, “PERFUME: Power and Performance

Guarantee with Fuzzy MIMO Control in Virtualized

Servers”, IWQoS, 2011.

[27] L.Wang, J. Xu, M. Zhao and J. A.B. Fortes, “Adaptive

Virtual Resource Management with Fuzzy Model Predictive

Control” FeBID, 2011.

[28] R. Singh, U. Sharma, E. Cecchet, and P.J. Shenoy,

“Autonomic Mix-Aware Provisioning for Non-Stationary

Data Center Workloads”, ICAC. 2010

[29] A. Soror, U. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis

and S. Kamath, “Automatic Virtual Machine Configuration

for Database Workloads”, SIGMOD, 2008

[30] G. Weikum, A. Moenkeberg, C. Hasse and P. Zabback,

“Self-tuning Database Technology and Information Services:

From Wishful Thinking to Viable Engineering”, VLDB,

2002.

[31] S. Chaudhuri and G. Weikum, “Foundations of Automated

Database Tuning”, ICDE, 2006.

[32] B. Schroeder, M. Harchol-Balter, A. Iyengar and E. Nahum,

“Achieving Class-based QoS for Transactional Workloads”,

ICDE, 2006.

[33] P. Martin, S. Elnaffar and T. Wasserman, “Workload Models

for Autonomic Database Management Systems”, ICAS,

2006.

[34] T. Wasserman, P. Martin and D. Skillicorn, “Developing a

Characterization of Business Intelligence Workloads for

Sizing New Database Systems”, DOLAP, 2004.

http://www.microsoft.com/windowsazure/

