

QoS-driven Cloud Resource Management through Fuzzy Model Predictive Control

Lixi Wang, Jing Xu*, Hector A. Duran-Limon**, Ming Zhao,
Florida International University, Miami, FL, USA

* VMware, Inc., Palo Alto, CA, USA
** University of Guadalajara, Zapopan, Jalisco, México

Abstract—Virtualized systems such as public and private clouds
are emerging as important new computing platforms with great
potential to conveniently deliver computing across the Internet
and efficiently utilize resources consolidated via virtualization.
Resource management in virtualized systems remains a key
challenge because of their intrinsically dynamic and complex
nature, where the applications have dynamically changing
workloads and virtual machines (VMs) compete for the shared
resources in a convolved manner. To address this challenge, this
paper proposes a new resource management approach that can
effectively capture the nonlinear behaviors in VM resource
usages through fuzzy modeling and quickly adapt to the changes
in the system through predictive control. The resulting fuzzy-
model-predictive-control (FMPC) approach is capable of
optimizing the VM resource allocations to applications
according to their QoS targets. This approach is incorporated in
a two-level cloud resource management framework where at the
VM host level the node controllers employ FMPC to optimize
dynamic VM resource allocations within individual hosts, and
at the cloud zone level the global scheduler coordinates the node
controllers to optimize resource utilization across hosts through
dynamic VM migrations. The proposed approaches were
implemented for Xen-based virtualized systems and evaluated
using typical benchmarks (RUBiS, FreeBench) on a testbed with
over 100 concurrent VMs. The results demonstrate that FMPC
can accurately model the resource demands for dynamic
applications and optimize the resource allocations to VMs with
complex contentions. It substantially outperforms the
traditional linear modeling based predictive control approach.
The two-level resource management can make effective use of
VM migrations to further improve performance across hosts as
the host-level loads vary over time.

Keywords—QoS; cloud computing; resource management

I. INTRODUCTION

Virtualized systems such as public and private clouds
[1][2] are emerging as promising new platforms that can
significantly improve how resources are provisioned to
applications and how computing is delivered to users. On one
hand, applications can be conveniently deployed via virtual
machines (VMs) without being tied to any specific physical
machine or constrained by any specific set of resources. On
the other hand, resources can be consolidated and multiplexed
across VM-hosted applications to increase utilization and
reduce cost. The fundamental goal for resource management
in such systems is that resources should be automatically and
dynamically allocated to the applications’ VMs according to
application-level objectives (e.g., QoS—Quality of Service)
and system-level objectives (e.g., service differentiation,
revenue maximization).

In order to achieve the above goal, resource management
in virtualized systems needs to address the challenges raised

by the intrinsically dynamic and complex resource usage
behaviors in such systems. For example, when an
application’s workload changes over time in intensity and
composition of requests, its VM’s demands of different types
of resources also change accordingly. As applications are
consolidated to the same physical hosts via VMs, they also
compete for the shared resources and interfere with one
another. As a result, one application’s performance depends
on not only its own VM’s resource usage but also others’
behaviors. Even if the application workloads stay relatively
steady, service-level objectives may change over time and as
a result resources need to be reallocated.

This paper proposes a new Fuzzy Model Predictive
Control (FMPC) based approach to address these challenges
in resource management. This approach is architected to
answer two key questions: 1) how to accurately capture the
complex relationship between resource allocation and
application performance; and 2) how to adaptively optimize
the VM resource allocation as changes occur dynamically in
the system. Specifically in the proposed approach, a fuzzy-
logic based modeling method is employed to learn the
relationship between VM resource allocation and application
performance, which can efficiently capture complex system
behaviors with good speed. Then a predictive controller uses
such a model to predict the resource demand for all VMs and
take the resource control actions that enable the system to
quickly reach its optimization objective. These two phases
work in a closed-loop manner where the model is constructed
and updated online and resource allocations are adjusted
dynamically in order to adapt to the changes in the system in
a timely manner.

The paper also proposes a two-level resource management
framework based on FMPC, including distributed host-level
Node Controllers and a cloud zone level Global Scheduler.
Each node controller uses FMPC to predict the resource
demands of its local VMs and optimize the resource
allocations according to their QoS targets. The global
scheduler further improves performance across VM hosts by
planning VM migrations based on the resource demand
estimates from the node controllers. The node controllers in
turn execute the VM migrations and transfer the performance
models of the migrated VMs to minimize the impact of
migrations on application performance.

This proposed approach was prototyped on Xen-based
virtualized systems and evaluated using typical benchmarks
(RUBiS [3], FreeBench [4]). The results demonstrate that
FMPC can accurately estimate the resource demand for a VM
running dynamically changing workload and quickly achieve
the desired QoS target. FMPC can also capture the complex
behaviors of resource-competing VMs and optimize the

resource allocations according to their QoS targets. It
substantially outperforms the traditional linear model
predictive control (LMPC) approach. Moreover, the proposed
two-level resource management framework can effectively
optimize the performance for more than 100 concurrent VMs
running dynamic workloads across multiple hosts.

The rest of this paper is organized as follows: Section 2
introduces the background; Section 3 describes the detailed
design and implementation; Section 4 presents an
experimental evaluation; Section 5 examines the related work;
and Section 6 concludes the paper.

II. BACKGROUND

A. Adaptive VM Resource Management

Emerging virtualized systems such as public and private
clouds promise to be important new computing platforms
where applications can be executed cost-effectively using
resources that are provisioned on demand. The key challenges
to fulfilling this promise are how to accurately understand a
VM’s resource demand based on its hosted application’s QoS
requirement, and how to effectively optimize the resource
allocations to the concurrent VMs in the system according to
the service-level objectives. Without such QoS-driven
resource management, cloud providers cannot support the
more economical performance-based service-level
agreements (SLA) and cloud users have to pay for resource
capacity, instead of performance which is what the users really
care about. Consequently, the users have to purchase
unnecessary cloud resources to get their desired performance,
and the providers cannot maximize their profits from offering
the cloud services.

The main difficulty of achieving QoS-driven cloud
resource management lies in the intrinsically dynamic and
complex nature of the application and system behaviors in a
highly consolidated, virtualized environment. First, the
dynamics in an application’s workload can lead to complex
behaviors in its VM’s resource usages as its intensity and
composition change over time. For instance, a web
workload’s request rate varies depending on the time of day
and the occurrence of events [5]; a database workload can also
change in terms of its composition of a wide variety of queries
with different levels of CPU and IO demands [6]. Second,
interference among VMs hosted on the same physical
machine can lead to complex nonlinear resource usage
behaviors as they compete for various types of resources that
cannot be strictly partitioned. For example, when co-hosted
VMs compete for the shared last-level processor cache or disk
IO bandwidth, the relationship between each VM’s resource
allocation and its application’s performance is known to be
nonlinear [6][7][8]. Finally, even if the application workloads
stay relatively steady, their SLAs, which specify the QoS that
they require and the cost that they are willing to pay, may
change over time. Consequently, resource allocations to the
applications’ VMs need to be dynamically adjusted in order to
sustain the system-level objective.

With the rapidly growing level of application and resource
consolidation, the aforementioned scenarios are increasingly
common in cloud systems and the management of such

systems is in fact increasingly challenging. Different
approaches have been studied for virtual resource
management and they are examined in detail in Section VII.
In particular, machine learning based techniques can be
employed to automatically learn the relationship between an
application’s resource allocation and its performance; and
control theory based techniques can be used to automate the
control of resource allocations according to the application-
and system-level objectives. This paper proposes a new
resource management approach based on the combination of
these two types of techniques that can effectively capture the
nonlinearity in virtualized system behaviors and quickly adapt
to the changes in such behaviors.

B. Fuzzy-logic based System Modeling

This paper adopts a fuzzy-logic-based learning technique
to model application performance and VM resource usage in
a virtualized system, because fuzzy modeling is particularly
suited to efficiently model systems with complex behaviors
[9]. The technique combines fuzzy logic with mathematical
equations to discover and describe the patterns in system
behaviors and to guide the control strategies of the system. A
fuzzy model is a rule base which consists of a collection of
fuzzy rules in the form of “If x is A then y is B”, where A and
B are linguistic values defined by fuzzy sets with associated
membership functions. These rules are trained using the input
(x) and output (y) data observed from the system and together
they represent the mathematical model of the system
behaviors. Based on such a fuzzy model, fuzzy inference can
be applied to compute the output (y) for any given input (x).

Note that the fuzzy modeling approach differs
fundamentally from traditional rule-based system
management approaches [10][11]. The latter is based on the
use of a set of event-condition-action rules which are triggered
only when certain events happen and some preconditions are
met. In such an approach, the rules are typically specified by
system experts, which is often intractable to apply to a
complex system because of the difficulty in defining
thresholds and corrective actions for all possible system states.
In contrast, a fuzzy model is built for the entire input space of
the system and can be used for continuous control, where the
fuzzy rules representing the model are created automatically
from the observed input-output data.

C. Model Predictive Control

Model predictive control (MPC) [12] is an advanced
control technique in which the controller takes control actions
by optimizing an objective function that defines the objective
of controlling the system. To enable the predictive capabilities
of the control system, an explicit model that characterizes the
system behaviors is leveraged to make predictions of system
output over a specific future prediction horizon. Such
modeling and optimization typically involved in MPC can be
performed iteratively in an online fashion, where real-time
data are used to update the model in the modeling phase and
new optimal action is computed based on the model to adjust
the system control. In this way, the controller can adapt to
changes in the system behaviors in a timely fashion.

In contrast to an open-loop optimal control technique, the
MPC system works in a closed-loop manner by feeding back
information on previous inputs and outputs to the controller at
the end of each control period in order to keep track of
prediction errors and control variations. So on one hand the
controller is able to make more informative control actions
based on the feedbacks, and on the other hand the system is
able to be driven back to the set-point target appropriately
without large oscillations even in the presence of noise.

MPC has been used by related VM resource management
work (examined in detail in Section VII) which adopts linear
models which are accurate enough to model system behaviors
within a small region of control operation. This paper
proposes to use fuzzy modeling to build the model in MPC,
which can capture the nonlinearity in system behaviors and
perform optimal control over the entire operating space. The
rest of this paper presents the details of this approach.

III. TWO-LEVEL RESOURCE MANAGEMENT ARCHITECTURE

This paper considers the typical cloud environment where
VM hosts are organized into zones: Within each zone, the
hosts use shared storage servers to store the VM images so
VMs can be quickly live-migrated across the hosts for load
balancing; Across zones, VMs cannot be easily live-migrated
so it happens only at rare occasions, e.g., when an entire zone
is overloaded or under maintenance. Hence, the proposed
resource management framework focuses on the dynamic
resource allocations at the host level and dynamic VM
migrations at the zone level. Nonetheless, the proposed two-
level framework can also be used to balance loads across
zones using non-live VM migrations according to the entire
cloud system’s service-level objectives.

Figure 1 illustrates the architecture of the proposed two-
level cloud resource management framework which includes
a Node Controller on every VM host and a Global Scheduler
for the entire cloud zone. Specifically, a node controller is
responsible for dynamically allocating resources to VMs and
optimizing them using FMPC according to application QoS
targets. The global scheduler dynamically adjusts VM
placement through live migration in order to handle load
variations on the VM hosts and to improve system-level
performance. The node controllers and global scheduler
cooperate with each other to complete the cloud resource
management. When a node controller updates its predicted
resource demands of its local VMs, it sends this information
to the global scheduler for making VM migration decisions;

when a global scheduler decides to migrate a VM, it
coordinates with the node controllers on the source and
destination hosts to execute the migration and then update
their performance models and resource allocations based on
the new VM placement.

These two levels of resource management operate at
different granularity and time intervals. The node controllers
allocate resources at a fine granularity (e.g., CPU cycles) and
time scale (e.g., every 20 seconds), because of the low
overhead of making such adjustments through the hypervisor
interface and the fast speed of the proposed performance
modeling and resource optimization techniques. The global
scheduler adjusts the resource utilization across hosts in the
units of VMs at a longer time scale (e.g., every minute)
because of the relatively higher overhead and longer-term
effect of VM migrations. Therefore, in this two-level
architecture, fine-grained, frequent control actions occur only
at the host level within the scope of the limited local VMs,
whereas global control takes place at a coarse granularity and
infrequently. It is thus easier to scale compared to the
alternative one-level architecture that either employs a
centralized manager to control the resource allocations to all
the VMs across all the hosts, or completely decentralize the
management so that a node controller has to communicate
with all the other peers in order to obtain global knowledge
and coordinate VM migration decisions.

IV. HOST-LEVEL VM RESOURCE MANAGEMENT

Figure 2 illustrates the architecture of the proposed system
which consists of four key modules, Application Sensors,
Fuzzy Model Estimator, Optimizer, and Resource Allocator.
As the applications are running on their VMs, the Application
Sensors monitor the performance yi(t) from each application i
and then send them to Fuzzy Model Estimator. The Estimator
collects all the necessary information including the current
and historical application performance and VM resource
allocations to create the fuzzy model for the VMs. Such a
model, which represents the relationship between the control
input (resource allocations to the VMs) and the measured
output (performance of the applications), is updated every
control period. Based on the model, the Optimizer produces a

Figure 2. The architecture of the FMPC-based host-level resource
management

Application
Sensors

Resource Allocator

Optimizer
J(k) = W(k)|Y’(k+1)‐Yref|

2+
R|U(k+1)‐U(k)|2

U(k+1)* = argminu J(k)

Y(k) = [y1(k), y2(k),…]
T

Y(k), Y(k‐1), Y(k‐2),…

Iterate:
U(k+1)

U(k+1)*

U(k+1) = [u1(k), u2(k),…]
T

Y(.): application
performance (RT)
U(.): VM resource
allocation (CPU cap)
U*(.): optimal
allocation to
minimize objective
function
Y’(.): estimated
performance
Yref: QoS target
f(): fuzzy model used
for performance
prediction

y1(k)

Fuzzy Model Estimator
Y(k+1)=f(Y(k),U(k+1),

U(k))

U(k),U(k‐1), U(k‐2),…

Y’(k+1)

Training

VM1

App1

VM2

App2

y2(k)

XenVMM

Figure 1. Two-level cloud resource management system

Node Controller1

VM11

App11

Node1

Node Controller2

VM21

App21

Node2

Node ControllerM

VMM1

AppM1

NodeM

Global Scheduler

…

resource allocation scheme for the next time interval that
optimizes the system according to a predefined objective
function. Then the Resource Allocator adjusts the VMs’
resource allocations accordingly. Together, these modules
form a closed feedback loop that works periodically for cloud
resource management.

A. Fuzzy Model Estimator

The proposed FMPC is a fuzzy-model-based predictive
control approach. The major difference between FMPC and
traditional MPC approaches [12] lies in the modeling part. In
FMPC, the Fuzzy Model Estimator is responsible for building
models that can describe complex system behaviors using
fuzzy-logic-based method. The strength of this approach
includes the following aspects: 1) it simplifies the learning of
the complex models by describing nonlinearity using a set of
linear sub models captured by the fuzzy rules; 2) it can
perform optimized control over the entire operating space; 3)
it inherits the benefits of traditional predictive control that can
guarantee dynamic performance in a closed-loop system and
achieve desired target in a stable manner.

Consider a resource provider that hosts multiple
applications by multiplexing multiple types of resources
among them via VMs, a general multi-input-multi-output
(MIMO) model in MPC described by the following equation
is used to capture the time-varying relationship between VM
resource allocations u(t) and application performance y(t),

ሻݐሺ࢟ ൌ Φሺ࢛ሺݐሻ, … , ݐሺ࢛ െ ݉ሻ, ݐሺ࢟ െ 1ሻ, … , ݐሺ࢟ െ ݊ሻሻ

where the input ࢛ሺݐሻ ൌ ሾݑଵሺݐሻ, ⋯,ሻݐଶሺݑ , ሻሿݐேሺݑ
் represents

the allocation of p types of controllable resources to the q
applications’ VMs at time step t (ܰ ൌ and the output ,(ݍ݌

ሻݐሺ࢟ ൌ ,ሻݐଵሺݕൣ ⋯,ሻݐଶሺݕ , ሻ൧ݐ௤ሺݕ
்
 represents the predicted

performance of the applications at t. For example, if there are
two applications which require on two types of resources,
CPU and IO, ࢛ሺݐሻ ൌ ሾݑ௩௠ଵ

஼௉௎ሺݐሻ, ௩௠ଵݑ
ூை ሺݐሻ, ௩௠ଶݑ

஼௉௎ሺݐሻ, ௩௠ଶݑ
ூை ሺݐሻሿ்.

The m and n reflect the impact of the previous inputs and
outputs to current prediction and are usually set to small
values in order to reduce the complexity of the model, e.g.,
with m = 0 and n = 1, ࢟ሺݐሻ ൌ Φሺ࢛ሺݐሻ, ݐሺ࢟ െ 1ሻ.

In traditional MPC approaches, linear models are applied
to approximate the nonlinear behaviors around the current
operating point, so ܡሺݐሻ ൌ ሻݐሺ࢛ࢇ ൅ ݐሺ࢟࢈ െ 1ሻ, where ࢇ and
 are dynamically adapted as the system moves across ࢈
different operating points. In the proposed FMPC, the general
Φ function from the control inputs to the system outputs is
instantiated by a fuzzy model composed of a collection of
fuzzy rules [13],

 						ܴ௜: ݐሺ࢟		݀݊ܽ	௜ܣ	ݏ݅	ሻݐሺ࢛	݂ܫ െ 1ሻ	݅ݏ	ܤ௜,
ሻݐሺ࢏࢟	݄݊݁ݐ ൌ ሻݐሺ࢛࢏ࢇ ൅ ݐሺ࢟࢏࢈ െ 1ሻ (1)

In the premise Ai and Bi are fuzzy sets associated with the
fuzzy rule ܴ௜. Their corresponding Gaussian membership

functions ߤ஺௜ሺ࢛ሻ ൌ ݁
ି
ሺ࢛ష೎ሻమ

మ഑మ and ߤ஻௜ሺ࢟ሻ ൌ ݁
ି
ሺ࢟ష೎ሻమ

మ഑మ determine
the membership grades of the control input vectors ࢛ሺݐሻ and
ݐሺ࢟ െ 1ሻ, respectively, which indicate the degree that they
belong to the fuzzy sets. In the consequence, the output ࢏࢟ሺݐሻ

of rule ܴ௜ is a linear function of the current control input and
previous output with trainable parameter matrices ࢏ࢇ and ࢏࢈.

The Estimator adopts an efficient one-pass clustering
algorithm, subtractive clustering [14], to build a concise rule
base with a small number of fuzzy rules that can effectively
represent the VMs’ behaviors. Subtractive clustering takes a
single parameter, radius, which can be adjusted to influence
the number of clusters—a larger radius leads to a smaller
number of clusters. Each cluster exemplifies a representative
characteristic of the system behaviors and can be used to
create a fuzzy rule accordingly. In this way, both the system
structure and parameters are learned and adapted in real time
from online data streams. The recursive least square (RLS)
learning method is used to train the model parameters online.
The system model gradually evolves as opposed to having a
fixed structure model, and the learning process is incremental
and automatic. Owing to the speed of subtractive clustering
and RLS learning in fuzzy model construction, the model can
be updated quickly (sub second), and can be used in every
control interval to capture the current system behaviors.

The Estimator is invoked by the Optimizer discussed
below in every control step t to predict the performance for
different input values and assist it to search for the optimal
allocation solution across the input space. The Estimator
applies fuzzy inference to predict the output ࢟ሺݐሻ	for a given
control input 〈࢛ሺݐሻ, ݐሺ࢟ െ 1ሻ〉 based on a trained fuzzy rule
base with S fuzzy rules. It entails the following steps: 1)
Evaluation of antecedents: the input variables are fuzzified to
the degree, ࢏ࢾ, to which they belong to each of the fuzzy sets
via the corresponding membership functions for each fuzzy
rule ܴ௜; 2) Implication to consequents: implication is
performed on each fuzzy rule by computing ࢏࢟ሺݐሻ based on
Equation (1); 3) Aggregation of consequents: the final
prediction is performed as ࢟ሺݐሻ ൌ ∑ ሻݐሺ࢏࢟࢏ࢾ

ௌ
௜ୀଵ ൌ

∑ ሻݐሺ࢛࢏ࢇሺ࢏ࢾ ൅ ݐሺ࢟࢏࢈ െ 1ሻሻௌ
௜ୀଵ , where the outputs of all the

fuzzy rules are aggregated into a single numeric vector based
on their corresponding membership grades ࢏ࢾ. The fuzzy
model captures the system’s nonlinearity in a way that each
rule characterizes a certain aspect of the system using a simple
linear model with low computation complexity, whereas with
all the rules aggregated together the model can effectively
capture nonlinear behaviors.

B. Optimizer

Generally, the objective function in MPC is formulated as

ሻݐሺܬ				 ൌ෍ฮ࢟ሺݐ ൅ ሻݐ|݅ െ ݐ௥௘௙ሺ࢟ ൅ ሻฮݐ|݅
ଶ

௉

௜ୀଵ

ܳሺ݅ሻ

																	൅෍‖࢛ሺݐ ൅ ሻݐ|݅ െ ݐሺ࢛ ൅ ݅ െ ሻ‖ଶݐ|1
ெ

௜ୀଵ

ܴሺ݅ሻ									ሺ2ሻ

The first term in the summation represents tracking error, i.e.,
the difference between the predicted output ࢟ሺݐ ൅ and the	ሻݐ|݅
reference output ࢟௥௘௙ሺݐ ൅ ,of the next P steps. In FMPC	ሻݐ|݅
the predicted output is given by the fuzzy model described
above. The second term represents the control effort, i.e., the
amount of resource allocation changes in the next M steps.
The importance of tracking accuracy in performance targeting

and maintaining stability in control operation can be tuned by
the assigned ܳሺ݅ሻand ܴሺ݅ሻ factors. Larger Q factor will make
the controller react more aggressively to the tracking errors.
Larger R factor will improve the stability of system by
avoiding large oscillation in the resulting resource allocation.

To reduce the complexity of the problem, the Optimizer
uses an objective function with M = P = 1, and ࢟௥௘௙	can be
simply set using the normalized QoS targets of the considered
applications. In addition, in Equation (2), the performance of
the q different applications, ࢟ሺݐሻ ൌ

,ሻݐଵሺݕൣ ⋯,ሻݐଶሺݕ , ሻ൧ݐ௤ሺݕ
்
are treated with equal importance. In

practice, applications hosted in the same cloud can be given
different preferences, because they have different priorities or
generate different amounts of revenues to the system. Without
loss of generality, we use weights ݓ௜ሺݐሻ, ሺ1 ൑ ݅ ൑ ሻ toݍ
represent the preferences given to the applications. The
objective function can be formulated as

ሻݐሺܬ															 	ൌ ܳ෍ൣݓ௜൫ݕ௜ሺݐ ൅ 1ሻ െ ௥௘௙௜൯൧ݕ
ଶ

௤

௜ୀଵ

																													൅ܴ෍ሾݑ௜ሺݐ ൅ 1ሻ െ ሻሿݐ௜ሺݑ
ଶ																							ሺ3ሻ

ே

௜ୀଵ

The goal of the Optimizer is to find a resource allocation
ݐሺ࢛ ൅ 1ሻ∗ that can minimize the above objective function, i.e.,
ݐሺ࢛ ൅ 1ሻ∗ ൌ ݐሺܬ࢛݊݅݉݃ݎܽ ൅ 1ሻ, subject to the total resource
capacity (e.g,. total available CPU time, total available
memory capacity) of the host. By taking the resource
allocation that minimizes the objective function at each time
step, FMPC will be able to optimize the resource allocations
to meet the applications’ QoS targets, when it is not
oversubscribed, or minimize the distance to the targets, when
oversubscribed.

The fuzzy performance model in FMPC is rule-based and
not differentiable; a minimization problem involving such
models cannot be solved by any classical, derivative-based
optimization algorithm. A genetic algorithm (GA) method is
applied to solve this complex optimization problem [15]. This
algorithm is well-known for tackling more general
optimization problems in which the objective function is non-
differentiable, discontinuous or highly non-linear, that are not
well suited for standard optimization algorithm, e.g., quadratic
or linear programming. In light of the natural selection process
in biological evolution, the GA algorithm encodes a solution
in the optimization search space as a gene in biological
reproduction. By mimicking the gene combinations in
biological reproduction, it iteratively operates on a population
of candidate solutions as how a parent generation produces its
children generation, by selecting the good parent candidates
and performing randomly genetic operations (mutation and
crossover) on them to produce the children for the next
generation. The goodness of each candidate solution is
computed by a predefined fitness function which is usually
related to the objective function of the optimization problem.
Finally, the population “evolves” towards a globally optimal
solution over successive generations.

To implement a GA solver in the Optimizer, the control
input ࢛ is specified as the variable vector in the optimization.

The solver considers a fitness function based on the objective
function defined in Equation 3, a model function based on the
fuzzy model learned by the Estimator, and a constraint
function based on the resource capacity bound. It then follows
the genetic algorithm to search for the optimal resource
allocation	࢛ሺݐ ൅ 1ሻ∗. Since the GA solver may take a while to
solve such a non-trivial optimization problem, a bound is set
on the generations that the algorithm can produce, so that the
optimization can finish within a small control interval.
Although the solver may return only a suboptimal solution,
given the time constraint, as FMPC operates iteratively, it can
still steer the system to approach the optimal state.

As described above, the Estimator and Optimizer work
together in an online closed-loop. The input-output data pair
,ሻݐሺ࢛〉 ሻ〉 is measured and collected in every control periodݐሺ࢟
to train the fuzzy model. A MIMO fuzzy model can handle a
coupled system with multi-input and multi-output to describe
complex system behaviors with implicitly contentions from
system components. Once the model is established, it serves
as a prediction tool for the controller to search for the optimal
ݐሺ࢛ ൅ 1ሻ that promises the best ࢟ሺݐ ൅ 1ሻ which will be
applied to the VM resource allocation in the next control
period. It can quickly recover from model inaccuracy (during
bootstrapping or dynamic changes in the system), as the
observed performance for a given allocation is immediately
used to update the model and reflect the current behaviors.

V. CROSS-HOST CLOUD RESOURCE MANAGEMENT

Within a host’s resource constraints, the FMPC approach
allows the node controller to effectively optimize the host-
level performance objective by allocating the resources to its
local VMs. However, local optimality achieved at individual
VM host level does not guarantee the global optimality of the
entire cloud zone because resource utilization may be
unbalanced across the hosts. The global scheduler in the
proposed two-level cloud resource management addresses this
issue and optimizes the zone-level resource utilizations by
live-migrating VMs across the hosts. There is a good amount
of related work on the use of VM migration to optimize for a
variety of performance, energy, and thermal objectives (e.g.,
[16][17]). This paper focuses on the use of VM migration for
cross-host load balancing and its integration with the FMPC-
based node controllers.

To formulate the problem of VM consolidation, consider
M VMs distributed among N nodes in a cloud zone with an
initial placement ܦ௜ ൌ ൛ܸܯ௜ଵ, ,௜ଶܯܸ … , ሺ1	ൟ	௜௝ܯܸ ൑ ݅ ൑ ܰሻ,
where ∑ ௜ܦ ൌ ேܯ

௜ୀଵ . Then the necessary condition of VM
migration is defined as when the total demands of a certain
type of resource (e.g., CPU, memory, IO bandwidth), ܴ݁ݏ௜௝
from all the ܸܯ௜௝ on Host i exceeds its capacity ܥ௜, i.e.,
∑ ௜௝௏ெ೔ೕఢ஽೔ݏܴ݁

൒ .௜ܥ
The global scheduler detects these conditions on its

managed hosts based on the VM resource demands estimated
by the node controllers. It then uses this information to
carefully make migration decisions for the entire system. The
global scheduler periodically updates two lists based on the
resource demands collected from the node controllers:
OutList, the list of overloaded nodes which satisfy the

migration condition and need to move out some of its hosted
VMs; and InList, the list of underutilized nodes with certain
amount of residual resources and can be considered as the
destination for other VMs to move in. The OutList and InList
are both sorted based on the host-level total resource demand.
At every migration interval, the global scheduler identifies the
VMs that need to be migrated by iterating the VMs hosted on
the nodes in OutList, starting from the node with the highest
total resource demand. For a VM considered for migration, it
chooses a destination node with the least amount of residual
resources in InList. The new migration descriptor <VM,
source_host, dest_host > is then be added to a MigrationList.
The OutList and InList will be updated to remove nodes that
are not overloaded and underutilized, respectively, anymore
after the migration. The global scheduler iterates all nodes in
the OutList until there is either no moveable VM or no
available destination. It then sends the migration descriptors
in the MigrationList to the node controllers of the involved
source and destination hosts to start the migrations.

When a VM is migrated, it needs to be removed from the
source host’s fuzzy MIMO performance model and added to
the destination host’s MIMO model. If the migrating VM’s
performance model has to be retrained from scratch, it would
have an impact on its performance as well as the performance
of the other co-hosted VMs. To minimize this impact, the node
controllers on the source and destination hosts work together
and transfer the migrating VM’s performance model from the
source host and use it to bootstrap its model on the destination
host. To facilitate this model transfer, the MIMO model is
decomposed into a set of single-input-single-output (SISO)
fuzzy models. It is done by zeroing out the components in the
MIMO model that represent the correlation between a VM’s
performance and the allocations to other VMs. The SISO
model of the migrating VM is transferred from the source host
to the destination host. After migration, the MIMO models for
both the source and destination hosts are reconstructed using
their own SISO models. Only the correlations among the co-
hosted VMs in these MIMO models need to be retrained,
which has much less impact on the VMs because a VM’s
performance is mostly decided by its own resource allocation.

VI. EVALUATION

A. Setup

This section evaluates the proposed FMPC-based two-
level cloud resource management using representative
benchmarks in a typical virtualized environment. The two
level of controllers are implemented in C. The Fuzzy Model
Estimator and the Optimizer are both implemented in
MATLAB code with a C wrapper. The testbed is a cluster of
Dell PowerEdge 2970 servers, each equipped with two six-
core 2.4GHz AMD Opteron CPUs, 32GB of RAM, and 1TB
SAS storage. Xen 3.3.1 is installed to provide the VMs, and
the guest operating system is Ubuntu Linux 8.10 with
paravirtualized kernel 2.6.18.8. To allocate CPU time to VMs,
the Resource Allocator invokes Xen’s credit-based CPU
scheduler to set the caps on VM CPU usages, bounded by the
total available CPU time on each physical host (a CPU core is
reserved for Xen’s control domain (Dom0) and the Node

Controller on each host). The Global Scheduler runs in the
control domain of one of the hosts.

 The RUBiS benchmark used in the experiments models a
multi-tier online auction site which supports the core
functionalities such as browsing, selling, and bidding [3]. It
represents the typical web applications commonly found in
cloud computing systems. The evaluation also uses a real trace
[18] collected from a departmental web server VM to drive
the workload in RUBiS and make the experiments more
realistic. To evaluate the FMPC approach’s accuracy and
adaptability for modeling the complex behaviors of such a
VM as a black box, the web and database tiers of RUBiS are
deployed on the same DomU VM using Apache Tomcat
4.1.40 and MySQL 5.0. The resource allocation to a RUBiS
VM is dynamically controlled by the FMPC-based node
controller. The client VMs, which generate workloads to the
RUBiS VMs, are hosted on separate physical machines and
they can launch up to 8000 emulated client sessions in total.
To create high CPU contentions, another benchmark,
FreeBench [4], which models computationally intensive jobs,
was also used in the experiments.

The control period of the Node Controllers is 20 seconds,
during which a controller updates its local VMs’ performance
models (under 1s) and optimizes the resource allocations to
VMs (under 15s). The control period of the Global Scheduler
is one minute, during which it gathers the resource demands
from all Node Controllers, decides VM migrations, and
coordinates the involved controllers to execute the migrations.

B. Application-Level QoS Target Tracking

The first experiment evaluates the ability of the FMPC-
based controller in tracking fine-grained, response-time-based
QoS target for a multi-tiered application (RUBiS) that services
a dynamic workload. The workload represents real-world
workload patterns as its intensity (the number of concurrent
client sessions) is varied following a real daily trace collected
from a departmental web server at FIU [18]. The trace
captures the number of requests per hour, which is scaled up
to the range that the RUBiS setup can handle (Figure 3(a)).
When replaying the trace on RUBiS, it is accelerated by 30
times so that a whole day trace can finish in 2880 seconds. The
QoS target is set to 20ms in terms of the 90th-percentile
response time which is a reliable metric for measuring the
Internet service quality [19].

This experiment is challenging in that, first, the QoS target
is the average request response time per control period, which
is highly sensitive to the accuracy of VM performance model,
and second, the workload is highly dynamic which requires
good speed and adaptability in the performance modeling.

The experiment compares the proposed FMPC approach
to the adaptive linear MPC (LMPC) approach studied in the
related work [20]. In the FMPC approach, the predicted
performance is assumed to be dependent on only the current
resource allocation, so Equation (1) is simplified as
ܴ௜: ,௜࡭	ݏ݅	ሻݐሺ࢛	݂ܫ ሻݐሺ࢏࢟	݄݊݁ݐ ൌ ሻݐሺ࢛࢏ࢇ ൅ In Equation .࢏࢈
(3), both the input and output vectors ࢛ and ࢟ are normalized
by their maximum values that the system can achieve; and the
Q and R factor are both set to 1 to balance the importance
between tracking accuracy and controlling stability. The

baseline LMPC leverages a linear auto-regressive-moving-
average (ARMA) model which automatically trains the linear
VM performance model and is able to adapt the model based
on the online training. For both approaches, once the workload
is launched, the controller starts with an initial resource
allocation that is much less than the actual demand. The model
is created from scratch with the first few data points and
afterwards it is updated every control interval.

Figures 3(b) and (c) show the performance of RUBiS and
the CPU allocation to the VM every control interval. Both
FMPC and LMPC can meet the QoS target eventually as
workload changes, but FMPC is able to meet the QoS target
more closely and be more responsive to the changes,
especially when the workload intensity rises to its peak, from
1600s to 1800s. During this period, LMPC suffers from large
fluctuations and the performance is substantially worse than
FMPC; the average response is 109ms for LMPC and 13ms
for FMPC. This large difference is due to the underestimation
of CPU demand by LMPC during this period, while FMPC is
able to correctly predict the increasing CPU demand when the
RUBiS workload intensifies. Owing to the speed of fuzzy
modeling, FMPC can quickly adapt to the workload changes
and closely follow the QoS target. Overall, the average
response time across the entire workload is 138.3ms for
LMPC and 21.0ms for FMPC.

C. Host-level Resource Management

The second group of experiments evaluates how the
proposed FMPC controller manages the resource allocations
among multiple VMs on the same host in order to optimize

host-level management objective and how it reacts to the
dynamic changes in management policy.

1) Changing Workloads with Changing Weights

 Two different benchmarks are used in this experiment,
including RUBiS and FreeBench. A total of 12 VMs share six
physical CPU cores, and each VM is configured with one
virtual CPU and 1G of RAM and runs one benchmark. Eight
of the VMs run the multi-tiered RUBiS and the other four
VMs run FreeBench. The entire experiment lasts for 1200s.
All the RUBiS VMs service the same browsing mix workload
with varying intensity as illustrated in Figure 4(a). All the
FreeBench VMs run iterative, computationally intensive tasks
continuously. In addition to varying the RUBiS workloads,
the weights assigned to the VMs are also changed over time,
as shown in Figure 4(a). The VMs that host the same
application are treated equally; wR is the weight for the RUBiS
VMs, and wF is the weight for the Freebench VMs. The
experiment can be then divided into three phases according to
the weight values, and for each phase the workload intensity
of RUBiS VMs increases from 300 to 400 client sessions. The
QoS target is 20ms response time for RUBiS and 0.8s loop
time for FreeBench. To make the performance of different
applications comparable, the actual performance
measurements are normalized into the same range.

Figure 4(b) compares the online resource allocations made
by FMPC vs. LMPC. For clarity, the average value of CPU
allocations to VMs that run the same application is shown for
every control interval. Figure 4(c) compares the weighted sum

(a) A real-world trace used to generate the RUBiS workload

(b) Performance for the RUBiS workload

 (c) CPU allocations to the RUBiS VM

Figure 3. Meeting the QoS target of a RUBiS VM

0
100
200
300
400
500
600

0 600 1200 1800 2400 3000 3600 4200#
o
f
C
lie
n
t
Se
ss
io
n

Time (s)

1

10

100

1000

10000

0 600 1200 1800 2400 3000 3600 4200 4800

9
0
‐P
e
rc
e
n
ti
le

R
e
sp
o
n
se
 T
im

e
 (
m
s)

Time (s)

FMPC
LMPC
SLA=20

0

20

40

60

80

100

0 600 1200 1800 2400 3000 3600 4200 4800

C
P
U
 (
%
)

Time (s)

FMPC
LMPC

 (a) Changing workload and changing weights to the VMs

 (b) Average CPU allocation to each group of VMs

 (c) Level of QoS violation (weighted sum of the normalized performance

errors) across all VMs

Figure 4. Optimizing resource allocation to several co-hosted VMs when both
the workloads and weights are changing

200

300

400

500

0 100 200 300 400 500 600 700 800 900 10001100

o
f
C
lie
n
t
Se
ss
io
n
s

Time (s)

wR= 0.25,
wF=0.75 wR= 0.5, wF=0.5

wR= 0.75,
wF=0.25

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 10001100C
P
U
 A
llo
ca
ti
o
n
s
(%

)

Time (s)

FMPC‐RUBiS VM FMPC‐Freebench VM
LMPC‐ RUBiS VM LMPC‐ Freebench VM

0

2

4

6

8

10

0 100 200 300 400 500 600 700 800 900 10001100

Tr
ac
ki
n
g
Er
ro
r
(%

)

Time (s)

FMPC
LMPC

wR= 0.5,

wF=0.5

wR= 0.75,
wF=0.25

wR= 0.25, wF=0.75

of the normalized performance errors, ∑ ݐ௜ሺݕ௜หݓ ൅ 1ሻ െ௜

 ௥௘௙௜ห achieved by FMPC and LMPC. This metric reflects theݕ
total performance discrepancy from the QoS target vector
 .which should be minimized by the controller ,ࢌࢋ࢘࢟

At the beginning of the first phase, FMPC and LMPC
make similar allocation decisions, giving more CPU to the
FreeBench VMs which have a higher weight than the RUBiS
VMs. But as the RUBiS workload increases, FMPC increases
the CPU allocations to the RUBiS VMs by shifting a total of
16% CPU allocations from the FreeBench VMs, while LMPC
does not recognize this need and its allocation decision is
almost unchanged. Consequently, LMPC has much higher
performance errors, 63.7% in average, than FMPC. When the
experiment transits to the second phase, both the weights and
the RUBiS workloads are changed. FMPC handles these
changes much better than LMPC, and results in 78.3% lower
performance error in average for the first half of this phase. In
the second half of the phase, both controllers enter the steady
state, FMPC is still 8.9% better than LMPC in average. The
difference between these two approaches is even more drastic
in the third phase. At the beginning of this phase, both
controllers favor the FreeBench VMs because of their higher
weights. As the workload intensifies for the RUBiS VMs,
FMPC increases their allocations which eventually surpass the
FreeBench VMs, whereas LMPC continues to favor the
FreeBench VMs. This opposite decision causes LMPC to
perform substantially worse (up to 11 times higher
performance errors) than FMPC.

2) Realistic workload

The second experiment evaluates both the scalability and
stability of the proposed FMPC approach in managing more
VMs under realistic workloads with more dynamic changes.
In this experiment, eight VMs share four physical CPU cores,

and they all run RUBiS using the same real-world web trace
described in Section VI.B. To make the experiment more
interesting, the VMs are divided into four groups, and each
group starts the replay from a different offset of the trace, as
shown in Figure 5(a). As a result, the four groups reach their
peaks and values at different times in the experiment, and the
total load of the VMs also varies over time. In this experiment,
equal weight and QoS target (15ms) are set for all the VMs.
Note that when the system is saturated, none of the VMs can
meet its QoS target under equal resource allocations.
However, this experiment focuses on how to optimize the
overall performance by minimizing the distance to the VMs’
QoS targets.

Figure 5(b) compares the overall performance achieved by
FMPC vs. LMPC using the average 90th-percentile response
time as the metric because all the VMs have the same QoS
target and weight. At the beginning and the end of the
experiment, the overall system load is low and as a result there
is not much difference in performance between FMPC and
LMPC. But when the system becomes more loaded, FMPC
outperforms LMPC significantly. For example, from 1000s to
1600s, while LMPC achieves an average response time of
29.2ms and causes serious QoS violations (w.r.t. the 15ms
target), FMPC still maintains a good performance (17ms
average response time). From 1800s to 2600s, when the
system is saturated, FMPC delivers a 15.6% better overall
performance in average response time than LMPC.

D. System-level Resource Management

The last group of experiments evaluates the scalability of
the proposed two-level cloud resource management
framework using a larger testbed. The setup used in the
previous experiment is extended from single host to six hosts,
each initially running eight RUBiS and nine FreeBench VMs.
There are a total of 102 VMs under the management of a
global scheduler and six node controllers. An additional six
client VMs are used to generate the workloads for the RUBiS
VMs. The traces for the RUBiS VMs are created similarly to
the previous experiment, where all the RUBiS VMs are
divided into six groups and each group starts the replay from
different offset of the trace.

 This experiment is designed to evaluate the ability of the
two-level resource management to use dynamic VM
migrations to optimize the overall performance across hosts.
The baseline uses only the FMPC-based node controllers but
without VM migrations. Figure 6(a) shows the level of QoS
violations—the weighted sum of the normalized performance
errors—occurred on every host over time using heat map. The
x-axis shows the time in seconds and the y-axis shows the host
ID. The gray shades represent different levels of QoS
violations (the darker the worse), whereas the white color
indicates when all the VMs’ QoS targets are met. The results
show that the use of VM migration substantially improves the
performance of the VMs across the entire system. Overall, the
average performance across all the VMs in the system is
improved by 23.7% compared when migration is not used.
This improvement is made possible by the Global Scheduler
which decides VM migration based on the resource demands
estimated using FMPC, and by the node controllers which

(a) The workload trace for all eight RUBiS VMs

(b) Average 90th-percentile response time for all VMs

Figure 5. Optimizing resource allocation to several co-hosted VMs serving
realistic workloads

0

50

100

150

200

250

300

350

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400

#
 o
f
C
li
e
n
t
 S
e
s
s
io
n

Time(s)

G1:VM1‐2

G2:VM3‐4

G3:VM5‐6

G4:VM7‐8

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

R
e
sp
o
n
se
 T
im

e
(m

s)

Time(s)

LMPC

FMPC

cooperate to migrate the VMs and their performance models.
Figure 6(b) also uses a heat map to illustrate the distribution
of the VMs over time when migration is employed to balance
the load across hosts. The gray shades in the legend represent
the number of VMs on a host.

VII. RELATED WORK

Various solutions have been studied in the literature to
address the problem of resource management in virtualized
systems. Due to the limited space, here the discussion focuses
on the two most relevant types of approaches. One type of
approach considers machine-learning-based techniques to
automatically learn the complex resource model for a
virtualized system based on data observed from the system.
For example, Xu et al. studied the use of fuzzy modeling to
predict the CPU demand of a single VM [21][22]; the CRAVE
project used regression analysis to predict the performance
impact of memory allocation to VMs [23]; The VCONF
project studied using reinforcement learning to automatically
tune the CPU and memory configurations of a VM in order to
achieve a good performance for its hosted application [24];
and Kund et al. used artificial neural networks and support
vector machines to build offline performance models
considering both resource allocation to VMs and resource
interference between VMs [7][8].

 Another type of approach applies control theory [13] to
automatically adjust VM resource allocation in order to
achieve the desired system-level objective. In particular,
linear MIMO-model-based MPC (LMPC) has been studied
for resource management where multiple applications share a
common pool of resources. For example, Padala et al. [20]
used an online-trained linear MIMO model to capture the
relationship between the resource allocations to multi-tiered
applications and their performance, and designed controllers
to optimize the resource allocations by minimizing the
estimated distance to the QoS targets; and Gupta et al. studied
the use of LMPC to capture the process cache interference
among VMs and compensate its performance impact [25].

The FMPC-based approach proposed in this paper
combines the strengths of machine-learning and control-
theory techniques in cloud resource management. Compared
to other modeling based approaches, the FMPC approach can
be effectively applied online and quickly adapt to changes in
system behaviors. Typical model-based approaches require
substantial data for training the model which is difficult to do
online. Even if a model can be built offline, it is difficult to
adapt it online when the system behaviors change. Compared
to traditional LMPC-based approaches, FMPC can well
capture nonlinear system behaviors without much learning
overhead. In LMPC, a linear model is assumed to approximate
the nonlinear behavior within a limited region of an operation
point while it can be updated adaptively as the system moves
from one operating point to another. As demonstrated in
Section VI, FMPC can more accurately model the system with
a nonlinear fuzzy model and it can perform optimized control
continuously over the whole operating space.

While this paper focuses on the problem of how much
resources to provision to an applications’ single VM, a.k.a.,
vertical scaling, there is also related work studying how many

VMs to provision to an application, a.k.a., horizontal scaling.
Gandi et al. studied a workload discretization technique for
predicting workloads, and then used a queuing model to
predict the number of needed servers [26]. But queuing
models are often inadequate to model the complexity of cloud
systems, so they had to also use a feedback controller to
compensate for the error in the prediction. AGILE [27] used
wavelets to directly predict the number of needed application
server instances in the medium term, and to capture the near-
term resource demand they used curve fitting by trying
polynomials with different orders—which could be more
efficiently and accurately captured by a fuzzy model, as
shown in another work [6]. AutoScale [28] used the number
of requests in the system to infer the number of needed servers
based on a model that maps the number of requests on a single
server to the load at the server, which was shown to be
nonlinear and could also be well captured by a fuzzy model.
Moreover, the above related works do not address how to
optimize the resource allocation to competing applications,
which can be solved by the predictive controller proposed in
this paper’s FMPC approach.

VIII. CONCLUSIONS AND FUTUREWORK

This paper presents a new fuzzy modeling based
predictive control (FMPC) approach that can automatically
manage the resources in a virtualized system according to the

(a) Level of QoS violation (weighted sum of the normalized performance
errors) across hosts

 (b) Placement of VMs across hosts

Figure 6. Optimizing resource allocation to over 100 VMs across multiple
hosts using both dynamic resource allocations and VM migrations

Time(s)

H
os

t
ID

Without Migration

0 500 1000 1500 2000 2500 3000 3500

1

2

3

4

5

6

Time(s)

H
os

t
ID

With Migration

0 500 1000 1500 2000 2500 3000 3500

1

2

3

4

5

6

Above Target <=25% <=50% <=75% <=100%

Time(s)

of

 V
M

s
pe

r
H

os
t

0 500 1000 1500 2000 2500 3000 3500

1

2

3

4

5

6

16 17 18

application-level QoS targets and the system-level objective.
This approach is based on the combination of fuzzy-logic-
based modeling for capturing complex system behaviors and
MPC-based resource control for agile system optimization
and adaption to changes in the system. Based on FMPC, the
paper also proposes a two-level cloud resource management
framework. The node controllers work on the VM host level
to estimate VM resource demands and optimize each host’s
resource allocations. The global scheduler works at the cloud
zone level to optimize resource utilization across hosts
through dynamic VM migrations. The global scheduler
cooperates with the node controllers to understand the host-
level resource demands and carry out the VM migration plans.
The node controllers involved in a migration also work
together to share the performance models for the migrated
VMs and minimize the migrating impact.

Future work will be explored along the following
directions: (1) consider the holistic management of different
types of VM resources based on this paper’s approach and the
authors’ earlier work which considered the management of
memory and IO resources [6][29]; (2) study the coordinated
management of VMs belonging to the different tiers of the
same application, a more common setup used by cloud
applications; and (3) apply this paper’s approach to the
management of horizontal scaling of VMs serving the same
tier of a cloud application.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers and Giuliano
Casale for their helpful comments, and Eric Johnson for
assisting the collection of traces. This research is sponsored
by National Science Foundation under the National Science
Foundation CAREER award CNS-1253944, the Department
of Defense award W911NF-13-1-0157, and the Department
of Homeland Security award 2010-ST-062-000039.

REFERENCES
[1] Amazon Elastic Compute Cloud (Amazon EC2), URL: http://

aws.amazon.com/ec2/.

[2] Windows Azure Platform, URL: http://
www.microsoft.com/windowsazure/.

[3] C. Amza, A. Chanda, A.L. Cox, S. Elnikety, R. Gil, K. Rajamani, W.
Zwaenepoel, E. Cecchet and J. Marguerite, “Specification and
Implementation of Dynamic Web Site Benchmarks,” Proceedings of
the IEEE International Workshop on Workload Characterization, 2002

[4] Freebench, URL: https://code.google.com/p/freebench/

[5] 1998 World Cup Web Site Access Logs, URL:
http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

[6] L. Wang, J. Xu, M. Zhao, Y. Tu, and J. Fortes, “Fuzzy Modeling based
Resource Management for Virtualized Database Systems,”
Proceedings of the 19th Annual Meeting of the IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS2011), July 2011.

[7] S. Kundu, R. Rangaswami, K. Dutta, and M. Zhao, “Application
Performance Modeling in a Virtualized Environment,” Proceedings of
the 16th IEEE International Symposium on High-Performance
Computer Architecture (HPCA-16), 2010.

[8] S. Kundu, R. Rangaswami, A. Gulati, M. Zhao, and K. Dutta,
“Modeling Virtualized Applications using Machine Learning
Techniques,” Proceedings of the 8th Annual International Conference
on Virtual Execution Environments (VEE2012), March 2012.

[9] T. Takag and M. Sugeno, “Fuzzy identification of systems and its
application to modeling and control,” IEEE Transactions on Systems,
Man and Cybernetics, (1), 116-132, 1985.

[10] HP-UX Workload Manager, http://docs.hp.com/en/5990-
8153/ch05s12.html

[11] J. Rolia, L. Cherkasova, and C. McCarthy, “Configuring Workload
Manager Control Parameters for Resource Pools,” Proceedings of the
10th IEEE/IFIP Network Operations and Management Symposium,
2006.

[12] J. Maciejowski, “Predictive Control with Constraints,” Prentice Hall, 1
edition, 2002.

[13] T. Abdelzaher, Y. Diao , J. Hellerstein , C. Lu, and X. Zhu,
“Introduction to Control Theory and its Application to Computing
Systems, Performance Modeling and Engineering”, Springer, 2008.

[14] S. Chiu, “Fuzzy Model Identification Based on Cluster Estimation,”
Journal of Intelligent and Fuzzy Systems, 1994.

[15] D. Goldberg, “Genetic Algorithms in Search, Optimization and
Machine Learning,” Kluwer Academic Publishers, Boston, MA, 1989.

[16] J. Xu and J. Fortes, “A Multi-objective Approach to Virtual Machine
Management in Datacenters,” Proceedings of 8th International
Conference on Autonomic Computing (ICAC), 2011.

[17] J. Xu and J. Fortes, “Multi-objective Virtual Machine Placement in
Virtualized Data Center Environments,” Proceedings of 2010
IEEE/ACM International Conference on Green Computing and
Communications (GreenCom), 2010.

[18] FIU SCIS website trace. URL: https://visa.cs.fiu.edu/traces

[19] M. Kallahalla, M. Uysal, R. Swaminathan, D. Lowell, M. Wray, T.
Christian, N. Edwards, C. Dalton, and F. Gittler, “SoftUDC: A
Software-based Data Center for Utility Computing,” Computer, 2004.

[20] P. Padala, K. Hou, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant, “Automated Control of Multiple Virtualized
Resources,” Proceedings of ACM European conference on Computer
systems, 2009.

[21] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “On the Use of
Fuzzy Modeling in Virtualized Data Center Management,”
Proceedings of the 4th International Conference on Autonomic
Computing (ICAC2007), June 2007.

[22] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif, “Autonomic
Resource Management in Virtualized Data Centers using Fuzzy-logic-
based Approaches,” Cluster Computing, Vol. 11, No. 3, Pages: 213-
227, September 2008.

[23] J. Wildstrom, P. Stone, and E. Witchel, “CARVE: A Cognitive Agent
for Resource Value Estimation”, Proceedings of International
Conference on Autonomic Computing, 2008.

[24] J. Rao , X. Bu, C. Xu, L. Wang, and G. Yin, “VCONF: A
Reinforcement Learning Approach to Virtual Machines Auto-
configuration”, Proceedings of International Conference on
Autonomic Computing, 2009.

[25] R.Nathuji and A. Kansal, “Q-Clouds: Managing Performance
Interference Effects for QoS-Aware Clouds,” Proceedings of the 5th
ACM European conference on Computer systems, 2010.

[26] A. Gandhi, Y. Chen, D. Gmach, M. Arlitt, and M. Marwah,
“Minimizing Data Center Sla Violations and Power Consumption via
Hybrid Resource Provisioning,” Proceedings of International Green
Computing Conference and Workshops (IGCC), 2011.

[27] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “Agile: Elastic
Distributed Resource Scaling for Infrastructure-As-A-Service,”
Proceedings of the USENIX International Conference on Automated
Computing (ICAC’13), 2013.

[28] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. Kozuch,
“AutoScale: Dynamic, Robust Capacity Management for Multi-Tier
Data Centers,” ACM Transactions on Computer Systems, 30, 4, Article
14, November 2012.

[29] L. Wang, J. Xu, and M. Zhao, “Application-aware Cross-layer Virtual
Machine Resource Management,” Proceedings of the 9th International
Conference on Autonomic Computing (ICAC2012), September 2012.

