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Abstract—Virtualized systems such as public and private clouds 
are emerging as important new computing platforms with great 
potential to conveniently deliver computing across the Internet 
and efficiently utilize resources consolidated via virtualization.  
Resource management in virtualized systems remains a key 
challenge because of their intrinsically dynamic and complex 
nature, where the applications have dynamically changing 
workloads and virtual machines (VMs) compete for the shared 
resources in a convolved manner. To address this challenge, this 
paper proposes a new resource management approach that can 
effectively capture the nonlinear behaviors in VM resource 
usages through fuzzy modeling and quickly adapt to the changes 
in the system through predictive control. The resulting fuzzy-
model-predictive-control (FMPC) approach is capable of 
optimizing the VM resource allocations to applications 
according to their QoS targets. This approach is incorporated in 
a two-level cloud resource management framework where at the 
VM host level the node controllers employ FMPC to optimize 
dynamic VM resource allocations within individual hosts, and 
at the cloud zone level the global scheduler coordinates the node 
controllers to optimize resource utilization across  hosts through 
dynamic VM migrations.  The proposed approaches were 
implemented for Xen-based virtualized systems and evaluated 
using typical benchmarks (RUBiS, FreeBench) on a testbed with 
over 100 concurrent VMs. The results demonstrate that FMPC 
can accurately model the resource demands for dynamic 
applications and optimize the resource allocations to VMs with 
complex contentions. It substantially outperforms the 
traditional linear modeling based predictive control approach. 
The two-level resource management can make effective use of 
VM migrations to further improve performance across hosts as 
the host-level loads vary over time. 
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I. INTRODUCTION 

Virtualized systems such as public and private clouds 
[1][2] are emerging as promising new platforms that can 
significantly improve how resources are provisioned to 
applications and how computing is delivered to users. On one 
hand, applications can be conveniently deployed via virtual 
machines (VMs) without being tied to any specific physical 
machine or constrained by any specific set of resources. On 
the other hand, resources can be consolidated and multiplexed 
across VM-hosted applications to increase utilization and 
reduce cost. The fundamental goal for resource management 
in such systems is that resources should be automatically and 
dynamically allocated to the applications’ VMs according to 
application-level objectives (e.g., QoS—Quality of Service) 
and system-level objectives (e.g., service differentiation, 
revenue maximization).  

In order to achieve the above goal, resource management 
in virtualized systems needs to address the challenges raised 

by the intrinsically dynamic and complex resource usage 
behaviors in such systems. For example, when an 
application’s workload changes over time in intensity and 
composition of requests, its VM’s demands of different types 
of resources also change accordingly. As applications are 
consolidated to the same physical hosts via VMs, they also 
compete for the shared resources and interfere with one 
another. As a result, one application’s performance depends 
on not only its own VM’s resource usage but also others’ 
behaviors. Even if the application workloads stay relatively 
steady, service-level objectives may change over time and as 
a result resources need to be reallocated.  

This paper proposes a new Fuzzy Model Predictive 
Control (FMPC) based approach to address these challenges 
in resource management. This approach is architected to 
answer two key questions: 1) how to accurately capture the 
complex relationship between resource allocation and 
application performance; and 2) how to adaptively optimize 
the VM resource allocation as changes occur dynamically in 
the system. Specifically in the proposed approach, a fuzzy-
logic based modeling method is employed to learn the 
relationship between VM resource allocation and application 
performance, which can efficiently capture complex system 
behaviors with good speed. Then a predictive controller uses 
such a model to predict the resource demand for all VMs and 
take the resource control actions that enable the system to 
quickly reach its optimization objective. These two phases 
work in a closed-loop manner where the model is constructed 
and updated online and resource allocations are adjusted 
dynamically in order to adapt to the changes in the system in 
a timely manner. 

The paper also proposes a two-level resource management 
framework based on FMPC, including distributed host-level 
Node Controllers and a cloud zone level Global Scheduler. 
Each node controller uses FMPC to predict the resource 
demands of its local VMs and optimize the resource 
allocations according to their QoS targets. The global 
scheduler further improves performance across VM hosts by 
planning VM migrations based on the resource demand 
estimates from the node controllers. The node controllers in 
turn execute the VM migrations and transfer the performance 
models of the migrated VMs to minimize the impact of 
migrations on application performance. 

This proposed approach was prototyped on Xen-based 
virtualized systems and evaluated using typical benchmarks 
(RUBiS [3], FreeBench [4]). The results demonstrate that 
FMPC can accurately estimate the resource demand for a VM 
running dynamically changing workload and quickly achieve 
the desired QoS target. FMPC can also capture the complex 
behaviors of resource-competing VMs and optimize the 



 

 

resource allocations according to their QoS targets. It 
substantially outperforms the traditional linear model 
predictive control (LMPC) approach. Moreover, the proposed 
two-level resource management framework can effectively 
optimize the performance for more than 100 concurrent VMs 
running dynamic workloads across multiple hosts. 

The rest of this paper is organized as follows: Section 2 
introduces the background; Section 3 describes the detailed 
design and implementation; Section 4 presents an 
experimental evaluation; Section 5 examines the related work; 
and Section 6 concludes the paper. 

II. BACKGROUND 

A. Adaptive VM Resource Management  

Emerging virtualized systems such as public and private 
clouds promise to be important new computing platforms 
where applications can be executed cost-effectively using 
resources that are provisioned on demand. The key challenges 
to fulfilling this promise are how to accurately understand a 
VM’s resource demand based on its hosted application’s QoS 
requirement, and how to effectively optimize the resource 
allocations to the concurrent VMs in the system according to 
the service-level objectives. Without such QoS-driven 
resource management, cloud providers cannot support the 
more economical performance-based service-level 
agreements (SLA) and cloud users have to pay for resource 
capacity, instead of performance which is what the users really 
care about. Consequently, the users have to purchase 
unnecessary cloud resources to get their desired performance, 
and the providers cannot maximize their profits from offering 
the cloud services. 

The main difficulty of achieving QoS-driven cloud 
resource management lies in the intrinsically dynamic and 
complex nature of the application and system behaviors in a 
highly consolidated, virtualized environment. First, the 
dynamics in an application’s workload can lead to complex 
behaviors in its VM’s resource usages as its intensity and 
composition change over time. For instance, a web 
workload’s request rate varies depending on the time of day 
and the occurrence of events [5]; a database workload can also 
change in terms of its composition of a wide variety of queries 
with different levels of CPU and IO demands [6]. Second, 
interference among VMs hosted on the same physical 
machine can lead to complex nonlinear resource usage 
behaviors as they compete for various types of resources that 
cannot be strictly partitioned. For example, when co-hosted 
VMs compete for the shared last-level processor cache or disk 
IO bandwidth, the relationship between each VM’s resource 
allocation and its application’s performance is known to be 
nonlinear [6][7][8]. Finally, even if the application workloads 
stay relatively steady, their SLAs, which specify the QoS that 
they require and the cost that they are willing to pay, may 
change over time. Consequently, resource allocations to the 
applications’ VMs need to be dynamically adjusted in order to 
sustain the system-level objective.  

With the rapidly growing level of application and resource 
consolidation, the aforementioned scenarios are increasingly 
common in cloud systems and the management of such 

systems is in fact increasingly challenging. Different 
approaches have been studied for virtual resource 
management and they are examined in detail in Section VII. 
In particular, machine learning based techniques can be 
employed to automatically learn the relationship between an 
application’s resource allocation and its performance; and 
control theory based techniques can be used to automate the 
control of resource allocations according to the application- 
and system-level objectives. This paper proposes a new 
resource management approach based on the combination of 
these two types of techniques that can effectively capture the 
nonlinearity in virtualized system behaviors and quickly adapt 
to the changes in such behaviors.  

B. Fuzzy-logic based System Modeling 

This paper adopts a fuzzy-logic-based learning technique 
to model application performance and VM resource usage in 
a virtualized system, because fuzzy modeling is particularly 
suited to efficiently model systems with complex behaviors 
[9]. The technique combines fuzzy logic with mathematical 
equations to discover and describe the patterns in system 
behaviors and to guide the control strategies of the system. A 
fuzzy model is a rule base which consists of a collection of 
fuzzy rules in the form of “If x is A then y is B”, where A and 
B are linguistic values defined by fuzzy sets with associated 
membership functions. These rules are trained using the input 
(x) and output (y) data observed from the system and together 
they represent the mathematical model of the system 
behaviors. Based on such a fuzzy model, fuzzy inference can 
be applied to compute the output (y) for any given input (x). 

Note that the fuzzy modeling approach differs 
fundamentally from traditional rule-based system 
management approaches [10][11]. The latter is based on the 
use of a set of event-condition-action rules which are triggered 
only when certain events happen and some preconditions are 
met. In such an approach, the rules are typically specified by 
system experts, which is often intractable to apply to a 
complex system because of the difficulty in defining 
thresholds and corrective actions for all possible system states. 
In contrast, a fuzzy model is built for the entire input space of 
the system and can be used for continuous control, where the 
fuzzy rules representing the model are created automatically 
from the observed input-output data. 

C. Model Predictive Control 

Model predictive control (MPC) [12] is an advanced 
control technique in which the controller takes control actions 
by optimizing an objective function that defines the objective 
of controlling the system. To enable the predictive capabilities 
of the control system, an explicit model that characterizes the 
system behaviors is leveraged to make predictions of system 
output over a specific future prediction horizon. Such 
modeling and optimization typically involved in MPC can be 
performed iteratively in an online fashion, where real-time 
data are used to update the model in the modeling phase and 
new optimal action is computed based on the model to adjust 
the system control. In this way, the controller can adapt to 
changes in the system behaviors in a timely fashion. 



 

 

In contrast to an open-loop optimal control technique, the 
MPC system works in a closed-loop manner by feeding back 
information on previous inputs and outputs to the controller at 
the end of each control period in order to keep track of 
prediction errors and control variations. So on one hand the 
controller is able to make more informative control actions 
based on the feedbacks, and on the other hand the system is 
able to be driven back to the set-point target appropriately 
without large oscillations even in the presence of noise.  

MPC has been used by related VM resource management 
work (examined in detail in Section VII) which adopts linear 
models which are accurate enough to model system behaviors 
within a small region of control operation. This paper 
proposes to use fuzzy modeling to build the model in MPC, 
which can capture the nonlinearity in system behaviors and 
perform optimal control over the entire operating space. The 
rest of this paper presents the details of this approach. 

III. TWO-LEVEL RESOURCE MANAGEMENT ARCHITECTURE 

This paper considers the typical cloud environment where 
VM hosts are organized into zones: Within each zone, the 
hosts use shared storage servers to store the VM images so 
VMs can be quickly live-migrated across the hosts for load 
balancing; Across zones, VMs cannot be easily live-migrated 
so it happens only at rare occasions, e.g., when an entire zone 
is overloaded or under maintenance. Hence, the proposed 
resource management framework focuses on the dynamic 
resource allocations at the host level and dynamic VM 
migrations at the zone level. Nonetheless, the proposed two-
level framework can also be used to balance loads across 
zones using non-live VM migrations according to the entire 
cloud system’s service-level objectives. 

Figure 1 illustrates the architecture of the proposed two-
level cloud resource management framework which includes 
a Node Controller on every VM host and a Global Scheduler 
for the entire cloud zone. Specifically, a node controller is 
responsible for dynamically allocating resources to VMs and 
optimizing them using FMPC according to application QoS 
targets. The global scheduler dynamically adjusts VM 
placement through live migration in order to handle load 
variations on the VM hosts and to improve system-level 
performance. The node controllers and global scheduler 
cooperate with each other to complete the cloud resource 
management. When a node controller updates its predicted 
resource demands of its local VMs, it sends this information 
to the global scheduler for making VM migration decisions; 

when a global scheduler decides to migrate a VM, it 
coordinates with the node controllers on the source and 
destination hosts to execute the migration and then update 
their performance models and resource allocations based on 
the new VM placement. 

These two levels of resource management operate at 
different granularity and time intervals. The node controllers 
allocate resources at a fine granularity (e.g., CPU cycles) and 
time scale (e.g., every 20 seconds), because of the low 
overhead of making such adjustments through the hypervisor 
interface and the fast speed of the proposed performance 
modeling and resource optimization techniques. The global 
scheduler adjusts the resource utilization across hosts in the 
units of VMs at a longer time scale (e.g., every minute) 
because of the relatively higher overhead and longer-term 
effect of VM migrations. Therefore, in this two-level 
architecture, fine-grained, frequent control actions occur only 
at the host level within the scope of the limited local VMs, 
whereas global control takes place at a coarse granularity and 
infrequently. It is thus easier to scale compared to the 
alternative one-level architecture that either employs a 
centralized manager to control the resource allocations to all 
the VMs across all the hosts, or completely decentralize the 
management so that a node controller has to communicate 
with all the other peers in order to obtain global knowledge 
and coordinate VM migration decisions.  

IV.  HOST-LEVEL VM RESOURCE MANAGEMENT 

Figure 2 illustrates the architecture of the proposed system 
which consists of four key modules, Application Sensors, 
Fuzzy Model Estimator, Optimizer, and Resource Allocator. 
As the applications are running on their VMs, the Application 
Sensors monitor the performance yi(t) from each application i 
and then send them to Fuzzy Model Estimator. The Estimator 
collects all the necessary information including the current 
and historical application performance and VM resource 
allocations to create the fuzzy model for the VMs. Such a 
model, which represents the relationship between the control 
input (resource allocations to the VMs) and the measured 
output (performance of the applications), is updated every 
control period. Based on the model, the Optimizer produces a 

Figure 2. The architecture of the FMPC-based host-level resource 
management 
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resource allocation scheme for the next time interval that 
optimizes the system according to a predefined objective 
function. Then the Resource Allocator adjusts the VMs’ 
resource allocations accordingly. Together, these modules 
form a closed feedback loop that works periodically for cloud 
resource management. 

A. Fuzzy Model Estimator 

The proposed FMPC is a fuzzy-model-based predictive 
control approach. The major difference between FMPC and 
traditional MPC approaches [12] lies in the modeling part. In 
FMPC, the Fuzzy Model Estimator is responsible for building 
models that can describe complex system behaviors using 
fuzzy-logic-based method. The strength of this approach 
includes the following aspects: 1) it simplifies the learning of 
the complex models by describing nonlinearity using a set of 
linear sub models captured by the fuzzy rules; 2) it can 
perform optimized control over the entire operating space; 3) 
it inherits the benefits of traditional predictive control that can 
guarantee dynamic performance in a closed-loop system and 
achieve desired target in a stable manner. 

Consider a resource provider that hosts multiple 
applications by multiplexing multiple types of resources 
among them via VMs, a general multi-input-multi-output 
(MIMO) model in MPC described by the following equation 
is used to capture the time-varying relationship between VM 
resource allocations u(t) and application performance y(t),  

ሻݐሺ࢟ ൌ Φሺ࢛ሺݐሻ, … , ݐሺ࢛ െ ݉ሻ, ݐሺ࢟ െ 1ሻ, … , ݐሺ࢟ െ ݊ሻሻ 

where the input ࢛ሺݐሻ ൌ ሾݑଵሺݐሻ, ⋯,ሻݐଶሺݑ , ሻሿݐேሺݑ
் represents 

the allocation of p types of controllable resources to the q 
applications’ VMs at time step t (ܰ ൌ  and the output ,(ݍ݌

ሻݐሺ࢟ ൌ ,ሻݐଵሺݕൣ ⋯,ሻݐଶሺݕ , ሻ൧ݐ௤ሺݕ
்
 represents the predicted 

performance of the applications at t. For example, if there are 
two applications which require on two types of resources, 
CPU and IO, ࢛ሺݐሻ ൌ ሾݑ௩௠ଵ

஼௉௎ሺݐሻ, ௩௠ଵݑ
ூை ሺݐሻ, ௩௠ଶݑ

஼௉௎ሺݐሻ, ௩௠ଶݑ
ூை ሺݐሻሿ். 

The m and n reflect the impact of the previous inputs and 
outputs to current prediction and are usually set to small 
values in order to reduce the complexity of the model, e.g., 
with m = 0 and n = 1, ࢟ሺݐሻ ൌ Φሺ࢛ሺݐሻ, ݐሺ࢟ െ 1ሻ. 

In traditional MPC approaches, linear models are applied 
to approximate the nonlinear behaviors around the current 
operating point, so ܡሺݐሻ ൌ ሻݐሺ࢛ࢇ ൅ ݐሺ࢟࢈ െ 1ሻ, where ࢇ and 
 are dynamically adapted as the system moves across ࢈
different operating points. In the proposed FMPC, the general 
Φ function from the control inputs to the system outputs is 
instantiated by a fuzzy model composed of a collection of 
fuzzy rules [13],  

 						ܴ௜: ݐሺ࢟		݀݊ܽ	௜ܣ	ݏ݅	ሻݐሺ࢛	݂ܫ െ 1ሻ	݅ݏ	ܤ௜, 
ሻݐሺ࢏࢟	݄݊݁ݐ              ൌ ሻݐሺ࢛࢏ࢇ ൅ ݐሺ࢟࢏࢈ െ 1ሻ                       (1) 

In the premise Ai and Bi are fuzzy sets associated with the 
fuzzy rule ܴ௜. Their corresponding Gaussian membership 

functions ߤ஺௜ሺ࢛ሻ ൌ ݁
ି
ሺ࢛ష೎ሻమ

మ഑మ and ߤ஻௜ሺ࢟ሻ ൌ ݁
ି
ሺ࢟ష೎ሻమ

మ഑మ  determine 
the membership grades of the control input vectors ࢛ሺݐሻ and 
ݐሺ࢟ െ 1ሻ, respectively, which indicate the degree that they 
belong to the fuzzy sets. In the consequence, the output ࢏࢟ሺݐሻ 

of rule ܴ௜ is a linear function of the current control input and 
previous output with trainable parameter matrices ࢏ࢇ and ࢏࢈. 

The Estimator adopts an efficient one-pass clustering 
algorithm, subtractive clustering [14], to build a concise rule 
base with a small number of fuzzy rules that can effectively 
represent the VMs’ behaviors. Subtractive clustering takes a 
single parameter, radius, which can be adjusted to influence 
the number of clusters—a larger radius leads to a smaller 
number of clusters. Each cluster exemplifies a representative 
characteristic of the system behaviors and can be used to 
create a fuzzy rule accordingly. In this way, both the system 
structure and parameters are learned and adapted in real time 
from online data streams. The recursive least square (RLS) 
learning method is used to train the model parameters online. 
The system model gradually evolves as opposed to having a 
fixed structure model, and the learning process is incremental 
and automatic. Owing to the speed of subtractive clustering 
and RLS learning in fuzzy model construction, the model can 
be updated quickly (sub second), and can be used in every 
control interval to capture the current system behaviors. 

The Estimator is invoked by the Optimizer discussed 
below in every control step t to predict the performance for 
different input values and assist it to search for the optimal 
allocation solution across the input space. The Estimator 
applies fuzzy inference to predict the output ࢟ሺݐሻ	for a given 
control input 〈࢛ሺݐሻ, ݐሺ࢟ െ 1ሻ〉 based on a trained fuzzy rule 
base with S fuzzy rules. It entails the following steps: 1) 
Evaluation of antecedents: the input variables are fuzzified to 
the degree, ࢏ࢾ, to which they belong to each of the fuzzy sets 
via the corresponding membership functions for each fuzzy 
rule ܴ௜; 2) Implication to consequents: implication is 
performed on each fuzzy rule by computing ࢏࢟ሺݐሻ based on 
Equation (1); 3) Aggregation of consequents: the final 
prediction is performed as ࢟ሺݐሻ ൌ ∑ ሻݐሺ࢏࢟࢏ࢾ

ௌ
௜ୀଵ ൌ

∑ ሻݐሺ࢛࢏ࢇሺ࢏ࢾ ൅ ݐሺ࢟࢏࢈ െ 1ሻሻௌ
௜ୀଵ , where the outputs of all the 

fuzzy rules are aggregated into a single numeric vector based 
on their corresponding membership grades ࢏ࢾ.  The fuzzy 
model captures the system’s nonlinearity in a way that each 
rule characterizes a certain aspect of the system using a simple 
linear model with low computation complexity, whereas with 
all the rules aggregated together the model can effectively 
capture nonlinear behaviors. 

B. Optimizer 

Generally, the objective function in MPC is formulated as 

ሻݐሺܬ				 ൌ෍ฮ࢟ሺݐ ൅ ሻݐ|݅ െ ݐ௥௘௙ሺ࢟ ൅ ሻฮݐ|݅
ଶ

௉

௜ୀଵ

ܳሺ݅ሻ 

																	൅෍‖࢛ሺݐ ൅ ሻݐ|݅ െ ݐሺ࢛ ൅ ݅ െ ሻ‖ଶݐ|1
ெ

௜ୀଵ

ܴሺ݅ሻ									ሺ2ሻ 

The first term in the summation represents tracking error, i.e., 
the difference between the predicted output ࢟ሺݐ ൅  and the	ሻݐ|݅
reference output ࢟௥௘௙ሺݐ ൅  ,of the next P steps. In FMPC	ሻݐ|݅
the predicted output is given by the fuzzy model described 
above. The second term represents the control effort, i.e., the 
amount of resource allocation changes in the next M steps. 
The importance of tracking accuracy in performance targeting 



 

 

and maintaining stability in control operation can be tuned by 
the assigned ܳሺ݅ሻand ܴሺ݅ሻ factors. Larger Q factor will make 
the controller react more aggressively to the tracking errors. 
Larger R factor will improve the stability of system by 
avoiding large oscillation in the resulting resource allocation.  

To reduce the complexity of the problem, the Optimizer 
uses an objective function with M = P = 1, and ࢟௥௘௙	can be 
simply set using the normalized QoS targets of the considered 
applications. In addition, in Equation (2), the performance of 
the q different applications, ࢟ሺݐሻ ൌ

,ሻݐଵሺݕൣ ⋯,ሻݐଶሺݕ , ሻ൧ݐ௤ሺݕ
்
are treated with equal importance. In 

practice, applications hosted in the same cloud can be given 
different preferences, because they have different priorities or 
generate different amounts of revenues to the system. Without 
loss of generality, we use weights  ݓ௜ሺݐሻ, ሺ1 ൑ ݅ ൑  ሻ toݍ
represent the preferences given to the applications. The 
objective function can be formulated as 

ሻݐሺܬ															 	ൌ ܳ෍ൣݓ௜൫ݕ௜ሺݐ ൅ 1ሻ െ ௥௘௙௜൯൧ݕ
ଶ

௤

௜ୀଵ

 

																													൅ܴ෍ሾݑ௜ሺݐ ൅ 1ሻ െ ሻሿݐ௜ሺݑ
ଶ																							ሺ3ሻ

ே

௜ୀଵ

 

The goal of the Optimizer is to find a resource allocation 
ݐሺ࢛ ൅ 1ሻ∗ that can minimize the above objective function, i.e., 
ݐሺ࢛ ൅ 1ሻ∗ ൌ ݐሺܬ࢛݊݅݉݃ݎܽ ൅ 1ሻ, subject to the total resource 
capacity (e.g,. total available CPU time, total available 
memory capacity) of the host. By taking the resource 
allocation that minimizes the objective function at each time 
step, FMPC will be able to optimize the resource allocations 
to meet the applications’ QoS targets, when it is not 
oversubscribed, or minimize the distance to the targets, when 
oversubscribed. 

The fuzzy performance model in FMPC is rule-based and 
not differentiable; a minimization problem involving such 
models cannot be solved by any classical, derivative-based 
optimization algorithm. A genetic algorithm (GA) method is 
applied to solve this complex optimization problem [15]. This 
algorithm is well-known for tackling more general 
optimization problems in which the objective function is non-
differentiable, discontinuous or highly non-linear, that are not 
well suited for standard optimization algorithm, e.g., quadratic 
or linear programming. In light of the natural selection process 
in biological evolution, the GA algorithm encodes a solution 
in the optimization search space as a gene in biological 
reproduction. By mimicking the gene combinations in 
biological reproduction, it iteratively operates on a population 
of candidate solutions as how a parent generation produces its 
children generation, by selecting the good parent candidates 
and performing randomly genetic operations (mutation and 
crossover) on them to produce the children for the next 
generation. The goodness of each candidate solution is 
computed by a predefined fitness function which is usually 
related to the objective function of the optimization problem. 
Finally, the population “evolves” towards a globally optimal 
solution over successive generations.  

To implement a GA solver in the Optimizer, the control 
input ࢛ is specified as the variable vector in the optimization. 

The solver considers a fitness function based on the objective 
function defined in Equation 3, a model function based on the 
fuzzy model learned by the Estimator, and a constraint 
function based on the resource capacity bound. It then follows 
the genetic algorithm to search for the optimal resource 
allocation	࢛ሺݐ ൅ 1ሻ∗. Since the GA solver may take a while to 
solve such a non-trivial optimization problem, a bound is set 
on the generations that the algorithm can produce, so that the 
optimization can finish within a small control interval. 
Although the solver may return only a suboptimal solution, 
given the time constraint, as FMPC operates iteratively, it can 
still steer the system to approach the optimal state.  

As described above, the Estimator and Optimizer work 
together in an online closed-loop. The input-output data pair 
,ሻݐሺ࢛〉  ሻ〉 is measured and collected in every control periodݐሺ࢟
to train the fuzzy model. A MIMO fuzzy model can handle a 
coupled system with multi-input and multi-output to describe 
complex system behaviors with implicitly contentions from 
system components. Once the model is established, it serves 
as a prediction tool for the controller to search for the optimal 
ݐሺ࢛ ൅ 1ሻ that promises the best ࢟ሺݐ ൅ 1ሻ which will be 
applied to the VM resource allocation in the next control 
period. It can quickly recover from model inaccuracy (during 
bootstrapping or dynamic changes in the system), as the 
observed performance for a given allocation is immediately 
used to update the model and reflect the current behaviors.  

V. CROSS-HOST CLOUD RESOURCE MANAGEMENT 

Within a host’s resource constraints, the FMPC approach 
allows the node controller to effectively optimize the host-
level performance objective by allocating the resources to its 
local VMs. However, local optimality achieved at individual 
VM host level does not guarantee the global optimality of the 
entire cloud zone because resource utilization may be 
unbalanced across the hosts. The global scheduler in the 
proposed two-level cloud resource management addresses this 
issue and optimizes the zone-level resource utilizations by 
live-migrating VMs across the hosts. There is a good amount 
of related work on the use of VM migration to optimize for a 
variety of performance, energy, and thermal objectives (e.g., 
[16][17]). This paper focuses on the use of VM migration for 
cross-host load balancing and its integration with the FMPC-
based node controllers.  

To formulate the problem of VM consolidation, consider 
M VMs distributed among N nodes in a cloud zone with an 
initial placement ܦ௜ ൌ ൛ܸܯ௜ଵ, ,௜ଶܯܸ … , ሺ1	ൟ	௜௝ܯܸ ൑ ݅ ൑ ܰሻ, 
where ∑ ௜ܦ ൌ ேܯ

௜ୀଵ . Then the necessary condition of VM 
migration is defined as when the total demands of a certain 
type of resource (e.g., CPU, memory, IO bandwidth), ܴ݁ݏ௜௝ 
from all the ܸܯ௜௝ on Host i exceeds its capacity ܥ௜, i.e., 
∑ ௜௝௏ெ೔ೕఢ஽೔ݏܴ݁

൒  .௜ܥ
The global scheduler detects these conditions on its 

managed hosts based on the VM resource demands estimated 
by the node controllers. It then uses this information to 
carefully make migration decisions for the entire system. The 
global scheduler periodically updates two lists based on the 
resource demands collected from the node controllers: 
OutList, the list of overloaded nodes which satisfy the 



 

 

migration condition and need to move out some of its hosted 
VMs; and InList, the list of underutilized nodes with certain 
amount of residual resources and can be considered as the 
destination for other VMs to move in. The OutList and InList 
are both sorted based on the host-level total resource demand. 
At every migration interval, the global scheduler identifies the 
VMs that need to be migrated by iterating the VMs hosted on 
the nodes in OutList, starting from the node with the highest 
total resource demand. For a VM considered for migration, it 
chooses a destination node with the least amount of residual 
resources in InList. The new migration descriptor <VM, 
source_host, dest_host > is then be added to a MigrationList. 
The OutList and InList will be updated to remove nodes that 
are not overloaded and underutilized, respectively, anymore 
after the migration. The global scheduler iterates all nodes in 
the OutList until there is either no moveable VM or no 
available destination. It then sends the migration descriptors 
in the MigrationList to the node controllers of the involved 
source and destination hosts to start the migrations. 

When a VM is migrated, it needs to be removed from the 
source host’s fuzzy MIMO performance model and added to 
the destination host’s MIMO model. If the migrating VM’s 
performance model has to be retrained from scratch, it would 
have an impact on its performance as well as the performance 
of the other co-hosted VMs. To minimize this impact, the node 
controllers on the source and destination hosts work together 
and transfer the migrating VM’s performance model from the 
source host and use it to bootstrap its model on the destination 
host. To facilitate this model transfer, the MIMO model is 
decomposed into a set of single-input-single-output (SISO) 
fuzzy models. It is done by zeroing out the components in the 
MIMO model that represent the correlation between a VM’s 
performance and the allocations to other VMs. The SISO 
model of the migrating VM is transferred from the source host 
to the destination host. After migration, the MIMO models for 
both the source and destination hosts are reconstructed using 
their own SISO models. Only the correlations among the co-
hosted VMs in these MIMO models need to be retrained, 
which has much less impact on the VMs because a VM’s 
performance is mostly decided by its own resource allocation. 

VI. EVALUATION 

A.  Setup 

This section evaluates the proposed FMPC-based two-
level cloud resource management using representative 
benchmarks in a typical virtualized environment. The two 
level of controllers are implemented in C. The Fuzzy Model 
Estimator and the Optimizer are both implemented in 
MATLAB code with a C wrapper. The testbed is a cluster of 
Dell PowerEdge 2970 servers, each equipped with two six-
core 2.4GHz AMD Opteron CPUs, 32GB of RAM, and 1TB 
SAS storage. Xen 3.3.1 is installed to provide the VMs, and 
the guest operating system is Ubuntu Linux 8.10 with 
paravirtualized kernel 2.6.18.8. To allocate CPU time to VMs, 
the Resource Allocator invokes Xen’s credit-based CPU 
scheduler to set the caps on VM CPU usages, bounded by the 
total available CPU time on each physical host (a CPU core is 
reserved for Xen’s control domain (Dom0) and the Node 

Controller on each host). The Global Scheduler runs in the 
control domain of one of the hosts.  

 The RUBiS benchmark used in the experiments models a 
multi-tier online auction site which supports the core 
functionalities such as browsing, selling, and bidding [3]. It 
represents the typical web applications commonly found in 
cloud computing systems. The evaluation also uses a real trace 
[18] collected from a departmental web server VM to drive 
the workload in RUBiS and make the experiments more 
realistic. To evaluate the FMPC approach’s accuracy and 
adaptability for modeling the complex behaviors of such a 
VM as a black box, the web and database tiers of RUBiS are 
deployed on the same DomU VM using Apache Tomcat 
4.1.40 and MySQL 5.0. The resource allocation to a RUBiS 
VM is dynamically controlled by the FMPC-based node 
controller. The client VMs, which generate workloads to the 
RUBiS VMs, are hosted on separate physical machines and 
they can launch up to 8000 emulated client sessions in total. 
To create high CPU contentions, another benchmark, 
FreeBench [4], which models computationally intensive jobs, 
was also used in the experiments. 

The control period of the Node Controllers is 20 seconds, 
during which a controller updates its local VMs’ performance 
models (under 1s) and optimizes the resource allocations to 
VMs (under 15s). The control period of the Global Scheduler 
is one minute, during which it gathers the resource demands  
from all Node Controllers, decides VM migrations, and 
coordinates the involved controllers to execute the migrations. 

B. Application-Level QoS Target Tracking 

The first experiment evaluates the ability of the FMPC-
based controller in tracking fine-grained, response-time-based 
QoS target for a multi-tiered application (RUBiS) that services 
a dynamic workload. The workload represents real-world 
workload patterns as its intensity (the number of concurrent 
client sessions) is varied following a real daily trace collected 
from a departmental web server at FIU [18]. The trace 
captures the number of requests per hour, which is scaled up 
to the range that the RUBiS setup can handle (Figure 3(a)). 
When replaying the trace on RUBiS, it is accelerated by 30 
times so that a whole day trace can finish in 2880 seconds. The 
QoS target is set to 20ms in terms of the 90th-percentile 
response time which is a reliable metric for measuring the 
Internet service quality [19].  

This experiment is challenging in that, first, the QoS target 
is the average request response time per control period, which 
is highly sensitive to the accuracy of VM performance model, 
and second, the workload is highly dynamic which requires 
good speed and adaptability in the performance modeling. 

The experiment compares the proposed FMPC approach 
to the adaptive linear MPC (LMPC) approach studied in the 
related work [20]. In the FMPC approach, the predicted 
performance is assumed to be dependent on only the current 
resource allocation, so Equation (1) is simplified as 
ܴ௜: ,௜࡭	ݏ݅	ሻݐሺ࢛	݂ܫ ሻݐሺ࢏࢟	݄݊݁ݐ ൌ ሻݐሺ࢛࢏ࢇ ൅  In Equation .࢏࢈
(3), both the input and output vectors ࢛ and ࢟ are normalized 
by their maximum values that the system can achieve; and the 
Q and R factor are both set to 1 to balance the importance 
between tracking accuracy and controlling stability.  The 



 

 

baseline LMPC leverages a linear auto-regressive-moving-
average (ARMA) model which automatically trains the linear 
VM performance model and is able to adapt the model based 
on the online training. For both approaches, once the workload 
is launched, the controller starts with an initial resource 
allocation that is much less than the actual demand. The model 
is created from scratch with the first few data points and 
afterwards it is updated every control interval.  

Figures 3(b) and (c) show the performance of RUBiS and 
the CPU allocation to the VM every control interval. Both 
FMPC and LMPC can meet the QoS target eventually as 
workload changes, but FMPC is able to meet the QoS target 
more closely and be more responsive to the changes, 
especially when the workload intensity rises to its peak, from 
1600s to 1800s. During this period, LMPC suffers from large 
fluctuations and the performance is substantially worse than 
FMPC; the average response is 109ms for LMPC and 13ms 
for FMPC. This large difference is due to the underestimation 
of CPU demand by LMPC during this period, while FMPC is 
able to correctly predict the increasing CPU demand when the 
RUBiS workload intensifies. Owing to the speed of fuzzy 
modeling, FMPC can quickly adapt to the workload changes 
and closely follow the QoS target. Overall, the average 
response time across the entire workload is 138.3ms for 
LMPC and 21.0ms for FMPC. 

C. Host-level Resource Management 

The second group of experiments evaluates how the 
proposed FMPC controller manages the resource allocations 
among multiple VMs on the same host in order to optimize 

host-level management objective and how it reacts to the 
dynamic changes in management policy. 

1)  Changing Workloads with Changing Weights    

 Two different benchmarks are used in this experiment, 
including RUBiS and FreeBench. A total of 12 VMs share six 
physical CPU cores, and each VM is configured with one 
virtual CPU and 1G of RAM and runs one benchmark. Eight 
of the VMs run the multi-tiered RUBiS and the other four 
VMs run FreeBench. The entire experiment lasts for 1200s. 
All the RUBiS VMs service the same browsing mix workload 
with varying intensity as illustrated in Figure 4(a). All the 
FreeBench VMs run iterative, computationally intensive tasks 
continuously. In addition to varying the RUBiS workloads, 
the weights assigned to the VMs are also changed over time, 
as shown in Figure 4(a). The VMs that host the same 
application are treated equally; wR is the weight for the RUBiS 
VMs, and wF is the weight for the Freebench VMs. The 
experiment can be then divided into three phases according to 
the weight values, and for each phase the workload intensity 
of RUBiS VMs increases from 300 to 400 client sessions. The 
QoS target is 20ms response time for RUBiS and 0.8s loop 
time for FreeBench. To make the performance of different 
applications comparable, the actual performance 
measurements are normalized into the same range.  

Figure 4(b) compares the online resource allocations made 
by FMPC vs. LMPC. For clarity, the average value of CPU 
allocations to VMs that run the same application is shown for 
every control interval. Figure 4(c) compares the weighted sum 

 
(a) A real-world trace used to generate the RUBiS workload  

 
(b) Performance for the RUBiS workload 

 
 (c) CPU allocations to the RUBiS VM 

Figure 3. Meeting the QoS target of a RUBiS VM 
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 (a) Changing workload and changing weights to the VMs 

 
 (b) Average CPU allocation to each group of VMs 

 
 (c) Level of QoS violation (weighted sum of the normalized performance 

errors) across all VMs 

Figure 4. Optimizing resource allocation to several co-hosted VMs when both 
the workloads and weights are changing
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of the normalized performance errors, ∑ ݐ௜ሺݕ௜หݓ ൅ 1ሻ െ௜

 ௥௘௙௜ห achieved by FMPC and LMPC. This metric reflects theݕ
total performance discrepancy from the QoS target vector 
 .which should be minimized by the controller ,ࢌࢋ࢘࢟

At the beginning of the first phase, FMPC and LMPC 
make similar allocation decisions, giving more CPU to the 
FreeBench VMs which have a higher weight than the RUBiS 
VMs. But as the RUBiS workload increases, FMPC increases 
the CPU allocations to the RUBiS VMs by shifting a total of 
16% CPU allocations from the FreeBench VMs, while LMPC 
does not recognize this need and its allocation decision is 
almost unchanged. Consequently, LMPC has much higher 
performance errors, 63.7% in average, than FMPC. When the 
experiment transits to the second phase, both the weights and 
the RUBiS workloads are changed. FMPC handles these 
changes much better than LMPC, and results in 78.3% lower 
performance error in average for the first half of this phase. In 
the second half of the phase, both controllers enter the steady 
state, FMPC is still 8.9% better than LMPC in average. The 
difference between these two approaches is even more drastic 
in the third phase. At the beginning of this phase, both 
controllers favor the FreeBench VMs because of their higher 
weights. As the workload intensifies for the RUBiS VMs, 
FMPC increases their allocations which eventually surpass the 
FreeBench VMs, whereas LMPC continues to favor the 
FreeBench VMs. This opposite decision causes LMPC to 
perform substantially worse (up to 11 times higher 
performance errors) than FMPC. 

2)  Realistic workload 

The second experiment evaluates both the scalability and 
stability of the proposed FMPC approach in managing more 
VMs under realistic workloads with more dynamic changes. 
In this experiment, eight VMs share four physical CPU cores, 

and they all run RUBiS using the same real-world web trace 
described in Section VI.B. To make the experiment more 
interesting, the VMs are divided into four groups, and each 
group starts the replay from a different offset of the trace, as 
shown in Figure 5(a). As a result, the four groups reach their 
peaks and values at different times in the experiment, and the 
total load of the VMs also varies over time. In this experiment, 
equal weight and QoS target (15ms) are set for all the VMs. 
Note that when the system is saturated, none of the VMs can 
meet its QoS target under equal resource allocations. 
However, this experiment focuses on how to optimize the 
overall performance by minimizing the distance to the VMs’ 
QoS targets.     

Figure 5(b) compares the overall performance achieved by 
FMPC vs. LMPC using the average 90th-percentile response 
time as the metric because all the VMs have the same QoS 
target and weight. At the beginning and the end of the 
experiment, the overall system load is low and as a result there 
is not much difference in performance between FMPC and 
LMPC. But when the system becomes more loaded, FMPC 
outperforms LMPC significantly. For example, from 1000s to 
1600s, while LMPC achieves an average response time of 
29.2ms and causes serious QoS violations (w.r.t. the 15ms 
target), FMPC still maintains a good performance (17ms 
average response time). From 1800s to 2600s, when the 
system is saturated, FMPC delivers a 15.6% better overall 
performance in average response time than LMPC. 

D. System-level Resource Management  

The last group of experiments evaluates the scalability of 
the proposed two-level cloud resource management 
framework using a larger testbed. The setup used in the 
previous experiment is extended from single host to six hosts, 
each initially running eight RUBiS and nine FreeBench VMs. 
There are a total of 102 VMs under the management of a 
global scheduler and six node controllers. An additional six 
client VMs are used to generate the workloads for the RUBiS 
VMs. The traces for the RUBiS VMs are created similarly to 
the previous experiment, where all the RUBiS VMs are 
divided into six groups and each group starts the replay from 
different offset of the trace.  

 This experiment is designed to evaluate the ability of the 
two-level resource management to use dynamic VM 
migrations to optimize the overall performance across hosts. 
The baseline uses only the FMPC-based node controllers but 
without VM migrations. Figure 6(a) shows the level of QoS 
violations—the weighted sum of the normalized performance 
errors—occurred on every host over time using heat map. The 
x-axis shows the time in seconds and the y-axis shows the host  
ID. The gray shades represent different levels of QoS 
violations (the darker the worse), whereas the white color 
indicates when all the VMs’ QoS targets are met. The results 
show that the use of VM migration substantially improves the 
performance of the VMs across the entire system. Overall, the 
average performance across all the VMs in the system is 
improved by 23.7% compared when migration is not used. 
This improvement is made possible by the Global Scheduler 
which decides VM migration based on the resource demands 
estimated using FMPC, and by the node controllers which 

 
(a) The workload trace for all eight RUBiS VMs 

 
(b) Average 90th-percentile response time for all VMs 

Figure 5. Optimizing resource allocation to several co-hosted VMs serving 
realistic workloads 
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cooperate to migrate the VMs and their performance models. 
Figure 6(b) also uses a heat map to illustrate the distribution 
of the VMs over time when migration is employed to balance 
the load across hosts. The gray shades in the legend represent 
the number of VMs on a host. 

VII. RELATED WORK 

Various solutions have been studied in the literature to 
address the problem of resource management in virtualized 
systems. Due to the limited space, here the discussion focuses 
on the two most relevant types of approaches. One type of 
approach considers machine-learning-based techniques to 
automatically learn the complex resource model for a 
virtualized system based on data observed from the system. 
For example, Xu et al. studied the use of fuzzy modeling to 
predict the CPU demand of a single VM [21][22]; the CRAVE 
project used regression analysis to predict the performance 
impact of memory allocation to VMs [23]; The VCONF 
project studied using reinforcement learning to automatically 
tune the CPU and memory configurations of a VM in order to 
achieve a good performance for its hosted application [24]; 
and Kund et al. used artificial neural networks and support 
vector machines to build offline performance models 
considering both resource allocation to VMs and resource 
interference between VMs [7][8]. 

 Another type of approach applies control theory [13] to 
automatically adjust VM resource allocation in order to 
achieve the desired system-level objective. In particular, 
linear MIMO-model-based MPC (LMPC) has been studied 
for resource management where multiple applications share a 
common pool of resources. For example, Padala et al. [20] 
used an online-trained linear MIMO model to capture the 
relationship between the resource allocations to multi-tiered 
applications and their performance, and designed controllers 
to optimize the resource allocations by minimizing the 
estimated distance to the QoS targets; and Gupta et al. studied 
the use of LMPC to capture the process cache interference 
among VMs and compensate its performance impact [25].  

The FMPC-based approach proposed in this paper 
combines the strengths of machine-learning and control-
theory techniques in cloud resource management. Compared 
to other modeling based approaches, the FMPC approach can 
be effectively applied online and quickly adapt to changes in 
system behaviors. Typical model-based approaches require 
substantial data for training the model which is difficult to do 
online. Even if a model can be built offline, it is difficult to 
adapt it online when the system behaviors change. Compared 
to traditional LMPC-based approaches, FMPC can well 
capture nonlinear system behaviors without much learning 
overhead. In LMPC, a linear model is assumed to approximate 
the nonlinear behavior within a limited region of an operation 
point while it can be updated adaptively as the system moves 
from one operating point to another. As demonstrated in 
Section VI, FMPC can more accurately model the system with 
a nonlinear fuzzy model and it can perform optimized control 
continuously over the whole operating space. 

While this paper focuses on the problem of how much 
resources to provision to an applications’ single VM, a.k.a., 
vertical scaling, there is also related work studying how many 

VMs to provision to an application, a.k.a., horizontal scaling. 
Gandi et al. studied a workload discretization technique for 
predicting workloads, and then used a queuing model to 
predict the number of needed servers [26]. But queuing 
models are often inadequate to model the complexity of cloud 
systems, so they had to also use a feedback controller to 
compensate for the error in the prediction. AGILE [27] used 
wavelets to directly predict the number of needed application 
server instances in the medium term, and to capture the near-
term resource demand they used curve fitting by trying 
polynomials with different orders—which could be more 
efficiently and accurately captured by a fuzzy model, as 
shown in another work [6]. AutoScale [28] used the number 
of requests in the system to infer the number of needed servers 
based on a model that maps the number of requests on a single 
server to the load at the server, which was shown to be 
nonlinear and could also be well captured by a fuzzy model. 
Moreover, the above related works do not address how to 
optimize the resource allocation to competing applications, 
which can be solved by the predictive controller proposed in 
this paper’s FMPC approach.  

VIII.  CONCLUSIONS AND FUTUREWORK 

This paper presents a new fuzzy modeling based 
predictive control (FMPC) approach that can automatically 
manage the resources in a virtualized system according to the 

(a) Level of QoS violation (weighted sum of the normalized performance 
errors) across hosts 

 (b) Placement of VMs across hosts 

Figure 6. Optimizing resource allocation to over 100 VMs across multiple 
hosts using both dynamic resource allocations and VM migrations 
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application-level QoS targets and the system-level objective. 
This approach is based on the combination of fuzzy-logic-
based modeling for capturing complex system behaviors and 
MPC-based resource control for agile system optimization 
and adaption to changes in the system. Based on FMPC, the 
paper also proposes a two-level cloud resource management 
framework. The node controllers work on the VM host level 
to estimate VM resource demands and optimize each host’s 
resource allocations. The global scheduler works at the cloud 
zone level to optimize resource utilization across hosts 
through dynamic VM migrations. The global scheduler 
cooperates with the node controllers to understand the host-
level resource demands and carry out the VM migration plans. 
The node controllers involved in a migration also work 
together to share the performance models for the migrated 
VMs and minimize the migrating impact. 

Future work will be explored along the following 
directions: (1) consider the holistic management of different 
types of VM resources based on this paper’s approach and the 
authors’ earlier work which considered the management of 
memory and IO resources [6][29]; (2) study the coordinated 
management of VMs belonging to the different tiers of the 
same application, a more common setup used by cloud 
applications; and (3) apply this paper’s approach to the 
management of horizontal scaling of VMs serving the same 
tier of a cloud application. 
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