

Massive GIS Database System with Autonomic

Resource Management

Yun Lu, Ming Zhao, Guangqiang Zhao, Lixi Wang, Naphtali Rishe

NSF Industry-University Cooperative Research Centers and

School of Computing and Information Sciences

Miami, Florida 33199

{yun, ming, gzhao002, lwang007, rishe}@cs.fiu.edu

Abstract: GIS application hosts are becoming more and more

complicated. Thus, their management is more time consuming, and

reliability decreases with the complexity of GIS applications

increasing. We have designed, implemented, and evaluated, a

virtualized whole Large Scale Distributed Spatial Data

Visualization System for optimizing maintainability and

performance when handling large amount of GIS data. We employ

the virtual machines (VMs) technique, load balance cluster

techniques, and autonomic resource management to improve the

system’s performance. The proposed system was prototyped on

TerraFly [1], a production web map service, and evaluated using

actual TerraFly workloads. The results show that the virtual

TerraFly system has both good performance and much better

maintainability. Our experiments show that the proposed Virtual

TerraFly Geo-database system has doubled the reliability, and

saved 20-30% computing resources cost compared to current static

peak-load physical machine node allocations.

Keywords: Database Systems, GIS, maintainability,

performance

I. INTRODUCTION

With the exponential growth of the World Wide Web, there
are more domains open to GIS applications. The Internet can
provide information to a multitude of users, making GIS
available to a wider range of users than ever before.

This change of domain users from GIS experts to the
general public requires the re-evaluation of design issues and
creations of new features for GIS. A major objective is to make
a GIS system accessible to the general public, who has little
knowledge of spatial data, and allow them to interact with the
system to manipulate and retrieve the information they need. In
order to address this issue, we have adopted systematic
methodologies to solve several distributed digital library
system problems. This research utilizes the TerraFly platform,
a web-based spatial data access system that handles many
remote sensed data sets.

Virtualization techniques can improve the performance and
manageability of web-enabled system, while handing large
scale GIS data. For a web based system with very large
amounts of data, like TerraFly, the response time of search
requests is critical, as are the maintainability and manageability.
By varying the configuration of Virtual Machines, the whole
system performance may improve.

VMs are powerful platforms for hosting this Geo-database
system. VMs support flexible resource allocation to meet both

database system demands, and share resources with other
applications. Virtualization is also an enabling technology for
the emerging cloud computing paradigm, which further allows
highly scalable and cost-effective database hosting, leveraging
its elastic resource availability, and pay-as-you-go economic
model [2]. This allows solution of major geospatial data
processing problems.

 Due to the highly complex and dynamic nature of GIS
database systems, it is challenging to efficiently host them
using virtualized resources. Typical database systems and
applications have to serve dynamically changing workloads,
consisting of a variety of queries, and consuming various types
(and amounts) of resources. This makes it difficult to host
databases on shared resources without compromising
performance, or wasting resources.

We present solutions to problems of autonomic resource
allocation of virtualized spatial data visualization systems, to
improve the system performance, and reduce the system
computing resources cost. The system should be able to
automatically learn the current system requirement of resources,
and to automatically allocate computing resources. Combined
with other kinds of database system optimization, this greatly
benefits the TerraFly geo spatial database system.

In order to realize and verify the improvement, we study the
Virtualized TerraFly System. By employing a map partition
algorithm, cache technique, load balance cluster techniques
combined with virtualization technology, the proposed
Virtualized TerraFly System gains improvement in both
performance and maintainability, and this kind of configuration
works on most web-enabled large data GIS systems. This paper
proposes novel offline and online methods to achieve VM
nodes allocation.

This proposed system is realized on Hyper-V VM
environments, and evaluated via experiments using actual
workloads collected from the production TerraFly system. The
results showed that the system has a 20-30% general
performance improvement and a 116% improvement in very
important performance parameters. It also saves substantial
resources, compared to static peak-load machine node
allocation.

In summary, this article’s main contribution is novel
autonomic resource allocation to a virtualized geo-database that
has a changing geo query-workload. The rest of this paper is
organized as follows: Section 2 presents the background of the

TerraFly system. Sections 3 and 4 aspects of proposed Virtual
TerraFly system. Section 5 presents results from quantitative
performance analyses. Section 6 examines related work, and
finally, Section 7 concludes the paper.

II. BACKGROUND

A. TerraFly Spatial Data Visualization System

TerraFly is a web-enabled system designed to aid in the
visualization of spatial and remote sensed imagery. TerraFly
users visualize aerial photography, satellite imagery, and
various overlays, such as street names, roads, restaurants,
services and demographic data. TerraFly systems can manage
large amounts of spatial data, and provide advanced
functionalities. Users virtually "fly" over imagery via a web
browser, without any software to install or plug in. TerraFly's
tools include user-friendly geospatial querying, data drill-down,
interfaces with real-time data suppliers, demographic analysis,
annotation, route dissemination via autopilots, customizable
applications, production of aerial atlases, and application
programming interface (API) for web sites [3].

Because the number of users is increasing, in addition to the
increasing amount of integrated data of TerraFly systems, the
performance of whole systems is becoming more important.
Distributing the system is a good way to expand the capacity,
processing and storage. However, there might be a better way
to realize the distributing VMs.

Imagery Loader Layer

Loader1 Loader2

Imagery Reader Layer

Server Server Server

Application Layer

Server Server

Raw Imagery Data

Organized Imagery Data

Server Server

Server Server Server

Figure 1: Physical TerraFly system

 Browsers have a limited number of download connections
per hostname. For example, IE 8 increased their number of
downloads per hostname from 2 to 6. The default settings in
other browsers have been tested, for example, Firefox 3: 2
connections, Firefox 5: 6 connections, and Safari 3.0.4
Mac/Windows: 4 connections. Users can modify their
connection number themselves, for example,

“network.http.max-persistent-connections-per-server” in
Firefox.

The TerraFly system has three layers of components as seen
in Figure 1. The image data, which TerraFly offers, is dynamic
data, which means the data is calculated when the request
comes. This may offer the latest image, or customized image; it
is very flexible, and the tradeoff is more calculations on the
server side, especially in the image reader layer [4].

We have analyzed client requests covering over 125
countries and regions worldwide, as well as all of the United
States. In order to improve the overall performance, we have
implemented a cache that balances computing resources. Since
the majority of our requests are based in Florida, Texas,
California, and New York, we have allocated additional VMs
to handle map request over these states, conversely reducing
and combining the cache and VMs resources on the states or
countries for which we seldom receive request, in an effort to
balance the computing resources system-wide [5]. This
information can be used to provide a baseline template for
placement and deployment of VMs, and when the VM
resources of these seldom used areas are insufficient, the
Dynamic VM migration can move it to the host computer,
which has available resources.

B. Virtualized Database Hosting

Traditionally, geo-databases are hosted on dedicated
physical servers that have sufficient hardware resources to
satisfy their expected peak workloads in a desired response
time.

VM consolidation has become increasingly important for
improving efficiencies of resource usage and power
consumption in data centers. It enables one physical server to
host multiple independent virtual machines, and the transparent
movement of workloads from one physical server to another.
Previous work has addressed the problem of placing and
replacing virtual machines in servers, in order to optimize the
management of data center resources from various perspectives,
including performance, power, and thermal management. For
application clusters, we can create one VM per application, or a
group of similar applications, to facilitate the management of
applications.

However, this is often inefficient for the real-world
situations in many application domains where the workloads
are intrinsically dynamic in terms of their busty arrival patterns,
and ever-changing unit processing costs. Even in domains
where static workload exists, the database can dynamically
switch from one workload to another at runtime. Consequently,
peak-load based resource provision often leads to
underutilization of resources for normal state workloads, and
causes substantial overhead.

Using VMs to host databases can effectively address this
limitation, because virtualized resources, including CPU and
memory, are decoupled from their physical infrastructure, and
can be flexibly allocated to the databases as needed. This
approach allows a database to transparently share the
consolidated resources with other applications, with strong
isolation between their dedicated VMs. It also allows a
database’s resource usage to elastically grow and shrink based

on the dynamic demand of its workload. Such benefits are
important to the efficiency of database hosting in both typical
data centers, and emerging cloud systems. On one hand, users
only need to pay for the resources that their databases actually
consume. On the other hand, resource providers only need to
allocate resources as required by the database VMs, while
saving valuable resources for hosting other applications.

Virtualization also offers a new paradigm for database
deployments. Modern databases are sophisticated software
systems, where their installation and configuration require
substantial domain knowledge and experience, as well as
considerable efforts from database administrators. VM based
database hosting allows carefully installed databases to be
distributed as simply as copying the data that represents the
database VMs. In addition, this approach allows databases to
be quickly replicated and distributed for performance and
reliability improvements [6].

III. VIRTUALIZING TERRAFLY SYSTEM

A. Motivation

There are two challenges in this hosting system:

1. The dynamics in the realistic workload, which causes
CPU consumption, changes over time.

2. The specific objective in TerraFly Geo-Date system.
On one hand, you want to assign more VMs to reader
layers in order to optimize response time. On the other
hand, you also need to reserve some VM resources for
the loader node to keep the data fresh.

B. Virtual Machines on TerraFly

The plan of virtualizing the system is to virtualize all three
layers: image loader layer, image reader layer and application
layer, to make the whole system easier to manage and to
increase the utilization of resources.

If we create VMs on all three layers with the same
configuration of previous physical machines, we can use those
VMs to replace the previously used physical machines.

We can deploy TerraFly to several virtual machines to
break the limitations of browsers. Browsers have a limited
number of downloads per hostname. Typically, a full screen of
maps is composed of less than 12 tiles (4 x 3); therefore,
deploying the reader cluster as 12 VMs with dedicated IP
addresses is good for the situation. This article will discuss later
why, and how, to deploy VMs.

Imagery Loader Cluster

Virtual Loader2Virtual Loader1

Imagery Reader Cluster

VM VM VM VM VM VM

Application Cluster

VM VM VMVM

Raw Imagery Data

Organized Imagery Data
Host Machines

Figure 2: Virtualized TerraFly System

The load process is not always in service; it only starts
when new image data comes in. Therefore, it is a good idea if
the loader cluster and reader cluster share resources. As shown
in Figure 2, we can activate a VM once there is an image
source needed to be loaded, and assign to the loader VMs much
more resources than to the reader VMs.

C. Virtual Load balance cluster

Figure 3: Virtual load balance cluster

Network Load Balancing can provide high availability and
reliability, as well as high scalability. Web applications are
stateless applications, and every client request to a stateless
application is a separate transaction, so it is possible to
distribute the requests among multiple servers to balance the
load. One attractive feature of Network Load Balancing is that
all servers in a cluster monitor each other with a heartbeat
signal, so there is no single point of failure.

Use of a virtual machine will facilitate the build of load
balancing clusters. Two host servers build pairs of VMs, and
then the pairs construct different load balance clusters (Figure
3). For application layers, each server will have a paired server,
to respond to requests together. This is an implementation of
dual-server auto fail-over, offering better reliability.

D. Log research and VM resource control

Figure 4: Workload daily pattern

Another goal is create an active mechanism of VM resource
allocation, to enable the VMs to allocate resources
automatically based on the real-time requirement, in order to
improve the system, and reduce the system cost. For example,
let a group of VMs be complementary to each other. Once one
of the VM runs out of computing resources, other VMs will
share their idle resources to the VM by the dynamic VM
resource control technology.

Using machine learning technique to analyze the usage data
to predict future patterns is a good way to produce a proper
configuration of VMs, and improve the entire system
performance.

TerraFly systems have a large numbers of users, and it is
very important that we analyze the real usage data of a web
GIS system. We analyzed the usage data of one of the most
important image reader servers. There were 3 Million request
information collected in the logs over a 304 day period. There
were, on average, 450 visits per hour. In Figure 4, we can see
that the overall request is lowest between the hours of 4 am to 1
pm; specifically between 7 am to 10 am. During this time, the
request is approximately 1 percent of the daily requests
received. Using this information to configure the initial VM
placement, it should be possible to turn off some servers, and
save those resources for other uses, or power the servers down,
or have them placed into sleep states in order to conserve
power during this low point in activity. Should the amount of
requests being received suddenly increase, then via the use of
Dynamic VM resource allocation, more host computers can be
brought back online to handle the additional processing needed
by the influx of new requests.

IV. AUTONOMIC RESOURCE MANAGEMENT

In this article, in order to describe how many resources are
used, we use nodes×hours as the unit to measure the resource
cost. One node×hours means we use one core CPU and a 2G
memory machine node to work per hour. Both physical and
virtual machines are using the same measure.

A. On-demand offline resource allocation for different
workloads

We use varying quantities of map reader nodes on all kinds
of request rates, and then monitor the response time and
throughput. This way, we find the lowest number of VM nodes
needed by varying the request rate, to adjust the final plan of
optimization.

The desired system page time is 0.9 seconds. If we want to
achieve this goal by the traditional deployment plan, we need
10 node readers, but we may need much less by dynamic
deployment of VMs.

For each VMs configuration, we perform an experiment.
The number of users per VM is from 40 to 260, and we collect
the page time. As a result, we obtain the minimal number of
VMs to achieve the 0.9 second page time.

Figure 5: Offline Profile

40 Users Per VM Need 2 nodes

110 Users Per VM Need 4 nodes

180 Users Per VM Need 6 nodes

230 Users Per VM Need 8 nodes

260 Users Per VM Need 10 nodes

B. On-demand dynamic deployment and CPU usage

We vary quantities of map reader nodes on all kinds of
request rates shown in Figure 5, and then monitor the response
time and CPU usage. This way, we find the lowest CPU
amount needed by different request rate to adjust the final plan
of optimization.

Figure 6: Workload to CPU Usage model

The requirement of CPU is almost linear with request rates.
We composed a trend line: c(t) is the CPU usage of the whole
system at time t, and w(t) is the number of users per VM at t.
c(t) = 2.4631*w(t) + 154.06, as shown in Figure 6.

C. Online Dynamic VMs deployment by prediction of

workload
The major difficulty of online resource management for a

virtualized system lies in how to model its intrinsically
dynamic and complex behavior in an accurate and efficient
way. Commonly used linear modeling methods are no longer
sufficient for modeling a system whose workload consists of

y = 2.4631x + 154.06

0

200

400

600

800

0 100 200 300

C
p

u
 U

sa
ge

CPU Usage Fit

Workload

different queries with diverse usage of multiple types of
resources. We combined all previous work results, to propose
an optimal deployment of VMs based on both the history of
request rates and of the current request predictions. The
following is the architecture of our proposed resource
management for virtualized databases based on the
aforementioned VM deployment approach:

1) Predict algorithm
Because user requests have a time pattern, as mentioned

before, we perform request rate predictions by exponential
smoothing along with weighing of history data.

Time series analysis techniques are widely applied in
economic data analysis to provide statistical prediction and to
guide business decisions. A variety of time series prediction
methods is available, such as the Moving Averages, Linear
Regression, and Exponential Smoothing [9][10][11]. V(t) is the
last hour request value, horizontally second exponential
smoothing predicted value is h(t), vertically second exponential
smoothing predicted value is v(t), and the history average value
is s(t). vSpan is the vertical Span: in this pattern, we predict
hourly, the vertical is the same hour on different days, the span
is 24 hours. p(t) is the final prediction of the work load.

𝐴1(𝑡) = 𝛼 × 𝑉(𝑡) + (1 − 𝛼) × 𝐴1(𝑡 − 1)

𝐴2(𝑡) = 𝛽 × 𝐴1(𝑡) + (1 − 𝛽) × 𝐴2(𝑡 − 1)

h(t) = 2×𝐴1(t) - 𝐴2(t)

𝐵1(t) = ρ × V(t) + (1- ρ) × 𝐵1(t- vSpan)

𝐵2(t) = γ × 𝐵1(t) + (1- γ) × 𝐵2(t- vSpan)

v(t) = 2×𝐵1(t) - 𝐵2(t)

p(t)= a × h(t) + b × v(t) + (1- a -b) × h(t)

2) Parameter training
The parameters are α, β, ρ, γ, a, and b. All six parameters

were recalculated each hour, to achieve the smallest standard
errors e. k is the accuracy of the error calculating.,

𝑒ℎ = ∑ (∑(𝑉(𝑡 − 𝑘) − ℎ(𝑡 − 1 − 𝑘))2

𝑘

𝑖=0

) ÷ 𝑘

𝑡

𝑒𝑣 = ∑ (∑(𝑉(𝑡 − 𝑘) − 𝑣(𝑡 − 1 − 𝑘))2

𝑘

𝑖=0

) ÷ 𝑘

𝑡

𝑒 = ∑ (∑(𝑉(𝑡 − 𝑘) − 𝑝(𝑡 − 1 − 𝑘))2

𝑘

𝑖=0

) ÷ 𝑘

𝑡

We use 𝑒ℎ to train the combination of α, β. The range of α,
β is from 0 to 1. We use 𝑒𝑣 to train the combination of ρ, γ. The
range of ρ, γ is from 0 to 1. We use 𝑒ℎ to train the combination
of a, b. The range of a, b is from 0 to 1.

Figure 7: Workload prediction

As figure 7 shows, the forecast p(t) is a combination of h(t),
v(t) and h(t), and reveals that both predictions of previous work
loads, and historical workloads, are a very good estimate of the
next time period.

V. EVALUATION
We have evaluated by comparing the virtual TerraFly

system with the current physical TerraFly system. The first
aspect is performance, including response time, throughput,
and power consumptions. We have run both systems to handle
different kinds of test cases, and then analyzed the resulting
data. The second aspect is maintainability and manageability,
including the ability to confront system errors and collapse, and
the service management cost. We have examined whether
virtual TerraFly systems can offer further benefits other than
performance improvement.

Figure 8: Result: page response time

Figure 9: Result: total VM nodes cost

Showed at Figure 8 and Figure 9, the Online dynamic
deployment plan used 152 nodes × hours a day, less than the
static 8 nodes plan of 192 nodes × hours, and 10 nodes plan of
240 nodes × hours. The plan exceeded the static 6 nodes plan
by only 5.56% of resource cost, but offered a much better
performance.

Compared with the static 6-node plan with the 0.634
seconds of average page time, the online dynamic plan
provided a very good average page time of 0.430 seconds,
which is a 32.18% of average page time improvement, only
using 152-144=8 nodes × hours. There were 13 points with
page time exceeding 0.7 seconds (the expected value) in the
static 6-node plan, which is, with 54.17% of the results not
reaching the expected value; there were no points exceeding
0.7 seconds in the dynamic plan, which is a great improvement
on the worst page time points. The slowest page time was
0.687, which is a good and reasonable response time in a web
application. Most of the points of the static 6-node plan were
worse than the points of the dynamic plan.

Compared with the static 8-node plan, the dynamic plan
saved 192-152=40 nodes × hours, which saved 20.83% of
resources. There were 3 points with page times exceeding 0.7
seconds (the expected value) in the static 8-node plan, while no
points exceeded 0.7 seconds in the dynamic plan. The
performance of the dynamic plan was better than the static 8-
node plan, and at the same time, saved 20.83% of resources.

Compared with the static 10-node plan, the dynamic plan
saved 240-152=88 nodes × hours, which saved 36.67% of
resources. No points exceeded 0.7 seconds (the expected value)
in both the static 10-node plan and the dynamic plan. The
performance of the dynamic plan was the same as of the static
10-node plan, although the static 10-node plan had better page
times.

VI. CONCLUSION

Virtualization can greatly facilitate the deployment of
database systems, and substantially improve their resource
utilization. To fulfill this potential, resource management is the
key; it should be able to automatically allocate resources to
geo-database VMs based on their performance targets. In this
article, we have proposed a large scale distributed spatial data
visualization system with autonomic resource management to
improve performance and maintainability of Web-based large
geo-database systems. Specifically, our provisioning approach
is based on the use of virtual machine autonomic resource
allocation, cache, and load balance cluster techniques to
improve the whole system. Our preliminary evaluations
showed that our approach achieves significant improvements in
both performance, and maintainability.

Various types of solutions have been studied in the
literature to address the problem of autonomic VM resource
management. Various machine learning algorithms have been
considered to model VM resource usages [15][16][17].
Although this article focused on virtualized geo-databases, we
believe that our proposed VM resource allocation approach is
generally applicable to the virtual resource management for
other types of Big Data handling applications. The application-
specific part of this approach is geo-database system
applications with large numbers of users. Compared to the
traditional approach, which treats a VM as a black box, such a
gray-box resource management approach can be more accurate

for modeling virtualized applications that have dynamic and
complex resource usage behaviors.

ACKNOWLEDGMENT

This material is based in part upon work supported by the
National Science Foundation under Grant Nos. CNS-0821345,
CNS-1126619, HRD-0833093, IIP-0829576, CNS-1057661,
IIS-1052625, CNS-0959985, OISE-1157372, IIP-1237818, IIP-
1330943, IIP-1230661, IIP-1026265, IIP-1058606, IIS-
1213026, OISE-0730065, CCF-0938045, CNS-0747038, CNS-
1018262, CCF-0937964. Includes material licensed by
TerraFly (http://teraffly.com) and the NSF CAKE Center
(http://cake.fiu.edu).

REFERENCES

[1] Rishe, N., Chen, S. C., Prabakar, N., Weiss, M. A., Sun, W.,
Selivonenko, A., & Davis-Chu, D. (2001, April). TERRAFLY: A High-
Performance Web-based Digital Library System for Spatial Data Access.
In ICDE Demo Sessions (pp. 17-19).

[2] Lixi Wang, Jing Xu, Ming Zhao, Fuzzy Modeling Based Resource
Management for Virtualized Database Systems, 19th Annual IEEE
International Symposium on Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems

[3] Lu, Y., Zhang, M., Tao Li, Y. G., & Rishe, N. (2013). Online Spatial
Data Analysis and Visualization System. ACM KDD IDEA 2013, pp.73-
79

[4] Robust Database Structures with Dynamic Query Patterns”, EJOR, 2006.

[5] T. E. Anderson, L. L. Peterson, S. Shenker, and J. S. Turner,
"Overcoming the internet impasse through visualization." IEEE
Computer, vol. 38, no. 4, pp. 34-41, 2005.

[6] Bennani, M. N., & Menasce, D. A. (2005, June). Resource allocation for
autonomic data centers using analytic performance models. In
Autonomic Computing, 2005. ICAC 2005. Proceedings. Second
International Conference on (pp. 229-240). IEEE.

[7] Network reconfiguration in distribution systems for loss reduction and
load balancing, ME Baran, FF Wu - Power Delivery, IEEE Transactions
on, 1989 - ieeexplore.ieee.org

[8] T. Wood, L. Cherkasova, K. Ozonat and P. Shenoy, “Profiling and
Modeling Resource Usage of Virtualized Applications”, Middleware,
2008.

[9] Forecasting with Exponential Smoothing: The State Space Approach,
Hyndman, R., Koehler, A.B., Ord, J.K., Snyder, R.D. 2008, XIII, 362 p

[10] A state space framework for automatic forecasting using exponential
smoothing methods International Journal of Forecasting, 18 (2002), pp.
439–454

[11] The fundamental theorem of exponential smoothing, RG Brown, RF
Meyer - Operations Research, 1961 or.journal.informs.org

[12] Exponential smoothing: The state of the art, ES Gardner Jr -
International Journal of Forecasting, 1985 - Elsevier

[13] Xiaoyan Li, Sharing geoscience algorithms in a Web service-oriented
environment, Computers & Geosciences Volume 36, Issue 8, August
2010

[14] Peng Yue, Semantics-based automatic composition of geospatial Web
service chains, Computers & Geosciences Volume 33, Issue 5, May
2007

[15] J. Wildstrom, P. Stone and E. Witchel, “CARVE: A Cognitive Agent for
Resource Value Estimation”, ICAC, 2008.

[16] J. Rao, X. Bu, C. Xu, L. Wang and G. Yin, “VCONF: A Reinforcement
Learning Approach to Virtual Machines Auto-configuration”, ICAC,
2009.

[17] L. Wang, J. Xu, M. Zhao, Y. Tu and J. A.B. Fortes, “Fuzzy Modeling
Based Resource Management for Virtualized Database Systems”,
MASCOTS. 2011

