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Abstract: GIS application hosts are becoming more and more 

complicated.  Thus, their management is more time consuming, and 

reliability decreases with the complexity of GIS applications 

increasing. We have designed, implemented, and evaluated, a 

virtualized whole Large Scale Distributed Spatial Data 

Visualization System for optimizing maintainability and 

performance when handling large amount of GIS data. We employ 

the virtual machines (VMs) technique, load balance cluster 

techniques, and autonomic resource management to improve the 

system’s performance. The proposed system was prototyped on 

TerraFly [1], a production web map service, and evaluated using 

actual TerraFly workloads. The results show that the virtual 

TerraFly system has both good performance and much better 

maintainability. Our experiments show that the proposed Virtual 

TerraFly Geo-database system has doubled the reliability, and 

saved 20-30% computing resources cost compared to current static 

peak-load physical machine node allocations. 
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I.  INTRODUCTION 

With the exponential growth of the World Wide Web, there 
are more domains open to GIS applications. The Internet can 
provide information to a multitude of users, making GIS 
available to a wider range of users than ever before.  

This change of domain users from GIS experts to the 
general public requires the re-evaluation of design issues and 
creations of new features for GIS. A major objective is to make 
a GIS system accessible to the general public, who has little 
knowledge of spatial data, and allow them to interact with the 
system to manipulate and retrieve the information they need. In 
order to address this issue, we have adopted systematic 
methodologies to solve several distributed digital library 
system problems. This research utilizes the TerraFly platform, 
a web-based spatial data access system that handles many 
remote sensed data sets.  

Virtualization techniques can improve the performance and 
manageability of web-enabled system, while handing large 
scale GIS data. For a web based system with very large 
amounts of data, like TerraFly, the response time of search 
requests is critical, as are the maintainability and manageability. 
By varying the configuration of Virtual Machines, the whole 
system performance may improve. 

VMs are powerful platforms for hosting this Geo-database 
system. VMs support flexible resource allocation to meet both 

database system demands, and share resources with other 
applications. Virtualization is also an enabling technology for 
the emerging cloud computing paradigm, which further allows 
highly scalable and cost-effective database hosting, leveraging 
its elastic resource availability, and pay-as-you-go economic 
model [2]. This allows solution of major geospatial data 
processing problems. 

 Due to the highly complex and dynamic nature of GIS 
database systems, it is challenging to efficiently host them 
using virtualized resources. Typical database systems and 
applications have to serve dynamically changing workloads, 
consisting of a variety of queries, and consuming various types 
(and amounts) of resources. This makes it difficult to host 
databases on shared resources without compromising 
performance, or wasting resources. 

We present solutions to problems of autonomic resource 
allocation of virtualized spatial data visualization systems, to 
improve the system performance, and reduce the system 
computing resources cost. The system should be able to 
automatically learn the current system requirement of resources, 
and to automatically allocate computing resources. Combined 
with other kinds of database system optimization, this greatly 
benefits the TerraFly geo spatial database system. 

In order to realize and verify the improvement, we study the 
Virtualized TerraFly System. By employing a map partition 
algorithm, cache technique, load balance cluster techniques 
combined with virtualization technology, the proposed 
Virtualized TerraFly System gains improvement in both 
performance and maintainability, and this kind of configuration 
works on most web-enabled large data GIS systems. This paper 
proposes novel offline and online methods to achieve VM 
nodes allocation. 

This proposed system is realized on Hyper-V VM 
environments, and evaluated via experiments using actual 
workloads collected from the production TerraFly system. The 
results showed that the system has a 20-30% general 
performance improvement and a 116% improvement in very 
important performance parameters. It also saves substantial 
resources, compared to static peak-load machine node 
allocation. 

In summary, this article’s main contribution is novel 
autonomic resource allocation to a virtualized geo-database that 
has a changing geo query-workload. The rest of this paper is 
organized as follows: Section 2 presents the background of the 



 

 

TerraFly system. Sections 3 and 4 aspects of proposed Virtual 
TerraFly system. Section 5 presents results from quantitative 
performance analyses. Section 6 examines related work, and 
finally, Section 7 concludes the paper. 

II. BACKGROUND 

A. TerraFly Spatial Data Visualization System 

TerraFly is a web-enabled system designed to aid in the 
visualization of spatial and remote sensed imagery. TerraFly 
users visualize aerial photography, satellite imagery, and 
various overlays, such as street names, roads, restaurants, 
services and demographic data. TerraFly systems can manage 
large amounts of spatial data, and provide advanced 
functionalities. Users virtually "fly" over imagery via a web 
browser, without any software to install or plug in. TerraFly's 
tools include user-friendly geospatial querying, data drill-down, 
interfaces with real-time data suppliers, demographic analysis, 
annotation, route dissemination via autopilots, customizable 
applications, production of aerial atlases, and application 
programming interface (API) for web sites [3]. 

Because the number of users is increasing, in addition to the 
increasing amount of integrated data of TerraFly systems, the 
performance of whole systems is becoming more important. 
Distributing the system is a good way to expand the capacity, 
processing and storage. However, there might be a better way 
to realize the distributing VMs. 
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Figure 1: Physical TerraFly system 

 Browsers have a limited number of download connections 
per hostname. For example, IE 8 increased their number of 
downloads per hostname from 2 to 6. The default settings in 
other browsers have been tested, for example, Firefox 3: 2 
connections, Firefox 5: 6 connections,   and Safari 3.0.4 
Mac/Windows: 4 connections. Users can modify their 
connection number themselves, for example, 

“network.http.max-persistent-connections-per-server” in 
Firefox.  

The TerraFly system has three layers of components as seen 
in Figure 1. The image data, which TerraFly offers, is dynamic 
data, which means the data is calculated when the request 
comes. This may offer the latest image, or customized image; it 
is very flexible, and the tradeoff is more calculations on the 
server side, especially in the image reader layer [4]. 

We have analyzed client requests covering over 125 
countries and regions worldwide, as well as all of the United 
States. In order to improve the overall performance, we have 
implemented a cache that balances computing resources. Since 
the majority of our requests are based in Florida, Texas, 
California, and New York, we have allocated additional VMs 
to handle map request over these states, conversely reducing 
and combining the cache and VMs resources on the states or 
countries for which we seldom receive request, in an effort to 
balance the computing resources system-wide [5]. This 
information can be used to provide a baseline template for 
placement and deployment of VMs, and when the VM 
resources of these seldom used areas are insufficient, the 
Dynamic VM migration can move it to the host computer, 
which has available resources. 

B. Virtualized Database Hosting 

Traditionally, geo-databases are hosted on dedicated 
physical servers that have sufficient hardware resources to 
satisfy their expected peak workloads in a desired response 
time.  

VM consolidation has become increasingly important for 
improving efficiencies of resource usage and power 
consumption in data centers. It enables one physical server to 
host multiple independent virtual machines, and the transparent 
movement of workloads from one physical server to another. 
Previous work has addressed the problem of placing and 
replacing virtual machines in servers, in order to optimize the 
management of data center resources from various perspectives, 
including performance, power, and thermal management. For 
application clusters, we can create one VM per application, or a 
group of similar applications, to facilitate the management of 
applications. 

However, this is often inefficient for the real-world 
situations in many application domains where the workloads 
are intrinsically dynamic in terms of their busty arrival patterns, 
and ever-changing unit processing costs. Even in domains 
where static workload exists, the database can dynamically 
switch from one workload to another at runtime. Consequently, 
peak-load based resource provision often leads to 
underutilization of resources for normal state workloads, and 
causes substantial overhead.  

Using VMs to host databases can effectively address this 
limitation, because virtualized resources, including CPU and 
memory, are decoupled from their physical infrastructure, and 
can be flexibly allocated to the databases as needed. This 
approach allows a database to transparently share the 
consolidated resources with other applications, with strong 
isolation between their dedicated VMs. It also allows a 
database’s resource usage to elastically grow and shrink based 



 

 

on the dynamic demand of its workload. Such benefits are 
important to the efficiency of database hosting in both typical 
data centers, and emerging cloud systems. On one hand, users 
only need to pay for the resources that their databases actually 
consume. On the other hand, resource providers only need to 
allocate resources as required by the database VMs, while 
saving valuable resources for hosting other applications. 

Virtualization also offers a new paradigm for database 
deployments. Modern databases are sophisticated software 
systems, where their installation and configuration require 
substantial domain knowledge and experience, as well as 
considerable efforts from database administrators. VM based 
database hosting allows carefully installed databases to be 
distributed as simply as copying the data that represents the 
database VMs. In addition, this approach allows databases to 
be quickly replicated and distributed for performance and 
reliability improvements [6]. 

III. VIRTUALIZING TERRAFLY SYSTEM 

A. Motivation 

There are two challenges in this hosting system:  

1. The dynamics in the realistic workload, which causes 
CPU consumption, changes over time. 

2. The specific objective in TerraFly Geo-Date system. 
On one hand, you want to assign more VMs to reader 
layers in order to optimize response time. On the other 
hand, you also need to reserve some VM resources for 
the loader node to keep the data fresh. 

B. Virtual Machines on TerraFly 

The plan of virtualizing the system is to virtualize all three 
layers: image loader layer, image reader layer and application 
layer, to make the whole system easier to manage and to 
increase the utilization of resources. 

If we create VMs on all three layers with the same 
configuration of previous physical machines, we can use those 
VMs to replace the previously used physical machines.  

We can deploy TerraFly to several virtual machines to 
break the limitations of browsers. Browsers have a limited 
number of downloads per hostname. Typically, a full screen of 
maps is composed of less than 12 tiles (4 x 3); therefore, 
deploying the reader cluster as 12 VMs with dedicated IP 
addresses is good for the situation. This article will discuss later 
why, and how, to deploy VMs. 
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Figure 2: Virtualized TerraFly System 

The load process is not always in service; it only starts 
when new image data comes in. Therefore, it is a good idea if 
the loader cluster and reader cluster share resources. As shown 
in Figure 2, we can activate a VM once there is an image 
source needed to be loaded, and assign to the loader VMs much 
more resources than to the reader VMs.  

C. Virtual Load balance cluster 

 

Figure 3: Virtual load balance cluster 

Network Load Balancing can provide high availability and 
reliability, as well as high scalability. Web applications are 
stateless applications, and every client request to a stateless 
application is a separate transaction, so it is possible to 
distribute the requests among multiple servers to balance the 
load. One attractive feature of Network Load Balancing is that 
all servers in a cluster monitor each other with a heartbeat 
signal, so there is no single point of failure. 

Use of a virtual machine will facilitate the build of load 
balancing clusters. Two host servers build pairs of VMs, and 
then the pairs construct different load balance clusters (Figure 
3). For application layers, each server will have a paired server, 
to respond to requests together. This is an implementation of 
dual-server auto fail-over, offering better reliability. 



 

 

D. Log research and VM resource control 

 
Figure 4: Workload daily pattern 

Another goal is create an active mechanism of VM resource 
allocation, to enable the VMs to allocate resources 
automatically based on the real-time requirement, in order to 
improve the system, and reduce the system cost. For example, 
let a group of VMs be complementary to each other. Once one 
of the VM runs out of computing resources, other VMs will 
share their idle resources to the VM by the dynamic VM 
resource control technology. 

Using machine learning technique to analyze the usage data 
to predict future patterns is a good way to produce a proper 
configuration of VMs, and improve the entire system 
performance. 

TerraFly systems have a large numbers of users, and it is 
very important that we analyze the real usage data of a web 
GIS system. We analyzed the usage data of one of the most 
important image reader servers. There were 3 Million request 
information collected in the logs over a 304 day period. There 
were, on average, 450 visits per hour. In Figure 4, we can see 
that the overall request is lowest between the hours of 4 am to 1 
pm; specifically between 7 am to 10 am. During this time, the 
request is approximately 1 percent of the daily requests 
received. Using this information to configure the initial VM 
placement, it should be possible to turn off some servers, and 
save those resources for other uses, or power the servers down, 
or have them placed into sleep states in order to conserve 
power during this low point in activity. Should the amount of 
requests being received suddenly increase, then via the use of 
Dynamic VM resource allocation, more host computers can be 
brought back online to handle the additional processing needed 
by the influx of new requests. 

IV. AUTONOMIC RESOURCE MANAGEMENT 

In this article, in order to describe how many resources are 
used, we use nodes×hours as the unit to measure the resource 
cost. One node×hours means we use one core CPU and a 2G 
memory machine node to work per hour. Both physical and 
virtual machines are using the same measure. 

A. On-demand offline resource allocation for different 
workloads 

We use varying quantities of map reader nodes on all kinds 
of request rates, and then monitor the response time and 
throughput. This way, we find the lowest number of VM nodes 
needed by varying the request rate, to adjust the final plan of 
optimization. 

The desired system page time is 0.9 seconds. If we want to 
achieve this goal by the traditional deployment plan, we need 
10 node readers, but we may need much less by dynamic 
deployment of VMs. 

For each VMs configuration, we perform an experiment. 
The number of users per VM is from 40 to 260, and we collect 
the page time. As a result, we obtain the minimal number of 
VMs to achieve the 0.9 second page time. 

 

Figure 5: Offline Profile 

40 Users Per VM Need 2 nodes 

110 Users Per VM Need 4 nodes 

180 Users Per VM Need 6 nodes 

230 Users Per VM Need 8 nodes 

260 Users Per VM Need 10  nodes 

B. On-demand dynamic deployment and CPU usage 

We vary quantities of map reader nodes on all kinds of 
request rates shown in Figure 5, and then monitor the response 
time and CPU usage. This way, we find the lowest CPU 
amount needed by different request rate to adjust the final plan 
of optimization. 

 

Figure 6: Workload to CPU Usage model 

The requirement of CPU is almost linear with request rates. 
We composed a trend line: c(t) is the CPU usage of the whole 
system at time t, and w(t) is the number of users per VM at t. 
c(t) = 2.4631*w(t) + 154.06, as shown in Figure 6. 

C. Online Dynamic VMs deployment by prediction of 

workload 
The major difficulty of online resource management for a 

virtualized system lies in how to model its intrinsically 
dynamic and complex behavior in an accurate and efficient 
way. Commonly used linear modeling methods are no longer 
sufficient for modeling a system whose workload consists of 
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different queries with diverse usage of multiple types of 
resources. We combined all previous work results, to propose 
an optimal deployment of VMs based on both the history of 
request rates and of the current request predictions. The 
following is the architecture of our proposed resource 
management for virtualized databases based on the 
aforementioned VM deployment approach:  

1) Predict algorithm 
Because user requests have a time pattern, as mentioned 

before, we perform request rate predictions by exponential 
smoothing along with weighing of history data. 

Time series analysis techniques are widely applied in 
economic data analysis to provide statistical prediction and to 
guide business decisions. A variety of time series prediction 
methods is available, such as the Moving Averages, Linear 
Regression, and Exponential Smoothing [9][10][11]. V(t) is the 
last hour request value, horizontally second exponential 
smoothing predicted value is h(t), vertically second exponential 
smoothing predicted value is v(t), and the history average value 
is s(t). vSpan is the vertical Span: in this pattern, we predict 
hourly, the vertical is the same hour on different days, the span 
is 24 hours. p(t) is the final prediction of the work load. 

𝐴1(𝑡)  =  𝛼 ×  𝑉(𝑡)  + (1 −  𝛼)  × 𝐴1(𝑡 − 1) 

𝐴2(𝑡)  =  𝛽 ×  𝐴1(𝑡)   +  (1 − 𝛽)  ×  𝐴2(𝑡 − 1) 

h(t) = 2×𝐴1(t) - 𝐴2(t) 

𝐵1(t) = ρ × V(t) + (1- ρ) × 𝐵1(t- vSpan) 

𝐵2(t) = γ × 𝐵1(t) + (1- γ) × 𝐵2(t- vSpan) 

v(t) = 2×𝐵1(t) - 𝐵2(t) 

p(t)= a × h(t) + b × v(t) + (1- a -b) × h(t) 

2) Parameter training 
The parameters are α, β, ρ, γ, a, and b. All six parameters 

were recalculated each hour, to achieve the smallest standard 
errors e. k is the accuracy of the error calculating.,  

𝑒ℎ = ∑ (∑(𝑉(𝑡 − 𝑘) − ℎ(𝑡 − 1 − 𝑘))2
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𝑒𝑣 = ∑ (∑(𝑉(𝑡 − 𝑘) − 𝑣(𝑡 − 1 − 𝑘))2
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We use 𝑒ℎ to train the combination of α, β. The range of α, 
β is from 0 to 1. We use 𝑒𝑣 to train the combination of ρ, γ. The 
range of ρ, γ is from 0 to 1. We use 𝑒ℎ to train the combination 
of a, b. The range of a, b is from 0 to 1.  

 

Figure 7: Workload prediction 

As figure 7 shows, the forecast p(t) is a combination of h(t), 
v(t) and h(t), and reveals that both predictions of previous work 
loads, and historical workloads, are a very good estimate of the 
next time period. 

V. EVALUATION 
We have evaluated by comparing the virtual TerraFly 

system with the current physical TerraFly system. The first 
aspect is performance, including response time, throughput, 
and power consumptions. We have run both systems to handle 
different kinds of test cases, and then analyzed the resulting 
data. The second aspect is maintainability and manageability, 
including the ability to confront system errors and collapse, and 
the service management cost. We have examined whether 
virtual TerraFly systems can offer further benefits other than 
performance improvement. 

 

Figure 8: Result: page response time 

 

Figure 9: Result: total VM nodes cost 

Showed at Figure 8 and Figure 9, the Online dynamic 
deployment plan used 152 nodes × hours a day, less than the 
static 8 nodes plan of 192 nodes × hours, and 10 nodes plan of 
240 nodes × hours. The plan exceeded the static 6 nodes plan 
by only 5.56% of resource cost, but offered a much better 
performance. 



 

 

Compared with the static 6-node plan with the 0.634 
seconds of average page time, the online dynamic plan 
provided a very good average page time of 0.430 seconds, 
which is a 32.18% of average page time improvement, only 
using 152-144=8 nodes × hours. There were 13 points with 
page time exceeding 0.7 seconds (the expected value) in the 
static 6-node plan, which is, with 54.17% of the results not 
reaching the expected value; there were no points exceeding 
0.7 seconds in the dynamic plan, which is a great improvement 
on the worst page time points. The slowest page time was 
0.687, which is a good and reasonable response time in a web 
application. Most of the points of the static 6-node plan were 
worse than the points of the dynamic plan. 

Compared with the static 8-node plan, the dynamic plan 
saved 192-152=40 nodes × hours, which saved 20.83% of 
resources. There were 3 points with page times exceeding 0.7 
seconds (the expected value) in the static 8-node plan, while no 
points exceeded 0.7 seconds in the dynamic plan. The 
performance of the dynamic plan was better than the static 8-
node plan, and at the same time, saved 20.83% of resources. 

Compared with the static 10-node plan, the dynamic plan 
saved 240-152=88 nodes × hours, which saved 36.67% of 
resources. No points exceeded 0.7 seconds (the expected value) 
in both the static 10-node plan and the dynamic plan. The 
performance of the dynamic plan was the same as of the static 
10-node plan, although the static 10-node plan had better page 
times. 

VI. CONCLUSION  

Virtualization can greatly facilitate the deployment of 
database systems, and substantially improve their resource 
utilization. To fulfill this potential, resource management is the 
key; it should be able to automatically allocate resources to 
geo-database VMs based on their performance targets. In this 
article, we have proposed a large scale distributed spatial data 
visualization system with autonomic resource management to 
improve performance and maintainability of Web-based large 
geo-database systems. Specifically, our provisioning approach 
is based on the use of virtual machine autonomic resource 
allocation, cache, and load balance cluster techniques to 
improve the whole system. Our preliminary evaluations 
showed that our approach achieves significant improvements in 
both performance, and maintainability. 

Various types of solutions have been studied in the 
literature to address the problem of autonomic VM resource 
management. Various machine learning algorithms have been 
considered to model VM resource usages [15][16][17]. 
Although this article focused on virtualized geo-databases, we 
believe that our proposed VM resource allocation approach is 
generally applicable to the virtual resource management for 
other types of Big Data handling applications. The application-
specific part of this approach is geo-database system 
applications with large numbers of users. Compared to the 
traditional approach, which treats a VM as a black box, such a 
gray-box resource management approach can be more accurate 

for modeling virtualized applications that have dynamic and 
complex resource usage behaviors. 
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