
vPFS: Bandwidth Virtualization of Parallel Storage Systems

Yiqi Xu, Dulcardo Arteaga, Ming Zhao

Florida International University

{yxu006,darte003,ming}@cs.fiu.edu

Yonggang Liu, Renato Figueiredo

University of Florida

{yongang,renato}@acis.ufl.edu

Seetharami Seelam

IBM T.J. Watson Research Center

sseelam@us.ibm.com

Abstract—Existing parallel file systems are unable to

differentiate I/Os requests from concurrent applications and

meet per-application bandwidth requirements. This limitation

prevents applications from meeting their desired Quality of

Service (QoS) as high-performance computing (HPC) systems

continue to scale up. This paper presents vPFS, a new solution

to address this challenge through a bandwidth virtualization

layer for parallel file systems. vPFS employs user-level parallel

file system proxies to interpose requests between native clients

and servers and to schedule parallel I/Os from different

applications based on configurable bandwidth management

policies. vPFS is designed to be generic enough to support

various scheduling algorithms and parallel file systems. Its

utility and performance are studied with a prototype which

virtualizes PVFS2, a widely used parallel file system. Enhanced

proportional sharing schedulers are enabled based on the

unique characteristics (parallel striped I/Os) and requirement

(high throughput) of parallel storage systems. The

enhancements include new threshold- and layout-driven

scheduling synchronization schemes which reduce global

communication overhead while delivering total-service

fairness. An experimental evaluation using typical HPC

benchmarks (IOR, NPB BTIO) shows that the throughput

overhead of vPFS is small (< 3% for write, < 1% for read). It

also shows that vPFS can achieve good proportional

bandwidth sharing (> 96% of target sharing ratio) for

competing applications with diverse I/O patterns.

Keywords—QoS; parallel storage; performance virtualization

I. INTRODUCTION

High-performance computing (HPC) systems are key to
solving challenging problems in many science and
engineering domains. In these systems, high-performance
I/O is achieved through the use of parallel storage systems.
Applications in an HPC system share access to the storage
infrastructure through a parallel file system based software
layer [1][2][3][4]. The I/O bandwidth that an application gets
from the storage system determines how fast it can access its
data and is critical to its Quality of Service (QoS). In a large
HPC system, it is common to have multiple applications
running at the same time while sharing and competing for
the shared storage. The sharing applications may have
distinct I/O characteristics and demands that can result in
significant negative impact on their performance.

A limitation of existing parallel storage systems is their
inability to recognize the different application I/O workloads

— it sees only generic I/O requests arriving from the
compute nodes. The storage system is also incapable of
satisfying the applications’ different I/O bandwidth needs —
it is often architected to meet the throughput requirement for
the entire system. These limitations prevent applications
from efficiently utilizing the HPC resources while achieving
their desired QoS. This problem keeps growing with the
ever-increasing scale of HPC systems and with the
increasing complexity and number of applications running
concurrently on these systems. This presents a hurdle for the
further scale-up of HPC systems to support many large, data-
intensive applications.

This paper presents a new approach, vPFS, to address
these challenges through the virtualization of existing
parallel file systems, achieving application-QoS-driven
storage resource management. It is based on 1) the capture of
parallel file system I/O requests prior to their dispatch to the
storage system, 2) distinguishing and queuing of per-
application I/O flows, 3) scheduling of queued I/Os based on
application-specific bandwidth allocations, and 4) a proxy-
based virtualization design which enables the above parallel
I/O interposition and scheduling transparently to existing
storage systems and applications. In this way, virtual parallel
file systems can be dynamically created upon shared parallel
storage resources on a per-application basis, each with a
specific allocation of the total available bandwidth.

With vPFS, various I/O scheduling algorithms can be
realized at the proxy-based virtualization layer for different
storage management objectives. Specifically, this paper
considers Start-Time Fair Queueing (SFQ) [5] based
algorithms for proportional sharing of storage bandwidth.
These algorithms have been applied to different storage
systems [6][7], but, to the best of our knowledge, this paper
is the first to study their effectiveness for typical HPC
parallel storage systems. More importantly, this paper
proposes and evaluates improvements to SFQ algorithms
motivated by the unique characteristics (parallel striped I/Os)
and requirements (high throughput) of parallel storage
systems. These enhancements include new threshold-driven
and layout-driven synchronization schemes which reduce the
global communication overhead while delivering good total-
service proportional sharing.

A prototype of vPFS which virtualizes PVFS2 [3], a
widely used parallel file system implementation, has been
developed and evaluated with experiments using typical
parallel computing and I/O benchmarks (IOR [8], NPB
BTIO [9]). The results demonstrate that the throughput 978-1-4673-1747-4/12/$31.00 ©2013 IEEE

overhead from proxy-based virtualization is less than 1% for
READ and less than 3% for WRITE (compared to native
PVFS2). The results also show that the enhanced SFQ-based
schedulers enabled by vPFS achieve good proportional
bandwidth sharing (at least 96% of any given target sharing
ratio) for competing applications with diverse I/O patterns.

In summary, the contributions of this paper are as
follows:

1. A new virtualization-based parallel storage
management approach which is, to the best of our
knowledge, the first to allow per-application
bandwidth allocation in such an environment without
modifying existing HPC systems;

2. The design, implementation, and evaluation of vPFS
which is demonstrated experimentally to support low-
overhead bandwidth management of parallel I/Os;

3. Novel distributed SFQ-based scheduling techniques
that fit the architecture of HPC parallel storage and
support efficient total-service proportional sharing;

4. The first experimental evaluation of SFQ-based
proportional sharing algorithms in parallel file system
environments.

The rest of this paper is organized as follows. Section II
introduces background and motivation. Section III describes
proxy-based virtualization and proportional bandwidth
sharing on parallel storage. Section IV presents the
evaluation. Section V examines the related work and Section
VI concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Limitations of Parallel Storage Management

HPC systems commonly use parallel file systems
[1][2][3][4] to manage storage and provide high performance
I/O. However, they cannot recognize the diverse demands
from different HPC applications which may differ by up to
seven orders of magnitude in their I/O performance
requirements [10]. For example, WRF [11] requires
hundreds of Megabytes of inputs and outputs at the
beginning and end of its execution; mpiBLAST [12] needs to
load Gigabytes of database only before starting its execution;

S3D [13] writes out Gigabytes of restart files periodically in
order to tolerate failures during its execution. Moreover,
applications running on an HPC system can have different
priorities, e.g., due to different levels of urgency or business
value, requiring different levels of performance for their
I/Os. Because the bandwidth available on a parallel storage
system is limited, applications with such distinct I/O needs
have to compete for the shared storage bandwidth without
any isolation. Hence, per-application allocation of shared
parallel storage bandwidth is key to delivering application
desired QoS, which is generally lacking in existing HPC
systems.

As a motivating example, Figure 1 shows the impact of
I/O contention on a typical parallel storage system shared
between two applications represented by IOR [8], which
issues check-pointing I/Os continuously and NPB BTIO [9],
which generates outputs interleaved with computation. Each
application has a separate set of compute nodes but they
compete for the same set of parallel file system servers. The
figure compares the performance of BTIO between when it
runs alone (Standalone) without any I/O contention, and
when it runs concurrently with IOR (Shared). The chosen
experiment workloads are Class C with full subtype (using
collective I/O [36]) and Class A with simple subtype
(without collective I/O).

The expectation from the BTIO user’s perspective when
under I/O contention is either no impact (no loss in I/O
throughput and no increase in run time) or at least fair
sharing (50% loss in I/O throughput and 100% increase in
I/O time). However, the results in Figure 1 show that BTIO
suffers much more severe performance drop even though the
two applications are using separate compute nodes. For Class
A with smaller I/Os, the run time is increased by 228.8% as
its throughput is reduced by 92.5%. For Class C with larger
I/Os, the performance loss is relatively smaller: the total run
time is increased by 76% but the throughput is still reduced
by 68.4%. The less than 100% increase in total run time is
only because of its relatively steady computing time — the
I/O time is still increased by 216.5%. (More details on this
experiment are presented in Section IV.) These results
demonstrate the need for bandwidth management in a
parallel storage system, a problem that becomes increasingly
pronounced as HPC systems grow in size. It is desirable to
provide fair bandwidth sharing so that each application
achieves predictable performance regardless of the
contention from other applications in a shared HPC system.

A possible solution to this problem is to statically
allocate parallel file system servers to each application, but
this solution requires significant resources and is not feasible
in HPC systems with a large number and dynamic sets of
applications. Some systems limit the number of parallel file
system clients that an application can access [14][15]. This
approach allows an application to always get some
bandwidth through its allocated clients. But as shown in the
above experiment, it cannot support strong bandwidth
isolation because the parallel file system servers are still
shared by all the applications without any isolation.

Figure 1. The impact on BTIO’s run time and throughput from

IOR’s I/O contention

328.8%

176.0%

0

200

400

600

800

BTIO
Standalone

BTIO+IOR
Shared

BTIO
Standalone

BTIO+IOR
Shared

Class A/Simple Subtype Class C/Full Subtype

B
TI

O
 R

u
n

 T
im

e
(s

)

7.5%
31.6%

0

20

40

60

BTIO
Standalone

BTIO+IOR
Shared

BTIO
Standalone

BTIO+IOR
Shared

Class A/Simple Subtype Class C/Full Subtype

B
T

IO
 T

h
ro

u
g

h
p

u
t

(M
B

/s
)

B. Limitations of Existing Proportional Bandwidth Sharing

Solutions

Proportional-share-based resource allocation is widely

used for performance isolation and fair sharing. We focus

on approaches based on Start-tag Fair Queueing (SFQ) [5]

because of their computational efficiency, work conserving

nature, and ability to handle variations in resource capacity.

DSFQ [7] is a distributed SFQ algorithm that supports total-

service proportional sharing in a distributed storage system.

Communication across local schedulers in such a system is

necessary for exchanging global scheduling information and

determining the delayed service.

However, it is still challenging to providing proportional

bandwidth sharing on HPC parallel storage systems using

DSFQ. The synchronization required between local

schedulers can be prohibitively expensive for large HPC

storage systems. DSFQ tries to avoid global synchronization

by designing a centralized coordinator to forward (and

piggyback cost of) requests between clients and servers in

the system [7]. In this way, each server’s local scheduler can

be aware of the service provided by the others and enforce

total-service fairness without explicit synchronization. But

such a coordinator must be distributed, in order to be

efficient and scalable, assuming that: 1) each coordinator

can forward requests destined to any server; 2) each request

flow uses all coordinators to forward requests [7]. These

assumptions are to ensure that a coordinator can

communicate with all local schedulers and always has a

uniform chance to piggyback the global scheduling

information for each local scheduler. But these assumptions

do not hold in typical HPC parallel storage systems.

For high-throughput, a parallel file system client always

issues I/O requests directly to the data servers where the

corresponding data is stored on (after retrieving the data

layout from the metadata server). Therefore, there is

nowhere in the parallel storage architecture to place the

required coordinators which can receive requests from

arbitrary clients, regardless of the data layouts, and forward

them to arbitrary data servers. It is possible to modify this

architecture to make the data layout opaque to the clients,

place the coordinators between the clients and servers, and

then force the I/Os to go through the coordinators in a

random fashion. However, this design would still be

undesirable because 1) it requires a coordinator to forward

requests to remote data servers and thus incurs overhead

from additional network transfer; 2) it takes away an

application’s flexibility of specifying data layout, e.g., by

specifying layout hints through the MPI-IO interface [16].

These constraints imposed by typical parallel storage

architecture motivate the need for a new distributed

scheduling design that supports both efficient data access

and total-service fairness.

III. vPFS BANDWIDTH VIRTUALIZATION

This section presents first the vPFS virtualization which
enables per-application bandwidth management on parallel
storage, and then the enhanced DSFQ-based schedulers
which support efficient total-service proportional sharing
upon the virtualization layer.

A. vPFS Virtualization Layer

The virtualization layer in vPFS framework addresses the
limitations of existing parallel file systems discussed in
Section II.A without changing the interface exposed to
applications. It can be integrated with existing deployments
transparently, where virtual parallel file systems can be
dynamically created on a per-application basis to provide
fine-grained bandwidth allocation. The key to such
virtualization is to insert a layer of proxy-based parallel I/O
indirection between the shared native parallel storage clients
and servers, which differentiates per-application I/O flows
and enforces their resource allocation. Although this paper
focuses only on virtualization-based bandwidth management,
such a layer can also enable other new functionalities and
behaviors (e.g., I/O remapping for performance and
reliability enhancements) — experimental results show that
the overhead introduced by a user-level implementation of
this layer is small.

In vPFS, a virtual parallel file system is created by
spawning a proxy on every parallel file system server that the
application needs to access its data (Figure 2). These proxies
broker the application’s I/Os across the parallel storage,

Figure 2. The architecture of vPFS parallel file system virtualization

App

Compute
servers

Data
servers

App

App

PFSProxy

Virtual PFS1

Virtual PFS2

HPC
application 1

HPC
application 2

 Capture native PFS I/Os from HPC
applications

 Queue I/Os on a per-application basis

 Schedule and forward I/Os according to
application QoS requirements

where the requests issued to a data server are first processed
and queued by its local proxy and then forwarded to the
native parallel file system server for the actual data access. A
proxy can be shared by multiple virtual parallel file systems
as the proxy instantiates multiple I/O queues to handle the
different I/O streams separately. Note that these per-
application queues are only conceptual and they can be
implemented using a single queue with I/Os tagged using
application IDs. Typically HPC systems partition compute
nodes across applications so each node, which owns of a
unique IP address, executes a single application. Therefore,
the proxy can use the compute node’s IP to identify I/Os
from different applications. However, it might be necessary
to further differentiate applications when more than one
application runs on a single node in a time-shared or space
shared fashion (due to the growing number of cores per
node). In such a scenario, each application’s I/O can be
directed to a specific port of the proxy so that its I/O can be
uniquely identified using the port and IP combination.

For high-throughput, vPFS is designed with decentralized
proxies which collectively deliver bandwidth virtualization.
For total-service fairness of striped I/Os, the virtualization
layer recognizes the striping distribution and coordinates the
bandwidth allocations across the involved data servers.
Therefore, vPFS enables communication and cooperation
among distributed proxies to enforce global bandwidth
allocation collaboratively.

The placement of vPFS proxies does not have to be
restricted to the native parallel file system servers in order to
create virtual parallel file systems. They can in fact be placed
anywhere along the data path between the clients and
servers. For example, the proxies can run on a subset of the
compute nodes, which are dedicated to provide I/O services
for the rest of the compute nodes. Such proxy placement can
be leveraged to deploy vPFS in HPC systems that do not
allow any third-party program on the data servers. This
placement is also useful when the network bandwidth
between the computer and I/O nodes is a bottleneck and
needs to be allocated on a per-application basis as well.

The vPFS approach can be applied to support different
parallel file system protocols as long as the proxy can
understand the protocols and handle I/Os accordingly. Our
prototype implementation virtualizes a specific parallel file
system, PVFS2; however, we believe that the general vPFS
approach is generic enough to support others as well. The
user-level virtualization design of vPFS does not require any
changes to the existing software and hardware stack.
Although the use of proxy for I/O forwarding involves extra
I/O processing at the proxy and extra communication with
the native data server, our experimental evaluation in Section
IV shows that this overhead is small. Alternatively, the
performance virtualization can be also implemented directly
in the internal scheduler of a parallel file system, but that
would require changes to the parallel file system and would
be tied to its specific implementation as well.

A variety of parallel I/O scheduling algorithms with
different objectives can be deployed at the vPFS
virtualization layer by using the proxies to monitor and
control I/O executions. In this paper, we focus on

proportional sharing and address the challenges of realizing
such scheduling efficiently in large-scale parallel storage
systems.

The current implementation of vPFS only schedules data
requests on a parallel file system and forwards the other
meta-data and control requests simply in a FIFO order.
However, although not the focus of this paper, vPFS can also
achieve performance isolation of meta-data operations, such
as the creation of files by proxying and scheduling the
relevant meta-data requests.

B. vPFS Distributed Scheduling

In general, to achieve total-service proportional sharing
of a parallel file system, a distributed algorithm like DSFQ
[7] needs to be enabled upon vPFS. As discussed in Section
II.B, the key challenge to implementing such an algorithm is
the need of global synchronization across the distributed
schedulers. Because each local scheduler sees only the I/Os
that it services, it needs to be aware of the service that each
competing flow is getting from the other schedulers. In order
to efficiently enable total-service proportional sharing, vPFS
proposes the following two enhanced DSFQ-based
schedulers, which are suited for HPC parallel storage
architecture and address the challenge of global
synchronization.

1) Threshold-driven Total-Service Proportional

Sharing

To enable distributed scheduling, vPFS is enhanced with
cooperating proxies. These proxies are responsible of not
only scheduling the requests serviced by its local data server
but also exchanging the local service information among one
another in order to achieve total-service proportional sharing.
This distributed scheduling design is suited for typical
parallel storage architecture, because, first, it still allows data
to directly flow from clients to servers, and second, it does
not require a proxy to forward requests to any other remote
servers than its local one. However, the need of efficient
global scheduling synchronization across the distributed
proxies remains to be a challenge.

Global synchronization based on broadcast upon every
request is not acceptable in a large system. Instead, the
proxies can reduce the frequency of broadcast by batching
the costs of a number of locally serviced requests in a single
broadcast message. Nonetheless, as a tradeoff, the fairness
guarantee offered by the original DSFQ algorithm [7] may
be weakened. The overhead of broadcast can be effectively
controlled if the proxies synchronize with each other
periodically. However, this scheme does not provide a bound
on the amount of unsynchronized I/O cost across proxies. As
a result, if a server services a large number of requests during
a synchronization period, it would cause high fluctuations on
the other servers as they try to catch up with the total-service
fairness after the synchronization.

In order to achieve efficient total-service proportional
sharing with a good unfairness bound, vPFS adopts a
threshold-driven global synchronization scheme. In this
new scheme, a broadcast message is triggered whenever the
accumulated cost of arrived requests from a flow f on the

local server exceeds a predetermined threshold

. In

this way, the degree of divergence from the perfect total-

service fairness is bounded by the threshold

, because

no flow would get unfair extra service more than this bound.
This scheme can also limit the fluctuation after each
synchronization to the extent of the threshold. Formally, the
unfairness bound in this scheme can be described by the
theorem:

Theorem 1 Under the threshold-driven total-service
proportional sharing algorithm, assume during interval
[], f and g are both continuously backlogged at data
server A. The unfairness is defined as the difference
between the aggregate costs of requests completed in the
entire system for the two flows during the entire interval,
normalized by their weights. It is bounded as follows:

|
 ()

 ()

| (())

 (())

 () (

)

 ()

 ()

In the formula, () and () are the

aggregate costs of requests completed in the entire system
for flow f and g. and are the weights of flow f and g.

 and are the depths of the scheduler and disks on data
server A. For any flow h, is the number of servers

providing service to flow h.
 denotes the maximum

cost of a single request from flow h to data server K.

represents the maximum total cost of requests from flow h
to the entire system between the arrivals of any two requests
from flow h to server K.

The unfairness bound in Theorem 1 is similar to that in

DSFQ [7], but it has one more component ()

 ()

 which is due to the threshold-driven

synchronization mechanism. Larger

and

 save

overhead from synchronization, but it also leads to a looser

bound of unfairness. By setting

= 0 and

= 0,

this extra component disappears, in which case the
scheduler synchronizes every time it receives a new request
and the algorithm reduces to the original DSFQ algorithm.
The proof of this theorem is similar to that in DSFQ [7] so it
is omitted for the sake of space. The full proof can be found
in our technical report [37].

When implementing this threshold-driven scheme, it can
be simplified to use a single threshold, instead of one
threshold per flow, on all distributed schedulers. A scheduler
issues synchronization when the total cost of requests from
all of its serviced flows exceeds this threshold, where the
broadcast contains the costs of all of these flows. This
simplification will in fact tighten the unfairness bound.
Moreover, this single threshold can be conveniently and
flexibly adjusted to balance the tradeoff between efficiency
and fairness of the total-service proportional sharing.

The synchronization frequency is determined by the
threshold and it is a major overhead factor in the broadcast
scheme. Therefore a dynamic threshold scheme, which
adjusts the threshold value in a continuous manner, is also
possible. Because the speed at which the threshold is filled
up is a function of I/O size, location and sequentiality, the
threshold should be set according to the predicted future
access pattern of the flows. This will be part of our future
work.

2) Layout-driven Total-Service Proportional Sharing

Although the above proposed threshold-driven total-
service proportional sharing can substantially reduce the
overhead from global scheduling synchronization, the cost
will still grow as the number of servers increases in the
system. To further reduce the synchronization cost, vPFS
also supports a layout-driven scheme in which each
distributed local scheduler leverages a flow’s file layout
information to approximate its global I/O cost from its
locally received I/Os. Therefore, frequent global
synchronization can be greatly reduced whereas broadcast is
required only upon the arrival and departure of flows in the
storage system.

A file’s layout information, which includes stripe method
and parameters, can be either discovered in an I/O request or
retrieved from a metadata server. For example, PVFS2
embeds the stripe method name and the specific parameters
for this method in every I/O request; if a parallel file system
does not do that, such information can still be obtained from
the metadata servers. Based on the stripe method used by a
flow, a local scheduler can estimate the flow’s total service
from the striped I/O that it receives locally. For example, in
PVFS2, three native stripe methods are implemented: simple
stripe, two-dimensional stripe, and variable stripe. When
using simple stripe, the total service amount can be
approximated by multiplying the request size seen by the
local server and the number of servers involved in this flow.
When using two-dimensional stripe, each group’s I/O size
can be constructed by using the factor number (a number
indicating how many times to stripe within each group of
servers before switching to another group) within each group
to approximate the total I/O service. When approximating
the total service in variable stripe, different servers’ stripe
sizes will be used to reconstruct the original I/O request size.

Another necessary parameter for estimating total service
is the number of servers involved in each I/O request. The
num_servers field is embedded together with the stripe
information in the PVFS2 I/O requests. In case it is not
available in other parallel file system protocols, only one
synchronization is required to obtain this information when a
new application enters the system. Although it is possible for
an application to use different layouts for its files, it is rarely
used in practice. For manageability, the application usually
prefers using a uniform layout on its entire data set.
Therefore, the layout information needs to be retrieved on a
per-application basis rather than per-file basis.

By locally calculating total I/O service using the stripe
method and parameters as well as the number of involved
servers, the global scheduling synchronization can be

TABLE 1. THE OVERHEAD INVOLVED IN THE DEVELOPMENT OF

VIRTUALIZATION AND SCHEDULER LAYERS. THE LINES OF CODE ARE

COUNTED FOR DIFFERENT PARTS OF VPFS.

Framework LOC Component LOC

Virtualization 1,692

Interface 694

TCP 397

PVFS2 601

Scheduler 3,502

Interface 735

SFQ(D) 552

DSFQ 987

Two-Level 1,228

Total 5,194

 virtually eliminated. The reduction in broadcast frequency
and message size can lead to substantial saving in processing
time and network traffic. Because the synchronization is
needed only when an application starts in the HPC system,
this cost will be negligible compared with the typical time
during which the application stays in the system. Note that
the arrival and departure of applications can be estimated by
tracking I/O requests or informed by a typical job scheduler
(e.g., TORQUE [20], LoadLeveler [21]) commonly used for
HPC job management.

Even for applications using mostly small, non-striped
I/Os, it is common for the parallel file system to evenly
distribute small I/Os on all the involved servers for the sake
of performance. Hence, it is still feasible to use the layout
information to estimate the total service. In scenarios where
this assumption does not hold, vPFS can switch to use the
threshold-driven synchronization scheme for more accurate
scheduling of such I/Os. In fact, vPFS can make this
transition dynamically based on its observation of the I/O
patterns.

C. Cost of Implementation

TABLE 1 summarizes the development cost of vPFS. The
total lines of code currently in the prototype sums up to
5,194, including the support for TCP interconnect, PVFS2
parallel file system, and three types of schedulers. To break it
down, the virtualization framework costs 1,692 lines of code
and the scheduling framework costs 3,502 lines of code. The
generic interfaces exposed by these frameworks allow
different network transports, parallel file systems, and
scheduling algorithms to be flexibly incorporated into vPFS.
Specifically, the TCP support and PVFS2 interpretation each
costs less than 1000 lines of code. Different schedulers cost
from 500 to 1,300 lines of code depending on their
complexity. A two-level scheduler implementing both
bandwidth and latency management [28] is still under
development and is estimated to cost more than 1,200 lines
of code. The performance overhead of this vPFS prototype is
discussed in the next section.

IV. EVALUATION

A. Setup

The PVFS2-based vPFS prototype was implemented on
TCP and was evaluated on a test-bed consisting of two
clusters, one as compute nodes and the other as I/O nodes

running PVFS2 (version 2.8.2) servers. The compute cluster
has eight nodes each with two six-core 2.4GHz AMD
Opteron CPUs, 32GB of RAM, and one 500GB 7.2K RPM
SAS disk, interconnected by a Gigabit Ethernet switch. The
server cluster has eight nodes each with two six-core 2.4GHz
Intel Xeon CPUs, 24GB of RAM, and one 500GB 7.2K
RPM SAS disk. Both clusters are connected to the same
Gigabit Ethernet switch. All the nodes run the Debian 4.3.5-
4 Linux with the 2.6.32-5-amd64 kernel and use EXT3 (in
the journaling-data mode, unless otherwise noted) as the
local file system.

This evaluation uses IOR (2.10.3) [8], a typical HPC I/O
benchmark, to generate parallel I/Os through MPI-IO. IOR
can issue large sequential reads or writes to represent the
I/Os from accessing check-pointing files, which is a major
source of I/O traffic in HPC systems [22]. IOR is also
modified to issue random reads and writes and represent
other HPC I/O patterns.

The evaluation also uses the BTIO benchmark from the
NAS Parallel Benchmark (NPB) suite (MPI version 3.3.1)
[9] to represent a typical scientific application with
interleaved intensive computation and I/O phases. We
consider the Class A and Class C of BTIO (Class A
generates 400MB and Class C generates 6817MB). We also
consider both the full and simple subtypes of BTIO. The
former uses MPI I/O with collective buffering which
aggregates and rearranges data on a subset of the
participating processes before writing it out. The latter does
not use collective buffering and as a result involves a large
number of small I/Os. All setups are configured to overload
the underlying storage system in order to evaluate the
effectiveness of performance virtualization under contention.

The different SFQ-based schedulers proposed in Section
III.B are evaluated in the experiments. The value of the depth
parameter of D used in the algorithms is set to 8, unless
otherwise noted. The memory caches on both the clients and
servers are cleared before each run. Each experiment is
repeated for multiple runs, and both the average and standard
deviation values are reported in the following results.

B. Overhead of Proxy-based Virtualization

The first group of experiments studies the performance
overhead of vPFS’ virtualization and I/O scheduling in
terms of throughput, because throughput is the main concern
for most HPC applications with large I/O demands. It
compares the throughputs between Native (native PVFS2
without using proxy), Virtual (PVFS2 virtualized with
proxy but without any scheduler), and Virtual-DSFQ
(virtualized PVFS2 with DSFQ-based I/O scheduling). IOR
is used in this experiment because it can simulate much
more intensive I/O patterns than BTIO. The number of
processes used by IOR is 256, evenly distributed on eight
physical nodes. To increase the intensity of the request rates
and demonstrate the overhead of vPFS under worst-case
scenario, in this experiment only, we read the file from a
warm cache and use EXT3 in the ordered-data mode. The
results in Figure 3 show that the throughput overhead
caused by the proxy and its scheduler are small, and when

they are combined the total is still less than 1% for READ
and 3% for WRITE of the native PVFS2 throughput.

To study the resource overhead of a vPFS proxy, we also
observe its CPU and memory usages in an experiment with
eight competing applications managed by the threshold-
driven enhanced DSFQ scheduler.

Figure 4 shows that the proxy’s CPU and memory
consumption are low even when it has to handle 256
concurrent I/O flows.

C. Effectiveness of Proportional Sharing

The above study confirms that the overhead from proxy-
based virtualization and bandwidth management is small and
our proposed vPFS approach is feasible. In this subsection,
we evaluate the effectiveness of proportional sharing using
the enhanced DSFQ-based algorithms on vPFS. Section
IV.C.1) uses two IOR instances to model two highly I/O
intensive applications. Section IV.C.2) uses eight IOR
instances contending for I/O at different times. Section
IV.C.3) models a typical scientific application (BTIO) under
the impact of other I/O-intensive workload (IOR).

1) IOR with Various Access Patterns

This experiment enables threshold-driven DSFQ and
shows the ability of vPFS to enforce bandwidth sharing
fairness between two applications represented by IOR. The
two IOR instances, each forking 128 processes on a separate
set of compute nodes, share the data servers in an
asymmetric way: App1 uses only four of the eight data
servers whereas App2 uses all of them. Without any
bandwidth management in such an asymmetric setup, the
total bandwidth that each application get is proportional to
the number of servers it has (1:2). Therefore, this
experiment can evaluate whether our proposed distributed
schedulers can realize total-service fairness based on any

given ratio set between asymmetric App1 and App2. In this
experiment, we also consider the proportional sharing
between applications with different I/O patterns.
Specifically, App1 always issues sequential writes, whereas
App2’s I/O pattern changes from sequential writes,
sequential reads, to random reads and writes (both the
offsets and use of read versus write are randomly decided
following a uniform distribution). Both applications
continuously issue I/O requests so that each flow has a
backlog at the server.

Figure 5 shows the proportional sharing achieved
between App1 and App2 for different read/write
combinations and with different total fairness ratios. The
achieved ratios are within 1% of the target ratio when it is
set to 2:1 and 8:1, and within 3% when it is 32:1. The figure
shows that the broadcast scheme can work effectively by
synchronizing the total service information and isolating the
I/O bandwidth consumed by the different applications. The
results shown are obtained using a broadcast threshold of
10MB. It achieves almost the same level of fairness as a
much smaller threshold (512KB) which triggers
synchronization upon every request. (The details of the
512KB-threshold experiment are omitted here due to the
limited space.) Nonetheless, the synchronization overhead
from using the 10MB threshold can be reduced by 95% as
compared to using the 512KB threshold. These results
demonstrate that the distributed scheduler implemented
upon vPFS handles the two application’s distinct needs with
nearly perfect fairness according to any given sharing ratio.
Moreover, it does so in an asymmetric setup using efficient
global synchronization technique.

2) IOR with Dynamic Arrivals

In this experiment, we evaluate vPFS’ ability of
handling the dynamic arrivals of more applications. A total
of eight applications contend for shared I/O resources. Each
application is represented by IOR with 32 processes in
sequential writing mode. The odd-numbered applications
use four data servers and the even-numbered ones use all of
the eight servers. These applications are started one after
another and the average arrival interval is 60 seconds. After
420 seconds, all eight applications (256 processes) are
present in the system until the end (960th second).

The share of each application is assigned the same value
as its ID, i.e., App1 has a weight of 1 and App2 has a weight
of 2, and so on. Different from last experiment, this
experiment employs the layout-driven DSFQ. Figure 6
shows the average and real time unfairness between all the
applications every 60 seconds and every 5 seconds
throughout this experiment.

We define the unfairness between n applications as

∑| |

Figure 3. Throughput overhead of vPFS

0

0.05

0.1

0.15

0.2

0.25

0

1

2

3

4

32 64 96 128 160 196 224 256

Processes
M

e
m

o
ry

 (
%

)

C
P

U
 (

%
)

pvfs cpu proxy cpu

pvfs mem proxy mem

Figure 4. CPU and memory overhead of vPFS

99.6% 97.6%99.6% 97.5%

0

200

400

600

800

1000

READ WRITE

Th
ro

u
gh

p
u

t
(M

B
/s

)

NATIVE VIRTUAL VIRTUAL-DSFQ

In this formula, and are the
normalized throughput and normalized weight among the
existing applications during each time window. Note that
this definition is an extension of that used in Theorem 1 in
order to capture unfairness between more than two
applications. The value of this formula indicates the sum of
each application’s fairness deviation (percentage of current
available bandwidth unfairly shifted from/to other
applications w.r.t. the fair share it should receive). The value
ranges from 0% to 200%, the smaller the better, because:

0 ∑| |

 ∑| | | |

=∑| |

 ∑| |

=

The results in Figure 6 demonstrate that as the number
of applications and the number of participating servers
change dynamically in the system, the vPFS scheduler is
always able to apply layout-driven DSFQ to correctly
allocate the total I/O bandwidth to each application
according to the specified sharing ratio.

The solid black line in Figure 6, which indicates the
average unfairness over every 60 seconds, is always under
9% throughout the experiment. Before the 420th second, the
fluctuations of unfairness is relatively larger. This is caused
by the arrival of new applications. When a new application
enters the system, its requests are not backlogged
immediately, so the transient unfairness may increase a lot
temporarily. For example, when App2 enters, it does not
have enough number of I/O requests to keep a 2:1 ratio

versus App1 in the scheduler’s queue. After the 420th
second, the average time unfairness stays well below 4%.

The real time fairness deviation measured every 5
seconds is more interesting to read because it shows the
finer grained unfairness. When App2 enters the system
before the 80th second, the spike rising to almost 90%
deviation can be explained by the same reason discussed
above. This phenomenon recurs when App3 and App4 enter,
but the impact becomes smaller because the existing
applications’ established sharing ratio smooth out the
impact of new application arrivals.

The pattern of fluctuations of fairness deviations
changes after the 420th second for both the 5-second and
60-second measurements. These fluctuations exist because
with the eight concurrent applications, the storage system
gets overloaded where each parallel file system data servers
starts to flush buffered writes in foreground. This
explanation is confirmed by observing the CPU’s IO wait
time using mpstat on the data servers, which can be as high
as 90% during the flushing. When foreground flushing
happens, the I/O processing is temporarily blocked on the
servers, which leads to high I/O response times. As such,
when we measure the fairness deviation using a 5-second
window, we see large spikes when I/Os cannot finish within
such a time window. But with a 60-second time window,
such spikes are smoothed out in our measurements and it is
evident that the fairness deviation is still small overall.
Nonetheless, such fluctuations are only an artifact of our
intensive experiment which severely overloads the system.
They will not show up under the typical HPC storage use.

3) BTIO vs. IOR

In this experiment, we apply vPFS-based storage
management to solve the problem discussed in Section II,

1.99:1 3.97:1 7.90:1 15.98:1
31.95:1

0

20

40

60

80

100

120

140

2:1 4:1 8:1 16:1 32:1

Th
ro

u
gh

p
u

t (
M

B
/s

)
Total App1 App2

1.99:1 3.97:1 8.10:1 16.21:1 32.73:1

0

20

40

60

80

100

120

140

2:1 4:1 8:1 16:1 32:1

T
h

ro
u

g
h

p
u

t (
M

B
/s

)

Total App1 App2

2.02:1
3.95:1

8.01:1 16.01:1 31.34:1

0

20

40

60

80

100

120

140

2:1 4:1 8:1 16:1 32:1

T
h

ro
u

g
h

p
u

t (
M

B
/s

)

Total App1 App2

(a) Write versus write (b) Write versus read (c) Write versus random

Figure 5. Proportional sharing in an asymmetric setup using threshold-driven DSFQ. X-axis is the target share ratio.

Figure 6. Real time fairness deviation during a 960-second run with 8 dynamically arriving applications

0%

20%

40%

60%

80%

100%

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950

Fa
ir

en
es

s
D

ev
ia

ti
o

n

Time (s)

Measured Every 5 Seconds

Measured Every 60 Seconds

app4 arrived

app3 arrived

app2 arrived

app1
arrived app5 arrived

app6 arrived

app7 arrived

app8 arrived

i.e., guarantee BTIO’s bandwidth allocation and performance
under the intensive interference from IOR I/Os. We use the
same setup as the one in Section II.A, Figure 1, where BTIO
is used to model typical HPC application with interleaved
computation and I/O and IOR is used to create intensive,
continuous contention on the parallel storage. BTIO and IOR
each has 64 MPI processes running on a separate set of
compute nodes while sharing the 8 I/O nodes. There are two
types of workloads in this experiment: Class C (writing and
reading 6817MB) of data with full subtype (using collective
buffering) and Class A (writing and reading 400MB of data)
with simple subtype (without collective buffering). A major
difference between these workloads is that the former issues
I/O requests of 4 to 16MB in size, whereas the latter issues
I/Os of 320B in size. Each IOR process is configured to
continuously issue sequential writes of 32MB.

In Figure 7, we show the results from using different
vPFS-enabled layout-driven DSFQ schedulers with 32:1
target ratio favoring BTIO. The white bars are the original
performance values for different Class/Subtype
combinations. The numbers on the other patterned bars
indicate the increase in run time or decrease in I/O
throughput relative to the original performance.

As discussed in Section II, when there is no bandwidth
management (BTIO+IOR, Shared, Native), BTIO’s run time
is increased by 228.8% in Class A and 75% in Class C w.r.t.
its standalone run time (Standalone). The layout-driven
DSFQ (BTIO+IOR, Shared, Layout-DSFQ) helps improve
the slowdown to 153.3% for class A and 20.3% for Class C,

as the BTIO throughput is restored to 16.8% and 72.1%,
respectively, of the Standalone case. Notice that Class A’s
performance is much more challenging to restore than Class
C. This is because small I/Os are more susceptible to large
I/O contentions from IOR. The static depth used by the
DSFQ scheduler, which determines the number of
outstanding I/Os, can be also unfair for small I/Os.

However, even for Class C, the work-conserving DSFQ
scheduler cannot fully restore BTIO’s performance under the
contention from IOR. This is because of BTIO’s bursty
access pattern. To better illustrate BTIO’s I/O pattern and its
impact on bandwidth usage, we plot the request patterns of a
Class C, full subtype BTIO workload in one of the 64
processes. Figure 8 is a state diagram of the lifecycle of the
process. After initial file creation, the process interleaves a 4-
second write I/O and a 6-second computation for 40 times in
the first output phase. Then the verification phase includes a
3-second read I/O and 1-second verification for 40
loopbacks. In addition, each BTIO process issues only one
outstanding I/O. Therefore, the full subtype BTIO workload
is quite bursty and has a low issue rate. Since the scheduler
used here is work-conserving, spare bandwidth has to be
yielded to IOR when BTIO’s I/O rate cannot fully utilize the
bandwidth share allocated to it. When an I/O burst comes
from BTIO, it may also have to wait for the outstanding IOR
I/Os to complete.

In order to completely shield the impact of contention,
we also implemented a non-work-conserving DSFQ
scheduler which strictly throttles an application’s bandwidth
usage based on its allocation. Specifically, this non-work-
conserving scheduler will put an application’s I/Os
temporarily on hold when its completed I/O service exceeds
its given bandwidth cap. When we apply the non-work-
conserving (BTIO+IOR, Shared, Layout-DSFQ (NWC) in
Figure 7) scheduler with a 32:1 ratio, BTIO can achieve the
same level of performance as when it runs alone.

The above discussions demonstrate that there is an
interesting tradeoff between resource sharing fairness and
resource utilization efficiency. A work-conserving scheduler
can fully use available resources, whereas a non-work-
conserving one can enforce strict fairness. Nonetheless,
vPFS allows such tradeoff to be flexibly balanced based on
application and system needs as it enables these various
schedulers upon virtualization. It is also conceivable that if
we can predict an application’s I/O pattern and reserve
bandwidth for it in advance of its I/O phases, then it is
possible to optimize both fairness and utilization
simultaneously. Embedding such intelligence in vPFS I/O
scheduling will be considered in our future work.

D. Comparison of Synchronization Schemes

The last group of experiments compares the overhead of
global scheduling synchronization between our proposed
threshold-driven and layout-driven schemes. In order to
magnify the overhead of the two different synchronization
schemes, we 1) increase the number of data servers to 96 by
using Xen virtual machines (with paravirtualized kernel
2.6.32.5) hosted on the eight server nodes, 2) use the
NULL-AIO [23] in PVFS2 to maximize the I/O rate, 3) run

Figure 7. Throughput and run time of BTIO restored by vPFS's
different schedulers under contention of IOR

Figure 8. Access pattern of one BTIO process, Class C/Full subtype

328.8%

176.0%

253.3%

120.3%

101.9%

101.1%

0

100

200

300

400

500

600

700

800

900

Class A/Simple Subtype Class C/Full Subtype

B
TI

O
 R

u
n

 T
im

e
(s

)
BTIO

Standalone

BTIO+IOR

Shared
Native

BTIO+IOR

Shared
Layout-DSFQ

BTIO+IOR

Shared
Layout-DSFQ (NWC)

7.5%

31.6%

16.8%

72.1%

93.2%

98.5%

0

10

20

30

40

50

60

70

80

Class A/Simple Subtype Class C/Full Subtype

B
T

IO
 T

h
ro

u
g

h
p

u
t

(M
B

/s
) BTIO

Standalone

BTIO+IOR
Shared
Native

BTIO+IOR
Shared
Layout-DSFQ

BTIO+IOR
Shared
Layout-DSFQ (NWC)

Creation

I/O (WRITE) (4 seconds)

Compute (6 seconds)

Verify (<1 second) I/O (READ) (3 seconds)

Loopback

40 times

Loopback

40 times

TABLE 2. THE COMPARISON OF BANDWIDTH UTILIZATION BETWEEN

TWO DIFFERENT SYNCHRONIZATION SCHEMES

Synchronization

Scheme

Total Throughput

(MB/s)

Standard

Deviation (MB/s)

Threshold-driven 540.91 31.59

Layout-driven 612.08 2.21

 eight applications, each with 32 parallel processes hosted on
a separate physical compute node, 4) set the threshold below
the average request size so that every request triggers a
broadcast in the threshold-driven scheme, and 5) let all the
applications use IOR to generate highly intensive workload.
Equal proportional sharing is set as the target for both
schemes in the experiment.

The results confirm that both schemes can achieve
equally good sharing of the system’s total bandwidth
(within 3% fairness deviation). More importantly, we
monitor the volume of synchronization traffic on each
server and the throughput fluctuation of each application to
evaluate the overhead of the two schemes and analyze their
scalability. Figure 9 shows the throughput of one of the
applications and Figure 10 shows the synchronization traffic
on one of the servers. (The results obtained from the other
applications and servers are similar.) The threshold-driven
scheme has a constant need of synchronization and as a
result consumes network bandwidth (as well as the CPU
cycles for processing the traffic) all the time. Such frequent
synchronization also causes high fluctuations on the
throughput because every synchronization triggers a re-
sorting on the scheduler. In contrast, the layout-driven
scheme involves global synchronization only at the entry
time of an application. As a result, layout-driven
synchronization scheme shows a much smoother throughput
in Figure 9 and much less synchronization traffic during the
entire experiment in Figure 10. In summary, the layout-
based DSFQ scheduler achieves 13.2% higher throughput
and 93.0% lower deviation than the threshold-driven DSFQ
scheduler (TABLE 2). Meanwhile, it can correctly estimate

the total service based on the layout information and thus
also achieve tightly bounded proportional sharing within 3%
fairness deviation.

V. RELATED WORK

Storage resource management has been studied in related
work in order to service competing I/O workloads and meet
their desired throughput and latency goals. Such
management can be embedded in the shared storage
resource’s internal scheduler (e.g., disk schedulers) (Cello
[24], Stonehenge [25], YFQ [26], PVFS [27]), which has
direct control over the resource but requires the internal
scheduler to be accessible and modifiable. The management
can also be implemented via virtualization by interposing a
layer between clients and their shared storage resources
(Façade [17], SLEDS [18], SFQ(D) [6], GVFS [19]). This
approach does not need any knowledge of the storage
resource’s internals or any changes to its implementation. It
is transparent to the existing storage deployments and
supports different types of storage systems.

Although this approach has been proposed for different
storage systems, to the best of our knowledge, vPFS is the
first to study its application on parallel storage systems. In
addition to obtaining the same benefit of transparency as
other virtualization-based solutions do, vPFS embodies new
designs that address the unique characteristics and
requirements of parallel storage systems.

Various scheduling algorithms have been investigated in
related storage management solutions. They employ
techniques such as virtual clocks, leaky buckets, and credits
for proportional sharing [6][25][28], earliest-deadline first
(EDF) scheduling to guarantee latency bounds [17],
feedback-control with request rate throttling [29], adaptive
control of request queue lengths based on latency
measurements [30], and scheduling of multi-layer storage
resources based on online modeling [31]. The effectiveness
of these scheduling algorithms is unknown for a HPC
parallel storage system. This gap can be mainly attributed to
the fact that there is few existing mechanism that allows

0

100

200

0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

(a) Threshold-driven DSFQ throughput

0

100

200

0 100 200 300 400 500 600

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

(b) Layout-driven DSFQ throughput

Figure 9. Throughput comparison between threshold-driven DSFQ and layout-driven DSFQ (of one application)

(a) Threshold-driven DSFQ synchronization cost

(b) Layout-driven DSFQ synchronization cost

Figure 10. Synchronization traffic comparison between threshold-driven DSFQ and layout-driven DSFQ (on one server)

0

5

0 100 200 300 400 500 600Sy
n

ch
ro

n
iz

at
io

n

C
o

st
 (K

B
)

0

5

0 100 200 300 400 500 600Sy
n

ch
ro

n
iz

at
io

n

C
o

st
 (K

B
)

effective per-application bandwidth allocation in such a
system. Our proposed vPFS approach bridges this gap by
enabling various parallel I/O scheduling policies to be
instantiated without imposing changes to parallel file system
clients and servers. It is also the first to study proportional
sharing algorithms on a PFS.

The majority of the storage resource schedulers in the
literature focuses on the allocation of a single storage
resource (e.g., a storage server, device, or a cluster of
interchangeable storage resources) and addresses the local
throughput or latency objectives. LexAS [32] was proposed
for fair bandwidth scheduling on a storage system with
parallel disks, but I/Os are not striped and the scheduling is
done with a centralized controller. DSFQ [7] is a distributed
algorithm that can realize total service proportional sharing
across all the storage resources that satisfy workload
requests. However, as discussed at length in Section II.A, it
faces challenges of efficient global scheduling when applied
to a HPC parallel storage system, which are addressed by the
vPFS and the enhanced algorithms enabled upon it.

U-Shape [40] is a closely related project which tries to
achieve application-desired QoS by first profiling the
application’s instantaneous throughput demands and then
dynamically schedule the application’s I/Os to meet the
predicted demands. In comparison, this paper focuses on
proportional bandwidth sharing which can efficiently utilize
available parallel storage bandwidth while ensuring total-
service fairness among competing applications. In addition,
our proposed parallel file system virtualization enables such
management without modifying existing HPC storage
system software stack.

LACIO [41] also proposed to utilized file layout
information on the physical nodes of parallel I/Os, but it is
used to optimize the aggregated throughput of the whole
system, i.e., to take last level locality into consideration.
Ours bears another objective — to infer the global service
from locally service I/Os using file layouts, in order to
deliver total-service proportional sharing.

Finally, there is related work that also adopts the
approach of adding a layer upon an existing parallel file
system deployment in order to extend its functionality or
optimize its performance (pNFS [33], PLFS [34], ZOID
[35]). In addition, cross-server coordination has also been
considered in the related work [38][39] to improve spatial
locality and performance of I/Os on a parallel file system.
These efforts are complementary to this paper’s work on
virtualization-based proportional sharing of parallel storage
bandwidth which, to the best of our knowledge, has not been
addressed before.

VI. CONCLUSION AND FUTURE WORK

This paper presents a new approach, vPFS, to parallel
storage management in HPC systems. Today’s parallel
storage systems are unable to recognize applications’
different I/O workloads and to satisfy their different I/O
performance requirements. vPFS addresses this problem
through the virtualization of contemporary parallel file
systems. Such virtualization allows virtual parallel file
systems to be dynamically created upon shared physical

storage resources on a per-application basis, where each one
gets a specific share of the overall I/O bandwidth. This
virtualization layer is implemented via parallel file system
proxies which interpose between native clients and servers
and capture and forward the native requests according to the
scheduling policies.

Upon the vPFS framework, this paper also proposes new
distributed schedulers for achieving proportional sharing of a
parallel storage system’s total bandwidth. These schedulers
address the challenges of applying the classic SFQ algorithm
[6][7] to parallel storage and enhance it for both high
throughput and efficient global scheduling. This paper
presents a comprehensive evaluation of the vPFS prototype
implemented by virtualizing PVFS2. The results obtained
using typical HPC benchmarks, IOR [8] and BTIO [9], show
that the vPFS approach is feasible because of its small
overhead in terms of throughput and resource usage.
Meanwhile, it achieves nearly perfect total-service
proportional bandwidth sharing for competing parallel
applications with diverse I/O patterns.

In our future work, we will consider other optimization
objectives and opportunities upon the vPFS framework, and
extend it beyond proportional bandwidth sharing. In
particular, we will investigate deadline-driven I/O scheduling
to support applications sensitive to latencies. Interactive
applications and meta-data intensive applications (with a
large number of file creation/deletion operations in a short
period of time) are typically latency sensitive and require
deadline-driven I/O scheduling. We will study techniques
such as pre-fetching and buffering upon vPFS to further
improve parallel I/O performance. We also plan to extend
the techniques developed in vPFS to the performance
virtualization of big data systems such as Hadoop/HDFS.

ACKNOWLEDGMENT

The authors would like to thank the anonymous
reviewers for their helpful comments. This research is
sponsored by the National Science Foundation under grants
CCF-0938045 and CCF-0937973 and the Department of
Homeland Security under grant 2010-ST-062-000039. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

REFERENCES

[1] Sun Microsystems, “Lustre File System: High-Performance Storage
Architecture and Scalable Cluster File System”, White Paper, 2008.

[2] Frank Schmuck and Roger Haskin, “GPFS: A Shared-Disk File
System for Large Computing Clusters”, In Proceedings of the 1st
USENIX Conference on File and Storage Technologies (FAST ’02),
Berkeley, CA, USA, Article 19.

[3] PVFS2, Parallel Virtualized File System, URL:
http://www.pvfs.org/pvfs2/.

[4] Brent Welch, et al., “Scalable Performance of the Panasas Parallel
File System”, In Proceddings of the 6th Usenix Conference on File
and Storage Technologies (FAST ’08).

[5] Pawan Goyal, Harick M. Vin, and Haichen Cheng, “Start Time Fair
Queueing: A Scheduling Algorithm for Integrated Services Packet
Switching Networks”, IEEE/ACM Trans. Networking, Netw. 5, 5,
October 1997, 690-704.

[6] Wei Jin, Jefferey S. Chase, and Jasleen Kaur, “Interposed
Proportional Sharing For A Storage Service Utility”, In Proceedings
of the Joint International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’04/Performance ’04). ACM,
New York, NY, USA, 37-48.

[7] Yin Wang and Arif Merchant, “Proportional Share Scheduling for
Distributed Storage Systems”, In Proceedings of the 5th USENIX
conference on File and Storage Technologies (FAST ’07), Berkeley,
CA, USA, 4-4.

[8] IOR HPC Benchmark, URL: http://sourceforge.net/projects/ior-sio/.

[9] NAS Parallel Benchmarks, URL:
http://www.nas.nasa.gov/publications/npb.html.

[10] Rob Ross, et al., “HPCIWG HPC File Systems and I/O Roadmaps”,
High End Computing and File System I/O Workshop, 2007.

[11] Patrick T. Welsh and Peter Bogenschutz, “Weather Research and
Forecast Model: Precipitation Prognostics from the WRF Model
during Recent Tropical Cyclones”, Interdepartmental Hurricane
Conference, 2005, Jacksonville, FL.

[12] Aaron E. Darling, Lucas Carey, and Wu-chun Feng, “The Design,
Implementation, and Evaluation of mpiBLAST”, ClusterWorld
Conference and Expo, 2003.

[13] Ramanan Sankaran, Evatt R Hawkes, Jacqueline H Chen, Tianfeng
Lu and Chung K Law, “Direct Numerical Simulations of Turbulent
Lean Premixed Combustion”, Journal of Physics Conference Series,
2006.

[14] Arifa Nisar, Wei-keng Liao, and Alok Choudhary, “Scaling Parallel
I/O Performance through I/O Delegate and Caching System”, In
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing
(SC ’08). IEEE Press, Piscataway, NJ, USA, Article 9, 12 pages.

[15] H. Yu, et al., “High performance file I/O for the Blue Gene/L
Supercomputer”, The Twelfth International Symposium on High-
Performance Computer Architecture, 2006, pp. 187- 196, 11-15 Feb.
2006.

[16] MPI-IO Library. URL:
http://www.mcs.anl.gov/research/projects/mpich2/.

[17] Christopher R. Lumb, Arif Merchant, and Guillermo A. Alvarez,
“Façade: Virtual Storage Devices with Performance Guarantees”, In
Proceedings of the 2nd USENIX Conference on File and Storage
Technologies (FAST ’03), Berkeley, CA, USA, 131-144.

[18] D.D. Chambliss, et al., “Performance Virtualization for Large-scale
Storage Systems”, In Proceedings of the 22nd International
Symposium on Reliable Distributed Systems, 2003, pp. 109- 118, 6-
18 Oct. 2003.

[19] Ming Zhao, Jian Zhang, and Renato J. Figueiredo, “Distributed File
System Virtualization Techniques Supporting On-Demand Virtual
Machine Environments for Grid Computing”, Cluster Computing 9, 1
(January 2006), 45-56.

[20] TORQUE Resource Manager, URL:
http://www.clusterresources.com/.

[21] IBM LoadLeveler, URL: http://www-
03.ibm.com/systems/software/loadleveler/

[22] Fabrizio Petrini and Kei Davis, “Tutorial: Achieving Usability and
Efficiency in Large-Scale Parallel Computing Systems”, Euro-Par
2004, Pisa, Italy.

[23] NULL-AIO, URL: http://www.pvfs.org/cvs/pvfs-2-8-branch-
docs/doc//pvfs-config-options.php#TroveMethod

[24] Prashant J. Shenoy and Harrick M. Vin, “Cello: a Disk Scheduling
Framework for Next Generation Operating Systems”, In Proceedings
of the 1998 ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS
’98/PERFORMANCE ’98), Scott Leutenegger (Ed.), New York, NY,
USA, 44-55.

[25] Lan Huang, Gang Peng, and Tzi-cker Chiueh, “Multi-dimensional
Storage Virtualization”, In Proceedings of the Joint International

Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’04/Performance ’04), New York, NY, USA, 14-24.

[26] John Bruno, et al., “Disk Scheduling with Quality of Service
Guarantees”, In Proceedings of the IEEE International Conference on
Multimedia Computing and Systems - Volume 2 (ICMCS ’99), Vol.
2, Washington, DC, USA, 400-.

[27] Robert B. Ross and Walter B. Ligon III, “Server-Side Scheduling in
Cluster Parallel I/O Systems”, Calculateurs Parallèles Journal,
November, 2001.

[28] Jianyong Zhang, et al., “An Interposed 2-Level I/O Scheduling
Framework for Performance Virtualization”, SIGMETRICS Perform.
Eval. Rev. 33, 1 (June 2005), 406-407.

[29] Magnus Karlsson, Christos Karamanolis, and Xiaoyun Zhu, “Triage:
Performance Differentiation for Storage Systems Using Adaptive
Control”, Trans. Storage 1, 4 (November 2005), 457-480.

[30] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger, “PARDA:
Proportional Allocation of Resources for Distributed Storage
Access”, In Proccedings of the 7th Conference on File and Storage
Technologies (FAST ’09), Margo Seltzer and Ric Wheeler (Eds.),
Berkeley, CA, USA, 85-98.

[31] Gokul Soundararajan, et al., “Dynamic Resource Allocation for
Database Servers Running on Virtual Storage”, In Proccedings of the
7th Conference on File and Storage Technologies (FAST ’09), Margo
Seltzer and Ric Wheeler (Eds.), Berkeley, CA, USA, 71-84.

[32] Ajay Gulati and Peter Varman, “Lexicographic QoS Scheduling for
Parallel I/O”, In Proceedings of the seventeenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA
’05), New York, NY, USA, 29-38.

[33] Dean Hildebrand and Peter Honeyman, “Exporting Storage Systems
in a Scalable Manner with pNFS”, In Proceedings of the 22nd IEEE /
13th NASA Goddard Conference on Mass Storage Systems and
Technologies (MSST ’05), Washington, DC, USA, 18-27.

[34] John Bent, et al., “PLFS Update”, High End Computing and File
System I/O Workshop, 2010.

[35] Kamil Iskra, John W. Romein, Kazutomo Yoshii, and Pete Beckman,
“ZOID: I/O-forwarding Infrastructure for Petascale Architectures”, In
Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP ’08), New York, NY,
USA, 153-162.

[36] Rajeev Thakur, William Gropp, and Ewing Lusk, “Data Sieving and
Collective I/O in ROMIO”, In Proceedings of the The 7th
Symposium on the Frontiers of Massively Parallel Computation
(FRONTIERS ’99), Washington, DC, USA, 182-.

[37] Yiqi Xu, et al., “vPFS: Bandwidth Virtualization of Parallel Storage
Systems”, Technical Report, SCIS, FIU, 2011. URL:
http://visa.cis.fiu.edu/tiki/tiki-download_file.php?fileId=5.

[38] Huaiming Song, et al., “Server-side I/O Coordination for Parallel File
Systems”, In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’11),
New York, NY, USA, Article 17, 11 pages.

[39] Xuechen Zhang, Kei Davis, and Song Jiang, “IOrchestrator:
Improving the Performance of Multi-node I/O Systems via Inter-
Server Coordination”, In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC ’10), Washington, DC, USA,
1-11.

[40] Xuechen Zhang, Kei Davis, and Song Jiang, “QoS Support for End
Users of I/O-intensive Applications Using Shared Storage Systems”,
In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’11),
New York, NY, USA, Article 18, 12 pages.

[41] Yong Chen, et al., “LACIO: A New Collective I/O Strategy for
Parallel I/O Systems”, In Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium (IPDPS ’11),
Washington, DC, USA, 794-804.

