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Abstract—Existing parallel file systems are unable to 

differentiate I/Os requests from concurrent applications and 

meet per-application bandwidth requirements. This limitation 

prevents applications from meeting their desired Quality of 

Service (QoS) as high-performance computing (HPC) systems 

continue to scale up. This paper presents vPFS, a new solution 

to address this challenge through a bandwidth virtualization 

layer for parallel file systems. vPFS employs user-level parallel 

file system proxies to interpose requests between native clients 

and servers and to schedule parallel I/Os from different 

applications based on configurable bandwidth management 

policies. vPFS is designed to be generic enough to support 

various scheduling algorithms and parallel file systems. Its 

utility and performance are studied with a prototype which 

virtualizes PVFS2, a widely used parallel file system. Enhanced 

proportional sharing schedulers are enabled based on the 

unique characteristics (parallel striped I/Os) and requirement 

(high throughput) of parallel storage systems. The 

enhancements include new threshold- and layout-driven 

scheduling synchronization schemes which reduce global 

communication overhead while delivering total-service 

fairness. An experimental evaluation using typical HPC 

benchmarks (IOR, NPB BTIO) shows that the throughput 

overhead of vPFS is small (< 3% for write, < 1% for read). It 

also shows that vPFS can achieve good proportional 

bandwidth sharing (> 96% of target sharing ratio) for 

competing applications with diverse I/O patterns. 
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I.  INTRODUCTION 

High-performance computing (HPC) systems are key to 
solving challenging problems in many science and 
engineering domains. In these systems, high-performance 
I/O is achieved through the use of parallel storage systems. 
Applications in an HPC system share access to the storage 
infrastructure through a parallel file system based software 
layer [1][2][3][4]. The I/O bandwidth that an application gets 
from the storage system determines how fast it can access its 
data and is critical to its Quality of Service (QoS). In a large 
HPC system, it is common to have multiple applications 
running at the same time while sharing and competing for 
the shared storage. The sharing applications may have 
distinct I/O characteristics and demands that can result in 
significant negative impact on their performance.  

A limitation of existing parallel storage systems is their 
inability to recognize the different application I/O workloads 

— it sees only generic I/O requests arriving from the 
compute nodes. The storage system is also incapable of 
satisfying the applications’ different I/O bandwidth needs — 
it is often architected to meet the throughput requirement for 
the entire system. These limitations prevent applications 
from efficiently utilizing the HPC resources while achieving 
their desired QoS. This problem keeps growing with the 
ever-increasing scale of HPC systems and with the 
increasing complexity and number of applications running 
concurrently on these systems. This presents a hurdle for the 
further scale-up of HPC systems to support many large, data-
intensive applications. 

This paper presents a new approach, vPFS, to address 
these challenges through the virtualization of existing 
parallel file systems, achieving application-QoS-driven 
storage resource management. It is based on 1) the capture of 
parallel file system I/O requests prior to their dispatch to the 
storage system, 2) distinguishing and queuing of per-
application I/O flows, 3) scheduling of queued I/Os based on 
application-specific bandwidth allocations, and 4) a proxy-
based virtualization design which enables the above parallel 
I/O interposition and scheduling transparently to existing 
storage systems and applications. In this way, virtual parallel 
file systems can be dynamically created upon shared parallel 
storage resources on a per-application basis, each with a 
specific allocation of the total available bandwidth.  

With vPFS, various I/O scheduling algorithms can be 
realized at the proxy-based virtualization layer for different 
storage management objectives. Specifically, this paper 
considers Start-Time Fair Queueing (SFQ) [5] based 
algorithms for proportional sharing of storage bandwidth. 
These algorithms have been applied to different storage 
systems [6][7], but, to the best of our knowledge, this paper 
is the first to study their effectiveness for typical HPC 
parallel storage systems. More importantly, this paper 
proposes and evaluates improvements to SFQ algorithms 
motivated by the unique characteristics (parallel striped I/Os) 
and requirements (high throughput) of parallel storage 
systems. These enhancements include new threshold-driven 
and layout-driven synchronization schemes which reduce the 
global communication overhead while delivering good total-
service proportional sharing.  

A prototype of vPFS which virtualizes PVFS2 [3], a 
widely used parallel file system implementation, has been 
developed and evaluated with experiments using typical 
parallel computing and I/O benchmarks (IOR [8], NPB 
BTIO [9]). The results demonstrate that the throughput 978-1-4673-1747-4/12/$31.00 ©2013 IEEE 



overhead from proxy-based virtualization is less than 1% for 
READ and less than 3% for WRITE (compared to native 
PVFS2). The results also show that the enhanced SFQ-based 
schedulers enabled by vPFS achieve good proportional 
bandwidth sharing (at least 96% of any given target sharing 
ratio) for competing applications with diverse I/O patterns.  

In summary, the contributions of this paper are as 
follows: 

1. A new virtualization-based parallel storage 
management approach which is, to the best of our 
knowledge, the first to allow per-application 
bandwidth allocation in such an environment without 
modifying existing HPC systems; 

2. The design, implementation, and evaluation of vPFS 
which is demonstrated experimentally to support low-
overhead bandwidth management of parallel I/Os; 

3. Novel distributed SFQ-based scheduling techniques 
that fit the architecture of HPC parallel storage and 
support efficient total-service proportional sharing; 

4. The first experimental evaluation of SFQ-based 
proportional sharing algorithms in parallel file system 
environments. 

The rest of this paper is organized as follows. Section II 
introduces background and motivation. Section III describes 
proxy-based virtualization and proportional bandwidth 
sharing on parallel storage. Section IV presents the 
evaluation. Section V examines the related work and Section 
VI concludes this paper. 

II. BACKGROUND AND MOTIVATION 

A. Limitations of Parallel Storage Management 

HPC systems commonly use parallel file systems 
[1][2][3][4] to manage storage and provide high performance 
I/O. However, they cannot recognize the diverse demands 
from different HPC applications which may differ by up to 
seven orders of magnitude in their I/O performance 
requirements [10]. For example, WRF [11] requires 
hundreds of Megabytes of inputs and outputs at the 
beginning and end of its execution; mpiBLAST [12] needs to 
load Gigabytes of database only before starting its execution; 

S3D [13] writes out Gigabytes of restart files periodically in 
order to tolerate failures during its execution. Moreover, 
applications running on an HPC system can have different 
priorities, e.g., due to different levels of urgency or business 
value, requiring different levels of performance for their 
I/Os. Because the bandwidth available on a parallel storage 
system is limited, applications with such distinct I/O needs 
have to compete for the shared storage bandwidth without 
any isolation. Hence, per-application allocation of shared 
parallel storage bandwidth is key to delivering application 
desired QoS, which is generally lacking in existing HPC 
systems.  

As a motivating example, Figure 1 shows the impact of 
I/O contention on a typical parallel storage system shared 
between two applications represented by IOR [8], which 
issues check-pointing I/Os continuously and NPB BTIO [9], 
which generates outputs interleaved with computation. Each 
application has a separate set of compute nodes but they 
compete for the same set of parallel file system servers. The 
figure compares the performance of BTIO between when it 
runs alone (Standalone) without any I/O contention, and 
when it runs concurrently with IOR (Shared). The chosen 
experiment workloads are Class C with full subtype (using 
collective I/O [36]) and Class A with simple subtype 
(without collective I/O). 

The expectation from the BTIO user’s perspective when 
under I/O contention is either no impact (no loss in I/O 
throughput and no increase in run time) or at least fair 
sharing (50% loss in I/O throughput and 100% increase in 
I/O time). However, the results in Figure 1 show that BTIO 
suffers much more severe performance drop even though the 
two applications are using separate compute nodes. For Class 
A with smaller I/Os, the run time is increased by 228.8% as 
its throughput is reduced by 92.5%. For Class C with larger 
I/Os, the performance loss is relatively smaller: the total run 
time is increased by 76% but the throughput is still reduced 
by 68.4%. The less than 100% increase in total run time is 
only because of its relatively steady computing time — the 
I/O time is still increased by 216.5%. (More details on this 
experiment are presented in Section IV.) These results 
demonstrate the need for bandwidth management in a 
parallel storage system, a problem that becomes increasingly 
pronounced as HPC systems grow in size. It is desirable to 
provide fair bandwidth sharing so that each application 
achieves predictable performance regardless of the 
contention from other applications in a shared HPC system. 

A possible solution to this problem is to statically 
allocate parallel file system servers to each application, but 
this solution requires significant resources and is not feasible 
in HPC systems with a large number and dynamic sets of 
applications. Some systems limit the number of parallel file 
system clients that an application can access [14][15]. This 
approach allows an application to always get some 
bandwidth through its allocated clients. But as shown in the 
above experiment, it cannot support strong bandwidth 
isolation because the parallel file system servers are still 
shared by all the applications without any isolation. 

 

Figure 1.   The impact on BTIO’s run time and throughput from 
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B. Limitations of Existing Proportional Bandwidth Sharing 

Solutions 

Proportional-share-based resource allocation is widely 

used for performance isolation and fair sharing. We focus 

on approaches based on Start-tag Fair Queueing (SFQ) [5] 

because of their computational efficiency, work conserving 

nature, and ability to handle variations in resource capacity. 

DSFQ [7] is a distributed SFQ algorithm that supports total-

service proportional sharing in a distributed storage system. 

Communication across local schedulers in such a system is 

necessary for exchanging global scheduling information and 

determining the delayed service. 

However, it is still challenging to providing proportional 

bandwidth sharing on HPC parallel storage systems using 

DSFQ. The synchronization required between local 

schedulers can be prohibitively expensive for large HPC 

storage systems. DSFQ tries to avoid global synchronization 

by designing a centralized coordinator to forward (and 

piggyback cost of) requests between clients and servers in 

the system [7]. In this way, each server’s local scheduler can 

be aware of the service provided by the others and enforce 

total-service fairness without explicit synchronization. But 

such a coordinator must be distributed, in order to be 

efficient and scalable, assuming that: 1) each coordinator 

can forward requests destined to any server; 2) each request 

flow uses all coordinators to forward requests [7]. These 

assumptions are to ensure that a coordinator can 

communicate with all local schedulers and always has a 

uniform chance to piggyback the global scheduling 

information for each local scheduler. But these assumptions 

do not hold in typical HPC parallel storage systems. 

For high-throughput, a parallel file system client always 

issues I/O requests directly to the data servers where the 

corresponding data is stored on (after retrieving the data 

layout from the metadata server). Therefore, there is 

nowhere in the parallel storage architecture to place the 

required coordinators which can receive requests from 

arbitrary clients, regardless of the data layouts, and forward 

them to arbitrary data servers. It is possible to modify this 

architecture to make the data layout opaque to the clients, 

place the coordinators between the clients and servers, and 

then force the I/Os to go through the coordinators in a 

random fashion. However, this design would still be 

undesirable because 1) it requires a coordinator to forward 

requests to remote data servers and thus incurs overhead 

from additional network transfer; 2) it takes away an 

application’s flexibility of specifying data layout, e.g., by 

specifying layout hints through the MPI-IO interface [16]. 

These constraints imposed by typical parallel storage 

architecture motivate the need for a new distributed 

scheduling design that supports both efficient data access 

and total-service fairness. 

III. vPFS BANDWIDTH VIRTUALIZATION 

This section presents first the vPFS virtualization which 
enables per-application bandwidth management on parallel 
storage, and then the enhanced DSFQ-based schedulers 
which support efficient total-service proportional sharing 
upon the virtualization layer. 

A. vPFS Virtualization Layer 

The virtualization layer in vPFS framework addresses the 
limitations of existing parallel file systems discussed in 
Section II.A without changing the interface exposed to 
applications. It can be integrated with existing deployments 
transparently, where virtual parallel file systems can be 
dynamically created on a per-application basis to provide 
fine-grained bandwidth allocation. The key to such 
virtualization is to insert a layer of proxy-based parallel I/O 
indirection between the shared native parallel storage clients 
and servers, which differentiates per-application I/O flows 
and enforces their resource allocation. Although this paper 
focuses only on virtualization-based bandwidth management, 
such a layer can also enable other new functionalities and 
behaviors (e.g., I/O remapping for performance and 
reliability enhancements) — experimental results show that 
the overhead introduced by a user-level implementation of 
this layer is small. 

In vPFS, a virtual parallel file system is created by 
spawning a proxy on every parallel file system server that the 
application needs to access its data (Figure 2). These proxies 
broker the application’s I/Os across the parallel storage, 

 
Figure 2.   The architecture of vPFS parallel file system virtualization 
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where the requests issued to a data server are first processed 
and queued by its local proxy and then forwarded to the 
native parallel file system server for the actual data access. A 
proxy can be shared by multiple virtual parallel file systems 
as the proxy instantiates multiple I/O queues to handle the 
different I/O streams separately. Note that these per-
application queues are only conceptual and they can be 
implemented using a single queue with I/Os tagged using 
application IDs. Typically HPC systems partition compute 
nodes across applications so each node, which owns of a 
unique IP address, executes a single application. Therefore, 
the proxy can use the compute node’s IP to identify I/Os 
from different applications. However, it might be necessary 
to further differentiate applications when more than one 
application runs on a single node in a time-shared or space 
shared fashion (due to the growing number of cores per 
node). In such a scenario, each application’s I/O can be 
directed to a specific port of the proxy so that its I/O can be 
uniquely identified using the port and IP combination. 

For high-throughput, vPFS is designed with decentralized 
proxies which collectively deliver bandwidth virtualization. 
For total-service fairness of striped I/Os, the virtualization 
layer recognizes the striping distribution and coordinates the 
bandwidth allocations across the involved data servers. 
Therefore, vPFS enables communication and cooperation 
among distributed proxies to enforce global bandwidth 
allocation collaboratively. 

The placement of vPFS proxies does not have to be 
restricted to the native parallel file system servers in order to 
create virtual parallel file systems. They can in fact be placed 
anywhere along the data path between the clients and 
servers. For example, the proxies can run on a subset of the 
compute nodes, which are dedicated to provide I/O services 
for the rest of the compute nodes. Such proxy placement can 
be leveraged to deploy vPFS in HPC systems that do not 
allow any third-party program on the data servers. This 
placement is also useful when the network bandwidth 
between the computer and I/O nodes is a bottleneck and 
needs to be allocated on a per-application basis as well.  

The vPFS approach can be applied to support different 
parallel file system protocols as long as the proxy can 
understand the protocols and handle I/Os accordingly. Our 
prototype implementation virtualizes a specific parallel file 
system, PVFS2; however, we believe that the general vPFS 
approach is generic enough to support others as well. The 
user-level virtualization design of vPFS does not require any 
changes to the existing software and hardware stack. 
Although the use of proxy for I/O forwarding involves extra 
I/O processing at the proxy and extra communication with 
the native data server, our experimental evaluation in Section 
IV shows that this overhead is small. Alternatively, the 
performance virtualization can be also implemented directly 
in the internal scheduler of a parallel file system, but that 
would require changes to the parallel file system and would 
be tied to its specific implementation as well.  

A variety of parallel I/O scheduling algorithms with 
different objectives can be deployed at the vPFS 
virtualization layer by using the proxies to monitor and 
control I/O executions. In this paper, we focus on 

proportional sharing and address the challenges of realizing 
such scheduling efficiently in large-scale parallel storage 
systems. 

The current implementation of vPFS only schedules data 
requests on a parallel file system and forwards the other 
meta-data and control requests simply in a FIFO order. 
However, although not the focus of this paper, vPFS can also 
achieve performance isolation of meta-data operations, such 
as the creation of files by proxying and scheduling the 
relevant meta-data requests. 

B. vPFS Distributed Scheduling 

In general, to achieve total-service proportional sharing 
of a parallel file system, a distributed algorithm like DSFQ 
[7] needs to be enabled upon vPFS. As discussed in Section 
II.B, the key challenge to implementing such an algorithm is 
the need of global synchronization across the distributed 
schedulers. Because each local scheduler sees only the I/Os 
that it services, it needs to be aware of the service that each 
competing flow is getting from the other schedulers. In order 
to efficiently enable total-service proportional sharing, vPFS 
proposes the following two enhanced DSFQ-based 
schedulers, which are suited for HPC parallel storage 
architecture and address the challenge of global 
synchronization. 

1) Threshold-driven Total-Service Proportional 

Sharing 

To enable distributed scheduling, vPFS is enhanced with 
cooperating proxies. These proxies are responsible of not 
only scheduling the requests serviced by its local data server 
but also exchanging the local service information among one 
another in order to achieve total-service proportional sharing. 
This distributed scheduling design is suited for typical 
parallel storage architecture, because, first, it still allows data 
to directly flow from clients to servers, and second, it does 
not require a proxy to forward requests to any other remote 
servers than its local one. However, the need of efficient 
global scheduling synchronization across the distributed 
proxies remains to be a challenge.  

Global synchronization based on broadcast upon every 
request is not acceptable in a large system. Instead, the 
proxies can reduce the frequency of broadcast by batching 
the costs of a number of locally serviced requests in a single 
broadcast message. Nonetheless, as a tradeoff, the fairness 
guarantee offered by the original DSFQ algorithm [7] may 
be weakened. The overhead of broadcast can be effectively 
controlled if the proxies synchronize with each other 
periodically. However, this scheme does not provide a bound 
on the amount of unsynchronized I/O cost across proxies. As 
a result, if a server services a large number of requests during 
a synchronization period, it would cause high fluctuations on 
the other servers as they try to catch up with the total-service 
fairness after the synchronization. 

In order to achieve efficient total-service proportional 
sharing with a good unfairness bound, vPFS adopts a 
threshold-driven global synchronization scheme. In this 
new scheme, a broadcast message is triggered whenever the 
accumulated cost of arrived requests from a flow f on the 
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no flow would get unfair extra service more than this bound. 
This scheme can also limit the fluctuation after each 
synchronization to the extent of the threshold. Formally, the 
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In the formula,   (     )  and   (     )  are the 

aggregate costs of requests completed in the entire system 
for flow f and g.    and    are the weights of flow f and g. 

   and    are the depths of the scheduler and disks on data 
server A. For any flow h,    is the number of servers 

providing service to flow h.     
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The unfairness bound in Theorem 1 is similar to that in 

DSFQ [7], but it has one more component  (    )
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synchronization mechanism. Larger   
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overhead from synchronization, but it also leads to a looser 

bound of unfairness. By setting   
    

= 0 and   
    

= 0, 

this extra component disappears, in which case the 
scheduler synchronizes every time it receives a new request 
and the algorithm reduces to the original DSFQ algorithm. 
The proof of this theorem is similar to that in DSFQ [7] so it 
is omitted for the sake of space. The full proof can be found 
in our technical report [37]. 

When implementing this threshold-driven scheme, it can 
be simplified to use a single threshold, instead of one 
threshold per flow, on all distributed schedulers. A scheduler 
issues synchronization when the total cost of requests from 
all of its serviced flows exceeds this threshold, where the 
broadcast contains the costs of all of these flows. This 
simplification will in fact tighten the unfairness bound. 
Moreover, this single threshold can be conveniently and 
flexibly adjusted to balance the tradeoff between efficiency 
and fairness of the total-service proportional sharing. 

The synchronization frequency is determined by the 
threshold and it is a major overhead factor in the broadcast 
scheme. Therefore a dynamic threshold scheme, which 
adjusts the threshold value in a continuous manner, is also 
possible. Because the speed at which the threshold is filled 
up is a function of I/O size, location and sequentiality, the 
threshold should be set according to the predicted future 
access pattern of the flows. This will be part of our future 
work. 

2) Layout-driven Total-Service Proportional Sharing 

Although the above proposed threshold-driven total-
service proportional sharing can substantially reduce the 
overhead from global scheduling synchronization, the cost 
will still grow as the number of servers increases in the 
system. To further reduce the synchronization cost, vPFS 
also supports a layout-driven scheme in which each 
distributed local scheduler leverages a flow’s file layout 
information to approximate its global I/O cost from its 
locally received I/Os. Therefore, frequent global 
synchronization can be greatly reduced whereas broadcast is 
required only upon the arrival and departure of flows in the 
storage system. 

A file’s layout information, which includes stripe method 
and parameters, can be either discovered in an I/O request or 
retrieved from a metadata server. For example, PVFS2 
embeds the stripe method name and the specific parameters 
for this method in every I/O request; if a parallel file system 
does not do that, such information can still be obtained from 
the metadata servers. Based on the stripe method used by a 
flow, a local scheduler can estimate the flow’s total service 
from the striped I/O that it receives locally. For example, in 
PVFS2, three native stripe methods are implemented: simple 
stripe, two-dimensional stripe, and variable stripe. When 
using simple stripe, the total service amount can be 
approximated by multiplying the request size seen by the 
local server and the number of servers involved in this flow. 
When using two-dimensional stripe, each group’s I/O size 
can be constructed by using the factor number (a number 
indicating how many times to stripe within each group of 
servers before switching to another group) within each group 
to approximate the total I/O service. When approximating 
the total service in variable stripe, different servers’ stripe 
sizes will be used to reconstruct the original I/O request size. 

Another necessary parameter for estimating total service 
is the number of servers involved in each I/O request. The 
num_servers field is embedded together with the stripe 
information in the PVFS2 I/O requests. In case it is not 
available in other parallel file system protocols, only one 
synchronization is required to obtain this information when a 
new application enters the system. Although it is possible for 
an application to use different layouts for its files, it is rarely 
used in practice. For manageability, the application usually 
prefers using a uniform layout on its entire data set. 
Therefore, the layout information needs to be retrieved on a 
per-application basis rather than per-file basis. 

By locally calculating total I/O service using the stripe 
method and parameters as well as the number of involved 
servers, the global scheduling synchronization can be 



TABLE 1.   THE OVERHEAD INVOLVED IN THE DEVELOPMENT OF 

VIRTUALIZATION AND SCHEDULER LAYERS. THE LINES OF CODE ARE 

COUNTED FOR DIFFERENT PARTS OF VPFS. 

Framework LOC Component LOC 

Virtualization 1,692 

Interface 694 

TCP 397 

PVFS2 601 

Scheduler 3,502 

Interface 735 

SFQ(D) 552 

DSFQ 987 

Two-Level 1,228 

Total 5,194 

 virtually eliminated. The reduction in broadcast frequency 
and message size can lead to substantial saving in processing 
time and network traffic. Because the synchronization is 
needed only when an application starts in the HPC system, 
this cost will be negligible compared with the typical time 
during which the application stays in the system. Note that 
the arrival and departure of applications can be estimated by 
tracking I/O requests or informed by a typical job scheduler 
(e.g., TORQUE [20], LoadLeveler [21]) commonly used for 
HPC job management. 

Even for applications using mostly small, non-striped 
I/Os, it is common for the parallel file system to evenly 
distribute small I/Os on all the involved servers for the sake 
of performance. Hence, it is still feasible to use the layout 
information to estimate the total service. In scenarios where 
this assumption does not hold, vPFS can switch to use the 
threshold-driven synchronization scheme for more accurate 
scheduling of such I/Os. In fact, vPFS can make this 
transition dynamically based on its observation of the I/O 
patterns. 

C. Cost of Implementation 

TABLE 1 summarizes the development cost of vPFS. The 
total lines of code currently in the prototype sums up to 
5,194, including the support for TCP interconnect, PVFS2 
parallel file system, and three types of schedulers. To break it 
down, the virtualization framework costs 1,692 lines of code 
and the scheduling framework costs 3,502 lines of code. The 
generic interfaces exposed by these frameworks allow 
different network transports, parallel file systems, and 
scheduling algorithms to be flexibly incorporated into vPFS. 
Specifically, the TCP support and PVFS2 interpretation each 
costs less than 1000 lines of code. Different schedulers cost 
from 500 to 1,300 lines of code depending on their 
complexity. A two-level scheduler implementing both 
bandwidth and latency management [28] is still under 
development and is estimated to cost more than 1,200 lines 
of code. The performance overhead of this vPFS prototype is 
discussed in the next section. 

IV. EVALUATION 

A. Setup 

The PVFS2-based vPFS prototype was implemented on 
TCP and was evaluated on a test-bed consisting of two 
clusters, one as compute nodes and the other as I/O nodes 

running PVFS2 (version 2.8.2) servers. The compute cluster 
has eight nodes each with two six-core 2.4GHz AMD 
Opteron CPUs, 32GB of RAM, and one 500GB 7.2K RPM 
SAS disk, interconnected by a Gigabit Ethernet switch. The 
server cluster has eight nodes each with two six-core 2.4GHz 
Intel Xeon CPUs, 24GB of RAM, and one 500GB 7.2K 
RPM SAS disk. Both clusters are connected to the same 
Gigabit Ethernet switch. All the nodes run the Debian 4.3.5-
4 Linux with the 2.6.32-5-amd64 kernel and use EXT3 (in 
the journaling-data mode, unless otherwise noted) as the 
local file system.  

This evaluation uses IOR (2.10.3) [8], a typical HPC I/O 
benchmark, to generate parallel I/Os through MPI-IO. IOR 
can issue large sequential reads or writes to represent the 
I/Os from accessing check-pointing files, which is a major 
source of I/O traffic in HPC systems [22]. IOR is also 
modified to issue random reads and writes and represent 
other HPC I/O patterns. 

The evaluation also uses the BTIO benchmark from the 
NAS Parallel Benchmark (NPB) suite (MPI version 3.3.1) 
[9] to represent a typical scientific application with 
interleaved intensive computation and I/O phases. We 
consider the Class A and Class C of BTIO (Class A 
generates 400MB and Class C generates 6817MB). We also 
consider both the full and simple subtypes of BTIO. The 
former uses MPI I/O with collective buffering which 
aggregates and rearranges data on a subset of the 
participating processes before writing it out. The latter does 
not use collective buffering and as a result involves a large 
number of small I/Os. All setups are configured to overload 
the underlying storage system in order to evaluate the 
effectiveness of performance virtualization under contention. 

The different SFQ-based schedulers proposed in Section 
III.B are evaluated in the experiments. The value of the depth 
parameter of D used in the algorithms is set to 8, unless 
otherwise noted. The memory caches on both the clients and 
servers are cleared before each run. Each experiment is 
repeated for multiple runs, and both the average and standard 
deviation values are reported in the following results. 

B. Overhead of Proxy-based Virtualization 

The first group of experiments studies the performance 
overhead of vPFS’ virtualization and I/O scheduling in 
terms of throughput, because throughput is the main concern 
for most HPC applications with large I/O demands. It 
compares the throughputs between Native (native PVFS2 
without using proxy), Virtual (PVFS2 virtualized with 
proxy but without any scheduler), and Virtual-DSFQ 
(virtualized PVFS2 with DSFQ-based I/O scheduling). IOR 
is used in this experiment because it can simulate much 
more intensive I/O patterns than BTIO. The number of 
processes used by IOR is 256, evenly distributed on eight 
physical nodes. To increase the intensity of the request rates 
and demonstrate the overhead of vPFS under worst-case 
scenario, in this experiment only, we read the file from a 
warm cache and use EXT3 in the ordered-data mode. The 
results in Figure 3 show that the throughput overhead 
caused by the proxy and its scheduler are small, and when 



they are combined the total is still less than 1% for READ 
and 3% for WRITE of the native PVFS2 throughput. 

To study the resource overhead of a vPFS proxy, we also 
observe its CPU and memory usages in an experiment with 
eight competing applications managed by the threshold-
driven enhanced DSFQ scheduler.  

Figure 4 shows that the proxy’s CPU and memory 
consumption are low even when it has to handle 256 
concurrent I/O flows. 

C. Effectiveness of Proportional Sharing 

The above study confirms that the overhead from proxy-
based virtualization and bandwidth management is small and 
our proposed vPFS approach is feasible. In this subsection, 
we evaluate the effectiveness of proportional sharing using 
the enhanced DSFQ-based algorithms on vPFS. Section 
IV.C.1) uses two IOR instances to model two highly I/O 
intensive applications. Section IV.C.2) uses eight IOR 
instances contending for I/O at different times. Section 
IV.C.3) models a typical scientific application (BTIO) under 
the impact of other I/O-intensive workload (IOR). 

1) IOR with Various Access Patterns 

This experiment enables threshold-driven DSFQ and 
shows the ability of vPFS to enforce bandwidth sharing 
fairness between two applications represented by IOR. The 
two IOR instances, each forking 128 processes on a separate 
set of compute nodes, share the data servers in an 
asymmetric way: App1 uses only four of the eight data 
servers whereas App2 uses all of them. Without any 
bandwidth management in such an asymmetric setup, the 
total bandwidth that each application get is proportional to 
the number of servers it has (1:2). Therefore, this 
experiment can evaluate whether our proposed distributed 
schedulers can realize total-service fairness based on any 

given ratio set between asymmetric App1 and App2. In this 
experiment, we also consider the proportional sharing 
between applications with different I/O patterns. 
Specifically, App1 always issues sequential writes, whereas 
App2’s I/O pattern changes from sequential writes, 
sequential reads, to random reads and writes (both the 
offsets and use of read versus write are randomly decided 
following a uniform distribution). Both applications 
continuously issue I/O requests so that each flow has a 
backlog at the server. 

Figure 5 shows the proportional sharing achieved 
between App1 and App2 for different read/write 
combinations and with different total fairness ratios. The 
achieved ratios are within 1% of the target ratio when it is 
set to 2:1 and 8:1, and within 3% when it is 32:1. The figure 
shows that the broadcast scheme can work effectively by 
synchronizing the total service information and isolating the 
I/O bandwidth consumed by the different applications. The 
results shown are obtained using a broadcast threshold of 
10MB. It achieves almost the same level of fairness as a 
much smaller threshold (512KB) which triggers 
synchronization upon every request. (The details of the  
512KB-threshold experiment are omitted here due to the 
limited space.) Nonetheless, the synchronization overhead 
from using the 10MB threshold can be reduced by 95% as 
compared to using the 512KB threshold. These results 
demonstrate that the distributed scheduler implemented 
upon vPFS handles the two application’s distinct needs with 
nearly perfect fairness according to any given sharing ratio. 
Moreover, it does so in an asymmetric setup using efficient 
global synchronization technique. 

2) IOR with Dynamic Arrivals 

In this experiment, we evaluate vPFS’ ability of 
handling the dynamic arrivals of more applications. A total 
of eight applications contend for shared I/O resources. Each 
application is represented by IOR with 32 processes in 
sequential writing mode. The odd-numbered applications 
use four data servers and the even-numbered ones use all of 
the eight servers. These applications are started one after 
another and the average arrival interval is 60 seconds. After 
420 seconds, all eight applications (256 processes) are 
present in the system until the end (960th second). 

The share of each application is assigned the same value 
as its ID, i.e., App1 has a weight of 1 and App2 has a weight 
of 2, and so on. Different from last experiment, this 
experiment employs the layout-driven DSFQ. Figure 6 
shows the average and real time unfairness between all the 
applications every 60 seconds and every 5 seconds 
throughout this experiment. 

We define the unfairness between n applications as 
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Figure 3.   Throughput overhead of vPFS 
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Figure 4.   CPU and memory overhead of vPFS 
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In this formula,             and         are the 
normalized throughput and normalized weight among the 
existing applications during each time window. Note that 
this definition is an extension of that used in Theorem 1 in 
order to capture unfairness between more than two 
applications. The value of this formula indicates the sum of 
each application’s fairness deviation (percentage of current 
available bandwidth unfairly shifted from/to other 
applications w.r.t. the fair share it should receive). The value 
ranges from 0% to 200%, the smaller the better, because: 
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The results in Figure 6 demonstrate that as the number 
of applications and the number of participating servers 
change dynamically in the system, the vPFS scheduler is 
always able to apply layout-driven DSFQ to correctly 
allocate the total I/O bandwidth to each application 
according to the specified sharing ratio. 

The solid black line in Figure 6, which indicates the 
average unfairness over every 60 seconds, is always under 
9% throughout the experiment. Before the 420th second, the 
fluctuations of unfairness is relatively larger. This is caused 
by the arrival of new applications. When a new application 
enters the system, its requests are not backlogged 
immediately, so the transient unfairness may increase a lot 
temporarily. For example, when App2 enters, it does not 
have enough number of I/O requests to keep a 2:1 ratio 

versus App1 in the scheduler’s queue. After the 420th 
second, the average time unfairness stays well below 4%. 

The real time fairness deviation measured every 5 
seconds is more interesting to read because it shows the 
finer grained unfairness. When App2 enters the system 
before the 80th second, the spike rising to almost 90% 
deviation can be explained by the same reason discussed 
above. This phenomenon recurs when App3 and App4 enter, 
but the impact becomes smaller because the existing 
applications’ established sharing ratio smooth out the 
impact of new application arrivals. 

The pattern of fluctuations of fairness deviations 
changes after the 420th second for both the 5-second and 
60-second measurements. These fluctuations exist because 
with the eight concurrent applications, the storage system 
gets overloaded where each parallel file system data servers 
starts to flush buffered writes in foreground. This 
explanation is confirmed by observing the CPU’s IO wait 
time using mpstat on the data servers, which can be as high 
as 90% during the flushing. When foreground flushing 
happens, the I/O processing is temporarily blocked on the 
servers, which leads to high I/O response times. As such, 
when we measure the fairness deviation using a 5-second 
window, we see large spikes when I/Os cannot finish within 
such a time window. But with a 60-second time window, 
such spikes are smoothed out in our measurements and it is 
evident that the fairness deviation is still small overall. 
Nonetheless, such fluctuations are only an artifact of our 
intensive experiment which severely overloads the system. 
They will not show up under the typical HPC storage use. 

3) BTIO vs. IOR 

In this experiment, we apply vPFS-based storage 
management to solve the problem discussed in Section II, 
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(a) Write versus write                                 (b) Write versus read                               (c) Write versus random 

Figure 5.   Proportional sharing in an asymmetric setup using threshold-driven DSFQ. X-axis is the target share ratio. 

 

Figure 6.   Real time fairness deviation during a 960-second run with 8 dynamically arriving applications 
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i.e., guarantee BTIO’s bandwidth allocation and performance 
under the intensive interference from IOR I/Os. We use the 
same setup as the one in Section II.A, Figure 1, where BTIO 
is used to model typical HPC application with interleaved 
computation and I/O and IOR is used to create intensive, 
continuous contention on the parallel storage. BTIO and IOR 
each has 64 MPI processes running on a separate set of 
compute nodes while sharing the 8 I/O nodes. There are two 
types of workloads in this experiment: Class C (writing and 
reading 6817MB) of data with full subtype (using collective 
buffering) and Class A (writing and reading 400MB of data) 
with simple subtype (without collective buffering). A major 
difference between these workloads is that the former issues 
I/O requests of 4 to 16MB in size, whereas the latter issues 
I/Os of 320B in size. Each IOR process is configured to 
continuously issue sequential writes of 32MB. 

In Figure 7, we show the results from using different 
vPFS-enabled layout-driven DSFQ schedulers with 32:1 
target ratio favoring BTIO. The white bars are the original 
performance values for different Class/Subtype 
combinations. The numbers on the other patterned bars 
indicate the increase in run time or decrease in I/O 
throughput relative to the original performance. 

As discussed in Section II, when there is no bandwidth 
management (BTIO+IOR, Shared, Native), BTIO’s run time 
is increased by 228.8% in Class A and 75% in Class C w.r.t. 
its standalone run time (Standalone). The layout-driven 
DSFQ (BTIO+IOR, Shared, Layout-DSFQ) helps improve 
the slowdown to 153.3% for class A and 20.3% for Class C, 

as the BTIO throughput is restored to 16.8%  and 72.1%, 
respectively, of the Standalone case. Notice that Class A’s 
performance is much more challenging to restore than Class 
C. This is because small I/Os are more susceptible to large 
I/O contentions from IOR. The static depth used by the 
DSFQ scheduler, which determines the number of 
outstanding I/Os, can be also unfair for small I/Os. 

However, even for Class C, the work-conserving DSFQ 
scheduler cannot fully restore BTIO’s performance under the 
contention from IOR. This is because of BTIO’s bursty 
access pattern. To better illustrate BTIO’s I/O pattern and its 
impact on bandwidth usage, we plot the request patterns of a 
Class C, full subtype BTIO workload in one of the 64 
processes. Figure 8 is a state diagram of the lifecycle of the 
process. After initial file creation, the process interleaves a 4-
second write I/O and a 6-second computation for 40 times in 
the first output phase. Then the verification phase includes a 
3-second read I/O and 1-second verification for 40 
loopbacks. In addition, each BTIO process issues only one 
outstanding I/O. Therefore, the full subtype BTIO workload 
is quite bursty and has a low issue rate. Since the scheduler 
used here is work-conserving, spare bandwidth has to be 
yielded to IOR when BTIO’s I/O rate cannot fully utilize the 
bandwidth share allocated to it. When an I/O burst comes 
from BTIO, it may also have to wait for the outstanding IOR 
I/Os to complete.  

In order to completely shield the impact of contention, 
we also implemented a non-work-conserving DSFQ 
scheduler which strictly throttles an application’s bandwidth 
usage based on its allocation. Specifically, this non-work-
conserving scheduler will put an application’s I/Os 
temporarily on hold when its completed I/O service exceeds 
its given bandwidth cap. When we apply the non-work-
conserving (BTIO+IOR, Shared, Layout-DSFQ (NWC) in 
Figure 7) scheduler with a 32:1 ratio, BTIO can achieve the 
same level of performance as when it runs alone. 

The above discussions demonstrate that there is an 
interesting tradeoff between resource sharing fairness and 
resource utilization efficiency. A work-conserving scheduler 
can fully use available resources, whereas a non-work-
conserving one can enforce strict fairness. Nonetheless, 
vPFS allows such tradeoff to be flexibly balanced based on 
application and system needs as it enables these various 
schedulers upon virtualization. It is also conceivable that if 
we can predict an application’s I/O pattern and reserve 
bandwidth for it in advance of its I/O phases, then it is 
possible to optimize both fairness and utilization 
simultaneously. Embedding such intelligence in vPFS I/O 
scheduling will be considered in our future work. 

D. Comparison of Synchronization Schemes 

The last group of experiments compares the overhead of 
global scheduling synchronization between our proposed 
threshold-driven and layout-driven schemes. In order to 
magnify the overhead of the two different synchronization 
schemes, we 1) increase the number of data servers to 96 by 
using Xen virtual machines (with paravirtualized kernel 
2.6.32.5) hosted on the eight server nodes, 2) use the 
NULL-AIO [23] in PVFS2 to maximize the I/O rate, 3) run 

 

Figure 7.   Throughput and run time of BTIO restored by vPFS's 
different schedulers under contention of IOR 

 
Figure 8.    Access pattern of one BTIO process, Class C/Full subtype 

328.8%

176.0%

253.3%

120.3%

101.9%

101.1%

0

100

200

300

400

500

600

700

800

900

Class A/Simple Subtype Class C/Full Subtype

B
TI

O
 R

u
n

 T
im

e 
(s

)
BTIO

Standalone

BTIO+IOR

Shared
Native

BTIO+IOR

Shared
Layout-DSFQ

BTIO+IOR

Shared
Layout-DSFQ (NWC)

7.5%

31.6%

16.8%

72.1%

93.2%

98.5%

0

10

20

30

40

50

60

70

80

Class A/Simple Subtype Class C/Full Subtype

B
T

IO
 T

h
ro

u
g

h
p

u
t 

(M
B

/s
) BTIO

Standalone

BTIO+IOR
Shared
Native

BTIO+IOR
Shared
Layout-DSFQ

BTIO+IOR
Shared
Layout-DSFQ (NWC)

Creation

I/O (WRITE) (4 seconds)

Compute (6 seconds)

Verify (<1 second) I/O (READ) (3 seconds)

Loopback 

40 times

Loopback 

40 times



TABLE 2.   THE COMPARISON OF BANDWIDTH UTILIZATION BETWEEN 

TWO DIFFERENT SYNCHRONIZATION SCHEMES 

Synchronization 

Scheme 

Total Throughput 

(MB/s) 

Standard 

Deviation (MB/s) 

Threshold-driven 540.91 31.59 

Layout-driven 612.08 2.21 

 eight applications, each with 32 parallel processes hosted on 
a separate physical compute node, 4) set the threshold below 
the average request size so that every request triggers a 
broadcast in the threshold-driven scheme, and 5) let all the 
applications use IOR to generate highly intensive workload. 
Equal proportional sharing is set as the target for both 
schemes in the experiment. 

The results confirm that both schemes can achieve 
equally good sharing of the system’s total bandwidth 
(within 3% fairness deviation). More importantly, we 
monitor the volume of synchronization traffic on each 
server and the throughput fluctuation of each application to 
evaluate the overhead of the two schemes and analyze their 
scalability. Figure 9 shows the throughput of one of the 
applications and Figure 10 shows the synchronization traffic 
on one of the servers. (The results obtained from the other 
applications and servers are similar.) The threshold-driven 
scheme has a constant need of synchronization and as a 
result consumes network bandwidth (as well as the CPU 
cycles for processing the traffic) all the time. Such frequent 
synchronization also causes high fluctuations on the 
throughput because every synchronization triggers a re-
sorting on the scheduler. In contrast, the layout-driven 
scheme involves global synchronization only at the entry 
time of an application. As a result, layout-driven 
synchronization scheme shows a much smoother throughput 
in Figure 9 and much less synchronization traffic during the 
entire experiment in Figure 10. In summary, the layout-
based DSFQ scheduler achieves 13.2% higher throughput 
and 93.0% lower deviation than the threshold-driven DSFQ 
scheduler (TABLE 2). Meanwhile, it can correctly estimate 

the total service based on the layout information and thus 
also achieve tightly bounded proportional sharing within 3% 
fairness deviation. 

V. RELATED WORK 

Storage resource management has been studied in related 
work in order to service competing I/O workloads and meet 
their desired throughput and latency goals. Such 
management can be embedded in the shared storage 
resource’s internal scheduler (e.g., disk schedulers) (Cello 
[24], Stonehenge [25], YFQ [26], PVFS [27]), which has 
direct control over the resource but requires the internal 
scheduler to be accessible and modifiable. The management 
can also be implemented via virtualization by interposing a 
layer between clients and their shared storage resources 
(Façade [17], SLEDS [18], SFQ(D) [6], GVFS [19]). This 
approach does not need any knowledge of the storage 
resource’s internals or any changes to its implementation. It 
is transparent to the existing storage deployments and 
supports different types of storage systems.  

Although this approach has been proposed for different 
storage systems, to the best of our knowledge, vPFS is the 
first to study its application on parallel storage systems. In 
addition to obtaining the same benefit of transparency as 
other virtualization-based solutions do, vPFS embodies new 
designs that address the unique characteristics and 
requirements of parallel storage systems.  

Various scheduling algorithms have been investigated in 
related storage management solutions. They employ 
techniques such as virtual clocks, leaky buckets, and credits 
for proportional sharing [6][25][28], earliest-deadline first 
(EDF) scheduling to guarantee latency bounds [17], 
feedback-control with request rate throttling [29], adaptive 
control of request queue lengths based on latency 
measurements [30], and scheduling of multi-layer storage 
resources based on online modeling [31]. The effectiveness 
of these scheduling algorithms is unknown for a HPC 
parallel storage system. This gap can be mainly attributed to 
the fact that there is few existing mechanism that allows 
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(a) Threshold-driven DSFQ throughput 
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(b) Layout-driven DSFQ throughput 

Figure 9.   Throughput comparison between threshold-driven DSFQ and layout-driven DSFQ (of one application) 

 

(a) Threshold-driven DSFQ synchronization cost 

 

(b) Layout-driven DSFQ synchronization cost 

Figure 10.   Synchronization traffic comparison between threshold-driven DSFQ and layout-driven DSFQ (on one server) 
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effective per-application bandwidth allocation in such a 
system. Our proposed vPFS approach bridges this gap by 
enabling various parallel I/O scheduling policies to be 
instantiated without imposing changes to parallel file system 
clients and servers. It is also the first to study proportional 
sharing algorithms on a PFS. 

The majority of the storage resource schedulers in the 
literature focuses on the allocation of a single storage 
resource (e.g., a storage server, device, or a cluster of 
interchangeable storage resources) and addresses the local 
throughput or latency objectives. LexAS [32] was proposed 
for fair bandwidth scheduling on a storage system with 
parallel disks, but I/Os are not striped and the scheduling is 
done with a centralized controller. DSFQ [7] is a distributed 
algorithm that can realize total service proportional sharing 
across all the storage resources that satisfy workload 
requests. However, as discussed at length in Section II.A, it 
faces challenges of efficient global scheduling when applied 
to a HPC parallel storage system, which are addressed by the 
vPFS and the enhanced algorithms enabled upon it.  

U-Shape [40] is a closely related project which tries to 
achieve application-desired QoS by first profiling the 
application’s instantaneous throughput demands and then 
dynamically schedule the application’s I/Os to meet the 
predicted demands. In comparison, this paper focuses on 
proportional bandwidth sharing which can efficiently utilize 
available parallel storage bandwidth while ensuring total-
service fairness among competing applications. In addition, 
our proposed parallel file system virtualization enables such 
management without modifying existing HPC storage 
system software stack. 

LACIO [41] also proposed to utilized file layout 
information on the physical nodes of parallel I/Os, but it is 
used to optimize the aggregated throughput of the whole 
system, i.e., to take last level locality into consideration. 
Ours bears another objective — to infer the global service 
from locally service I/Os using file layouts, in order to 
deliver total-service proportional sharing. 

Finally, there is related work that also adopts the 
approach of adding a layer upon an existing parallel file 
system deployment in order to extend its functionality or 
optimize its performance (pNFS [33], PLFS [34], ZOID 
[35]). In addition, cross-server coordination has also been 
considered in the related work [38][39] to improve spatial 
locality and performance of I/Os on a parallel file system. 
These efforts are complementary to this paper’s work on 
virtualization-based proportional sharing of parallel storage 
bandwidth which, to the best of our knowledge, has not been 
addressed before. 

VI. CONCLUSION AND FUTURE WORK 

This paper presents a new approach, vPFS, to parallel 
storage management in HPC systems. Today’s parallel 
storage systems are unable to recognize applications’ 
different I/O workloads and to satisfy their different I/O 
performance requirements. vPFS addresses this problem 
through the virtualization of contemporary parallel file 
systems. Such virtualization allows virtual parallel file 
systems to be dynamically created upon shared physical 

storage resources on a per-application basis, where each one 
gets a specific share of the overall I/O bandwidth. This 
virtualization layer is implemented via parallel file system 
proxies which interpose between native clients and servers 
and capture and forward the native requests according to the 
scheduling policies.  

Upon the vPFS framework, this paper also proposes new 
distributed schedulers for achieving proportional sharing of a 
parallel storage system’s total bandwidth. These schedulers 
address the challenges of applying the classic SFQ algorithm 
[6][7] to parallel storage and enhance it for both high 
throughput and efficient global scheduling. This paper 
presents a comprehensive evaluation of the vPFS prototype 
implemented by virtualizing PVFS2. The results obtained 
using typical HPC benchmarks, IOR [8] and BTIO [9], show 
that the vPFS approach is feasible because of its small 
overhead in terms of throughput and resource usage. 
Meanwhile, it achieves nearly perfect total-service 
proportional bandwidth sharing for competing parallel 
applications with diverse I/O patterns.  

In our future work, we will consider other optimization 
objectives and opportunities upon the vPFS framework, and 
extend it beyond proportional bandwidth sharing. In 
particular, we will investigate deadline-driven I/O scheduling 
to support applications sensitive to latencies. Interactive 
applications and meta-data intensive applications (with a 
large number of file creation/deletion operations in a short 
period of time) are typically latency sensitive and require 
deadline-driven I/O scheduling. We will study techniques 
such as pre-fetching and buffering upon vPFS to further 
improve parallel I/O performance. We also plan to extend 
the techniques developed in vPFS to the performance 
virtualization of big data systems such as Hadoop/HDFS. 
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