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Abstract—The ever-increasing scale of modern high-

performance computing (HPC) systems presents a variety of 

challenges to the parallel file system (PFS) based storage in 

these systems. The scalability of application checkpointing is a 

particularly important challenge because it is critical to the 

reliability of computing and it often dominates the I/Os in a 

HPC system. When a large number of parallel processes 

simultaneously perform checkpointing, the PFS metadata 

servers can become a serious bottleneck due to the large 

volume of concurrent metadata operations. This paper 

specifically addresses this PFS metadata management issue in 

order to support scalable application checkpointing in large 

HPC systems. It proposes a new technique named PFS-

delegation which delegates the management of the PFS 

storage space used for checkpointing to applications, thereby 

relieving the load of metadata operations on the PFS during 

their checkpointing. This proposed technique is prototyped on 

PVFS2, a widely used PFS implementation, and evaluated on 

a HPC cluster using a representative parallel I/O benchmark, 

IOR. Experiments with up to 128 parallel processes show that 

the PFS-delegation based checkpointing is significantly faster 

than the traditional shared-file and file-per-process based 

checkpointing methods (7% and 10% speedup when the 

underlying PVFS2 uses a centralized metadata server; 22% 

and 31% speedup when using distributed metadata servers). 

The results also demonstrate that the PFS-delegation based 

checkpointing substantially reduces the total number of 

metadata operations handled by the metadata servers during 

the checkpointing. 

Keywords: delegation; checkpointing; metadata 

management; high performance computin; paralell filesystems 

and IO. 

I. INTRODUCTION 

High-performance computing (HPC) systems are 

important platforms for solving challenging problems in 

many disciplines. Such systems typically use parallel file 

systems (PFSs) to perform I/Os in parallel across storage 

devices and provide high-throughput to the applications. As 

the scale of modern HPC systems continue to grow and as 

the applications in these systems become increasingly data 

intensive, a variety of challenges arise to the PFS-based 

storage in HPC systems. One particularly important 

challenge is the scalability issue of application-initiated 

checkpointing. HPC applications often use checkpoints to 

record their execution state persistently so that when 

failures happen they can resume the computing from their 

previous checkpoints without losing all the progress.  

Efficient checkpointing is critical to both the reliability 

and performance of an HPC application. However, when a 

large number of parallel processes simultaneously perform 

checkpointing, the PFS metadata servers can become a 

serious bottleneck due to the large volume of concurrent 

metadata operations. Traditionally, an application’s parallel 

processes use either a shared file or a file per process to 

store the checkpointing data, both of which can incur 

substantial overhead in metadata management. The shared-

file method can involve a large number of operations on the 

shared file’s attributes and locks, whereas the file-per-

process method also requires a large number of file 

creations. As HPC applications and systems continue to 

grow in size, such metadata management overhead is 

becoming an increasingly serious issue to the scalability of 

application checkpointing. 

This paper focuses on the aforementioned PFS metadata 

management issue for large-scale application checkpointing 

and proposes a new technique named PFS-delegation to 

address it. This technique delegates the management of the 

PFS storage space used for checkpointing to applications, 

thereby relieving the load of metadata operations on the 

PFS during their checkpointing. Specifically, an application 

can use PFS-delegation to reserve a chunk of the parallel 

storage space for checkpointing and it can then manage and 

access the checkpoints in its reserved space without 

involving the PFS metadata servers. In this way, the 

amount of PFS metadata operations incurred during the 

checkpointing is minimized regardless of how many 

processes are involved and regardless of how many 

checkpoints are performed. 

The proposed PFS-delegation technique is prototyped on 

PVFS2, a widely used PFS implementation. It is evaluated 

in a cluster environment with four PVFS2 servers and up to 

128 parallel processes using a representative parallel I/O 

benchmark, IOR (v2.10.2) [1]. The results show that the 

PFS-delegation based checkpointing is significantly faster 

than the traditional shared-file and file-per-process based 

checkpointing methods. When the underlying PVFS2 uses 

a centralized metadata server, the speedup is 7% versus 

shared-file and 10% versus file-per-process; when using 

distributed metadata servers, the speedup is 22% and 31% 

respectively. The results also demonstrate substantial 



reductions on the number of metadata operations handled 

by the metadata servers during the checkpointing.  

The rest of this paper is organized as follows. Section II 

introduces the background, Section III describes the overall 

architecture, Section IV presents the implementation details, 

Section V discusses the experimental evaluation, Section 

VI examines the related work, Section VII offers additional 

discussions, and Section VIII concludes the paper. 

II. BACKGROUND  

In a typical HPC system, data are managed and 

provisioned through a parallel file system (PFS), which 

supports high-performance parallel I/O for applications to 

access their data on the storage devices. The PFS provides 

the bridge between the computing infrastructure (compute 

nodes) and the storage infrastructure (storage networks and 

devices), which are typically connected through a high-

speed communications network (e.g., Gigabit Ethernet, 

Infiniband, Myrinet). 

A modern PFS (e.g., GPFS [2], PVFS [3], Lustre [4], 

IBRIX [5], and Panasas [6]) typically consists of clients, 

data servers, and metadata servers. In a HPC system, the 

PFS clients often run on the compute nodes and provide the 

interface to the storage system which is managed by the 

metadata and data servers. A metadata server stores the 

meta-information about files, including file naming, 

directory hierarchy, data distribution, access permissions, 

and file locking. The data of files are stored through data 

servers, which are connected to the storage devices through 

either direct links or a shared storage-area network (SAN). 

The data layout of a file specifies how the data is 

distributed on a list of servers using algorithms such as 

round robin and random. 

File accesses typically first go through the metadata 

server to obtain the appropriate access permission and the 

data layout on the data servers. A large read or write on the 

file is usually striped across multiple data servers to 

achieve high throughput via I/O parallelism. Because 

centralized metadata management can become a bottleneck 

for metadata access, some PFS also employ multiple 

metadata servers [2][4] or completely distribute the 

metadata management along with the data servers [5]. PFS 

clients often cache the retrieved metadata (and in some 

cases, data) locally to further reduce the overhead from 

metadata (and data) accesses.  

Application-initiated checkpointing is a major source of 

I/O traffic in a HPC system, which is estimated to account 

for about 80% of the I/O usage in today’s HPC systems [7]. 

To a storage system, checkpointing is often treated in the 

same way as other types of I/Os such as regular application 

computation inputs and outputs. It, however, has specific 

and unique I/O characteristics. First, checkpointing is 

mainly large sequential writes and the use of checkpoint 

data is also often sequential reads. Small, random reads and 

writes are rare in accessing checkpointing data. Second, 

checkpointing I/Os issued by different applications and 

different parallel processes of the same application are 

highly independent. There is typically no sharing of the 

checkpointing data. Third, checkpointing I/O is highly 

bursty. A parallel application typically synchronizes its 

checkpointing operation across all of its parallel processes. 

At the checkpointing time, a large volume of I/Os flow 

from the computing nodes to the storage infrastructure 

simultaneously. 

Future large-scale HPC applications will employ 

hundreds of thousands to millions of processors which will 

generate a tremendous amount of concurrent accesses to 

checkpoints on a PFS. The challenge to scalability arises 

from this need of accessing a large number of checkpoints 

simultaneously from all the compute nodes. Traditionally, 

an HPC application’s parallel processes checkpoint their 

data on the PFS either via a shared file (a.k.a., N-1 access 

pattern), where all processes write to the same shared file, 

or using a different file per process (a.k.a., N-N access 

pattern), where each process writes to a different file [8]. In 

the case of N-1 access pattern, there exist two variations, N-

1 segmented, where each process writes its data to a 

separate sequential region of the shared file, and N-1 

strided, where all process write to the same set of regions 

of the shared file but each process writes a different part of 

these regions [13]. 

With the shared-file approach, a single file’s metadata 

are shared among a large number of clients, which can 

become a bottleneck when accessed by a large number of 

checkpointing applications simultaneously. The file-per-

process approach can eliminate this bottleneck; however, 

the creation and use of hundreds of thousands to millions of 

files, typically within the same directory, on the PFS 

introduces significant overhead in metadata management 

[9][10]. In practice, the N-1 strided access pattern is found 

more convenient by users and hence is more commonly 

used than the N-1 segmented access pattern and the N-N 

access pattern [13]. However, the N-1 strided access pattern 

can be much less efficient than the other patterns because it 

requires concurrent accesses to the same regions in the 

shared file which often have to be serialized on the 

underlying storage. 

Typical PFSs are designed for general-purpose usage 

and cannot differentiate checkpointing I/Os from others. As 

a result, such a PFS is unable to recognize the unique I/O 

characteristics and needs of checkpointing in order to 

reduce unnecessary cost and improve its performance. 

Specifically, there is no need to maintain synchronization 

across different processes on the checkpoint data, since the 

data are not shared by the processes. It is unnecessary to 

use client-side caching as applications rarely immediately 

read back their checkpoints (it only happens during the 

recovery procedure after a compute node failure). Hence, 

there is also no need to maintain consistency between the 

client-side caches and server-side storage. On the other 

hand, optimization is necessary for the PFS to support the 



challenging I/Os from simultaneous checkpointing by large 

numbers of parallel processes. In particular, the overhead of 

PFS metadata management needs to be improved, no 

matter whether the parallel checkpointing is done in a 

shared-file or file-per-process manner. This specific 

problem is addressed by the PFS-delegation technique 

proposed in this paper in order to support scalable 

checkpointing. 

III. ARCHITECTURE 

We propose PFS-delegation to offload the management 

of portions of the PFS storage space to applications to 

relieve metadata management bottleneck at the PFS (Figure 

1). PFS-delegation pre-allocates a certain region of the 

parallel storage space to each parallel application for its 

processes to store checkpoints. This pre-allocated space is 

striped across the PFS data servers. To the PFS, it appears 

as merely a single logical file, whereas the management of 

checkpoints inside of this file, including naming and data 

layouts, is entirely delegated to the application with the 

support from PFS-delegation. In this way, the application’s 

use of possibly large numbers of processes and checkpoints 

in its delegated space is completely hidden from the PFS, 

whereas the metadata management on the PFS is incurred 

for only a single logical file. 

With PFS-delegation, an application partitions the 

delegated storage space across all the processes for them to 

access checkpoints in parallel. For writing a checkpoint, 

each process flushes out its data sequentially in its portion 

of the delegated space which is then striped across the 

involved data servers; for loading a checkpoint, each 

process also reads the data sequentially from the data 

servers in parallel. The size of the delegated storage space 

can be determined based on both the storage needs of the 

application and the allocation policy of the system. When 

an application uses up its allocated space, it will roll over to 

the beginning of the space for storing new checkpoints. 

PFS-delegation can be conceivably implemented using 

two complementary approaches with different levels of 

transparency to the underlying PFS. In the first approach, 

PFS-delegation leverages the existing interface of the PFS 

to realize delegation and only requests the creation of the 

necessary logical file from the metadata servers. This 

approach can be made entirely transparent to the underlying 

PFS and thereby supports different PFS deployments 

without modifications. But its effectiveness may be limited 

by the PFS protocol’s restrictions. For example, the PFS 

may not support efficient reservation of a large chunk of 

storage space. Alternatively, PFS-delegation can be also 

implemented by extending existing PFS protocols to 

provide additional API for checkpointing applications to 

directly request storage space allocation and delegation. In 

this paper, we focus on an implementation based on the 

first approach.  

IV. IMPLEMENTATION 

As a proof-of-concept, we have implemented PFS-

delegation upon Parallel Virtual File System 2 (PVFS2) [2], 

a widely-used open-source PFS implementation, in order to 

support scalable application checkpointing. Specifically, 

the implementation of PFS-delegation entails two 

components: first, reserve the storage space to be delegated 

to an application on the involved data servers of the PFS; 

second, provide the application full read and write access to 

the delegated space on the PFS. 

A. Reserving Delegated Storage Space 

The reservation process is made by creating one large 

logical file across the PVFS2 data servers. The layout of 

this file determines which data servers will be involved to 

 
Figure 1. Architecture of PFS-delegation 
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provide the reserved storage space. The size of this file 

determines the size of the reserved space. This reservation 

process is executed only once per application, before the 

application starts checkpointing, using a command-line 

management utility pfs-reserve. The size of the reserved 

space should be determined by considering three different 

factors: the size of a checkpoint, the number of checkpoints 

to preserve, and the storage space allocation policy. Based 

on the understanding of an application’s behavior, we could 

estimate how much space an application needs to reserve. 

But the actual reservation might be constrained by the 

storage space availability based on the understanding of the 

storage allocation policy. 

The layout of the delegated space can be specified in the 

same way as defining a regular file’s layout in MPI-IO. 

PFS-delegation uses the MPI-IO interface and the relevant 

hints to specify the data layout for the delegated space as 

follows. 

 

A set of data servers is used to allocate the delegated 

PFS storage space, which is defined by the MPI_Info 

striping_fator. In the data layout we can also specify the 

stripe size by MPI_Info striping_unit. In the PVFS2-based 

implementation, the distribution of the logical file that 

represents the delegated space on the data servers is 

distributed using a simple-stripe scheme. It divides the 

logical file’s data into stripes of 64KB which are mapped 

into the data files across the data servers in a round robin 

manner. 

To make sure that the reserved space is available on the 

data servers, a naïve approach could simply populate the 

reserved space with blank data. However, this approach 

would incur substantial overhead when creating the 

reserved space, although it is only a one-time overhead. 

More efficient approaches are possible if the underlying 

PFS supports space reservation on the data servers without 

actually populating the data. Specifically, on PVFS2, 

because it is layered on top of the local file systems of the 

data servers, we leverage the support of sparse files of these 

file systems to implement efficient space reservation. To 

reserve a chunk of space on a PVFS2 data server we need 

to write only the last byte of the corresponding datafile. In 

this way we will have a datafile with the desired size 

without populating it with any data. PVFS2 would treat this 

file in the same way as other regular files whereas its 

internal data organization is managed by the PFS-

delegation. By doing this on each data server, we will be 

able to create an empty logical file with the desired size to 

represent the reserved space. 

However, we recognize that the use of sparse files does 

not really reserve the space from the file system and the 

storage can be out of space before a sparse file reaches its 

claimed size. To avoid such a problem the reservation can 

be done using the fallocate method which preallocates 

blocks to a file by marking them as unitialized and 

guarantees that the space is allocated to the file. On PFSs 

that support fallocate (e.g., GPFS [2]), this method can be 

directly used to reserve space on the parallel storage. For 

PVFS2, if the underlying local file systems (e.g., EXT4) 

support fallocate, then this method can also be used to 

reserve space on each data server individually. In this way, 

PFS-delegation can both support fast reservation and 

guarantee that the total reserved space will always be 

available for checkpointing.  

After the delegated space is successfully reserved on the 

underlying PFS, it is partitioned internally based on the 

number of parallel processes of the application so that 

every single process has a portion in the delegated space to 

write the checkpointing data. The information about this 

partitioning together with the assignment to the processes is 

stored in a metadata table structure. Because this structure 

is critical to understand the data organization of the 

delegated space, it needs to be available to the application 

at any time. PFS-delegation uses a small portion of storage 

at the beginning of the delegated space to persistently store 

this information. In this way, if an application fails, in order 

to start the recovery process it needs to first read this 

metadata table to locate the checkpoints stored in the 

reserved space and then read them back. The structure of 

this metadata table is as follows. 

 

 
 

The metadata information consists of four fields. The 

first two offset_start and offset_end refer to the offsets that 

define a portion of the reserved space that is dedicated to a 

specific client. These two fields are set when the delegated 

space is created. The third field offset_next corresponds to 

the offset where the next checkpoint should be written to. 

The last field revision indicates the current revision number. 

Note that in this metadata table example, we assume that 

each checkpoint from the same application is of the same 

size. To support checkpoints of different sizes, the metadata 

table needs to also track the offsets of individual 

MPI_Info info; 
MPI_Info_create(&info); 
 
/* number of servers to be used for reservation */ 
MPI_Info_set(info, "striping_factor", "4"); 
 
/* the striping unit in bytes */ 
MPI_Info_set(info, "striping_unit", "65536"); 
 
/* the logical file representing delegated space */ 
MPI_File_open(MPI_COMM_WORLD, "/pfs/checkpoint",          

MPI_MODE_CREATE | PI_MODE_RDWR, info, &fh); 

struct  metadata_table 
{ 
        PFS_offset      offset_start; 
        PFS_offset      offset_end; 
        PFS_offset      offset_next; 
        int             revision; 
}; 



checkpoints stored in the application’s delegated space. The 

metadata table can be further extended to track per-process 

data size so that we can also support the case where each 

parallel process of the application produces a different 

amount of data in the checkpoint, which happens when the 

application does incremental checkpointing. 

B. Accessing Checkpoints in Delegated Space 

PFS-delegation provides an interface for parallel 

applications to write/read checkpointing data to/from the 

delegated space. This interface is in addition to the typical 

interfaces such as MPI-IO [16] that an application uses to 

access regular files on a PFS. PFS-delegation itself also 

makes use of MPI-IO for creating and accessing the 

reserved space on a PFS. Therefore, it is transparent to the 

underlying PFS but not to the application which uses it for 

checkpointing. However, this interface is concise and easy 

to use and it would not affect how an application accesses 

other files outside of the delegated space. The provided 

functions in this interface are listed as follows. 

 

  
 

The above functions are all that an application needs in 

order to access the checkpoints in its delegated space. 

Specifically, the PFS_write_file function is used for 

performing the writes of a checkpoint on the delegated 

space; the PFS_read_file function is used for reading the 

last valid checkpoint from the delegated space; and the 

PFS_read_file_revision function is used for reading a 

specific past checkpoint stored in the delegated space.  

Internally in PFS-delegation, the above functions are 

implemented as follows. To write a checkpoint in the 

delegated space, PFS-delegation needs to first read the 

metadata table and look for the offset where the application 

should write to. Then it uses the MPI-IO function to 

perform the writes and after the writing is completed PFS-

delegation also needs to update the information in the 

metadata table accordingly, including the revision number 

and the offset. Note that only one process (specifically, the 

one with the MPI rank 0) of the application needs to 

perform the lookup and update of the metadata table so 

access to the metadata table would not become a bottleneck. 

If a failure occurs while performing a checkpoint operation, 

the offset would not be updated and the previous 

checkpoint would still be the latest valid checkpoint in the 

delegated space. On the other hand, to read from a 

checkpoint in the delegated space, PFS-delegation needs to 

first get the corresponding offset from the metadata table 

using a single process and then read the checkpoint data 

using MPI-IO in parallel. 

 In order to deal with inconsistencies between the 

metadata table and checkpoint data possibly caused by 

failures during writing, PFS-delegation can employ typical 

techniques such as checksum. Every time a checkpoint is 

executed, to guarantee that it is completed the metadata 

update is done at the end and a checksum is automatically 

calculated and saved together with the new metadata in the 

table. During the recovery, before reading the last 

checkpoint, the corresponding checksum is first read from 

the metadata table in order to validate that the data is not 

corrupted. 

V. EVALUATION 

A. Experiment Setup 

The experiment testbed is built with a set of physical 

machines hosted on a cluster of eleven DELL PowerEdge 

2970 servers. The cluster is connected by a Gigabit 

Ethernet and each node has two six-core 2.4GHz Opteron 

CPUs, 32GB of RAM, and one 500GB 7.2K RPM SAS 

disk. All physical machines run 2.6.24-16-server kernel in 

Ubuntu 8.0.4. PVFS2 is set up on these machines, four of 

which acting as PVFS2 data/metadata servers and the 

others as clients running parallel applications. The PVFS2 

servers all use EXT3 as the local file system.  

The experiments study the performance of the three 

checkpointing methods, shared-file, file-per-process, and 

PFS-delegation, in order to investigate whether the 

proposed PFS-delegation can improve large-scale 

application checkpointing. Shared-file based checkpointing 

(using N-1 segmented access pattern) saves the checkpoints 

of all the processes in a single shared file; file-per-process 

based checkpointing saves the checkpoint of each process 

into a separated file; PFS-delegation saves all the 

checkpoints from all processes in the delegated storage 

space on the PFS. 

IOR (v2.10.2) [1] is chosen as the benchmark which 

uses MPI-IO to generate large sequential writes and 

simulate the typical checkpointing I/O patterns in HPC 

applications. IOR inherently supports checkpointing using 

shared-file with N-1 segmented pattern and file-per-process 

N-N pattern. As discussed in Section II, N-1 strided pattern 

is more commonly used by applications for checkpointing, 

although its performance is typically worse than the other 

patterns [13]. In our future work we will also evaluate PFS-

delegation against N-1 strided, but it is reasonable to 

believe that PFS-delegation would outperform N-1 strided 

if it outperforms N-1 segmented.  

The original IOR code was augmented in order to use 

the PFS-delegation interface to perform checkpointing. We 

use IOR to do nine consecutive checkpoints from all 

parallel processes, each process generating 20MB of data 

with a single write. A delay of two minutes is included 

size_t PFS_write_file (void *buffer, size_t count, 
struct options *opt); 

 
size_t PFS_read_file (void *buffer, size_t count, 

struct options *opt); 
 
size_t PFS_read_file_revision (void *buffer, size_t 

count, struct options *opt,int revision); 



between two consecutive checkpoints in order for the 

writes to be completely flushed before the new checkpoint.  

We considered two different typical setups of PFS 

metadata servers, Centralized Metadata Server, which uses 

one server dedicated as metadata server and three as data 

servers, and Distributed Metadata Servers, in which each 

of the four PFS servers act as both metadata server and data 

server. The number of parallel IOR processes scale from 16 

to 128 for both configurations. 

B. Centralized Metadata Server 

Figure 2 shows the checkpointing time for the 

centralized metadata server setup using the three different 

checkpointing methods. The data reported are the average 

times and standard deviations across all IOR parallel 

processes and across nine consecutive checkpoints. The 

results show that when the number of processes is small 

(less than 64), the performance of the different 

checkpointing methods is similar. However, when the 

number of checkpointing parallel processes reaches 128, 

PFS-delegation based checkpointing is evidently faster than 

both the other two methods (7% faster than shared-file and 

10% faster than file-per-process). 

To understand the advantage of PFS-delegation based 

checkpointing, we also measure the number of metadata 

operations involved during the checkpointing by tracking 

the relevant PVFS2 messages on the metadata servers. 

Specifically, these PVFS2 messages include GETATTR, 

which is used to get file attributes; CREATE, which is used 

for file creation; LOOKUP, which is used for looking up 

the directory entry of a file; and CRDIRENT, which is used 

to create the directory entry for a new file. 

Figure 3 shows the total number of metadata messages 

captured during a nine-checkpoints run by 16 to 128 

parallel processes. The results show that PFS-delegation 

based checkpointing can substantially reduce the volume of 

metadata operations. The total number of metadata 

messages for PFS delegation is always only 20% of that for 

share-file and 30% of file-per-process, regardless of the 

number of parallel processes. The absolute difference is 

even more drastic when the number of processes is high. 

With 128 checkpointing processes, the number of metadata 

operations is reduced by 1053 messages when compared to 

shared-file and 3875 messages when compared to file-per-

process. 

Noticed that the advantage of PFS-delegation in terms of 

runtime is not as significant as in terms of the number of 

metadata operations, which is because of two factors. First, 

the checkpointing runtime is dominated by data operations 

rather than metadata operation. Consequently, the runtime 

is not affected much even though the number of metadata 

operations is substantially reduced by using PFS-delegation. 

Second, the metadata server’s CPU utilization is low during 

the experiments, which is in fact around 1% most of the 

time. Therefore, even though shared-file and file-per-

process require much more metadata operations, the 

metadata sever is able to handle them in time without 

affecting the application’s runtime. 

To further examine the reduction of metadata operations 

in PFS-delegation, we break down the numbers of different 

  
Figure 2. Checkpointing time with centralized 

metadata server 
 

  
Figure 3. Total number of metadata operations with 

centralized metadata server 
 

  
Figure 4. Different metadata operations with 128 

processes and centralized metadata server 
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relevant PVFS2 messages in Figure 4 when the number of 

checkpointing processes is 128. Here we can see that the 

number of GETATTR operations used in PFS-delegation is 

much less than the other two methods because the attributes 

of the logical file representing the delegated space remain 

the same during all checkpointing operations. Shared-file, 

file-per-process and PFS-delegation perform a GETATTR 

operations each time that is going to perform create, write 

and read operations, these operations are necessary to get 

information about the parent directory or file where the 

writes are going to be performed, depending on the mode 

that is being used the number of such operations can vary 

by a significant amount. For the other metadata operations, 

CREATE, LOOKUP, and CRDIRENT, we can see that file-

per-process involves much more of these operations than 

shared-file and PFS-delegation, because it has to deal with 

a large number of checkpoint files, while only a few files 

need to be created for shared- file and no file needs to be 

created for PFS-delegation (assuming the delegated space 

is already reserved on the PFS).  

C. Distributed Metadata Server 

Figure 5 shows the checkpointing time for the 

distributed metadata server setup with the three different 

checkpoint methods. In this setup, PFS-delegation starts to 

outperform shared-file and file-per-process with 64 

concurrent checkpointing processes. Specifically, it is 14% 

faster than shared-file and 31% faster than file-per-process. 

When the number of checkpointing processes reaches 128, 

the improvement is even more significant, in which PFS-

delegation outperforms shared-file by 22% and file-per-

process by 31%.  

Figure 6 shows the total number of metadata messages 

captured during nine-checkpoints run on all the four 

metadata servers. These numbers are much higher than the 

centralized metadata server setup because now metadata 

operations need to be performed on all four PVFS2 servers. 

Nonetheless, the total number of metadata operations in 

PFS-delegation is still only 20% of shared-file and 10% of 

file-per-process with different numbers of checkpointing 

processes. Figure 7 shows the numbers of different relevant 

PVFS2 messages when the number of checkpointing 

processes is 128. We can make a similar observation as in 

the centralized metadata server setup: the number of 

GETATTR operations in PFS-delegation is much less than 

in shared-file and file-per-process, while the numbers of 

CREATE, LOOKUP, and CRDIRENT operations are much 

less than file-per-process. 

In our experiments the distributed metadata servers are 

co-located with the data servers, which may cause the 

metadata operations to be slowed down by the data 

operations. Therefore, the performance from using shared-

file and file-per-process based checkpointing may be better 

if the metadata servers can be hosted on dedicated nodes, 

separately from the data servers. However, the number of 

metadata operations would still remain the same even with 

dedicated, distributed metadata servers. Therefore, it is 

reasonable to believe that PFS-delegation would still 

outperform shared-file and file-per-process in this case. 

  
Figure 5. Checkpointing time with distributed 

metadata servers 

 

  
Figure 6. Total number of metadata operations with 

distributed metadata servers 
 

  
Figure 7. Different metadata operations with 128 
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VI. RELATED WORK 

Oldfield et al. also recognized the limitations of general-

purpose PFSs and the need for application-specific 

optimizations on parallel file access. They proposed the 

idea of a light-weight file system (LWFS) which does not 

provide many traditional PFS services, such as naming, 

consistency, and directory structures [9][10][15]. Instead, 

the LWFS only provides clients with direct and secure 

access to the storage, and other high-level services needed 

by applications can be included as libraries. The use of 

LWFS to support scientific applications is specifically 

studied in the context of checkpointing, which enables 

applications to skip the unnecessary metadata management 

and create and dump process state to storage efficiently.  

LWFS allows applications to implement additional 

features on their own or through libraries, but its 

deployment requires the replacement of existing PFS 

deployments in HPC systems. Because such systems have 

spent considerable investments in purchasing, deploying, 

and fine-tuning their PFS setups, it is difficult to test and 

adopt a completely new PFS on the existing infrastructure. 

In comparison, this paper proposes to extend contemporary 

PFS implementations to support efficient metadata 

management for large-scale checkpointing. The proposed 

PFS-delegation technique is either transparent or requiring 

minimal modifications to the existing PFSs. Therefore, this 

paper’s approach is complementary to LWFS as they are 

suited for different usage scenarios.  

Google file system (GFS) is a special file system 

designed for workloads that have many large, sequential 

appending-only writes. It also strips away many 

unnecessary traditional file system services and only 

provides clients with flat namespace and relaxed 

consistency, and without client-side caching [11]. 

Nonetheless, GFS is only applicable to a specific set of 

applications that have similar characteristics as Google 

search and it cannot satisfy the needs of a wide variety of 

HPC applications. The technique proposed in this paper is 

applicable to different applications by leveraging typical 

PFSs widely used in HPC systems. 

Another closely related work is the Parallel Log 

Structured File System (PLFS) [13][14], which proposes to 

improve the performance of an application’s N-1 strided 

checkpointing by mapping this access pattern to the N-N 

access pattern through an interposition layer between the 

application and PFS. However, in order to realize the 

mapping, PLFS requires creating a large number of 

directories and files to rearrange the data belonging to the 

application-perceived N-1 checkpoint file. These operations 

can result in many metadata accesses such as directory 

creation, file creation, and setting attributes, thereby 

causing substantial metadata management overhead. In 

comparison, on one hand, PFS-delegation does not need the 

N-1-to-N-N mapping because it uses N-1 segmented access 

pattern which does not have the performance problems that 

N-1 strided has [13]. On the other hand, PFS-delegation 

reduces the total number of metadata operations by using 

only a single file for an application’s entire reserved space 

and to store all of its checkpointing data. Hence it is 

reasonable to expect PFS-delegation to have much less 

overhead in metadata management.  

PLFS implements access pattern mapping transparently 

to applications by providing a MPI-IO driver called ad_plfs 

and supports the same MPI-IO interface that applications 

typically use for parallel I/Os. Alternatively, PLFS also 

allows applications to use it through the POSIX interface 

without modifications by using FUSE [30] to implement its 

mapping at user space. Although PFS-delegation currently 

requires applications to be modified to use special APIs for 

checkpointing, it is conceivable that it can also take 

advantage of these techniques to make its use completely 

transparent to the applications.  

In addition, there are other I/O mapping techniques in 

the related work for improving application checkpointing 

performance on a PFS such as Lustre [12] and GPFS [2]. 

For example, a library can be used to redirect the 

checkpointing I/Os in a way that each client only 

communicates with a single server. Such a data mapping 

technique is complementary to the metadata management 

issue tackled by this paper and it can also be easily 

incorporated into the PFS-delegation implementation. 

There is also related work on reducing the checkpointing 

overhead through various approaches. The checkpointing-

to-memory approach [27] proposes to reduce the 

application execution time associated with checkpointing 

operations by saving the checkpoint data in the memory of 

a different node. The copy-on-write checkpointing 

algorithms [22][23] reduce the overhead by buffering the 

checkpointing data to a separate address space via virtual 

memory, allowing the application’s execution to continue 

while the data is flushed to stable storage. Another 

approach to buffering the checkpointing data is using the 

storage on a fast overlay network [21][24], allowing 

applications to quickly move the performance-limiting I/Os 

off the compute nodes. Incremental checkpointing [19] 

intends to reduce the size of checkpoint data by saving only 

the memory that has been touched since the last checkpoint 

operation.  

Finally, there are several checkpointing models 

proposed in the literature which try to define the optimal 

checkpointing interval based on various parameters. One of 

them is a first order model that defines the optimal 

checkpointing interval in terms of checkpointing overhead 

and mean time to interrupt [28]. A different model 

proposed more recently also considers failures occurred 

during checkpointing and recovery [26]. There are also 

models that include bandwidth and computation time as 

parameters to calculate the optimal checkpointing interval 

[23][25]. 



VII. DISCUSSIONS 

This paper proposes a new approach to address metadata 

management overhead and support scalable checkpointing 

in large HPC systems. The main limitation of our current 

prototype implementation is that it requires applications to 

be modified to use the new checkpointing APIs, although 

this new interface is concise and convenient to use. In our 

future work we will provide PFS-delegation transparently 

to applications by implementing it as a new MPI-IO driver 

and presenting the unmodified MPI-IO interface. In this 

way, an application can perform their preferred N-1 or N-N 

checkpointing without any change, while PFS-delegation 

automatically maps the application’s I/Os to its perceived 

checkpoint files to the I/Os to the single delegated space.  

As discussed in Section VI, this method of achieving 

application transparency is the same as the related work on 

PLFS [13]. We will in fact investigate the possibility of 

implementing PFS-delegation upon the PLFS code base. 

However, PFS-delegation can have much lower metadata 

management because of its use of single delegated space 

for storing all checkpointing data instead of using many 

separate files. We also believe that our current experiment 

results would still hold for this new application-transparent 

PFS-delegation implementation, because it does not change 

the interactions with the underlying PFS metadata servers 

or the internal management of the delegated space.  

Our current implementation also requires users to use a 

special utility for offline reading a specific checkpoint from 

the delegated space. Such a utility is necessary because it 

needs to interpret the metadata table, locate the offset of the 

checkpoint in the delegated space, and then retrieve the 

desired data. In our future work we will implement the 

internal structure of a delegated space using technologies 

such as netCDF [18] and HDF5 [18] which provide self-

describing, machine-independent data formats. For 

example, we can represent the metadata table structure with 

a netCDF data model. In this way, users can conveniently 

access the checkpoint data offline using the widely used 

netCDF or HDF5 tools to automatically interpret data in the 

delegated space. 

As discussed in Section II, the use of synchronization in 

PFSs can be a performance bottleneck for checkpointing 

which in fact does not involve any data sharing. PFS-

delegation can also address this problem by eliminating the 

use of locking when accessing checkpoints in the delegated 

space. However, this improvement is not reflected in our 

PVFS2-based evaluation, because PVFS2 does not support   

locking at all, due to the exact same scalability concern. 

Nonetheless, locking is still widely used in other PFSs in 

order to support full application semantics. In our ongoing 

work, we are extending our PFS-delegation implementation 

to support such PFSs (e.g., Lustre [4]) and conducting a 

more comprehensive evaluation on the potential benefits of 

the PFS-delegation approach.  

The PFS-delegation approach proposed in this paper is 

generally applicable to different applications. A special 

application worth mentioning is the Software Persistent 

Memory (SoftPM) [29], a lightweight facility proposed for 

HPC applications to conveniently manage persistent data. 

SoftPM presents a persistent memory interface to 

applications which allows them to allocate persistent 

memory in the same way as allocating volatile memory and 

to easily restore, browse, and interact with past versions of 

persistent memory state. Internally, SoftPM implements the 

persistent memory upon the underlying storage system, 

recognizing and leveraging its characteristics to realize 

persistency and optimize performance. When SoftPM uses 

parallel storage as the backend, it can make use of PFS-

delegation for saving and loading persistent data and 

achieving good performance with large scale. 

In our experiments we have resources to run only up to 

128 clients and 4 servers at the same time, but we expect to 

see the same level of advantage from PFS-delegation when 

the number of clients and servers scale up proportionally in 

a larger HPC system. In our future work we will try to 

evaluate our solution in a real production HPC system that 

has much larger scale that our testbed.  

VIII. CONCLUSIONS 

This paper presents a new technique, PFS-delegation, 

for addressing the metadata management overhead in large-

scale application checkpointing. It allows an application to 

reserve a chunk of the PFS storage space for storing 

checkpoints and then delegates the management of these 

checkpoints completely to the application. In this way, the 

overhead of metadata management perceived by the PFS 

for the application’s checkpointing can be drastically 

reduced to the level of a single logical file, regardless how 

many processes are involved and how many checkpoints 

are performed. This technique is a step towards supporting 

scalable application checkpointing in large HPC systems, 

which is critical to both the reliability and performance of 

these applications. 

The proposed PFS-delegation is implemented as a 

library upon MPI-IO. It can support different PFSs without 

changing their code or existing deployments. It requires 

only small modification of an application for it to use the 

PFS-delegation interface. A prototype of this technique is 

developed upon a widely used PFS, PVFS2, and evaluated 

with experiments using a typical HPC I/O benchmark, IOR. 

Results show that the PFS-delegation based checkpointing 

significantly outperforms the shared-file and file-per-

process based checkpointing in terms of both the 

application runtime and the load of metadata operations. 
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