
Towards Scalable Application Checkpointing with Parallel File System

Delegation

Dulcardo Arteaga Ming Zhao
School of Computing and Information Science

Florida International University, Miami, USA

{darte003,ming}@cis.fiu.edu

Abstract—The ever-increasing scale of modern high-

performance computing (HPC) systems presents a variety of

challenges to the parallel file system (PFS) based storage in

these systems. The scalability of application checkpointing is a

particularly important challenge because it is critical to the

reliability of computing and it often dominates the I/Os in a

HPC system. When a large number of parallel processes

simultaneously perform checkpointing, the PFS metadata

servers can become a serious bottleneck due to the large

volume of concurrent metadata operations. This paper

specifically addresses this PFS metadata management issue in

order to support scalable application checkpointing in large

HPC systems. It proposes a new technique named PFS-

delegation which delegates the management of the PFS

storage space used for checkpointing to applications, thereby

relieving the load of metadata operations on the PFS during

their checkpointing. This proposed technique is prototyped on

PVFS2, a widely used PFS implementation, and evaluated on

a HPC cluster using a representative parallel I/O benchmark,

IOR. Experiments with up to 128 parallel processes show that

the PFS-delegation based checkpointing is significantly faster

than the traditional shared-file and file-per-process based

checkpointing methods (7% and 10% speedup when the

underlying PVFS2 uses a centralized metadata server; 22%

and 31% speedup when using distributed metadata servers).

The results also demonstrate that the PFS-delegation based

checkpointing substantially reduces the total number of

metadata operations handled by the metadata servers during

the checkpointing.

Keywords: delegation; checkpointing; metadata

management; high performance computin; paralell filesystems

and IO.

I. INTRODUCTION

High-performance computing (HPC) systems are

important platforms for solving challenging problems in

many disciplines. Such systems typically use parallel file

systems (PFSs) to perform I/Os in parallel across storage

devices and provide high-throughput to the applications. As

the scale of modern HPC systems continue to grow and as

the applications in these systems become increasingly data

intensive, a variety of challenges arise to the PFS-based

storage in HPC systems. One particularly important

challenge is the scalability issue of application-initiated

checkpointing. HPC applications often use checkpoints to

record their execution state persistently so that when

failures happen they can resume the computing from their

previous checkpoints without losing all the progress.

Efficient checkpointing is critical to both the reliability

and performance of an HPC application. However, when a

large number of parallel processes simultaneously perform

checkpointing, the PFS metadata servers can become a

serious bottleneck due to the large volume of concurrent

metadata operations. Traditionally, an application’s parallel

processes use either a shared file or a file per process to

store the checkpointing data, both of which can incur

substantial overhead in metadata management. The shared-

file method can involve a large number of operations on the

shared file’s attributes and locks, whereas the file-per-

process method also requires a large number of file

creations. As HPC applications and systems continue to

grow in size, such metadata management overhead is

becoming an increasingly serious issue to the scalability of

application checkpointing.

This paper focuses on the aforementioned PFS metadata

management issue for large-scale application checkpointing

and proposes a new technique named PFS-delegation to

address it. This technique delegates the management of the

PFS storage space used for checkpointing to applications,

thereby relieving the load of metadata operations on the

PFS during their checkpointing. Specifically, an application

can use PFS-delegation to reserve a chunk of the parallel

storage space for checkpointing and it can then manage and

access the checkpoints in its reserved space without

involving the PFS metadata servers. In this way, the

amount of PFS metadata operations incurred during the

checkpointing is minimized regardless of how many

processes are involved and regardless of how many

checkpoints are performed.

The proposed PFS-delegation technique is prototyped on

PVFS2, a widely used PFS implementation. It is evaluated

in a cluster environment with four PVFS2 servers and up to

128 parallel processes using a representative parallel I/O

benchmark, IOR (v2.10.2) [1]. The results show that the

PFS-delegation based checkpointing is significantly faster

than the traditional shared-file and file-per-process based

checkpointing methods. When the underlying PVFS2 uses

a centralized metadata server, the speedup is 7% versus

shared-file and 10% versus file-per-process; when using

distributed metadata servers, the speedup is 22% and 31%

respectively. The results also demonstrate substantial

reductions on the number of metadata operations handled

by the metadata servers during the checkpointing.

The rest of this paper is organized as follows. Section II

introduces the background, Section III describes the overall

architecture, Section IV presents the implementation details,

Section V discusses the experimental evaluation, Section

VI examines the related work, Section VII offers additional

discussions, and Section VIII concludes the paper.

II. BACKGROUND

In a typical HPC system, data are managed and

provisioned through a parallel file system (PFS), which

supports high-performance parallel I/O for applications to

access their data on the storage devices. The PFS provides

the bridge between the computing infrastructure (compute

nodes) and the storage infrastructure (storage networks and

devices), which are typically connected through a high-

speed communications network (e.g., Gigabit Ethernet,

Infiniband, Myrinet).

A modern PFS (e.g., GPFS [2], PVFS [3], Lustre [4],

IBRIX [5], and Panasas [6]) typically consists of clients,

data servers, and metadata servers. In a HPC system, the

PFS clients often run on the compute nodes and provide the

interface to the storage system which is managed by the

metadata and data servers. A metadata server stores the

meta-information about files, including file naming,

directory hierarchy, data distribution, access permissions,

and file locking. The data of files are stored through data

servers, which are connected to the storage devices through

either direct links or a shared storage-area network (SAN).

The data layout of a file specifies how the data is

distributed on a list of servers using algorithms such as

round robin and random.

File accesses typically first go through the metadata

server to obtain the appropriate access permission and the

data layout on the data servers. A large read or write on the

file is usually striped across multiple data servers to

achieve high throughput via I/O parallelism. Because

centralized metadata management can become a bottleneck

for metadata access, some PFS also employ multiple

metadata servers [2][4] or completely distribute the

metadata management along with the data servers [5]. PFS

clients often cache the retrieved metadata (and in some

cases, data) locally to further reduce the overhead from

metadata (and data) accesses.

Application-initiated checkpointing is a major source of

I/O traffic in a HPC system, which is estimated to account

for about 80% of the I/O usage in today’s HPC systems [7].

To a storage system, checkpointing is often treated in the

same way as other types of I/Os such as regular application

computation inputs and outputs. It, however, has specific

and unique I/O characteristics. First, checkpointing is

mainly large sequential writes and the use of checkpoint

data is also often sequential reads. Small, random reads and

writes are rare in accessing checkpointing data. Second,

checkpointing I/Os issued by different applications and

different parallel processes of the same application are

highly independent. There is typically no sharing of the

checkpointing data. Third, checkpointing I/O is highly

bursty. A parallel application typically synchronizes its

checkpointing operation across all of its parallel processes.

At the checkpointing time, a large volume of I/Os flow

from the computing nodes to the storage infrastructure

simultaneously.

Future large-scale HPC applications will employ

hundreds of thousands to millions of processors which will

generate a tremendous amount of concurrent accesses to

checkpoints on a PFS. The challenge to scalability arises

from this need of accessing a large number of checkpoints

simultaneously from all the compute nodes. Traditionally,

an HPC application’s parallel processes checkpoint their

data on the PFS either via a shared file (a.k.a., N-1 access

pattern), where all processes write to the same shared file,

or using a different file per process (a.k.a., N-N access

pattern), where each process writes to a different file [8]. In

the case of N-1 access pattern, there exist two variations, N-

1 segmented, where each process writes its data to a

separate sequential region of the shared file, and N-1

strided, where all process write to the same set of regions

of the shared file but each process writes a different part of

these regions [13].

With the shared-file approach, a single file’s metadata

are shared among a large number of clients, which can

become a bottleneck when accessed by a large number of

checkpointing applications simultaneously. The file-per-

process approach can eliminate this bottleneck; however,

the creation and use of hundreds of thousands to millions of

files, typically within the same directory, on the PFS

introduces significant overhead in metadata management

[9][10]. In practice, the N-1 strided access pattern is found

more convenient by users and hence is more commonly

used than the N-1 segmented access pattern and the N-N

access pattern [13]. However, the N-1 strided access pattern

can be much less efficient than the other patterns because it

requires concurrent accesses to the same regions in the

shared file which often have to be serialized on the

underlying storage.

Typical PFSs are designed for general-purpose usage

and cannot differentiate checkpointing I/Os from others. As

a result, such a PFS is unable to recognize the unique I/O

characteristics and needs of checkpointing in order to

reduce unnecessary cost and improve its performance.

Specifically, there is no need to maintain synchronization

across different processes on the checkpoint data, since the

data are not shared by the processes. It is unnecessary to

use client-side caching as applications rarely immediately

read back their checkpoints (it only happens during the

recovery procedure after a compute node failure). Hence,

there is also no need to maintain consistency between the

client-side caches and server-side storage. On the other

hand, optimization is necessary for the PFS to support the

challenging I/Os from simultaneous checkpointing by large

numbers of parallel processes. In particular, the overhead of

PFS metadata management needs to be improved, no

matter whether the parallel checkpointing is done in a

shared-file or file-per-process manner. This specific

problem is addressed by the PFS-delegation technique

proposed in this paper in order to support scalable

checkpointing.

III. ARCHITECTURE

We propose PFS-delegation to offload the management

of portions of the PFS storage space to applications to

relieve metadata management bottleneck at the PFS (Figure

1). PFS-delegation pre-allocates a certain region of the

parallel storage space to each parallel application for its

processes to store checkpoints. This pre-allocated space is

striped across the PFS data servers. To the PFS, it appears

as merely a single logical file, whereas the management of

checkpoints inside of this file, including naming and data

layouts, is entirely delegated to the application with the

support from PFS-delegation. In this way, the application’s

use of possibly large numbers of processes and checkpoints

in its delegated space is completely hidden from the PFS,

whereas the metadata management on the PFS is incurred

for only a single logical file.

With PFS-delegation, an application partitions the

delegated storage space across all the processes for them to

access checkpoints in parallel. For writing a checkpoint,

each process flushes out its data sequentially in its portion

of the delegated space which is then striped across the

involved data servers; for loading a checkpoint, each

process also reads the data sequentially from the data

servers in parallel. The size of the delegated storage space

can be determined based on both the storage needs of the

application and the allocation policy of the system. When

an application uses up its allocated space, it will roll over to

the beginning of the space for storing new checkpoints.

PFS-delegation can be conceivably implemented using

two complementary approaches with different levels of

transparency to the underlying PFS. In the first approach,

PFS-delegation leverages the existing interface of the PFS

to realize delegation and only requests the creation of the

necessary logical file from the metadata servers. This

approach can be made entirely transparent to the underlying

PFS and thereby supports different PFS deployments

without modifications. But its effectiveness may be limited

by the PFS protocol’s restrictions. For example, the PFS

may not support efficient reservation of a large chunk of

storage space. Alternatively, PFS-delegation can be also

implemented by extending existing PFS protocols to

provide additional API for checkpointing applications to

directly request storage space allocation and delegation. In

this paper, we focus on an implementation based on the

first approach.

IV. IMPLEMENTATION

As a proof-of-concept, we have implemented PFS-

delegation upon Parallel Virtual File System 2 (PVFS2) [2],

a widely-used open-source PFS implementation, in order to

support scalable application checkpointing. Specifically,

the implementation of PFS-delegation entails two

components: first, reserve the storage space to be delegated

to an application on the involved data servers of the PFS;

second, provide the application full read and write access to

the delegated space on the PFS.

A. Reserving Delegated Storage Space

The reservation process is made by creating one large

logical file across the PVFS2 data servers. The layout of

this file determines which data servers will be involved to

Figure 1. Architecture of PFS-delegation

…
Compute Nodes

Metadata Servers Data Servers

… …
DELEGATED SPACE

3. Read/write of checkpoints

Application

MPI-IO

PFS-Delegation

Metadata table

Process 1’s
checkpoint space

Process 2’s
checkpoint space

Process n’s
checkpoint space

…

Layers involved in
parallel I/Os on
compute nodes

Structure of the
delegated space
on data servers

provide the reserved storage space. The size of this file

determines the size of the reserved space. This reservation

process is executed only once per application, before the

application starts checkpointing, using a command-line

management utility pfs-reserve. The size of the reserved

space should be determined by considering three different

factors: the size of a checkpoint, the number of checkpoints

to preserve, and the storage space allocation policy. Based

on the understanding of an application’s behavior, we could

estimate how much space an application needs to reserve.

But the actual reservation might be constrained by the

storage space availability based on the understanding of the

storage allocation policy.

The layout of the delegated space can be specified in the

same way as defining a regular file’s layout in MPI-IO.

PFS-delegation uses the MPI-IO interface and the relevant

hints to specify the data layout for the delegated space as

follows.

A set of data servers is used to allocate the delegated

PFS storage space, which is defined by the MPI_Info

striping_fator. In the data layout we can also specify the

stripe size by MPI_Info striping_unit. In the PVFS2-based

implementation, the distribution of the logical file that

represents the delegated space on the data servers is

distributed using a simple-stripe scheme. It divides the

logical file’s data into stripes of 64KB which are mapped

into the data files across the data servers in a round robin

manner.

To make sure that the reserved space is available on the

data servers, a naïve approach could simply populate the

reserved space with blank data. However, this approach

would incur substantial overhead when creating the

reserved space, although it is only a one-time overhead.

More efficient approaches are possible if the underlying

PFS supports space reservation on the data servers without

actually populating the data. Specifically, on PVFS2,

because it is layered on top of the local file systems of the

data servers, we leverage the support of sparse files of these

file systems to implement efficient space reservation. To

reserve a chunk of space on a PVFS2 data server we need

to write only the last byte of the corresponding datafile. In

this way we will have a datafile with the desired size

without populating it with any data. PVFS2 would treat this

file in the same way as other regular files whereas its

internal data organization is managed by the PFS-

delegation. By doing this on each data server, we will be

able to create an empty logical file with the desired size to

represent the reserved space.

However, we recognize that the use of sparse files does

not really reserve the space from the file system and the

storage can be out of space before a sparse file reaches its

claimed size. To avoid such a problem the reservation can

be done using the fallocate method which preallocates

blocks to a file by marking them as unitialized and

guarantees that the space is allocated to the file. On PFSs

that support fallocate (e.g., GPFS [2]), this method can be

directly used to reserve space on the parallel storage. For

PVFS2, if the underlying local file systems (e.g., EXT4)

support fallocate, then this method can also be used to

reserve space on each data server individually. In this way,

PFS-delegation can both support fast reservation and

guarantee that the total reserved space will always be

available for checkpointing.

After the delegated space is successfully reserved on the

underlying PFS, it is partitioned internally based on the

number of parallel processes of the application so that

every single process has a portion in the delegated space to

write the checkpointing data. The information about this

partitioning together with the assignment to the processes is

stored in a metadata table structure. Because this structure

is critical to understand the data organization of the

delegated space, it needs to be available to the application

at any time. PFS-delegation uses a small portion of storage

at the beginning of the delegated space to persistently store

this information. In this way, if an application fails, in order

to start the recovery process it needs to first read this

metadata table to locate the checkpoints stored in the

reserved space and then read them back. The structure of

this metadata table is as follows.

The metadata information consists of four fields. The

first two offset_start and offset_end refer to the offsets that

define a portion of the reserved space that is dedicated to a

specific client. These two fields are set when the delegated

space is created. The third field offset_next corresponds to

the offset where the next checkpoint should be written to.

The last field revision indicates the current revision number.

Note that in this metadata table example, we assume that

each checkpoint from the same application is of the same

size. To support checkpoints of different sizes, the metadata

table needs to also track the offsets of individual

MPI_Info info;
MPI_Info_create(&info);

/* number of servers to be used for reservation */
MPI_Info_set(info, "striping_factor", "4");

/* the striping unit in bytes */
MPI_Info_set(info, "striping_unit", "65536");

/* the logical file representing delegated space */
MPI_File_open(MPI_COMM_WORLD, "/pfs/checkpoint",

MPI_MODE_CREATE | PI_MODE_RDWR, info, &fh);

struct metadata_table
{
 PFS_offset offset_start;
 PFS_offset offset_end;
 PFS_offset offset_next;
 int revision;
};

checkpoints stored in the application’s delegated space. The

metadata table can be further extended to track per-process

data size so that we can also support the case where each

parallel process of the application produces a different

amount of data in the checkpoint, which happens when the

application does incremental checkpointing.

B. Accessing Checkpoints in Delegated Space

PFS-delegation provides an interface for parallel

applications to write/read checkpointing data to/from the

delegated space. This interface is in addition to the typical

interfaces such as MPI-IO [16] that an application uses to

access regular files on a PFS. PFS-delegation itself also

makes use of MPI-IO for creating and accessing the

reserved space on a PFS. Therefore, it is transparent to the

underlying PFS but not to the application which uses it for

checkpointing. However, this interface is concise and easy

to use and it would not affect how an application accesses

other files outside of the delegated space. The provided

functions in this interface are listed as follows.

The above functions are all that an application needs in

order to access the checkpoints in its delegated space.

Specifically, the PFS_write_file function is used for

performing the writes of a checkpoint on the delegated

space; the PFS_read_file function is used for reading the

last valid checkpoint from the delegated space; and the

PFS_read_file_revision function is used for reading a

specific past checkpoint stored in the delegated space.

Internally in PFS-delegation, the above functions are

implemented as follows. To write a checkpoint in the

delegated space, PFS-delegation needs to first read the

metadata table and look for the offset where the application

should write to. Then it uses the MPI-IO function to

perform the writes and after the writing is completed PFS-

delegation also needs to update the information in the

metadata table accordingly, including the revision number

and the offset. Note that only one process (specifically, the

one with the MPI rank 0) of the application needs to

perform the lookup and update of the metadata table so

access to the metadata table would not become a bottleneck.

If a failure occurs while performing a checkpoint operation,

the offset would not be updated and the previous

checkpoint would still be the latest valid checkpoint in the

delegated space. On the other hand, to read from a

checkpoint in the delegated space, PFS-delegation needs to

first get the corresponding offset from the metadata table

using a single process and then read the checkpoint data

using MPI-IO in parallel.

 In order to deal with inconsistencies between the

metadata table and checkpoint data possibly caused by

failures during writing, PFS-delegation can employ typical

techniques such as checksum. Every time a checkpoint is

executed, to guarantee that it is completed the metadata

update is done at the end and a checksum is automatically

calculated and saved together with the new metadata in the

table. During the recovery, before reading the last

checkpoint, the corresponding checksum is first read from

the metadata table in order to validate that the data is not

corrupted.

V. EVALUATION

A. Experiment Setup

The experiment testbed is built with a set of physical

machines hosted on a cluster of eleven DELL PowerEdge

2970 servers. The cluster is connected by a Gigabit

Ethernet and each node has two six-core 2.4GHz Opteron

CPUs, 32GB of RAM, and one 500GB 7.2K RPM SAS

disk. All physical machines run 2.6.24-16-server kernel in

Ubuntu 8.0.4. PVFS2 is set up on these machines, four of

which acting as PVFS2 data/metadata servers and the

others as clients running parallel applications. The PVFS2

servers all use EXT3 as the local file system.

The experiments study the performance of the three

checkpointing methods, shared-file, file-per-process, and

PFS-delegation, in order to investigate whether the

proposed PFS-delegation can improve large-scale

application checkpointing. Shared-file based checkpointing

(using N-1 segmented access pattern) saves the checkpoints

of all the processes in a single shared file; file-per-process

based checkpointing saves the checkpoint of each process

into a separated file; PFS-delegation saves all the

checkpoints from all processes in the delegated storage

space on the PFS.

IOR (v2.10.2) [1] is chosen as the benchmark which

uses MPI-IO to generate large sequential writes and

simulate the typical checkpointing I/O patterns in HPC

applications. IOR inherently supports checkpointing using

shared-file with N-1 segmented pattern and file-per-process

N-N pattern. As discussed in Section II, N-1 strided pattern

is more commonly used by applications for checkpointing,

although its performance is typically worse than the other

patterns [13]. In our future work we will also evaluate PFS-

delegation against N-1 strided, but it is reasonable to

believe that PFS-delegation would outperform N-1 strided

if it outperforms N-1 segmented.

The original IOR code was augmented in order to use

the PFS-delegation interface to perform checkpointing. We

use IOR to do nine consecutive checkpoints from all

parallel processes, each process generating 20MB of data

with a single write. A delay of two minutes is included

size_t PFS_write_file (void *buffer, size_t count,
struct options *opt);

size_t PFS_read_file (void *buffer, size_t count,

struct options *opt);

size_t PFS_read_file_revision (void *buffer, size_t

count, struct options *opt,int revision);

between two consecutive checkpoints in order for the

writes to be completely flushed before the new checkpoint.

We considered two different typical setups of PFS

metadata servers, Centralized Metadata Server, which uses

one server dedicated as metadata server and three as data

servers, and Distributed Metadata Servers, in which each

of the four PFS servers act as both metadata server and data

server. The number of parallel IOR processes scale from 16

to 128 for both configurations.

B. Centralized Metadata Server

Figure 2 shows the checkpointing time for the

centralized metadata server setup using the three different

checkpointing methods. The data reported are the average

times and standard deviations across all IOR parallel

processes and across nine consecutive checkpoints. The

results show that when the number of processes is small

(less than 64), the performance of the different

checkpointing methods is similar. However, when the

number of checkpointing parallel processes reaches 128,

PFS-delegation based checkpointing is evidently faster than

both the other two methods (7% faster than shared-file and

10% faster than file-per-process).

To understand the advantage of PFS-delegation based

checkpointing, we also measure the number of metadata

operations involved during the checkpointing by tracking

the relevant PVFS2 messages on the metadata servers.

Specifically, these PVFS2 messages include GETATTR,

which is used to get file attributes; CREATE, which is used

for file creation; LOOKUP, which is used for looking up

the directory entry of a file; and CRDIRENT, which is used

to create the directory entry for a new file.

Figure 3 shows the total number of metadata messages

captured during a nine-checkpoints run by 16 to 128

parallel processes. The results show that PFS-delegation

based checkpointing can substantially reduce the volume of

metadata operations. The total number of metadata

messages for PFS delegation is always only 20% of that for

share-file and 30% of file-per-process, regardless of the

number of parallel processes. The absolute difference is

even more drastic when the number of processes is high.

With 128 checkpointing processes, the number of metadata

operations is reduced by 1053 messages when compared to

shared-file and 3875 messages when compared to file-per-

process.

Noticed that the advantage of PFS-delegation in terms of

runtime is not as significant as in terms of the number of

metadata operations, which is because of two factors. First,

the checkpointing runtime is dominated by data operations

rather than metadata operation. Consequently, the runtime

is not affected much even though the number of metadata

operations is substantially reduced by using PFS-delegation.

Second, the metadata server’s CPU utilization is low during

the experiments, which is in fact around 1% most of the

time. Therefore, even though shared-file and file-per-

process require much more metadata operations, the

metadata sever is able to handle them in time without

affecting the application’s runtime.

To further examine the reduction of metadata operations

in PFS-delegation, we break down the numbers of different

Figure 2. Checkpointing time with centralized

metadata server

Figure 3. Total number of metadata operations with

centralized metadata server

Figure 4. Different metadata operations with 128

processes and centralized metadata server

0

2

4

6

8

10

12

14

16

18

20

16 32 64 128

R
u

n
ti

m
e

 (S
e

cc
o

n
d

s)

Number of Clients

PFS-Delegation

Shared-File

File-Per-Process

33 65 129
257188

348

669

1310

608

1034

2376

4132

16 32 64 128

N
u

m
b

e
r

o
f

M
e

ss
ag

e
s

Number of Clients

PFS-Delegation

Shared-File

File-Per-Process

128 128

0 1 0

128

1146

9 18 9

128

918

1122

813

1152

GETCONFIG GETATTR CREATE LOOKUP CRDIRENT

N
u

m
b

e
r

o
f

M
e

ss
ag

e
s

Metadata Operations

PFS-Delegation

Shared-File

File-Per-Process

relevant PVFS2 messages in Figure 4 when the number of

checkpointing processes is 128. Here we can see that the

number of GETATTR operations used in PFS-delegation is

much less than the other two methods because the attributes

of the logical file representing the delegated space remain

the same during all checkpointing operations. Shared-file,

file-per-process and PFS-delegation perform a GETATTR

operations each time that is going to perform create, write

and read operations, these operations are necessary to get

information about the parent directory or file where the

writes are going to be performed, depending on the mode

that is being used the number of such operations can vary

by a significant amount. For the other metadata operations,

CREATE, LOOKUP, and CRDIRENT, we can see that file-

per-process involves much more of these operations than

shared-file and PFS-delegation, because it has to deal with

a large number of checkpoint files, while only a few files

need to be created for shared- file and no file needs to be

created for PFS-delegation (assuming the delegated space

is already reserved on the PFS).

C. Distributed Metadata Server

Figure 5 shows the checkpointing time for the

distributed metadata server setup with the three different

checkpoint methods. In this setup, PFS-delegation starts to

outperform shared-file and file-per-process with 64

concurrent checkpointing processes. Specifically, it is 14%

faster than shared-file and 31% faster than file-per-process.

When the number of checkpointing processes reaches 128,

the improvement is even more significant, in which PFS-

delegation outperforms shared-file by 22% and file-per-

process by 31%.

Figure 6 shows the total number of metadata messages

captured during nine-checkpoints run on all the four

metadata servers. These numbers are much higher than the

centralized metadata server setup because now metadata

operations need to be performed on all four PVFS2 servers.

Nonetheless, the total number of metadata operations in

PFS-delegation is still only 20% of shared-file and 10% of

file-per-process with different numbers of checkpointing

processes. Figure 7 shows the numbers of different relevant

PVFS2 messages when the number of checkpointing

processes is 128. We can make a similar observation as in

the centralized metadata server setup: the number of

GETATTR operations in PFS-delegation is much less than

in shared-file and file-per-process, while the numbers of

CREATE, LOOKUP, and CRDIRENT operations are much

less than file-per-process.

In our experiments the distributed metadata servers are

co-located with the data servers, which may cause the

metadata operations to be slowed down by the data

operations. Therefore, the performance from using shared-

file and file-per-process based checkpointing may be better

if the metadata servers can be hosted on dedicated nodes,

separately from the data servers. However, the number of

metadata operations would still remain the same even with

dedicated, distributed metadata servers. Therefore, it is

reasonable to believe that PFS-delegation would still

outperform shared-file and file-per-process in this case.

Figure 5. Checkpointing time with distributed

metadata servers

Figure 6. Total number of metadata operations with

distributed metadata servers

Figure 7. Different metadata operations with 128

processes and distributed metadata servers

0

2

4

6

8

10

12

14

16

16 32 64 128

R
u

n
ti

m
e

 (S
e

cc
o

n
d

s)

Number of Clients

PFS-Delegation

Shared-File

File-Per-Process

81 161 321
641563 733

2397

3667

1008

2016

3830

8114

16 32 64 128

N
u

m
b

e
r

o
f

M
e

ss
ag

e
s

Number of Clients

PFS-Delegation

Shared-File

File-Per-Process

640

128
0 1 0

640

3119

9 18 9

640

4500

1152

798

1152

GETCONFIG GETATTR CREATE LOOKUP CRDIRENT

N
u

m
b

e
r

o
f

M
e

ss
ag

e
s

Metadata Operations

PFS-Delegation

Shared-File

File-Per-Process

VI. RELATED WORK

Oldfield et al. also recognized the limitations of general-

purpose PFSs and the need for application-specific

optimizations on parallel file access. They proposed the

idea of a light-weight file system (LWFS) which does not

provide many traditional PFS services, such as naming,

consistency, and directory structures [9][10][15]. Instead,

the LWFS only provides clients with direct and secure

access to the storage, and other high-level services needed

by applications can be included as libraries. The use of

LWFS to support scientific applications is specifically

studied in the context of checkpointing, which enables

applications to skip the unnecessary metadata management

and create and dump process state to storage efficiently.

LWFS allows applications to implement additional

features on their own or through libraries, but its

deployment requires the replacement of existing PFS

deployments in HPC systems. Because such systems have

spent considerable investments in purchasing, deploying,

and fine-tuning their PFS setups, it is difficult to test and

adopt a completely new PFS on the existing infrastructure.

In comparison, this paper proposes to extend contemporary

PFS implementations to support efficient metadata

management for large-scale checkpointing. The proposed

PFS-delegation technique is either transparent or requiring

minimal modifications to the existing PFSs. Therefore, this

paper’s approach is complementary to LWFS as they are

suited for different usage scenarios.

Google file system (GFS) is a special file system

designed for workloads that have many large, sequential

appending-only writes. It also strips away many

unnecessary traditional file system services and only

provides clients with flat namespace and relaxed

consistency, and without client-side caching [11].

Nonetheless, GFS is only applicable to a specific set of

applications that have similar characteristics as Google

search and it cannot satisfy the needs of a wide variety of

HPC applications. The technique proposed in this paper is

applicable to different applications by leveraging typical

PFSs widely used in HPC systems.

Another closely related work is the Parallel Log

Structured File System (PLFS) [13][14], which proposes to

improve the performance of an application’s N-1 strided

checkpointing by mapping this access pattern to the N-N

access pattern through an interposition layer between the

application and PFS. However, in order to realize the

mapping, PLFS requires creating a large number of

directories and files to rearrange the data belonging to the

application-perceived N-1 checkpoint file. These operations

can result in many metadata accesses such as directory

creation, file creation, and setting attributes, thereby

causing substantial metadata management overhead. In

comparison, on one hand, PFS-delegation does not need the

N-1-to-N-N mapping because it uses N-1 segmented access

pattern which does not have the performance problems that

N-1 strided has [13]. On the other hand, PFS-delegation

reduces the total number of metadata operations by using

only a single file for an application’s entire reserved space

and to store all of its checkpointing data. Hence it is

reasonable to expect PFS-delegation to have much less

overhead in metadata management.

PLFS implements access pattern mapping transparently

to applications by providing a MPI-IO driver called ad_plfs

and supports the same MPI-IO interface that applications

typically use for parallel I/Os. Alternatively, PLFS also

allows applications to use it through the POSIX interface

without modifications by using FUSE [30] to implement its

mapping at user space. Although PFS-delegation currently

requires applications to be modified to use special APIs for

checkpointing, it is conceivable that it can also take

advantage of these techniques to make its use completely

transparent to the applications.

In addition, there are other I/O mapping techniques in

the related work for improving application checkpointing

performance on a PFS such as Lustre [12] and GPFS [2].

For example, a library can be used to redirect the

checkpointing I/Os in a way that each client only

communicates with a single server. Such a data mapping

technique is complementary to the metadata management

issue tackled by this paper and it can also be easily

incorporated into the PFS-delegation implementation.

There is also related work on reducing the checkpointing

overhead through various approaches. The checkpointing-

to-memory approach [27] proposes to reduce the

application execution time associated with checkpointing

operations by saving the checkpoint data in the memory of

a different node. The copy-on-write checkpointing

algorithms [22][23] reduce the overhead by buffering the

checkpointing data to a separate address space via virtual

memory, allowing the application’s execution to continue

while the data is flushed to stable storage. Another

approach to buffering the checkpointing data is using the

storage on a fast overlay network [21][24], allowing

applications to quickly move the performance-limiting I/Os

off the compute nodes. Incremental checkpointing [19]

intends to reduce the size of checkpoint data by saving only

the memory that has been touched since the last checkpoint

operation.

Finally, there are several checkpointing models

proposed in the literature which try to define the optimal

checkpointing interval based on various parameters. One of

them is a first order model that defines the optimal

checkpointing interval in terms of checkpointing overhead

and mean time to interrupt [28]. A different model

proposed more recently also considers failures occurred

during checkpointing and recovery [26]. There are also

models that include bandwidth and computation time as

parameters to calculate the optimal checkpointing interval

[23][25].

VII. DISCUSSIONS

This paper proposes a new approach to address metadata

management overhead and support scalable checkpointing

in large HPC systems. The main limitation of our current

prototype implementation is that it requires applications to

be modified to use the new checkpointing APIs, although

this new interface is concise and convenient to use. In our

future work we will provide PFS-delegation transparently

to applications by implementing it as a new MPI-IO driver

and presenting the unmodified MPI-IO interface. In this

way, an application can perform their preferred N-1 or N-N

checkpointing without any change, while PFS-delegation

automatically maps the application’s I/Os to its perceived

checkpoint files to the I/Os to the single delegated space.

As discussed in Section VI, this method of achieving

application transparency is the same as the related work on

PLFS [13]. We will in fact investigate the possibility of

implementing PFS-delegation upon the PLFS code base.

However, PFS-delegation can have much lower metadata

management because of its use of single delegated space

for storing all checkpointing data instead of using many

separate files. We also believe that our current experiment

results would still hold for this new application-transparent

PFS-delegation implementation, because it does not change

the interactions with the underlying PFS metadata servers

or the internal management of the delegated space.

Our current implementation also requires users to use a

special utility for offline reading a specific checkpoint from

the delegated space. Such a utility is necessary because it

needs to interpret the metadata table, locate the offset of the

checkpoint in the delegated space, and then retrieve the

desired data. In our future work we will implement the

internal structure of a delegated space using technologies

such as netCDF [18] and HDF5 [18] which provide self-

describing, machine-independent data formats. For

example, we can represent the metadata table structure with

a netCDF data model. In this way, users can conveniently

access the checkpoint data offline using the widely used

netCDF or HDF5 tools to automatically interpret data in the

delegated space.

As discussed in Section II, the use of synchronization in

PFSs can be a performance bottleneck for checkpointing

which in fact does not involve any data sharing. PFS-

delegation can also address this problem by eliminating the

use of locking when accessing checkpoints in the delegated

space. However, this improvement is not reflected in our

PVFS2-based evaluation, because PVFS2 does not support

locking at all, due to the exact same scalability concern.

Nonetheless, locking is still widely used in other PFSs in

order to support full application semantics. In our ongoing

work, we are extending our PFS-delegation implementation

to support such PFSs (e.g., Lustre [4]) and conducting a

more comprehensive evaluation on the potential benefits of

the PFS-delegation approach.

The PFS-delegation approach proposed in this paper is

generally applicable to different applications. A special

application worth mentioning is the Software Persistent

Memory (SoftPM) [29], a lightweight facility proposed for

HPC applications to conveniently manage persistent data.

SoftPM presents a persistent memory interface to

applications which allows them to allocate persistent

memory in the same way as allocating volatile memory and

to easily restore, browse, and interact with past versions of

persistent memory state. Internally, SoftPM implements the

persistent memory upon the underlying storage system,

recognizing and leveraging its characteristics to realize

persistency and optimize performance. When SoftPM uses

parallel storage as the backend, it can make use of PFS-

delegation for saving and loading persistent data and

achieving good performance with large scale.

In our experiments we have resources to run only up to

128 clients and 4 servers at the same time, but we expect to

see the same level of advantage from PFS-delegation when

the number of clients and servers scale up proportionally in

a larger HPC system. In our future work we will try to

evaluate our solution in a real production HPC system that

has much larger scale that our testbed.

VIII. CONCLUSIONS

This paper presents a new technique, PFS-delegation,

for addressing the metadata management overhead in large-

scale application checkpointing. It allows an application to

reserve a chunk of the PFS storage space for storing

checkpoints and then delegates the management of these

checkpoints completely to the application. In this way, the

overhead of metadata management perceived by the PFS

for the application’s checkpointing can be drastically

reduced to the level of a single logical file, regardless how

many processes are involved and how many checkpoints

are performed. This technique is a step towards supporting

scalable application checkpointing in large HPC systems,

which is critical to both the reliability and performance of

these applications.

The proposed PFS-delegation is implemented as a

library upon MPI-IO. It can support different PFSs without

changing their code or existing deployments. It requires

only small modification of an application for it to use the

PFS-delegation interface. A prototype of this technique is

developed upon a widely used PFS, PVFS2, and evaluated

with experiments using a typical HPC I/O benchmark, IOR.

Results show that the PFS-delegation based checkpointing

significantly outperforms the shared-file and file-per-

process based checkpointing in terms of both the

application runtime and the load of metadata operations.

ACKNOWLEDGMENT

This research is sponsored by National Science

Foundation under grant CCF-0938045 and Department of

Homeland Security under grant 2010-ST-062-000039. The

authors are also thankful to the anonymous reviewers for

their useful comments. Any opinions, findings and

conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the

views of the sponsors.

REFERENCES

[1] H. Shan and J. Shalf, “Using IOR to Analyze the I/O

Performance of HPC platforms”, in Cray Users Group

Meeting, May 2007.

[2] F. Schmuck and R. Haskin, “GPFS: A Shared-disk File

System for Large Computing Clusters”, in Proc. of the

USENIX Conference on File and Storage Technologies,

2002.

[3] Parallel Virtual File System, version 2, URL:

http://www.pvfs.org/pvfs2

[4] “Lustre File System: High-Performance Storage Architecture

and Scalable Cluster File System”, Sun Microsystems White

Paper, October 2008.

[5] IBRIX Fusion, URL:

http://www.ibrix.com/productsoverview.

[6] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J.

Small, J. Zelenka, and B. Zhou, “Scalable Performance of the

Panasas Parallel File System”, in Proc. of the USENIX

Conference on File and Storage Technologies, February 2008.

[7] K. Davis and F. Petrini, “Tutorial: Achieving Usability and

Efficiency in Large-Scale Parallel Computing Systems”, in

Proc. European Conference on Parallel Computing, August

2004.

[8] J. Borrill, L. Oliker, J. Shalf, and H. Shan, “Investigation of

Leading HPC I/O Performance Using a Scientific

Application Derived Benchmark”, in Proc. of the ACM/IEEE

Conference on Supercomputing, 2007.

[9] R. A. Oldfield, “Investigating Lightweight Storage and

Overlay Networks for Fault Tolerance”, in Proc. of the High

Availability and Performance Computing Workshop,

October 2006.

[10] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam, M. R.

Varela, R. Riesen, and P. C. Roth, “Modeling the Impact of

Checkpoints on Next-Generation Systems”, in Proc. Of

Conference of Mass Storage System and Technologies, 2007.

[11] S. Ghemawat, H. Gobioff, and S. Leung, “The Google File

System”, in Proc. Symposium on Operating Systems

Principles, October 2003.

[12] P. Dickens and J. Logan, “A high performance

implementation of MPI-IO for a Lustre file System

environment”, in Concurrency Computation Practice and

Experience journal, 2009.

[13] J. Bent, H. Chen, D. Gunter, G. Grider, S. Gutierrez, A.

Manzanares, B. McClelland, D. Montoya, J. Nunez, A.

Torrez, M. Wingate, G. Gibson, M. Polte, and P.

Nowoczinski, “PLFS: A Checkpoint filesystem for Parallel

Applications”, in Proc. of Conference Supercomputing

System, 2009.

[14] J. Bent, H. Chen, D. Gunter, G. Grider, S. Gutierrez, A.

Manzanares, B. McClelland, D. Montoya, J. Nunez, A.

Torrez, M. Wingate, G. Gibson, M. Polte, and P.

Nowoczinski, “PLFS Update presentation. Presentation on

HEC-FSIO”, 2010.

[15] L. W. Author, R. A. Oldfield, and R. Riesen, “Lightweight

I/O for Scientific Applications”, in Proc. of Conference on

cluster computing of IEEEE International, 2006.

[16] MPI-IO Library, URL:

http://www.mcs.anl.gov/research/projects/mpich2/.

[17] netCDF (network Common Data Form), URL:

http://www.unidata.ucar.edu/software/netcdf/.

[18] HDF5 (Hierarchical Data Format), URL:

http://www.hdfgroup.org/HDF.

[19] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira,

“Adaptive incremental checkpointing for massively parallel

systems”, in Proc. of the 18th Annual International

Conference on Supercomputing, New York, NY, 2004. ACM

Press.

[20] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The

performance of consistent check pointing”, in Proc. of the

11th Symposium on Reliable Distributed Systems, Houston,

TX, October 1992, IEEE Computer Society Press.

[21] A. Gavrilovska, K. Schwan, O. Nordstrom, and H. Seifu,

“Network processors as building blocks in overlay networks”,

in Proc. of the 1th Symposium on High Performance

Interconnects (HOTJ03), pages 83-88, August 2003.

[22] K. Li, J. S. Naughton, and J. S. Plank, “Low-latency,

concurrent checkpointing for parallel programs”, IEEE

Transactions on Parallel and Distributed Systems, 5(8):874-

879, August 1994.

[23] K. Pattabiraman, C. Vick, and A. Wood, “Modeling

coordinated checkpointing for large-scale supercomputers”,

in Proc. of the 2005 International Conference on Dependable

Systems and Networks (DSN'05) , pages 812-821,

Washington, DC, 2005. IEEE Computer Society.

[24] P. C. Roth, D. C. Arnold, and B. P. Miller, “MRNet: A

software-based multicast/reduction network for scalable

tools”, in Proc. of SC2003: High Performance Networking

and Computing, Pheonix, AZ, November 2003.

[25] R. Subramaniyan, R. S. Studham, and E. Grobelny,

“Optimization of checkpointing-related VO for high-

performance parallel and distributed computing”, in Proc. of

The International Conference on Parallel and Distributed

Processing Techniques and Applications, pages 937-943,

2006.

[26] N. H. Vaidya, “Impact of checkpoint latency on overhead

ratio of a checkpointing scheme”, IEEE Transactions on

Computers, 46(8):942-947, 1997.

[27] L. M. Silva and J. G. Silva, “An experimental study about

diskless checkpointing”, in Proc. of the 24th EUROMICRO

Conference vasteras, Sweden, August 1998.

[28] J. W. Young, “A first order approximation to the optimum

checkpoint interval”, Communications of the ACM, 1974.

[29] The Software Persistent Memory Project (SoftPM), URL:

http://dsrl.cs.fiu.edu/projects/softpm/start.

[30] FUSE: File System in User Space, URL:

http://fuse.sourceforge.net/.

[31] GPFS library, URL:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.

jsp?topic=%2Fcom.ibm.cluster.gpfs32.basicadm.doc%2Fbl1

adm_preallc.html.

