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Abstract—Big-data systems are increasingly important for 
solving the data-driven problems in many science domains 
including geosciences. However, existing big-data systems cannot 
support the self-describing data formats such as NetCDF which 
are commonly used by scientific communities for data distribution 
and sharing. This limitation presents a serious hurdle to the 
further adoption of big-data systems by science domains and 
prevents scientific users from leveraging these systems to improve 
their productivity. This paper presents a solution to this problem 
by enabling big-data systems to directly store and process 
scientific data. Specifically, it enables Hadoop to efficiently store 
NetCDF data on HDFS and process them in MapReduce using 
convenient APIs. It also enables Hive to support standard queries 
on NetCDF data, transparently to users. The paper also presents 
an evaluation of the proposed solution using several representative 
queries on a typical geoscientific dataset. The results show that the 
proposed approach achieves substantial speedup (up to 20 times) 
and space saving (83% reduction), compared to the traditional 
approach which has to convert NetCDF data to CSV format for 
Hadoop and Hive to use them. 

Keywords— Scientific data, big data, NetCDF, Hadoop 
I. INTRODUCTION 

Big data is an important computing paradigm increasingly 
used by many disciplines for knowledge discovery, decision 
making, and other data-driven tasks based on processing and 
analyzing large volumes of data. Big-data systems are typically 
built upon programming frameworks that can effectively 
express data parallelism and exploit data locality (e.g., 
MapReduce [1]) and storage systems that can provide high 
scalability and availability (e.g., Google File System [2], 
Hadoop HDFS [3]). A variety of high-level data services (e.g., 
BigTable [4], HBase [5], Hive [6]) can be further built upon 
such frameworks.   

Typical geoscience models have multi-scale physical 
processes. For example, climate and weather models have 
physical processes involving spatial resolutions from meters to 
miles and temporal resolutions from seconds to hours. With 
current high performance computing power, ultra-high-
resolution, long-time simulations are feasible with a few 
thousands of computer processors. Consequently huge amounts 
of data (easily over 100 TB) are produced. Big-data 
technologies are demanded to analyze the simulation outputs to 

address questions such as climate change and hurricane 
tracking. 

Scientific data are often stored in self-describing data 
formats (e.g., NetCDF [7], HDF5 [8]). Self-describing data are 
understandable to both human and machines, with which 
programs can use existing procedures to not only access but 
also convert and probe the data. Today observational data as 
well as simulation data of geosciences are being widely shared 
among peer research organizations and available for public. 
Therefore, self-describing data formats are crucial for enabling 
this kind of data distribution and sharing. 

However, big-data systems do not support these scientific 
data formats. For example, a NetCDF file loaded into HDFS as 
raw data cannot be processed by MapReduce applications. 
Consequently, scientific users who wish to use big-data 
computing for their applications often have to convert their data 
to a much more primitive data formats (e.g., Comma Separated 
Values (CSV)) which causes substantial time and space 
overhead. For instance, our results show that, to convert a 20GB 
NetCDF3 file to CSV, it requires 119GB disk space and 1.4 
hours on a commodity server. This overhead is even worse 
when considering that the data need to be replicated at least 
three times on a big-data system in order to tolerate failures. 
Therefore, lack of support for scientific data formats presents a 
serious hurdle to the further adoption of big-data technologies 
for data-driven sciences, including geosciences, and to the 
further improvement of scientific productivity in such domains. 

This paper presents an approach to addressing the above 
issue by enabling commonly used big-data systems to directly 
support the storage and analysis of scientific data stored using 
self-describing formats. First, we extend Hadoop, the most 
widely used big-data system to store NetCDF data on HDFS, 
and to allow MapReduce jobs to parse and process these data. 
We also optimize MapReduce to read variables of the NetCDF 
data in batch for much improved performance. Second, we 
extend Hive, a commonly used query-based big-data system to 
allow users conveniently using queries to process NetCDF data 
stored on HDFS. Our extensions are largely transparent to 
users. In MapReduce, our new APIs for processing NetCDF 
data are provided in the same fashion as the existing APIs for 
other data formats, and users can conveniently use them in their 
programs. In Hive, our handling of NetCDF data is completely 
transparent to users who can use standard HIVE SQL queries 
to easily process the data.  The first two authors contributed equally to this work. 
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We have developed a prototype of this approach based on 
Hadoop 2.5.2, Hive 1.2.0, and NetCDF3. Our prototype allows 
NetCDF3 data to be directly stored on HDFS and be directly 
used by MapReduce jobs and Hive queries. We have evaluated 
the performance of our approach using a typical geoscience 
dataset on a nine-node compute cluster. The results show that 
our approach is able to substantially improve both performance 
and disk space consumption compared to the traditional CSV-
based approach. It increases performance by up to 20 times and 
decreases the disk space usage by 83%.   

To the best of our knowledge, our work is the first to 
provide native support of widely used scientific data format on 
big-data systems. Related work [11] also considered the use of 
HDFS to store scientific data and MapReduce to implement 
array queries. But in its design MapReduce interacts with data 
via the scientific data model and loses control and knowledge 
of the physical data distribution, which causes performance 
problems due to the mismatch between the logical view and 
physical view of the data. In comparison, our approach enables 
big-data systems, including both MapReduce and Hive, to 
directly support scientific data and optimize task scheduling 
based on the physical data placement. Therefore, our approach 
allows users to conveniently and transparently use the existing 
big-data frameworks to process scientific data with good 
scalability. 

The rest of this paper is organized as follows. Section 2 
introduces the background and related work. Sections 3 
presents the design and implementation of our approach. 
Section 4 discusses the experimental evaluation results. Section 
5 concludes the paper and outlines the future work. 

II. BACKGROUND AND RELATED WORK 
A. Big-data Systems 

Typical big-data systems are built upon a highly scalable 
and available distributed storage system. For example, Google 
File System (GFS) [2] and its open-source version, Hadoop 
Distributed File System (HDFS) [3], provide fault tolerance 
while storing massive amounts of data on a large number of 
datanodes built with inexpensive commodity hardware; while 
MapReduce [1] applications are executed in a data-parallel 
fashion on the datanodes where their data are stored. High-level 
data services such as databases (e.g., BigTable [4], HBase [5], 
Hive [6]) can also be built upon such a big-data computing 
framework. 

When data are loaded into a big-data file system such as 
GFS and HDFS, they are split into large data blocks which are 
distributed across the datanodes in the system. Both the map 
and reduce phases of a MapReduce application can spawn large 
numbers of map and reduce tasks, depending on the size of the 
input, on the datanodes of a big-data system to process the data 
in parallel. To take advantage of data locality, which is key to 
the performance of MapReduce applications, the map tasks are 
preferably scheduled onto the datanodes that have the data 
blocks for them to process locally, thereby shipping computing 
to the data. Moreover, the data blocks on the big-data file 
system are typically replicated at least three times across the 

datanodes and across the racks of nodes in the system in order 
to tolerate node-level and rack-level failures. 

Big-data systems often support several common data 
formats for storing data on the systems. For example, Hadoop 
supports SequenceFile, NLine, KeyValue, FixedLength, etc. It 
provides libraries for MapReduce jobs to parse data stored 
using these formats on HDFS and process them in parallel 
based on the layout of the data across the datanodes. There are 
also other related libraries (e.g., Apache Parquet [12]) which 
support more complex data formats on Hadoop. However, 
because such big-data systems were originally not designed 
with scientific data in mind, they typically do not support the 
self-describing data formats commonly used by scientific data. 

While MapReduce makes it much easier to program for 
data parallelism, it is still an involved and time-consuming task. 
Therefore, many users prefer using high-level data services 
such as Hive to simplify the use of big-data systems for 
processing their data. Hive stays on top of Hadoop and enables 
users to process data stored in HDFS using common SQL 
queries. It transforms a query into a set of map and reduce tasks 
to be deployed on Hadoop, and returns the final result back to 
the user. 
B. Need of Support for Scientific Data Formats in Big-data 

Systems 
The de facto data formats used in many science domains, 

including geosciences, are the self-describing formats such as 
NetCDF [7] and HDF [8]. They provide a concise and efficient 
way of storing array-oriented scientific data in binary. They are 
self-describing and machine-independent, which means that the 
description of data is not only well-defined in machine-
understandable way but also meaningful to human and 
conforms to relevant conventions [8]. For scientific 
applications, geosciences in particular, a wide variety of named 
dimensions and variables have been frequently used. They 
share the usage of a large scientific user community. Existing 
conventions enable the cooperation and reuse of both standards 
and codes to transform, combine, analyze, and display specified 
fields of the data [7]. For example, the setting of grids and 
physical units for climate and weather simulations vary among 
different models. Self-describing data formats facilitate the 
sharing of climate and weather data.  NetCDF and HDF have 
been used in Earth System Grid [13]. The Earth System Grid 
Federation (ESGF) is an international collaboration with a 
current focus on serving the World Climate Research 
Programme’s (WCRP) Coupled Model Intercomparison 
Project (CMIP) and supporting climate and environmental 
sciences in general. 

Many science domains are increasingly data driven, 
requiring the processing of large amounts of simulation, 
experimental, and observational data for scientific discoveries. 
For example, the experimental data from Large Hardon 
Collider may provide better answers to the fundamental 
questions in physics; the observational data from the upcoming 
Large Synoptic Survey Telescope will provide greater insights 
into the structure of the Universe; and to improve the 
predictability of hurricane tracking, a large amount of real-time 
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sensor data from various types of instruments need to be 
processed and incorporated into forecasting models. 

 Therefore, big-data systems are also important platforms 
for these science domains by providing the necessary scalability 
and reliability for storing and processing big scientific data. 
They are indeed increasingly used by scientists from different 
domains including geosciences. However, existing big-data 
systems do not support the data formats commonly used by 
scientific data. For example, one can load NetCDF files into 
HDFS as binary data, but MapReduce applications cannot 
interpret these data properly for processing. Consequently, 
users often resort to a cumbersome approach to using these 
systems for processing their data. First, they have to convert 
their data stored in self-describing format, e.g., NetCDF, to 
plain-text format using tools such as ncdump [14]. After 
conversion, the file needs to be further translated to a multi-
column table format such as CSV that is supported by a big-
data system such as Hadoop.  

This approach is not only cumbersome to users but also 
incurs substantial time and space overhead. First, the ncdump 
conversion increases the output file size to about three times of 
the original NetCDF data size. The further translation to Hive 
accepted format, adding dimension information to each row, 
adds an additional two to three times of space overhead. Hence, 
the space usage of this approach is bloated up to at least six 
times of the original NetCDF data size. Because these data need 
to be replicated at least three times on the big-data system, the 
absolute space usage can be prohibitive for large scientific data 
sets. Second, it takes time, storage, and network I/O bandwidth 
to load the data into HDFS. Because the data size is increased 
multi-fold by the conversion, this overhead is also increased 
substantially. Finally, as the data size gets bloated up by the 
conversion, it requires more map tasks to process the data, and 
more time to perform I/O tasks on the data, which in the end 
causes the data processing to consume much more resources 
and time.  

Therefore, there is an urgent need to enable commonly used 
big-data systems to support scientific data formats. While there 
are more advanced data formats (e.g., Orc [8] and Parquet [9]) 
in big-data systems, they cannot be directly used to store 
scientific data that come in a self-describing format. SciHadoop 
is a related project which stores scientific data on HDFS and 
implements its custom array query language using MapReduce 
jobs [11]. But it assumes that MapReduce is not aware of the 
physical placement of the data blocks and the data partition is 
done using the logical view of the data. This causes serious 
performance issues because a data block that is assumed to be 
local by a map task may not be entirely local, and the paper 
proposed several techniques to address these issues. In contrast, 
in our approach we build the support for scientific data directly 
in Hadoop where MapReduce is always aware of the physical 
distribution of the data and does not have the problems in 
SciHadoop. Moreover, our approach allows scientific users to 
conveniently use existing big-data tools to work with scientific 
data. Users can program MapReduce jobs to process scientific 
data in the same manner as other types of data. Users can also 
use popular high-level data services such as Hive to process the 

scientific data using simple queries, where the handling of data 
is completely transparent to the users. Therefore, to the best of 
our knowledge, this work is the first to provide native support 
of scientific data in widely used big-data systems. The rest of 
this paper presents the details of our approach. 

III. DESIGN AND IMPLEMENTATION 
A. Enabling Hadoop to Support Scientific Data 

Hadoop employs parallel map and reduce tasks to complete 
a large job. Each map task gets a split of the input data and 
performs the computation preferably on the node where the data 
locates. There is an InputFormat for each type of input file 
format, which handles the splitting of input data. Afterwards, 
the splits are given to map tasks which each retrieves its 
assigned split using a RecordReader. 

To support NetCDF data, our design is to introduce new 
NetCDFInputFormat and NetCDFRecordReader APIs in 
Hadoop for MapReduce programs to use for processing the 
NetCDF data stored on HDFS. Figure 1 illustrates the overall 
architecture of our approach. To implement these new APIs, we 
exploit the standard NetCDF library to implement a NetCDF 
Driver, which can understand the internal data structure of the 
NetCDF data and access the data according to the structure. 
NetCDFRecordReader uses this NetCDF Driver to read the 
records from the NetCDF data, where each record corresponds 
to a row in the multi-dimensional array data, e.g., the 
temperatures of different locations (latitude, longitude) at a 
specific time. In this way, the extended Hadoop can support all 
the data structures that are supported by NetCDF. 

To ensure good performance of the map tasks that process 
NetCDF data, NetCDFInputFormat needs to split the input data 
based on the physical distribution of the data so that each map 
task can get a split that is locally stored for processing. To 
achieve this, NetCDFInputFormat uses the NetCDF Driver to 
find out the offsets of the records and compare them to HDFS 
block boundaries. With this logical record to physical block 

 
Figure 1. Architecture of the proposed approach for enabling 

scientific data storage and processing in big-data systems 
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mapping, NetCDFInputFormat can ensure that the records in a 
split largely falls under the same HDFS block so that the map 
task that is assigned the split can find most of its data locally. 

Finally, our approach also employs an optimization for 
processing large NetCDF dataset. Big-data systems process 
large volumes of data in bulk, and are thus particularly sensitive 
to I/O efficiency in its design. Therefore, rather than reading a 
variable value at a time from the multi-dimensional array stored 
in NetCDF, the NetCDFRecordReader uses a single read 
operation to retrieves a number of variables, e.g., an entire row 
of values from the multi-dimensional array. Experiments have 
confirmed that this optimization can speed up the data 
processing by up to 500 times compared to reading one valuable 
value at a time. 
B. Enable Hive to Support Scientific Data 

Hive is a data warehousing solution which is built on top of the Hadoop framework [1]. Users can query data stored in HDFS using SQL-style declarative language. Hive would process and generate a plan, which include a set of MapReduce jobs to be executed on Hadoop. Hive allows scientists to conveniently query the data without having to handcraft the MapReduce application which is a lot more difficult and time-consuming. For example, a geoscientist can use a simple query such as 
“SELECT MAX(temperature)FROM table” to find out 
the highest temperature of a dataset without writing a single line of code. Therefore, we also extend Hive to directly support the use of NetCDF data and provide transparent support to scientific users who wish to use queries to process big data. 

Every query being submitted by users would be transferred 
into an execution plan by Hive planner, which represents a set 
of map and reduce tasks that need to be executed in a specific 
order. The plan consists of multiple nodes which are connected 
by directed edges. Each node represents a map or reduce task 
which is responsible to execute a specific Hive Operator on the 
input data. Hive has a set of operators to be executed on the 
input data, such as filter, group by, join, etc. Hive driver 
receives this plan and submits map and reduce tasks to Hadoop. 
These tasks use two important sets of classes in order to process 
data, InputFormat and SerDe. InputFormat is responsible for 
reading data and passing key-value pairs to the map function. 
SerDe stands for SerializerDeserializer, which transforms the 
output of RecordReader into a column oriented format which 
the Hive operators can use for processing. Each map task uses 
InputFormat to retrieve the input, uses the corresponding SerDe 
to transform the data, and then executes the specified operator 
on the data. Therefore, to enable Hive to handle NetCDF data 
stored on HDFS, we need to create a new SerDe for NetCDF. 

This NetCDFSerDe needs to convert every variable value 
from the multi-dimensional array stored in NetCDF into a row 
for Hive, so that users can query based on the different 
dimensions of the value, e.g., temperature, latitude, longitude, 
and time for data in a 3-dimensional array. However, as 
mentioned earlier, our NetCDFRecordReader produces a bulk 
of values at a time for better performance. To support this 
optimization, we change the architecture of map tasks so that 
each map task is able to use NetCDFRecordReader to retrieve 
a bulk of values in one shot and invoke NetCDFSerDe to 

transform all these values into rows of the table for the Hive 
operators to process. Consequently, the performance of Hive 
queries can also be much improved when processing NetCDF 
data. 

IV. EVALUATION 
A. Setup 

The experimental evaluation was done on a cluster of nine 
nodes, each with two six-core 2.4 GHz AMD Opteron CPUs, 
32GB of RAM, and two 500GB 7.2K RPM SAS disks, 
interconnected by a Gigabit Ethernet switch. All the nodes run 
the Debian 4.3.5-4 Linux with the 3.2.20-amd64 kernel and use 
EXT3 as the local file system. The evaluation uses Hadoop 
2.5.2 and Apache Hive 1.2.0. One node serves as the 
NameNode and the others as DataNodes. HDFS block size is 
defaulted to 128MB, and replication level is three. Each 
Hadoop map task’s resource usage is set to 1 CPU core and 
1024 MB memory.  

We compare the performance of our approach to the 
traditional CSV-based approach which converts the NetCDF 
data to CSV format before storing and processing the data using 
Hadoop. The dataset represents typical geoscience data which 
contains a set of temperatures of certain locations (latitude and 
longitude) at certain times. We consider four commonly used 
queries as the benchmarks, which are listed in Table 1. Query 
1, 2, and 3 gets the average, maximum, and sum of the entire 
dataset, respectively. Query 4 gets the sum of a subset of the 
data. 
B. Query Performance 

The first set of experiments compare the query execution 
time of our proposed approach (Proposed) to the traditional 
CSV-based approach (CSV). We consider all the four different 
queries for processing a NetCDF dataset of different sizes, from 
2GB to 100GB. Note that in the CSV approach, the NetCDF 
data need to be converted into CSV format first. In these 
experiments, we assume the data are already converted and 
loaded into HDFS. We will evaluate the overhead of data 
conversion and loading in next subsections. 

Figure 2 shows the performance comparison for Query 1. 
The results show that our approach is faster than the CSV 
approach by 265% for 2GB input, 402% for 20GB input, 906% 
for 50GB input, and 983% for 100GB input. Similarly, our 
approach also substantially outperforms the CSV approach for 
the other queries, by up to 12-fold, as shown in Figures 2, 3, 
and 4. We attribute this significant improvement to two factors: 
first, the CSV approach greatly increases the size of data which 

 SQL Query 
Query 1 SELECT AVG(val) FROM TABLE  
Query 2 SELECT MAX(val) FROM TABLE 
Query 3 SELECT SUM(val) FROM TABLE 
Query 4 SELECT SUM(val)FROM TABLE WHERE lat > 50.0 

Table 1. Benchmark queries 
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requires more I/Os and more map tasks to process, both 
increasing the time required for executing a query; second, the 
optimization that we made to process records in batch in both 
Hadoop and Hive also makes our approach much more efficient 
than the traditional approach. In comparison, in the CSV 
approach, Hive processes only one line of the CSV data at a 
time. 
C. Conversion from NetCDF to CSV 

Another significant source of overhead of the CSV 
approach is the time required to convert the NetCDF data into 
the CSV format. Figure 5 shows the time that it takes to convert 
NetCDF data with different sizes into CSV file format, which 
is about 9 minutes, 86 minutes, 4 hours, and 7 hours for 2 GB, 
20 GB, 50 GB, and 100 GB respectively. In all three cases the 
conversion time is even more than the query execution time. 
D. Importing Data into HDFS 

Larger dataset requires longer time when imported into 
HDFS. Figure 6 compares the time required to import the 
NetCDF data and the converted CSV data into HDFS. By 
importing the raw NetCDF file into the HDFS instead of using 
CSV, we are able to reduce the copy time extensively, by over 
80% for the different input sizes. 
E. Total Processing 

Putting everything together, the end to end time to process 
a NetCDF dataset is the sum of the conversion time (only for 
the CSV approach), the importing time, and the query 
execution time:  
Total Processing Time = Conversion Time + Importing Time     

           + Execution Time 
Figure 8 compares the total processing time for Query 2 in our 
approach and the CSV approach with different input sizes. 
Overall, our approach is faster than the CSV approach by 
817.99%, 1598.31%, 2001.23%, and 2042.28% for the NetCDF 
data of 2GB, 20GB, 50GB and 100GB, respectively. It also 
achieves the same level of improvement for the other queries. 
F. Space Overhead 

Storage space consumption on the big-data system is 
another aspect to compare these two different approaches. 
Because our proposed approach works directly on the raw 
NetCDF data, it does not incur any space overhead. In contrast, 
the CSV approach requires about 524.9% more space after 
converting NetCDF data to CSV format, e.g., 2GB NetCDF file 
consumes around 12GB space after conversion. Therefore, our 
approach also saves space usage substantially. Because data 
need to be replicated at least three times on HDFS for 
reliability, the CSV approach would quickly run out of space 
for larger datasets which in comparison can still be supported 
by our approach. 

 Figure 2. Runtime of Query 1 

 Figure 3. Runtime of Query 2 

 Figure 4. Runtime of Query 3 

 Figure 5. Runtime of Query 4 
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V. CONCLUSIONS AND FUTURE WORK 
This paper presents an approach to enabling big-data 

systems to support the storage and processing of scientific data. 
It bridges an important gap between the self-describing data 
commonly used by scientists for data distribution and sharing 
and the big-data systems which are increasingly important to 
scientific productivity. Based on this approach, we have 
extended two important and widely used big-data systems, 

Hadoop and Hive, to support scientific data. Users can write 
MapReduce programs using convenient new APIs to process 
NetCDF data stored HDFS. They can also use the extended 
Hive to transparently process NetCDF data using standard 
queries. Our experiment results obtained from typical queries 
on a geoscience dataset show that this new approach 
substantially outperforms the traditional CSV-based approach. 

While in this paper we focused on enabling Hadoop and 
Hive to support scientific data, our approach is also applicable 
to other emerging big-data systems such as Spark [15]. Based 
on our current results, we believe that it requires only similar 
extensions in Spark to support the storage and processing of 
scientific data stored on HDFS, which will be considered in our 
future work. In addition, we will also consider the support for 
the latest self-describing formats such as NetCDF4 and HDF5. 
Although our approach is also applicable to these new formats, 
the implementation may be more involved and require 
additional implementation efforts due to the more complex 
internal structure of these formats. Finally, we will study data 
formats optimized for big-data processing (e.g., Orc [8] and 
Parquet [9]) and explore the possibility of improving scientific 
data formats such as NetCDF and HDF for big-data systems. 
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