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Abstract 
 

Many high-end computing (HEC) centers and 

commercial data centers adopt parallel file systems 

(PFSs) as their storage solutions. As the number of 

applications concurrently accessing a PFS grows in 

both quantity and variety, it is expected that scheduling 

algorithms for data access will play an increasingly 

important role in PFS service quality. However, it is 

costly and disruptive to thoroughly research 

scheduling mechanisms in deployed peta- or exascale 

systems, compounded by the complexity in scheduling 

policy implementation and experimental data 

gathering. While a few parallel file system simulation 

frameworks have been proposed (e.g., [1,2]), their 

goals have not been in the scheduling algorithm 

evaluation. In this paper, we propose PFSsim, a 

simulator designed for the purpose of evaluating I/O 

scheduling algorithms in PFS. PFSsim is a trace-

driven simulator based on the network simulation 

framework OMNeT++ [23] and the disk system 

simulator DiskSim [21]. A flexible scheduler module is 

provided for scheduling algorithm deployment, and the 

system characteristics are highly configurable. We 

have simulated PVFS2 on PFSsim, and the 

experimental results show that PFSsim is capable of 

simulating the system characteristics and showing the 

performance of the scheduling algorithms. 

 

 

1. Introduction 
 

In recent years, Parallel File Systems (PFSs) such 

as Lustre [3], PVFS2 [4], Ceph [5], and PanFS [6] have 

become increasingly popular in high-end computing 

(HEC) centers and commercial data centers – for 

instance, as of April 2009, half of the world’s top 30 

supercomputers use Lustre [7] as their storage 

solutions. PFSs outperform traditional distributed file 

systems such as NFS [8] in many application domains. 

An important reason is that they adopt an object-based 

storage model [9] and stripe the large-size data into 

smaller sized objects stored in a distributed manner for 

high-throughput parallel access and load balancing. 

In modern HEC systems and data centers, there are 

often large numbers of applications which access data 

with a large variety of Quality-of-Service (QoS) 

requirements [10]. As such storage systems are 

predicted to grow in terms of amount of resources and 

concurrent applications, I/O scheduling strategies that 

enforce service quality to individual applications are 

expected to become increasingly important. 

There is a considerable amount of work on parallel 

I/O scheduling, aiming at maximizing overall I/O 

throughput, such as [11-13]. However, these 

algorithms are not suitable for many modern systems 

in that they are not able to provide QoS guarantee to 

individual applications. Algorithms such as [14-18] 

address the problem of service isolation in a 

centralized manner. Nevertheless, many HEC systems 

face challenges such as intensive data flows from large 

number of clients and large amount of checkpointing 

data. In such environments, centralized scheduling 

algorithms can be limiting from scalability and 

availability standpoints. There are a few existing 

decentralized I/O scheduling algorithms which enforce 

QoS for distributed storage systems, for example, 

[19,20], but these algorithms need more evaluations in 

terms of the performance on existing PFSs. 

While PFSs are widely adopted in the HEC field, 

experimental research on corresponding scheduling 

algorithms is challenging. The two key factors that 

hamper the testing on real systems are: 1) the cost of 

scheduler testing on a peta- or exascale file system 

requires complex deployment and experimental data 

gathering; 2) experiments with the HEC storage 

resources can be very disruptive, as these systems 



typically have high utilization. Under this context, a 

simulator that allows developers to test and evaluate 

the PFS scheduling algorithm designs is very valuable. 

It extricates the developers from complicated 

deployment headaches in the real systems and cuts 

their cost in the algorithm development. Even though 

simulation results are bound to have discrepancies 

compared to the real system results, the simulation 

results can offer very useful insights in the 

performance trends and allow the pruning of the design 

space before implementation and evaluation on a real 

testbed or a deployed system. 

In this paper, we propose a Parallel File System 

simulator, PFSsim. Our design objectives for this 

simulator are: 1) Easy-to-use: scheduling algorithms, 

PFS characteristics and network topologies can be 

easily configured at compile-time. 2) Flexible: the 

simulator should be capable of simulating large variety 

of scheduling algorithms, and the storage system and 

networks should be highly customizable. 3) High 

fidelity: it can accurately model the effect of HEC 

workloads and scheduling algorithms. 4) Scalable: it 

should be able to simulate up to thousands of machines 

for a medium-scale scheduling algorithm study. 

The rest of the paper is organized as follows. 

Section 2 introduces the related work on PFS 

simulations.  Section 3 discusses the abstractive 

modeling of the PFSs and PFS schedulers. Section 4 

illustrates the implementation details of PFSsim. 

Section 5 shows the simulator validation results. 

Section 6 concludes this paper and discusses the future 

work. 

 

2. Related Work 
 

To the best of our knowledge, there are two PFS 

simulators presented in the literature: one is the 

IMPIOUS simulator proposed by E. Molina-Estolano, 

et. al. [1], and the other is the simulator developed by P. 

Carns et. al. [2]. 

The IMPIOUS simulator is developed for fast 

evaluation of PFS designs. It simulates an abstracted 

PFS with user-provided file system specifications, 

which include data placement strategies, replication 

strategies, locking disciplines and caching strategies. In 

IMPIOUS, the client modules are configured with the 

data placement information. They read the I/O traces 

and directly issue them to the Object Storage Device 

(OSD) modules according to the data placement 

specifications. The OSD modules can be simulated 

with the DiskSim simulator [21] or the ―simple disk 

model‖; the former one provides higher accuracy and 

the latter one has higher efficiency. For the goal of fast 

and efficient simulation, IMPIOUS simplifies the PFS 

model by omitting the metadata server modules and 

related communications, and since the focus is not on 

the I/O scheduling strategies, it does not support 

explicit deployment of I/O scheduling algorithms. 

The PFS simulator described in [2] focuses on the 

server-to-server communication mechanisms in PFSs. 

This simulator is used for testing the overhead of 

different metadata communication schemes in PVFS. 

Thus, a detailed TCP/IP based network model is 

implemented. The authors employed the INET 

extension [22] of the OMNeT++ discrete event 

simulation framework [23] to simulate the network. 

They have implemented a detailed model of PFS and 

underlying operating system according to PVFS and 

Linux. This ―bottom-up‖ technique may achieve high 

fidelity but compromises on the flexibility in 

simulating other systems. Also, this simulator does not 

provide a platform for I/O scheduling algorithm 

deployment. 

We take inspiration from these related systems and 

intend to develop a modularized and customizable 

system where the emphasis is on the I/O scheduler. 

Based on this goal, we have developed PFSsim. It 

adopts the OMNeT++ framework for PFS components 

and network simulations and uses DiskSim to simulate 

disk systems. Unlike other simulators, we have 

implemented the scheduler module, intended to support 

scheduling algorithm deployment. Since the metadata 

server and data server daemon components are both 

implemented in PFSsim, PFSsim modularizes the 

systems in finer granularity than IMPIOUS. Compared 

with the simulator proposed by Carns, the 

customizable modules enable PFSsim to flexibly 

simulate more systems. 

 

3. System Modeling 
 

To simulate a parallel file system (PFS) for 

scheduling algorithm testing, we need to construct the 

system in two phases. First, an authentic PFS simulator 

need to be built to be able to simulate the performance 

of a real PFS; second, a scheduler module should be 

plugged into the PFS simulator, which can accurately 

show the effects of different scheduling schemes. 

In the following subsections, we are going to 

analyze the mechanisms of real systems by abstracting 

the PFS deigns and the PFS scheduler designs. These 

analyses will lay a foundation for the design of our 

simulator. 

 

3.1. Abstraction of Parallel File Systems 
 

In this subsection, we will first describe the 

common architecture and mechanisms in PFSs, and 

then discuss the key factors that contribute to PFS I/O 

performance. 



Considering most of the commonly used PFSs, we 

find most of them integrate three essential components: 

1. There is one or more data servers (also called 

Object Storage Devices), which are based on the local 

file systems or the block devices. The application data 

are stored in the form of fixed-size PFS objects, whose 

IDs are unique in a global name space. 

2. There is one or more metadata servers, which 

typically manage the mappings from PFS file name 

space to PFS storage object name space, PFS object 

placement, as well as the metadata operations. 

3. There are a number of PFS clients that run on the 

system users’ machines; they provide the interface (e.g., 

POSIX) for user applications to access the PFS, and 

accomplish the transactions with the PFS servers. 

For a general PFS, a file data access request 

(read/write operation) goes through the following steps:  

1. Receiving the file I/O request: By calling an API, 

the system user sends a request {operation, file_path, 

offset, size} to the PFS client running on the user’s 

machine. 

2. Object mapping: The client tries to map the tuple 

{file_path, offset, size} to a set of objects which hold 

the requested data.  This information is either available 

locally or require the client to query the metadata 

servers. 

3. Locating the object: The client locates the 

objects to the data servers storing them. Typically each 

data server stores the objects with a static range of IDs, 

and this mapping information is often available on the 

client. 

4. Data transmission: The client sends out data I/O 

requests to the designated data servers with the 

information {operation, object_ID}. The data servers 

reply the requests, and the data I/O starts. The data I/O 

continues until all the data are transmitted. 

Note that for the above process, we have omitted 

the access permission grant (often conducted on the 

metadata server) and data locking schemes (conducted 

on either the metadata server or the data server). 

Although different PFSs share the common basic 

architecture and mechanisms, they differ from each 

other in many ways, such as data distribution 

methodology, metadata storage pattern, user API, etc. 

Nevertheless, there are four aspects that we consider to 

have significant effects on the I/O performance: 

metadata management, data placement strategy, data 

replication model and data caching policy. Therefore, 

to construct a simulator for various PFSs with fidelity, 

we should have the above factors considered. 

It is known that at least in some cases, metadata 

operations take a big proportion of file system 

workloads [24], and also because of lying in the critical 

path, the metadata management can be very important 

to the overall I/O performance.  Different PFSs use 

different techniques to manage metadata to achieve 

different levels of metadata consistency, reliability and 

access efficiency. For example, Ceph [5] adopts the 

dynamic subtree partitioning technique [25] to 

distribute the metadata onto multiple metadata servers 

for high metadata locality and load balance. Lustre [3] 

enhances metadata reliability by deploying two 

metadata servers, which includes one ―active‖ server 

and one ―standby‖ server for failover. In PVFS2 [4], 

metadata are distributed onto data servers to prevent 

single point of failure and the performance bottleneck. 

Data placement strategies are designed with the 

basic goal of achieving high I/O parallelism and server 

utilization/load balancing. But different PFS still vary 

with each other significantly, for the reason of different 

usage contexts. Ceph is aiming at providing high 

reliability and scalability to the large-scale data storage. 

So it uses the CRUSH (Controlled Replication Under 

Scalable Hashing) technique [26] to achieve pseudo-

random data distribution, which avoids imbalance or 

load asymmetries. Also, this scheme facilitates the 

metadata management, since it avoids metadata traffic 

during data location lookup and reduces the update 

frequency of the system map. In contrast, aiming to 

serve the users with higher trust and skills, PVFS2 

provides flexible data placement options to the users 

— it even delegates the users the ability to store data 

on user-specified data servers. 

Data replication and failover models also affect the 

I/O performance, because for systems with data 

replication setup, data are written to multiple locations, 

which may prolong the writing process. For example, 

with data replication enabled in Ceph, every write 

operation is committed to both the primary OSD and 

the replica OSDs inside a placement group. Though 

Ceph maintains parallelism when forwarding the data 

to the replica OSDs, the costs of data forwarding and 

synchronization are still non-negligible. Lustre and 

PVFS2 do not implement explicit data replication 

models assuming that the replication is managed by the 

disk systems or the system users. 

Data caching on the server side or the client side 

may improve the PFS I/O performance. But the 

coherency of the cached data also needs to be managed. 

PanFS [6] data servers implement write-data caching 

that aggregates multiple writes for efficient data 

transmission and better data layout at the OSDs, which 

may increase the disk I/O rate. Ceph implements the 

O_LAZY flag for open operations to relax the 

coherency requirements for a shared-write file. This 

facilitates the HPC applications which often have 

concurrent accesses to different parts of the files. Some 

PFSs do not implement client caching in their default 

setup, such as PVFS2. Note that the systems that the 

PFS data servers running on may also do data caching, 



Figure 1. The simulated architecture of an 
example PFS. The two dash-line frames mean 

the components inside are simulated by 

OMNeT++ or DiskSim. 

for example, the local file systems on the data server 

machines. 

We have considered the above factors in PFSsim 

design. For metadata management, by tuning the 

metadata server module and the network topology, 

users are able to set up specific metadata storage and 

access patterns. For data placement policies, the 

information is given by users through feeding the data 

placement information to the metadata servers; users 

can implement typical data placement policies, or 

define their own policies. For data replication, the 

client managed data replication schemes can be 

implemented by spawning the same data I/O to 

multiple data servers at the clients; by enabling inter-

server communication (which is not the default setup), 

the users can implement the metadata server managed 

or data server managed data replication schemes. For 

data caching, we have enabled it on the data server 

local file systems; however, we have not implemented 

this feature on the PFS server and PFS client 

components, which is considered as the future work. 

 

3.2. Abstraction of PFS Scheduler 
 

Among the many proposed centralized or 

decentralized scheduling strategies in distributed 

storage systems, there are a large variety of network 

fabrics and scheduler deployment schemes. For 

instance, in [19], the schedulers are deployed on the 

Coordinators, which reside between the system clients 

and the storage Bricks in a FAB system [27]. In [14], 

the scheduler is implemented on a centralized proxy, 

which receives all the system I/O and dispatches them 

to the disks in the storage systems. In [28], the 

scheduling policies are deployed on the network 

gateways which serve as the data center portals to the 

clients.  And in [20], the scheduling policies are 

deployed on the per-server proxies, which intercept I/O 

and virtualize the data servers to the system clients. 

In our simulator, the system network is simulated 

with high flexibility, which means the users are able to 

deploy their own network fabric with the basic or user-

defined devices. The schedulers can also be created 

and positioned to any part of the network. For more 

advanced designs, inter-scheduler communications can 

also be enabled in multi-scheduler simulations. The 

scheduling algorithms are to be defined by the PFSsim 

users, and APIs are exposed to enable the schedulers to 

keep track of the system status. 

 

4. Simulator Implementation 
 

4.1. Overview of PFSsim 
 

Based on the abstractions illustrated in section 3, 

we have developed the parallel file system simulator 

PFSsim, based on the discrete event simulation 

framework OMNeT++ and the disk system simulator 

DiskSim. 

We will explain the simulated systems in PFSsim 

by introducing an example system, as shown in Figure 

1. The simulated system contains 3 PFS data servers, 1 

PFS metadata server, 2 schedulers and 3 clients. The 

entire system is deployed in a LAN with a switch. We 

have modularized the real-world entities in PFSsim. 

The basic modules include the data server, metadata 

server, scheduler, client and the switch/router. The 

network cable is simulated by the channel components. 

Each module may be composed by multiple 

components. For instance, the data server is composed 

by 2 or 3 components, namely the data server daemon, 

the local file system (optional) and the disk system. As 

also shown in the figure, within the entire system, only 

the disk system component is simulated by the 

DiskSim simulator; all other modules/components are 

simulated by OMNeT++. 

Now we are going to describe the processing of a 

typical client data access request in the simulated 

system. The client data access requests are provided in 

the form of trace files. Each piece of trace includes 

access time, file ID, index, data size, read/write, etc. 

Upon reading one I/O request from the trace file, a 

REQUEST object is created at the client. The client 

then tries to obtain the placement information for the 

target data. It first checks the local cache; if not cached, 

the client will query the metadata server by sending 

and receiving the QUERY messages. After that, the 



REQUEST object may split the target data range to 

smaller ranges according to the data distribution 

information and the data packet size limit. The JOB 

messages, which contain the access requests to each 

data server, are created at the client. Instead of being 

sent to the data servers, the JOBs are first sent to the 

schedulers. At the schedulers, the JOBs are reordered 

according to the scheduling algorithm, and eventually 

sent to the data servers. When the data server receives 

a JOB message, the data server daemon component 

may first conduct a locking operation on the requested 

data, and forward the request to the local file system. 

The local file system maps the data range and file ID to 

the physical block numbers. The local file system also 

conducts the data buffering/caching. If a page is not 

found in cache or dirty pages need to be written back, 

disk access requests will be issued. The disk access 

requests are sent to DiskSim through an inter-process 

communication channel over a network connection 

(currently, TCP). When the block access request is 

accomplished on DiskSim, the finish time is sent back 

to the local file system component. 

When the requested data access is done, the local 

file system hands it over to the data server daemon. 

The data server daemon may release the lock on the 

data, and sends it back to the scheduler. The scheduler 

marks the finish of the JOB (queued JOBs may be 

dispatched), and forwards it back to the client. At the 

client, the timestamps in JOB are written to the output, 

and the corresponding data access is marked as done at 

the REQUEST object. The REQUEST is checked to 

see if more JOBs need to be issued. If all the data in 

the REQUEST are successfully accessed, the 

information in REQUEST is written to the output. 

Iteratively, the client starts to read the next trace. 

 

4.2. Scheduler Implementation 
 

The scheduler module is designed for easy and 

flexible implementation of scheduling algorithms; 

meanwhile, we also enable the inter-scheduler 

communication for users to implement collaborative 

scheduling schemes. 

We provide a base class for the implementation of 

all scheduling algorithms. The algorithms can be 

realized by inheriting this class. The base class 

contains the following essential methods: 

void  jobArrival(JOB * job); 

void  jobFinish(JOB * job); 

void  getSchInfo(Message * msg); 

void  sendSchInfo(int  ID, Message * msg); 

bool  dispatchJob(int  ID, JOB * job); 

The JOB objects are the JOBs referred in 

subsection 4.1. The Message objects are the packets 

defined by the users for exchanging the scheduling 

information between schedulers. jobArrival is called 

when a new JOB arrives at the scheduler. jobFinish is 

called when the scheduler receives a finished JOB. 

getSchInfo is called when the scheduler receives a 

scheduler-to-scheduler message. sendSchInfo is called 

when the scheduler wants to send message to other 

schedulers. And dispatchJob is called when the 

scheduler wants to dispatch a JOB to a data server. 

The simulator users can overwrite these methods to 

specify the specific behaviors. Also, more methods and 

data structures can be implemented to realize the 

customized scheduling schemes. Note that although the 

inter-scheduler communication schemes are featured, 

we did not evaluate them in this paper. 

 

4.3. Network Implementation 
 

In PFSsim, the network connections between 

entities are simulated by the channel components in 

OMNeT++. By setting the bandwidth, delay and 

packet error rate of the channels, users are able to 

simulate the network links. 

The JOB objects referred in subsection 4.1 are the 

network packets when they are transmitted in the 

simulated network. Users can define the maximum size 

of JOBs, thus, the JOBs can be larger than the typical 

network packets. To avoid complexity and promote 

simulation efficiency, detailed models of real-world 

network protocols are not enabled by default. The 

impact of these approximations is partially shown in 

the results from section 5.2, but in most cases, it is 

shown to be negligible. If higher accuracy is demanded 

in the network simulation, users are able to extend the 

system with the INET framework [22] which supports 

many basic models for wired/wireless network 

protocols. Lower simulation efficiency may be 

expected in this approach. 

PFSsim also contains a router/switch component, 

which is responsible for forwarding the packets to the 

destinations. Users are able to configure the delay of 

these network devices. For simplicity, in the simulated 

system, the entities are named and resolved by the 

static user-defined IDs. Thus, packets are routed/ 

switched according to their destination IDs. 

 

4.4. Local File System Implementation 
 

In PFSsim, the local file system component in the 

data server module has two major features: data 

address mapping and data caching/buffering. 

We avoided exploring much toward the address 

mapping technologies at the local file systems, for the 

reason that 1) generally, file system block allocation 

heavily depends on the context of storage usage (e.g., 

EXT4 [29]), which is very dynamic; 2) we consider 



random disk seeking time as a less important factor in 

typical parallel file system environments compared 

with the significant factors such as total disk access 

time and network delay. In PFSsim, we assign the disk 

space to different files in a sequential manner. 

The memory is simulated for the local file system 

to conduct data caching/buffering for disk read/write 

operations. Users are able to define the memory size 

and page replacement policies. On a page fault or dirty 

page write back, the local file system needs to have 

disk data access transactions with the disk system 

simulator, which is DiskSim. 

 

4.5. Synchronization between OMNeT++ and 

DiskSim 
 

In PFSsim, there is one OMNeT++ process (for the 

major framework) and multiple DiskSim processes 

(one per disk system). Since DiskSim has the 

functionality of getting the time stamp for the next 

event, OMNeT++ can always proactively synchronize 

with every DiskSim instance at the provided time 

stamp. 

Currently we have implemented TCP connections 

between the OMNeT++ simulator and the DiskSim 

instances. In this way, the simulator can be deployed in 

a cluster. Even though optimizations are done in 

improving the synchronization efficiency, we found the 

TCP connection cost is still the bottleneck of 

simulation speed. In the future work, we plan to 

introduce more efficient synchronization mechanisms, 

such as shared memory, but as a tradeoff, that approach 

does not support distributed simulations. 

 

5. Validation and Evaluation 
 

In this section, we are going to validate and 

evaluate the PFSsim simulation results against results 

measured in a real system. A PVFS2 system containing 

4 data servers and 1 metadata server is used as the 

benchmark system. The benchmark system consists of 

a variable number of clients. On each data server node, 

we also deployed a proxy-based scheduler [20] that 

intercepts all the I/O traffic on the local machine. All 

the nodes are built on a set of Xen virtual machines 

hosted on a cluster of eight DELL PowerEdge 2970 

servers. Each virtual machine is configured with 

2.4GHz AMD CPU and 1 GB memory. All virtual 

machines run para-virtualized 2.6.18.8 kernel with 

Ubuntu 8.0.4. EXT3 is used as the local file system for 

PVFS2 data servers. 

The simulated system is configured with the 

measurements from the benchmark system. The cache 

access speed is gauged by 400MB sequential 

read/write operations on the VM cache, and the disk 

access speed is gauged by 6.4GB sequential read/write 

operations on the VM disk. According to PVFS2, 

content locking and caching are disabled in the data 

server daemon component. We set 900MB memory 

capacity for the local file system component (other 

processes possess an average of 100MB memory) with 

Least Recent used (LRU) page replacement policy. We 

set up a maximum dirty data size of 400MB, which is 

40% of the 1GB total memory size (complies with the 

default dirty_ratio value in Linux). The block/page 

size is 4KB. The average network bandwidth between 

each client and data/metadata server is measured to be 

1Gbps, and the corresponding network latency is 0.2ms. 

In the real system, schedulers and data servers are 

deployed on the same VM in a one-to-one manner. To 

simulate this, we deploy one scheduler on each router-

data server channel to intercept the packets and set the 

scheduler-data sever channel to be ideal. 

We use the ―Interleaved or Random‖ (IOR) trace 

generator [30] to generate the benchmark I/O to the 

real system. This benchmark allows the specification 

of I/O patterns. We have developed a stand-alone trace 

generator for PFSsim, and with it we generated the 

PFSsim trace files in the same pattern. 

 

5.1. PFS Simulator Validation 
 

To validate the simulator fidelity under various 

system workloads, we have performed five 

independent experiments with 4, 8, 16, 32 and 64 

clients for both read and write. Every client generates 

sequential read/write I/O to 400 files, each containing 

1MB of data. The data of each file is evenly distributed 

to four data servers with the stripping size of 256KB. 

In order to evaluate the performance of I/O buffering 

/caching, the file reading tests are done on the same 

files right after the corresponding file writing tests, 

which means the data to read may still be in the 

memory due to buffered written content. 

Figure 2 and Figure 3 depict the average system 

throughput and latency for various client 

configurations. Over all we can see that the simulated 

throughput and latency matches the real system 

measurements well. In the following we are going to 

discuss the results in details. 

For the reading tests, with the setup of client 

number 4 and 8, the system provides high throughput. 

This is because the data are still in the cache due to the 

pre-conducted writing test. Thus, the majority of the 

data I/O is memory I/O which is very fast. We also 

observe that the throughput with the setup of 8 clients 

is twice as the setup of 4, which is due to the 

parallelism on the PVFS2 servers. For the tests with 

client number 16, 32 and 64, the reading throughput 

decreases dramatically. The reason is the VMs 



 
Figure 2. Average system throughput with 

different number of clients 
 

 
Figure 3. Average request response time with 

different number of clients 

maintain limited amount of memory – the servers can 

never cache more than around 900MB of data. Thus, at 

least part of the data previously written to the servers is 

not in memory, and the read operations will incur the 

disk I/O rather than hit in the cache. One will notice 

that the throughput becomes stable when the client 

number is 32 and 64; the reason is almost all data are 

on the disk, so the saturated disk throughput becomes 

the system throughput. 

For the writing tests, with the client number of 4, 

the written content can be mostly buffered in the 

memory, so it achieves higher throughput. But as the 

system client number increases, the throughput 

decreases because when the dirty data in memory 

exceeds 400MB, the system starts to write back the 

dirty pages, which incurs high penalty. Also, similar to 

the read tests, as the number of clients gets larger, the 

throughput gets more stable, because the saturated disk 

throughput determines the system throughput. 

We can see from Figure 3, for 1MB I/O requests 

the simulated average response time matches the real 

system average response time well. The average 

response time grows non-linearly as the system 

workload increases. The reason is that the disk I/O 

delay is tens of times bigger than the memory access 

delay, and the queuing delay also prolongs the total 

delay when the data servers are under heavy load. 

From this set of tests, we can see that given the 

appropriate parameters, PFSsim is able to simulate a 

generic PFS system with an acceptable accuracy. 

We also measured the simulation time in this series 

of experiments. We found that the major factor to the 

simulation time is the disk access time, because the 

TCP inter-process synchronization between OMNeT++ 

and DiskSim is very expensive. But even for the 64-

client read test, it takes less than 3 minutes to finish on 

a PC (Intel Duo Core 1.66GHz CPU, 2GB Memory). 

 

5.2. Scheduler Validation 
 

In this subsection, we are going to validate PFSsim 

in terms of the I/O scheduling algorithm simulation. 

We deploy 32 PVFS2 clients in the system. Each client 

issues sequential write I/O to 400 files, each containing 

1MB of data. The data of each file is evenly distributed 

to four data servers with the stripping size of 256KB. 

For the purpose of algorithm testing, the clients are 

divided into two groups, G1 and G2, each with 16 

clients. The Start-time Fair Queuing algorithm with 

depth D = 4 (SFQ(4)) [15] is deployed on each 

scheduler, which enforces the weight-based I/O 

proportional sharing. 

We conducted three sets of tests, namely, set A, B 

and C. In SFQ(4), set A, B and C are configured with 

the weight ratios (G1:G2) of 1:1, 1:2 and 1:4, 

respectively. Every set is tested in both real system and 

the simulated system. We sampled the ratios of G2’s 

throughput to the overall throughput during the first 

200 seconds of runtime and calculated the averages 

and standard deviations for each set. 

Figure 4 gives the pictures of G2’s throughput 

ratios during the first 200 seconds of system runtime. 

The sample interval is 2.5 seconds. Calculated 

averages and standard deviations for each set are 

provided in the captions. First, we can see for the 3 sets, 

the averages of simulated throughput ratios are very 

similar (<5% error) to the averages from the real 

system. This means PFSsim is capable of simulating 

the major goal of SFQ(D) – I/O proportional sharing. 

Second, from both the real system and the simulation 

results, we see the standard deviations in the 

throughput ratios grow as the SFQ(D) algorithm 

applies a more imbalanced weight ratio. This is a 

special characteristic of the SFQ(D) algorithm. The 

increasing trend in the standard deviations from the 

simulation results provides helpful information to the 

algorithm designers. Third, we can also observe that 

the real system has a much higher standard deviation 

than the simulated system. This difference is due to the 

complexities existing in the real system, where many 

dynamic factors can contribute to the variations in the 



 
Set A. 50.17%, 0.024, 50.06%, 0.011 

 
Set B. 67.50%, 0.094, 65.26%, 0.019 

 
Set C. 73.67%, 0.101, 76.63%, 0.038 

 

Figure 4. The throughput ratios G2 takes in 
the first 200 seconds of runtime. In each row, 
the left chart is the real system result and the 

right chart is the simulation result. The 
caption format: set name, the average and 

standard deviation of G2’s real system 
throughput ratios, the average and standard 

deviation of G2’s simulated throughput ratios. 

I/O throughput. Since PFSsim is using the abstracted 

models to simulate the real system performance, it is 

not be able to simulate all the details in the real 

systems. For example, TCP protocol is not simulated in 

PFSsim; also, the real-world network connections are 

not as stable as in PFSsim. However, as we are 

providing a prototype simulator, users are free to do 

more accurate simulations by extending it. It is also our 

future work to simulate the dynamics in the system 

with higher accuracy. 

Overall, we can see PFSsim is able to simulate the 

performance trend of the SFQ(D) algorithm, while it 

also provides the system performance measurements 

with an acceptable accuracy. This information is very 

meaningful to an algorithm developer to evaluate the 

design before real implementations and evaluations. 

 

6. Conclusion and Future Work 
 

The design objective of PFSsim is to provide the 

users an easy-to-use, flexible, authentic and scalable 

PFS simulator for I/O scheduling algorithm designs. 

We provide a flexible scheduler module for scheduling 

algorithm deployment. The network topology, disk 

model, PFS specification and workload can be easily 

tuned. Since PFSsim has abstracted the major factors 

that contribute to the system I/O performance, we 

expect that given appropriate parameters, good 

simulation accuracy can be achieved. PFSsim is also 

highly extendable; users can extend any module of the 

simulator for higher accuracy or customized design. 

The validations on the PFS simulator and scheduler 

module show the system is capable of simulating the 

performance of a typical PFS system, given the PFS 

profiling parameters, scheduling algorithm and the 

workloads. For scalability, as far as we have tested, the 

system scales for simulations of up to 512 clients and 

32 data servers. The simulator time efficiency is also 

shown to be acceptable. 

In the future work, we are going to merge the IOR 

trace generator to PFSsim for generating synthetic 

traces. Meanwhile, more real benchmarks will be used 

for PFSsim evaluations. We will develop more 

accurate network models, which may characterize the 

statistical behavior of real TCP connections. Moreover, 

we are looking forward to simulate the disk systems 

with more abstractive models, which can substantiate 

DiskSim to promote the simulation efficiency. We are 

also investigating the possible ways to support 

simulations of very large scale systems. This may be 

achieved by allocating individual simulator modules 

into processes running on different nodes. 
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