
Towards Simulation of Parallel File System Scheduling Algorithms with

PFSsim

Yonggang Liu, Renato Figueiredo

Department of Electrical and Computer

Engineering

University of Florida, Gainesville, FL

{yonggang,renato}@acis.ufl.edu

Dulcardo Clavijo, Yiqi Xu, Ming Zhao

School of Computing and Information

Sciences

Florida International University, Miami, FL

{darte003,yxu006,ming}@cis.fiu.edu

Abstract

Many high-end computing (HEC) centers and

commercial data centers adopt parallel file systems

(PFSs) as their storage solutions. As the number of

applications concurrently accessing a PFS grows in

both quantity and variety, it is expected that scheduling

algorithms for data access will play an increasingly

important role in PFS service quality. However, it is

costly and disruptive to thoroughly research

scheduling mechanisms in deployed peta- or exascale

systems, compounded by the complexity in scheduling

policy implementation and experimental data

gathering. While a few parallel file system simulation

frameworks have been proposed (e.g., [1,2]), their

goals have not been in the scheduling algorithm

evaluation. In this paper, we propose PFSsim, a

simulator designed for the purpose of evaluating I/O

scheduling algorithms in PFS. PFSsim is a trace-

driven simulator based on the network simulation

framework OMNeT++ [23] and the disk system

simulator DiskSim [21]. A flexible scheduler module is

provided for scheduling algorithm deployment, and the

system characteristics are highly configurable. We

have simulated PVFS2 on PFSsim, and the

experimental results show that PFSsim is capable of

simulating the system characteristics and showing the

performance of the scheduling algorithms.

1. Introduction

In recent years, Parallel File Systems (PFSs) such

as Lustre [3], PVFS2 [4], Ceph [5], and PanFS [6] have

become increasingly popular in high-end computing

(HEC) centers and commercial data centers – for

instance, as of April 2009, half of the world’s top 30

supercomputers use Lustre [7] as their storage

solutions. PFSs outperform traditional distributed file

systems such as NFS [8] in many application domains.

An important reason is that they adopt an object-based

storage model [9] and stripe the large-size data into

smaller sized objects stored in a distributed manner for

high-throughput parallel access and load balancing.

In modern HEC systems and data centers, there are

often large numbers of applications which access data

with a large variety of Quality-of-Service (QoS)

requirements [10]. As such storage systems are

predicted to grow in terms of amount of resources and

concurrent applications, I/O scheduling strategies that

enforce service quality to individual applications are

expected to become increasingly important.

There is a considerable amount of work on parallel

I/O scheduling, aiming at maximizing overall I/O

throughput, such as [11-13]. However, these

algorithms are not suitable for many modern systems

in that they are not able to provide QoS guarantee to

individual applications. Algorithms such as [14-18]

address the problem of service isolation in a

centralized manner. Nevertheless, many HEC systems

face challenges such as intensive data flows from large

number of clients and large amount of checkpointing

data. In such environments, centralized scheduling

algorithms can be limiting from scalability and

availability standpoints. There are a few existing

decentralized I/O scheduling algorithms which enforce

QoS for distributed storage systems, for example,

[19,20], but these algorithms need more evaluations in

terms of the performance on existing PFSs.

While PFSs are widely adopted in the HEC field,

experimental research on corresponding scheduling

algorithms is challenging. The two key factors that

hamper the testing on real systems are: 1) the cost of

scheduler testing on a peta- or exascale file system

requires complex deployment and experimental data

gathering; 2) experiments with the HEC storage

resources can be very disruptive, as these systems

typically have high utilization. Under this context, a

simulator that allows developers to test and evaluate

the PFS scheduling algorithm designs is very valuable.

It extricates the developers from complicated

deployment headaches in the real systems and cuts

their cost in the algorithm development. Even though

simulation results are bound to have discrepancies

compared to the real system results, the simulation

results can offer very useful insights in the

performance trends and allow the pruning of the design

space before implementation and evaluation on a real

testbed or a deployed system.

In this paper, we propose a Parallel File System

simulator, PFSsim. Our design objectives for this

simulator are: 1) Easy-to-use: scheduling algorithms,

PFS characteristics and network topologies can be

easily configured at compile-time. 2) Flexible: the

simulator should be capable of simulating large variety

of scheduling algorithms, and the storage system and

networks should be highly customizable. 3) High

fidelity: it can accurately model the effect of HEC

workloads and scheduling algorithms. 4) Scalable: it

should be able to simulate up to thousands of machines

for a medium-scale scheduling algorithm study.

The rest of the paper is organized as follows.

Section 2 introduces the related work on PFS

simulations. Section 3 discusses the abstractive

modeling of the PFSs and PFS schedulers. Section 4

illustrates the implementation details of PFSsim.

Section 5 shows the simulator validation results.

Section 6 concludes this paper and discusses the future

work.

2. Related Work

To the best of our knowledge, there are two PFS

simulators presented in the literature: one is the

IMPIOUS simulator proposed by E. Molina-Estolano,

et. al. [1], and the other is the simulator developed by P.

Carns et. al. [2].

The IMPIOUS simulator is developed for fast

evaluation of PFS designs. It simulates an abstracted

PFS with user-provided file system specifications,

which include data placement strategies, replication

strategies, locking disciplines and caching strategies. In

IMPIOUS, the client modules are configured with the

data placement information. They read the I/O traces

and directly issue them to the Object Storage Device

(OSD) modules according to the data placement

specifications. The OSD modules can be simulated

with the DiskSim simulator [21] or the ―simple disk

model‖; the former one provides higher accuracy and

the latter one has higher efficiency. For the goal of fast

and efficient simulation, IMPIOUS simplifies the PFS

model by omitting the metadata server modules and

related communications, and since the focus is not on

the I/O scheduling strategies, it does not support

explicit deployment of I/O scheduling algorithms.

The PFS simulator described in [2] focuses on the

server-to-server communication mechanisms in PFSs.

This simulator is used for testing the overhead of

different metadata communication schemes in PVFS.

Thus, a detailed TCP/IP based network model is

implemented. The authors employed the INET

extension [22] of the OMNeT++ discrete event

simulation framework [23] to simulate the network.

They have implemented a detailed model of PFS and

underlying operating system according to PVFS and

Linux. This ―bottom-up‖ technique may achieve high

fidelity but compromises on the flexibility in

simulating other systems. Also, this simulator does not

provide a platform for I/O scheduling algorithm

deployment.

We take inspiration from these related systems and

intend to develop a modularized and customizable

system where the emphasis is on the I/O scheduler.

Based on this goal, we have developed PFSsim. It

adopts the OMNeT++ framework for PFS components

and network simulations and uses DiskSim to simulate

disk systems. Unlike other simulators, we have

implemented the scheduler module, intended to support

scheduling algorithm deployment. Since the metadata

server and data server daemon components are both

implemented in PFSsim, PFSsim modularizes the

systems in finer granularity than IMPIOUS. Compared

with the simulator proposed by Carns, the

customizable modules enable PFSsim to flexibly

simulate more systems.

3. System Modeling

To simulate a parallel file system (PFS) for

scheduling algorithm testing, we need to construct the

system in two phases. First, an authentic PFS simulator

need to be built to be able to simulate the performance

of a real PFS; second, a scheduler module should be

plugged into the PFS simulator, which can accurately

show the effects of different scheduling schemes.

In the following subsections, we are going to

analyze the mechanisms of real systems by abstracting

the PFS deigns and the PFS scheduler designs. These

analyses will lay a foundation for the design of our

simulator.

3.1. Abstraction of Parallel File Systems

In this subsection, we will first describe the

common architecture and mechanisms in PFSs, and

then discuss the key factors that contribute to PFS I/O

performance.

Considering most of the commonly used PFSs, we

find most of them integrate three essential components:

1. There is one or more data servers (also called

Object Storage Devices), which are based on the local

file systems or the block devices. The application data

are stored in the form of fixed-size PFS objects, whose

IDs are unique in a global name space.

2. There is one or more metadata servers, which

typically manage the mappings from PFS file name

space to PFS storage object name space, PFS object

placement, as well as the metadata operations.

3. There are a number of PFS clients that run on the

system users’ machines; they provide the interface (e.g.,

POSIX) for user applications to access the PFS, and

accomplish the transactions with the PFS servers.

For a general PFS, a file data access request

(read/write operation) goes through the following steps:

1. Receiving the file I/O request: By calling an API,

the system user sends a request {operation, file_path,

offset, size} to the PFS client running on the user’s

machine.

2. Object mapping: The client tries to map the tuple

{file_path, offset, size} to a set of objects which hold

the requested data. This information is either available

locally or require the client to query the metadata

servers.

3. Locating the object: The client locates the

objects to the data servers storing them. Typically each

data server stores the objects with a static range of IDs,

and this mapping information is often available on the

client.

4. Data transmission: The client sends out data I/O

requests to the designated data servers with the

information {operation, object_ID}. The data servers

reply the requests, and the data I/O starts. The data I/O

continues until all the data are transmitted.

Note that for the above process, we have omitted

the access permission grant (often conducted on the

metadata server) and data locking schemes (conducted

on either the metadata server or the data server).

Although different PFSs share the common basic

architecture and mechanisms, they differ from each

other in many ways, such as data distribution

methodology, metadata storage pattern, user API, etc.

Nevertheless, there are four aspects that we consider to

have significant effects on the I/O performance:

metadata management, data placement strategy, data

replication model and data caching policy. Therefore,

to construct a simulator for various PFSs with fidelity,

we should have the above factors considered.

It is known that at least in some cases, metadata

operations take a big proportion of file system

workloads [24], and also because of lying in the critical

path, the metadata management can be very important

to the overall I/O performance. Different PFSs use

different techniques to manage metadata to achieve

different levels of metadata consistency, reliability and

access efficiency. For example, Ceph [5] adopts the

dynamic subtree partitioning technique [25] to

distribute the metadata onto multiple metadata servers

for high metadata locality and load balance. Lustre [3]

enhances metadata reliability by deploying two

metadata servers, which includes one ―active‖ server

and one ―standby‖ server for failover. In PVFS2 [4],

metadata are distributed onto data servers to prevent

single point of failure and the performance bottleneck.

Data placement strategies are designed with the

basic goal of achieving high I/O parallelism and server

utilization/load balancing. But different PFS still vary

with each other significantly, for the reason of different

usage contexts. Ceph is aiming at providing high

reliability and scalability to the large-scale data storage.

So it uses the CRUSH (Controlled Replication Under

Scalable Hashing) technique [26] to achieve pseudo-

random data distribution, which avoids imbalance or

load asymmetries. Also, this scheme facilitates the

metadata management, since it avoids metadata traffic

during data location lookup and reduces the update

frequency of the system map. In contrast, aiming to

serve the users with higher trust and skills, PVFS2

provides flexible data placement options to the users

— it even delegates the users the ability to store data

on user-specified data servers.

Data replication and failover models also affect the

I/O performance, because for systems with data

replication setup, data are written to multiple locations,

which may prolong the writing process. For example,

with data replication enabled in Ceph, every write

operation is committed to both the primary OSD and

the replica OSDs inside a placement group. Though

Ceph maintains parallelism when forwarding the data

to the replica OSDs, the costs of data forwarding and

synchronization are still non-negligible. Lustre and

PVFS2 do not implement explicit data replication

models assuming that the replication is managed by the

disk systems or the system users.

Data caching on the server side or the client side

may improve the PFS I/O performance. But the

coherency of the cached data also needs to be managed.

PanFS [6] data servers implement write-data caching

that aggregates multiple writes for efficient data

transmission and better data layout at the OSDs, which

may increase the disk I/O rate. Ceph implements the

O_LAZY flag for open operations to relax the

coherency requirements for a shared-write file. This

facilitates the HPC applications which often have

concurrent accesses to different parts of the files. Some

PFSs do not implement client caching in their default

setup, such as PVFS2. Note that the systems that the

PFS data servers running on may also do data caching,

Figure 1. The simulated architecture of an
example PFS. The two dash-line frames mean

the components inside are simulated by

OMNeT++ or DiskSim.

for example, the local file systems on the data server

machines.

We have considered the above factors in PFSsim

design. For metadata management, by tuning the

metadata server module and the network topology,

users are able to set up specific metadata storage and

access patterns. For data placement policies, the

information is given by users through feeding the data

placement information to the metadata servers; users

can implement typical data placement policies, or

define their own policies. For data replication, the

client managed data replication schemes can be

implemented by spawning the same data I/O to

multiple data servers at the clients; by enabling inter-

server communication (which is not the default setup),

the users can implement the metadata server managed

or data server managed data replication schemes. For

data caching, we have enabled it on the data server

local file systems; however, we have not implemented

this feature on the PFS server and PFS client

components, which is considered as the future work.

3.2. Abstraction of PFS Scheduler

Among the many proposed centralized or

decentralized scheduling strategies in distributed

storage systems, there are a large variety of network

fabrics and scheduler deployment schemes. For

instance, in [19], the schedulers are deployed on the

Coordinators, which reside between the system clients

and the storage Bricks in a FAB system [27]. In [14],

the scheduler is implemented on a centralized proxy,

which receives all the system I/O and dispatches them

to the disks in the storage systems. In [28], the

scheduling policies are deployed on the network

gateways which serve as the data center portals to the

clients. And in [20], the scheduling policies are

deployed on the per-server proxies, which intercept I/O

and virtualize the data servers to the system clients.

In our simulator, the system network is simulated

with high flexibility, which means the users are able to

deploy their own network fabric with the basic or user-

defined devices. The schedulers can also be created

and positioned to any part of the network. For more

advanced designs, inter-scheduler communications can

also be enabled in multi-scheduler simulations. The

scheduling algorithms are to be defined by the PFSsim

users, and APIs are exposed to enable the schedulers to

keep track of the system status.

4. Simulator Implementation

4.1. Overview of PFSsim

Based on the abstractions illustrated in section 3,

we have developed the parallel file system simulator

PFSsim, based on the discrete event simulation

framework OMNeT++ and the disk system simulator

DiskSim.

We will explain the simulated systems in PFSsim

by introducing an example system, as shown in Figure

1. The simulated system contains 3 PFS data servers, 1

PFS metadata server, 2 schedulers and 3 clients. The

entire system is deployed in a LAN with a switch. We

have modularized the real-world entities in PFSsim.

The basic modules include the data server, metadata

server, scheduler, client and the switch/router. The

network cable is simulated by the channel components.

Each module may be composed by multiple

components. For instance, the data server is composed

by 2 or 3 components, namely the data server daemon,

the local file system (optional) and the disk system. As

also shown in the figure, within the entire system, only

the disk system component is simulated by the

DiskSim simulator; all other modules/components are

simulated by OMNeT++.

Now we are going to describe the processing of a

typical client data access request in the simulated

system. The client data access requests are provided in

the form of trace files. Each piece of trace includes

access time, file ID, index, data size, read/write, etc.

Upon reading one I/O request from the trace file, a

REQUEST object is created at the client. The client

then tries to obtain the placement information for the

target data. It first checks the local cache; if not cached,

the client will query the metadata server by sending

and receiving the QUERY messages. After that, the

REQUEST object may split the target data range to

smaller ranges according to the data distribution

information and the data packet size limit. The JOB

messages, which contain the access requests to each

data server, are created at the client. Instead of being

sent to the data servers, the JOBs are first sent to the

schedulers. At the schedulers, the JOBs are reordered

according to the scheduling algorithm, and eventually

sent to the data servers. When the data server receives

a JOB message, the data server daemon component

may first conduct a locking operation on the requested

data, and forward the request to the local file system.

The local file system maps the data range and file ID to

the physical block numbers. The local file system also

conducts the data buffering/caching. If a page is not

found in cache or dirty pages need to be written back,

disk access requests will be issued. The disk access

requests are sent to DiskSim through an inter-process

communication channel over a network connection

(currently, TCP). When the block access request is

accomplished on DiskSim, the finish time is sent back

to the local file system component.

When the requested data access is done, the local

file system hands it over to the data server daemon.

The data server daemon may release the lock on the

data, and sends it back to the scheduler. The scheduler

marks the finish of the JOB (queued JOBs may be

dispatched), and forwards it back to the client. At the

client, the timestamps in JOB are written to the output,

and the corresponding data access is marked as done at

the REQUEST object. The REQUEST is checked to

see if more JOBs need to be issued. If all the data in

the REQUEST are successfully accessed, the

information in REQUEST is written to the output.

Iteratively, the client starts to read the next trace.

4.2. Scheduler Implementation

The scheduler module is designed for easy and

flexible implementation of scheduling algorithms;

meanwhile, we also enable the inter-scheduler

communication for users to implement collaborative

scheduling schemes.

We provide a base class for the implementation of

all scheduling algorithms. The algorithms can be

realized by inheriting this class. The base class

contains the following essential methods:

void jobArrival(JOB * job);

void jobFinish(JOB * job);

void getSchInfo(Message * msg);

void sendSchInfo(int ID, Message * msg);

bool dispatchJob(int ID, JOB * job);

The JOB objects are the JOBs referred in

subsection 4.1. The Message objects are the packets

defined by the users for exchanging the scheduling

information between schedulers. jobArrival is called

when a new JOB arrives at the scheduler. jobFinish is

called when the scheduler receives a finished JOB.

getSchInfo is called when the scheduler receives a

scheduler-to-scheduler message. sendSchInfo is called

when the scheduler wants to send message to other

schedulers. And dispatchJob is called when the

scheduler wants to dispatch a JOB to a data server.

The simulator users can overwrite these methods to

specify the specific behaviors. Also, more methods and

data structures can be implemented to realize the

customized scheduling schemes. Note that although the

inter-scheduler communication schemes are featured,

we did not evaluate them in this paper.

4.3. Network Implementation

In PFSsim, the network connections between

entities are simulated by the channel components in

OMNeT++. By setting the bandwidth, delay and

packet error rate of the channels, users are able to

simulate the network links.

The JOB objects referred in subsection 4.1 are the

network packets when they are transmitted in the

simulated network. Users can define the maximum size

of JOBs, thus, the JOBs can be larger than the typical

network packets. To avoid complexity and promote

simulation efficiency, detailed models of real-world

network protocols are not enabled by default. The

impact of these approximations is partially shown in

the results from section 5.2, but in most cases, it is

shown to be negligible. If higher accuracy is demanded

in the network simulation, users are able to extend the

system with the INET framework [22] which supports

many basic models for wired/wireless network

protocols. Lower simulation efficiency may be

expected in this approach.

PFSsim also contains a router/switch component,

which is responsible for forwarding the packets to the

destinations. Users are able to configure the delay of

these network devices. For simplicity, in the simulated

system, the entities are named and resolved by the

static user-defined IDs. Thus, packets are routed/

switched according to their destination IDs.

4.4. Local File System Implementation

In PFSsim, the local file system component in the

data server module has two major features: data

address mapping and data caching/buffering.

We avoided exploring much toward the address

mapping technologies at the local file systems, for the

reason that 1) generally, file system block allocation

heavily depends on the context of storage usage (e.g.,

EXT4 [29]), which is very dynamic; 2) we consider

random disk seeking time as a less important factor in

typical parallel file system environments compared

with the significant factors such as total disk access

time and network delay. In PFSsim, we assign the disk

space to different files in a sequential manner.

The memory is simulated for the local file system

to conduct data caching/buffering for disk read/write

operations. Users are able to define the memory size

and page replacement policies. On a page fault or dirty

page write back, the local file system needs to have

disk data access transactions with the disk system

simulator, which is DiskSim.

4.5. Synchronization between OMNeT++ and

DiskSim

In PFSsim, there is one OMNeT++ process (for the

major framework) and multiple DiskSim processes

(one per disk system). Since DiskSim has the

functionality of getting the time stamp for the next

event, OMNeT++ can always proactively synchronize

with every DiskSim instance at the provided time

stamp.

Currently we have implemented TCP connections

between the OMNeT++ simulator and the DiskSim

instances. In this way, the simulator can be deployed in

a cluster. Even though optimizations are done in

improving the synchronization efficiency, we found the

TCP connection cost is still the bottleneck of

simulation speed. In the future work, we plan to

introduce more efficient synchronization mechanisms,

such as shared memory, but as a tradeoff, that approach

does not support distributed simulations.

5. Validation and Evaluation

In this section, we are going to validate and

evaluate the PFSsim simulation results against results

measured in a real system. A PVFS2 system containing

4 data servers and 1 metadata server is used as the

benchmark system. The benchmark system consists of

a variable number of clients. On each data server node,

we also deployed a proxy-based scheduler [20] that

intercepts all the I/O traffic on the local machine. All

the nodes are built on a set of Xen virtual machines

hosted on a cluster of eight DELL PowerEdge 2970

servers. Each virtual machine is configured with

2.4GHz AMD CPU and 1 GB memory. All virtual

machines run para-virtualized 2.6.18.8 kernel with

Ubuntu 8.0.4. EXT3 is used as the local file system for

PVFS2 data servers.

The simulated system is configured with the

measurements from the benchmark system. The cache

access speed is gauged by 400MB sequential

read/write operations on the VM cache, and the disk

access speed is gauged by 6.4GB sequential read/write

operations on the VM disk. According to PVFS2,

content locking and caching are disabled in the data

server daemon component. We set 900MB memory

capacity for the local file system component (other

processes possess an average of 100MB memory) with

Least Recent used (LRU) page replacement policy. We

set up a maximum dirty data size of 400MB, which is

40% of the 1GB total memory size (complies with the

default dirty_ratio value in Linux). The block/page

size is 4KB. The average network bandwidth between

each client and data/metadata server is measured to be

1Gbps, and the corresponding network latency is 0.2ms.

In the real system, schedulers and data servers are

deployed on the same VM in a one-to-one manner. To

simulate this, we deploy one scheduler on each router-

data server channel to intercept the packets and set the

scheduler-data sever channel to be ideal.

We use the ―Interleaved or Random‖ (IOR) trace

generator [30] to generate the benchmark I/O to the

real system. This benchmark allows the specification

of I/O patterns. We have developed a stand-alone trace

generator for PFSsim, and with it we generated the

PFSsim trace files in the same pattern.

5.1. PFS Simulator Validation

To validate the simulator fidelity under various

system workloads, we have performed five

independent experiments with 4, 8, 16, 32 and 64

clients for both read and write. Every client generates

sequential read/write I/O to 400 files, each containing

1MB of data. The data of each file is evenly distributed

to four data servers with the stripping size of 256KB.

In order to evaluate the performance of I/O buffering

/caching, the file reading tests are done on the same

files right after the corresponding file writing tests,

which means the data to read may still be in the

memory due to buffered written content.

Figure 2 and Figure 3 depict the average system

throughput and latency for various client

configurations. Over all we can see that the simulated

throughput and latency matches the real system

measurements well. In the following we are going to

discuss the results in details.

For the reading tests, with the setup of client

number 4 and 8, the system provides high throughput.

This is because the data are still in the cache due to the

pre-conducted writing test. Thus, the majority of the

data I/O is memory I/O which is very fast. We also

observe that the throughput with the setup of 8 clients

is twice as the setup of 4, which is due to the

parallelism on the PVFS2 servers. For the tests with

client number 16, 32 and 64, the reading throughput

decreases dramatically. The reason is the VMs

Figure 2. Average system throughput with

different number of clients

Figure 3. Average request response time with

different number of clients

maintain limited amount of memory – the servers can

never cache more than around 900MB of data. Thus, at

least part of the data previously written to the servers is

not in memory, and the read operations will incur the

disk I/O rather than hit in the cache. One will notice

that the throughput becomes stable when the client

number is 32 and 64; the reason is almost all data are

on the disk, so the saturated disk throughput becomes

the system throughput.

For the writing tests, with the client number of 4,

the written content can be mostly buffered in the

memory, so it achieves higher throughput. But as the

system client number increases, the throughput

decreases because when the dirty data in memory

exceeds 400MB, the system starts to write back the

dirty pages, which incurs high penalty. Also, similar to

the read tests, as the number of clients gets larger, the

throughput gets more stable, because the saturated disk

throughput determines the system throughput.

We can see from Figure 3, for 1MB I/O requests

the simulated average response time matches the real

system average response time well. The average

response time grows non-linearly as the system

workload increases. The reason is that the disk I/O

delay is tens of times bigger than the memory access

delay, and the queuing delay also prolongs the total

delay when the data servers are under heavy load.

From this set of tests, we can see that given the

appropriate parameters, PFSsim is able to simulate a

generic PFS system with an acceptable accuracy.

We also measured the simulation time in this series

of experiments. We found that the major factor to the

simulation time is the disk access time, because the

TCP inter-process synchronization between OMNeT++

and DiskSim is very expensive. But even for the 64-

client read test, it takes less than 3 minutes to finish on

a PC (Intel Duo Core 1.66GHz CPU, 2GB Memory).

5.2. Scheduler Validation

In this subsection, we are going to validate PFSsim

in terms of the I/O scheduling algorithm simulation.

We deploy 32 PVFS2 clients in the system. Each client

issues sequential write I/O to 400 files, each containing

1MB of data. The data of each file is evenly distributed

to four data servers with the stripping size of 256KB.

For the purpose of algorithm testing, the clients are

divided into two groups, G1 and G2, each with 16

clients. The Start-time Fair Queuing algorithm with

depth D = 4 (SFQ(4)) [15] is deployed on each

scheduler, which enforces the weight-based I/O

proportional sharing.

We conducted three sets of tests, namely, set A, B

and C. In SFQ(4), set A, B and C are configured with

the weight ratios (G1:G2) of 1:1, 1:2 and 1:4,

respectively. Every set is tested in both real system and

the simulated system. We sampled the ratios of G2’s

throughput to the overall throughput during the first

200 seconds of runtime and calculated the averages

and standard deviations for each set.

Figure 4 gives the pictures of G2’s throughput

ratios during the first 200 seconds of system runtime.

The sample interval is 2.5 seconds. Calculated

averages and standard deviations for each set are

provided in the captions. First, we can see for the 3 sets,

the averages of simulated throughput ratios are very

similar (<5% error) to the averages from the real

system. This means PFSsim is capable of simulating

the major goal of SFQ(D) – I/O proportional sharing.

Second, from both the real system and the simulation

results, we see the standard deviations in the

throughput ratios grow as the SFQ(D) algorithm

applies a more imbalanced weight ratio. This is a

special characteristic of the SFQ(D) algorithm. The

increasing trend in the standard deviations from the

simulation results provides helpful information to the

algorithm designers. Third, we can also observe that

the real system has a much higher standard deviation

than the simulated system. This difference is due to the

complexities existing in the real system, where many

dynamic factors can contribute to the variations in the

Set A. 50.17%, 0.024, 50.06%, 0.011

Set B. 67.50%, 0.094, 65.26%, 0.019

Set C. 73.67%, 0.101, 76.63%, 0.038

Figure 4. The throughput ratios G2 takes in
the first 200 seconds of runtime. In each row,
the left chart is the real system result and the

right chart is the simulation result. The
caption format: set name, the average and

standard deviation of G2’s real system
throughput ratios, the average and standard

deviation of G2’s simulated throughput ratios.

I/O throughput. Since PFSsim is using the abstracted

models to simulate the real system performance, it is

not be able to simulate all the details in the real

systems. For example, TCP protocol is not simulated in

PFSsim; also, the real-world network connections are

not as stable as in PFSsim. However, as we are

providing a prototype simulator, users are free to do

more accurate simulations by extending it. It is also our

future work to simulate the dynamics in the system

with higher accuracy.

Overall, we can see PFSsim is able to simulate the

performance trend of the SFQ(D) algorithm, while it

also provides the system performance measurements

with an acceptable accuracy. This information is very

meaningful to an algorithm developer to evaluate the

design before real implementations and evaluations.

6. Conclusion and Future Work

The design objective of PFSsim is to provide the

users an easy-to-use, flexible, authentic and scalable

PFS simulator for I/O scheduling algorithm designs.

We provide a flexible scheduler module for scheduling

algorithm deployment. The network topology, disk

model, PFS specification and workload can be easily

tuned. Since PFSsim has abstracted the major factors

that contribute to the system I/O performance, we

expect that given appropriate parameters, good

simulation accuracy can be achieved. PFSsim is also

highly extendable; users can extend any module of the

simulator for higher accuracy or customized design.

The validations on the PFS simulator and scheduler

module show the system is capable of simulating the

performance of a typical PFS system, given the PFS

profiling parameters, scheduling algorithm and the

workloads. For scalability, as far as we have tested, the

system scales for simulations of up to 512 clients and

32 data servers. The simulator time efficiency is also

shown to be acceptable.

In the future work, we are going to merge the IOR

trace generator to PFSsim for generating synthetic

traces. Meanwhile, more real benchmarks will be used

for PFSsim evaluations. We will develop more

accurate network models, which may characterize the

statistical behavior of real TCP connections. Moreover,

we are looking forward to simulate the disk systems

with more abstractive models, which can substantiate

DiskSim to promote the simulation efficiency. We are

also investigating the possible ways to support

simulations of very large scale systems. This may be

achieved by allocating individual simulator modules

into processes running on different nodes.

7. References

[1] E. Molina-Estolano, C. Maltzahn, J. Bent, and S.A.

Brandt, ―Building a parallel file system simulator‖,

poster session presented in SciDAC’09, San Diego, CA,

Jun. 2009.

[2] P. Carns, B. Settlemyer, and W. Ligon, ―Using server-to-

server communication in parallel file systems to simplify

consistency and improve performance‖, in Proc. the

2008 ACM/IEEE Conference on Super-computing

(SC’08), Austin, TX, 2008, pp. 1–8.

[3] Sun Microsystems, Inc., ―Lustre file system: high-

performance storage architecture and scalable cluster file

system‖, Sun Microsystems, Inc., Santa Clara, CA, white

paper, 2008.

[4] P. Carns, W. Ligon, R. Ross, and R. Thakur, ―PVFS: A

parallel file system for Linux clusters‖, in Proc. the 4th

annual Linux Showcase & Conference, Atlanta, GA,

2000, pp. 317-327.

[5] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, and C.

Maltzahn, ―Ceph: A scalable, high-performance distrib-

uted file system‖, in Proc. the 7th symposium on

Operating Systems Design and Implementation

(OSDI’06), Seattle, WA, 2006, pp. 307-320.

[6] D. Nagle, D. Serenyi, and A. Matthews, ―The Panasas

activeScale storage cluster-delivering scalable high

bandwidth storage‖, in Proc. the 2004 ACM/IEEE

Conference on Supercomputing (SC’04), Pittsburgh, PA,

2004, p. 53.

[7] F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang, and

I. Huang. ―Understanding Lustre filesystem internals‖,

Tech. Rep. ORNL/TM-2009/117, Oak Ridge National

Lab., Oak Ridge, TN, 2009.

[8] R. Sandberg, ―The Sun network filesystem: design,

implementation, and experience‖, Tech. Rep., Sun

Microsystems, Mountain view, CA, 1987.

[9] M. Mesnier, G.R. Ganger, and E. Riedel, ―Object-based

storage‖, IEEE Communications Magazine, IEEE

Communications Society, Aug. 2003, pp. 84-90.

[10] Z. Dimitrijevic, and R. Rangaswami, ―Quality of service

support for real-time storage systems‖, in Proc. the

International IPSI-2003 Conference, Sveti Stefan,

Montenegro, Oct. 2003, p. 20.

[11] R. Jain, K. Somalwar, J. Werth, and J.C. Browne,

―Heuristics for scheduling I/O operations‖, IEEE

Transactions on Parallel and Distributed Computing,

IEEE Press, Piscataway, NJ, Mar. 1997, pp. 310-320.

[12] F. Chen, and S. Majumdar, ―Performance of parallel I/O

scheduling strategies on a network of workstations‖, in

Proceedings of the 8th International Conference on

Parallel and Distributed Systems (ICPADS’01),

KyongJu City, Korea, Jun. 2001, pp. 157-164.

[13] D. Durand, R. Jain, and D. Tseytlin, ―Parallel I/O

scheduling using randomized, distributed edge coloring

algorithms‖, Journal of Parallel and Distributed

Computing, Academic Press, Inc, Orlando, FL, Jun.

2003, pp. 611-618.

[14] C.R. Lumb, A. Merchant, and G.A. Alvarez, ―Façade:

virtual storage devices with performance guarantees‖, in

Proc. the 2nd USENIX Conference on File and Storage

Technologies (FAST’03), San Francisco, CA, Mar. 2003,

pp. 131-144.

[15] W. Jin, J.S. Chase, and J. Kaur. ―Interposed proportional

sharing for a storage service utility‖, in Proc. the joint

International Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS’04), New York,

NY, Jun. 2004, pp. 37-48.

[16] P. Goyal, H.M. Vin, and H. Cheng, ―Start-time fair

queueing: a scheduling algorithm for integrated services

packet switching networks‖, IEEE/ACM Trans.

Networking, IEEE Press, Piscataway, NJ, Oct. 1997, Vol.

5, pp. 690–704.

[17] J. Zhang, A. Sivasubramaniam, A. Riska, Q. Wang, and

E. Riedel, ―An interposed 2-level I/O scheduling

framework for performance virtualization‖, in Proc. the

2005 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems

(SIGMETRICS’05), Banff, Alberta, Canada, Jun. 2005,

pp. 406-407.

[18] A. Gulati, and P. Varman, ―Lexicographic QoS schedul-

ing for parallel I/O‖, in Proc. the 17th Annual ACM

Symposium on Parallelism in Algorithms and Architect-

ures (SPAA’05), Las Vegas, NV, Jun. 2005, pp. 29-38.

[19] Y. Wang, and A. Merchant, ―Proportional-share Sched-

uling for Distributed Storage Systems‖, in Proc. the 5th

USENIX Conference on File and Storage Technologies

(FAST’07), San Jose, CA, Feb. 2007, pp. 47–60.

[20] Y. Xu, L. Wang, D. Arteaga, M. Zhao, Y. Liu, and R.

Figueiredo, ―Virtualization-based Bandwidth Manage-

ment for Parallel Storage Systems‖. in 5th Petascale

Data Storage Workshop (PDSW’10), New Orleans, LA,

Nov. 2010, pp. 1-5.

[21] J.S. Bucy, J. Schindler, S.W. Schlosser, and G.R. Ganger,

―The DiskSim simulation environment version 4.0

reference manual‖, Tech. Rep. CMU-PDL-08-101,

Carnegie Mellon University, Pittsburgh, PA, May. 2008.

[22] A. Varga, INET Framework for OMNeT++ 4.0, 2009.

http://inet.omnetpp.org/.

[23] A. Varga, ―The OMNeT++ discrete event simulation

system‖, in Proc. the European Simulation Multi-

conference (ESM’01), Prague, Czech Republic, Jun.

2001.

[24] D. Roselli, J.R. Lorch, and T.E. Anderson, ―A

comparison of file system workloads‖, in Proc. the 2000

USENIX Annual Technical Conference, San Diego, CA,

Jun. 2000, pp. 41-54.

[25] S.A. Weil, K.T. Pollack, S.A. Brandt, and E.L. Miller,

―Dynamic metadata managemnet for petabyte-scale file

systems‖, in Proc. the 2004 ACM/IEEE Conference on

Supercomuting (SC’04), Pittsburgh, PA, Nov. 2004.

[26] S.A. Weil, S.A. Brandt, E.L. Miller, and C. Maltzahn,

―CRUSH: Controlled, scalable, decentralized placement

of replicated data‖, in Proc. the 2006 ACM/IEEE

Conference on Supercomputing (SC’06), Tampa, FL,

Nov. 2006.

[27] Y. Saito, S. Frølund, A. Veitch, A. Merchant, and S.

Spence. ―Fab: Building distributed enterprise disk arrays

from commodity components‖, in Proc. the 11th

international conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS), Boston, MA, Oct. 2004, pp. 48-58.

[28] D.D. Chambliss, G.A. Alvarez, P. Pandey, D. Jadav, J.

Xu, R. Menon, and T.P. Lee, ―Performance virtualiza-

tion for large-scale storage sytems‖, in Proc. 22nd

International Symposium on Reliable Distributed

Systems (SRDS’03), Florence, Italy, Oct. 2003, pp. 109-

118.

[29] A. Mathur, M. Cao, and S. Bhattacharya. ―The new

EXT4 filesystem: current status and future plans‖, in

Proc. the 2007 Ottawa Linux Symposium, Ottawa,

Canada, Jun. 2007, pp. 21–34.

[30] Interleaved or Random (IOR) Benchmark,

https://asc.llnl.gov/sequoia/

benchmarks/IOR_summary_v1.0.pdf

