
Client-side Flash Caching for Cloud Systems

Dulcardo Arteaga
Florida International University

darte003@cs.fiu.edu

Ming Zhao
Florida International University

ming@cs.fiu.edu

ABSTRACT
As the size of cloud systems and the number of hosted VMs
rapidly grow, the scalability of shared VM storage systems
becomes a serious issue. Client-side flash-based caching has
the potential to improve the performance of cloud VM stor-
age by employing flash storage available on the client-side
of the storage system to exploit the locality inherent in VM
IOs. However, because of the limited capacity and durabil-
ity of flash storage, it is important to determine the proper
size and configuration of the flash caches used in cloud sys-
tems. This paper provides answers to the key design ques-
tions of cloud flash caching based on dm-cache, a block-level
caching solution customized for cloud environments, and a
large amount of long-term traces collected from real-world
public and private clouds. The study first validates that
cloud workloads have good cacheability and dm-cache-based
flash caching incurs low overhead with respect to commod-
ity flash devices. It further reveals that write-back caching
substantially outperforms write-through caching in typical
cloud environments due to the reduction of server IO load.
It also shows that there is a tradeoff on making a flash cache
persistent across client restarts which saves hours of cache
warm-up time but incurs considerable overhead from com-
mitting every metadata update persistently. Finally, to re-
duce the data loss risk from using write-back caching, the pa-
per proposes a new cache-optimized RAID technique, which
minimizes the RAID overhead by introducing redundancy
of cache dirty data only, and shows to be significantly faster
than traditional RAID and write-through caching.

1. INTRODUCTION
Network storage systems such as SAN [29] and IP-SAN

(e.g., iSCSI [24], NBD [12]) are commonly used in the emerg-
ing cloud computing systems to store virtual machine (VM)
images for a set of VM hosts (e.g., [1, 13]). Such a shared
storage system allows efficient storage utilization by consol-
idating separate VM storage resources into a single shared
pool. It also enables fast, live VM migrations which need to
transfer only VMs’ in-memory state across hosts during the
migrations. However, as the size of cloud systems and the

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org. ACM SYSTOR ’14,
June 10-12 2014, Haifa, Israel Copyright is held by the owner/author(s).
Publication rights licensed to ACM.
SYSTOR ’14, June 10-12, Haifa, Israel
Copyright 2014 ACM 978-1-4503-2920-0 ...$15.00
DOI 10.1145/2611354.2611372.

number of hosted VMs rapidly grow, the scalability of shared
storage becomes a serious issue. In a production cloud, a sin-
gle host can run hundreds of VMs, while a cluster of hosts
can have thousands of VMs sharing the same storage server.
Consequently, the VM storage system can become the bot-
tleneck while a VM cannot get its desired performance even
if it is provisioned with the necessary CPUs and memory.

Client-side persistent-storage-based caching can improve
the performance of cloud VM storage by harnessing the stor-
age available on the client-side of the storage system, the VM
hosts, and the locality inherent in VM IOs. Each VM can get
faster IOs if they are performed on the local cache, instead
of from the likely highly loaded remote storage. With the
emergence of flash storage, the benefit of client-side caching
becomes even more significant as the speed of a flash cache
can substantially outperform the typically hard-disk-based
storage server. Various solutions [5, 17, 9, 7] have been pro-
posed to implement flash-based client-side caching.

There are several key questions that need to be answered
in order to make effective use of flash caches in cloud stor-
age systems. First, how to size the flash caches? Given the
capacity and cost constraints of flash devices, there needs to
be enough locality in VM IOs in order to make flash caching
cost effective. Otherwise, cloud may not be a good target
for flash caching. Second, how to choose the write caching
polices? Although the non-volatile nature of flash storage
allows writes to be served directly from the cache, how to
synchronize the cache with the server has implications on
both IO performance and data durability. Third, is it nec-
essary to make a flash cache persistent across client restarts
and crashes? A persistent cache requires both data and
metadata to be persistently stored on the cache, which in-
troduces additional writes that are detrimental to both IO
performance and flash endurance. Finally, how to improve
the reliability of a flash cache so as to tolerate device-level
failures? If a flash cache retains locally modified data, it
is critical that the cache can recover from flash device fail-
ures, but the employed fault-tolerance mechanism should
not negate the performance benefit of write-back caching.

This paper studies client-side flash caching in cloud sys-
tems by providing answers to the above questions based
on dm-cache [5], a block-level cache solution that provides
transparent flash caching on cloud VM hosts and supports
concurrent, dynamic VMs to efficiently share a cache. It
has been adopted by cloud service providers for production
use [3]. To facilitate this study, we have collected a sub-
stantial amount of block IO traces from a private cloud at
Florida International University (FIU) and a public cloud
from CloudVPS [3]. The FIU trace contains nearly one
year of block IO traces collected from several production
servers (Web serve, Moodle server, and network file system
servers). The CloudVPS traces contains block IO traces

1

from hundreds of VMs on the production systems of the
Infrastructure-as-a-Service (Iaas) cloud for several days.

Our study first analyzes the basic characteristics of dm-
cache based flash caching and the collected cloud traces.
It reveals that dm-cache introduces small latency overhead
which is around 23µs when using an SATA SSD device and
9µs when using a PCIe SSD device. It also validates that
cloud VMs are good targets for flash caching by comparing
the working set size (WSS) of the traces to the typical size
of commodity flash devices.

After confirming the feasibility of flash caching, we further
study the impact of different write caching policies. Our re-
sults show that retaining writes in the cache is beneficial
to performance (48% to 321% speedup compared to a pol-
icy that only invalidate cache blocks upon writes). More
importantly, delaying the synchronization with the server
(i.e., write-back caching) can significantly improve the per-
formance (74% to 1289% speedup) compared to the pol-
icy that synchronizes with the server upon every write (i.e.,
write-through caching). This improvement can be mainly
attributed to the 52% to 94% reduction of server load) by
exploiting the locality of cached writes, which was not con-
sidered in the related work [20].

Our study also reveals the tradeoff of making a flash cache
persistent across client restarts and crashes. To store the
metadata persistently, it introduces up to 0.06ms latency
overhead, but it allows the client to work with a warm cache
after it recovers, which saves the time (3 to 5 hours in our
traces) to warm up the cache and increases the hit rate by
up to 28%. Compared to the related work [20], we provide
quantitative results on the cost and benefit of making flash
cache persistent and show that this tradeoff should be care-
fully decided based on the cloud environment such as the
expected client failure rate.

With the understanding of the importance of write-back
caching, we further investigate how to make it reliable and
affordable. Our solution is a new cache-optimized RAID
technique which selectively provides data redundancy. It
recognizes the fact that cached clean data already have re-
dundant copies on the server, and employs additional flash
devices only to provide fault tolerance to cached dirty data,
thereby minimizing the overhead while maximizing utiliza-
tion. The results show that this cache-optimized RAID
can provide fault tolerance with negligible overhead (9.1µs),
and substantially improves the performance by 135% and
72% compared to using traditional RAID and write-through
caching, respectively, to achieve reliability.

The rest of the paper is organized as follow: Section 2 de-
scribes the background and related work; Section 3 presents
the methodology of the trace-driven analysis; Section 4 ana-
lyzes the cacheability of cloud workloads using the collected
cloud traces; Section 5 discusses the overhead of dm-cache-
based flash caching; Section 6 analyzes the impact of differ-
ent write caching policies; Section 7 analyzes the cost and
benefit associated with making a cache persistent; Section
8 presents the cache-optimized RAID technique for reliable
write-back caching; and Section 9 concludes the paper.

2. BACKGROUND AND MOTIVATIONS
Client-side persistent-storage-based caching can improve

the performance of a distributed storage system by harness-
ing the persistent storage available on the storage client to
exploit the locality within its IOs, thereby accelerating data

accesses to the client and reducing IO load on the server.
Earlier results from dm-cache show that HDD-based client-
side caching can achieve a 15-fold speedup for an iSCSI-
based system with 8 clients sharing one HDD-based server [19].
However, the use of client-side disk caching was not widely
adopted, which can be attributed to at least the fact that the
latency of an HDD-based cache is often comparable to the
network latency to the storage server. The benefit of client-
side caching hence exhibits only when the server is heavily
loaded [19] or accessed through a wide-area network [31, 32].

While the emergence of flash-based storage is fundamen-
tally transforming the landscape of computer storage field,
it is also changing the perception on client-side caching, be-
cause the speed of a flash-based cache can be substantially
faster than an HDD-based storage server. Even as flash stor-
age gets increasingly adopted on the storage server side, the
diversity of flash devices allows the use of faster flash storage
(e.g., single-level cell flash) on the client side as the cache for
the slower flash storage (e.g., multiple-level cell flash, hybrid
flash/HDD) on the server side.

The great potential of flash caching has motivated sev-
eral related solutions. For example, Mercury [17] provides a
block-level flash cache in the hypervisor of a storage client, in
order to provide caching to the VMs hosted on the client over
a variety of networked storage protocols. ioCache [9] sup-
ports caching in the hypervisor or in the individual VMs on
a storage client using custom-built flash hardware and man-
agement software. In this paper, we base our flash caching
study on dm-cache [5], a open-source block-level caching so-
lution. It is created upon block-device virtualization and can
be transparently deployed on VM hosts. It has been success-
fully adopted by production cloud systems [5] and motivated
the designs of other related solutions (e.g., FlashCache [7]).
Details of dm-cache are introduced in Section 3.1.

Although the potential of client-side flash caching is well
recognized, it is still unclear how much performance im-
provement that it can achieve for typical cloud workloads
and how to best design and configure the cache given the
many possible choices. Recently, Holland et al. [20] stud-
ied several key design considerations, including flash-RAM
integration, write-back policy, cache persistency, and cache
consistency, based on simulations. In particular, they found
that write-through caching is good enough because the writes
to the storage server can be submitted asynchronously with-
out slowing down the client. However, they did not consider
the impact on the server’s load and its resulting effect on the
client’s performance, which are studied in this paper using
a real flash cache implementation with real traces.

Previous work from Koller et al. also advocated the im-
portance of write-back caching and studied new ordered and
journaled write-back policies for flash caches, in order to
improve the consistency of cached dirty data [23]. This pa-
per complements the previous work by further studying the
performance impact of write-back caching to both storage
client and server using real workloads and proposing a new
cache-optimized RAID technique to improve the reliability
of write-back-based flash caches.

RAID is a classic technique to improve the reliability of
storage and has also been considered in the context of flash
storage [22]. A unique challenge of flash-based RAID is syn-
chronous aging, which means that the flash devices used in a
RAID group wear out at the same time and cannot be recov-
ered by RAID. Diff-RAID was proposed to address this chal-

2

lenge by intentionally distributing parity blocks unevenly
across the flash devices so that the writes caused by parity
updates are also unevenly distributed, allowing the devices
to wear out at different speed [15]. This related work is com-
plementary to this paper’s cache-optimized RAID technique
which improves storage utilization and reduces wear out by
providing redundancy to only the dirty data in a cache.

The importance of flash caching has also motivated re-
lated work on exploiting cache-specific characteristics to op-
timize the use of flash storage. FlashTier [28] studied a new
flash device interface specialized for caching, which reduces
the block management overhead by unifying the block ad-
dress mappings done by the cache and device and reduces
the device garbage collection overhead by silently evicting
clean cache blocks. HEC [30] and LARC [21] studied new
cache admission policies to address the flash wear-out is-
sue by not caching data that are infrequently used or from
backup workloads. These solutions are complementary to
this paper’s study which focuses on the design issues inter-
nal to cache while our discoveries also have an impact on
flash performance and endurance.

3. METHODOLOGY
3.1 Dm-cache Block-level Cache

Dm-cache [5, 19] provides caching at block level for dis-
tributed storage systems. It is created upon block-level stor-
age virtualization by interposing a virtual block device be-
tween the storage client and server, and can be transparently
deployed on the client-side of a distributed storage system to
provide caching. Our current implementation of dm-cache
is based on the Linux block device virtualization framework
(device mapper) and can be seamlessly employed by any
Linux-based environments including VM systems that use
Linux-based IO stack (e.g., Xen [16] and KVM [11]). It is
an open-source solution and has been adopted by production
cloud systems [4]. Therefore, we use dm-cache as a repre-
sentative flash caching solution and feed it with real-world
traces to carry out this paper’s study.

Dm-cache supports full associativity with LRU-based re-
placement and various write caching polices. It employs a
radix tree for fast cache lookup and an LRU list for quickly
finding a replacement block. (See Section 5 for the over-
head analysis.) Although alternative cache replacement al-
gorithms (e.g., ARC [26]) are available, cache replacement is
not the focus of this paper and the use of LRU in our study
offers at least a baseline performance from a commonly used
algorithm.

To support the use in cloud computing systems, dm-cache
allows multiple co-hosted VMs to safely share the same cache
device in a work-conserving manner (but with isolated data-
sets, data sharing at block level requires a cluster file sys-
tem [14, 10] and will be considered in our future work). It
also allows the cache contents to be controlled on a per-VM
basis in order to support dynamic VM life cycles and migra-
tions. For example, when a VM is terminated or migrated
to a different host, its cached data can be flushed without
affecting the other VMs sharing the same cache.

Figure 1 illustrates the architecture of dm-cache-based
flash caching in cloud environments. In this example there
are multiple VMs each with its own virtual disk stored di-
rectly on the logical volumes (LVs) (/dev/lv-disk#) remotely
accessed through SAN or IP SAN (e.g., iSCSI [24], NBD [12]).

Figure 1: Architecture of Shared flash Caches for Cloud

The local storage device (/dev/sdc) on the client-side of this
distributed storage system, the VM host, is used to pro-
vide block-level caching for the VM images. In order for
the VMs to share the cache device, a virtual cache (e.g.,
/dev/mapper/cache1) is created for each VM and presented
to the VM as its virtual disk, while all the virtual caches are
at the end mapped to the same physical cache device (a VM
identifier is stored in every cached block to track the own-
ership of cache data). Each VM’s IOs to its virtual disk are
thereby handled by dm-cache and satisfied from the cache
or remote LV.

3.2 Dm-cache-sim Cache Simulator
To facilitate the analysis of cache performance using long-

term traces and with different cache configurations, we also
created a user-level cache simulator, dm-cache-sim. It is able
to flexibly model the cache management of dm-cache, use
block-level traces to drive the simulations, and collect de-
tailed statistics on cache usages and hit rates. Note that we
do not use this simulator to gather IO latency or throughput
which are always collected using dm-cache with real experi-
ments. Because we do not attempt to simulate the time be-
havior of dm-cache, the simulator generally runs faster than
real experiments while giving the same cache hit rate results
as real experiments. It is therefore good for quickly explor-
ing the impact of different cache configurations on cache hit
rate using long-term traces.

3.3 Traces
To support this flash caching study, real-world block IO

traces were collected from production cloud systems using
blktrace, a Linux block-layer IO tracing mechanism [2], and,
dtrace a Solaris dynamic tracing framework [6]. The statis-
tics of the collected traces are summarized in Table 1. The
first group of traces were collected from a private cloud at
FIU. Several production servers (Web, Moodle, and network
file system servers) were traced for months. The Web server
hosts a departmental website; the Moodle server hosts the
Moodle online learning system; the Bear and Buffalo servers
are the file servers for storing the user data of faculty and
students, respectively. These different types of servers repre-
sent services that are commonly hosted on cloud VMs. The
second group of traces were collected from the production
system of a public IaaS cloud provider (CloudVPS) [3]. A
random set of 170 VMs were selected from three VM hosts
and traced for up to three days.

Figure 2 shows the total number of IOs and the num-
bers of reads and writes for the Webserver trace for over 10
months. This workload is write-intensive because the reads

3

Server Time IO Load WSS Write
Name (days) (GB) (GB) (%)

webserver 281 2,247 110 51
moodle 161 17,364 223 13
buffalo 90 39,128 638 41
bear 152 57,887 1037 22
CloudVPS (170+ VMs) 3 7 - 223 5 - 20 14 - 85

Table 1: Trace statistics

 0
 10
 20
 30
 40
 50
 60
 70

N
ov

 0
1

N
ov

 1
5

N
ov

 2
9

D
ec

 1
3

D
ec

 2
7

Ja
n

10
Ja

n
24

Fe
b

07
Fe

b
21

M
ar

 0
7

M
ar

 2
1

Ap
r 0

4
Ap

r 1
8

M
ay

 0
2

M
ay

 1
6

M
ay

 3
0

Ju
n

13
Ju

n
27

Ju
l 1

1
Ju

l 2
5

Au
g

08IO
s

R
ea

ds
/W

rit
es

 (
M

) Total IOs
Reads
Writes

Figure 2: FIU Web server IO patterns

to the commonly visited web pages can be well captured by
the webserver’s memory cache, leaving the underlying stor-
age layer a high ratio of writes. Figure 3 shows the patterns
of the Moodle trace for nearly six months. Although this
trace is collected also from a website, its patterns are quite
different from the Webserver. First, the overall intensity is
an order of magnitude higher than the Webserver trace, be-
cause the Moodle website services contents such as course
slides and assignments which are much larger than the data
served by the Webserver. Second, because the working set is
much larger, a significant number of reads misses the mem-
ory cache and dominates the storage workload (82% overall).
Figures 4 and 5 show the IO patterns for the two file server
traces, which are both much more intensive than the Web-
server and Moodle traces. Between these two file servers,
Bear services a larger dataset and its storage workload has
a greater percentage of reads than Buffalo.

The above four traces provide a good representation of
cloud workloads with different levels of IO intensity and dif-
ferent read/write ratio. Figure 6 further illustrates commer-
cial cloud workload patterns using a subset of the VM traces
collected from Cloud VPS, where every group of bars corre-
sponds to a one-day trace from one of the VMs. These VMs
exhibit diverse IO characteristics in terms of intensity and
read/write ratio. As Cloud VPS is an IaaS provider, the
guest systems of the VMs are owned by the users and their
behaviors can be only observed from outside of the VMs.

3.4 Experimental Testbed
To obtain IO performance metrics such as latency and

throughput of flash caching, the collected traces were re-
played on a real iSCSI-based storage system. One node from
a compute cluster is set up as the storage server (iSCSI tar-
get) and the others as the clients (iSCSI initiators). Each
node has two six-core 2.4GHz Opteron CPUs, 32GB of RAM,
and one 500GB 7.2K RPM SAS disk, running 3.2.20 Linux-
kernel in a Debian 6.0 OS. Each client node in addition is
equipped with dm-cache and flash devices to provide caching.
The server node runs iSCSI server to export the LVs stored
on its SAS disk to the clients via a Gigabit Ethernet.

The performance of flash devices varies across different in-
terfaces, vendors, and models. In this study, we consider two
representative devices from major vendors and with differ-
ent interfaces: a 120GB MLC SATA-interfaced flash device
from Intel (Model: Intel C2CW120A3) and a 240GB MLC
PCIe interfaced flash device from OCZ.

 0
 100
 200
 300
 400
 500
 600
 700
 800

N
ov

 2
6

D
ec

 1
0

D
ec

 2
4

Ja
n

07

Ja
n

21

Fe
b

04

Fe
b

18

M
ar

 0
4

M
ar

 1
8

Ap
r 0

1

Ap
r 1

5

Ap
r 2

9

IO
s

R
ea

ds
/W

rit
es

 (
M

) Total IOs
Reads

Writes

Figure 3: FIU Moodle server IO patterns

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

Ja
n

03

Ja
n

17

Ja
n

31

Fe
b

14

Fe
b

28

M
ar

 1
4

M
ar

 2
8

IO
s

R
ea

ds
/W

rit
es

 (
M

) Total IOs
Reads

Writes

Figure 4: FIU Buffalo file server IO patterns

4. CACHEABILITY ANALYSIS
We start our study with a basic cacheability analysis by

analyzing the working set size (WSS) of our collected cloud
traces. Because a cache’s performance for a given work-
load is largely determined by how well the cache can store
the workload’s working set, we try to understand whether
the capacity of commodity flash devices is sufficient with re-
spect to the working set size of a typical cloud workload. In
the analysis below, we consider using the write-back caching
policy and LRU-based cache replacement.

Table 1 lists the total WSS, i.e., the total number of
unique block references, across the entire duration of every
cloud trace. For the Web server, Moodle, and CloudVPS
traces, their WSSes can be well stored by a typical commod-
ity flash device. While the WSSes of the buffalo and bear file
server traces are much larger, they can also be completely
stored in a high-end flash device. However, in a cloud en-
vironment, the limited cache capacity has to be shared by
many VMs hosted on the same client. Each VM only gets
a portion of the flash cache, which is most unlikely to be
sufficient for the total WSSes observed from these traces.
Nonetheless, it is also unnecessary to keep the working set
of an entire workload which lasts up to 9 months for the
above traces, in the cache. If the cache can hold the work-
ing set observed at a smaller timer scale, say weeks, then it
can still achieve good performance most of the time, except
for when the workload transits across different working sets.

Figure 7 shows the WSS calculated per week (Weekly
WSS) and the WSS calculated from the start of the trace
(Total WSS) as they vary over time for the Web and Moodle
server traces. The results show that the weekly WSS of the
Web server workload is quite stable and stays below 20GB
most of the time, although the entire WSS for 9 months
can grow to 110GB. The weekly WSS of the Moodle server
workload fluctuates over time but in average it is 100GB,
which is less than half of the total WSS at the end of the
5-month trace.

Finally, to illustrate the potential cache performance with
different cache sizes, we extract one-month-long segments of
the Web server trace that exhibit different WSS, and show
how well the cache performs in terms of hit rate in Figure 8.
In general, the cache hit rate is well above 50% and exceeds
90% in many cases.

The above analysis reveals that the working sets of typical
cloud workloads can be well cached in commodity flash de-

4

 0
 300
 600
 900

 1200
 1500
 1800
 2100
 2400

N
ov

 1
6

N
ov

 3
0

D
ec

 1
4

D
ec

 2
8

Ja
n

11

Ja
n

25

Fe
b

08

Fe
b

22

M
ar

 0
8

M
ar

 2
2

Ap
r 0

5

Ap
r 1

9

IO
s

R
ea

ds
/W

rit
es

 (
M

) Total IOs
Reads

Writes

Figure 5: FIU Bear file server IO patterns

 0
 5

 10
 15
 20
 25
 30
 35

vp
s2

63
34

vp
s2

65
42

vp
s2

65
05

vp
s2

60
79

vp
s2

62
73

vp
s2

61
07

vp
s2

64
83

vp
s2

65
35

vp
s2

60
22

vp
s2

64
85

vp
s2

63
24

IO
s

R
ea

ds
/W

rit
es

 (
M

)

VMs

Reads Writes

Figure 6: Cloud VPS VM IO patterns

vices, thereby verifying the feasibility of using flash devices
as caches in cloud systems. Given the workloads that a VM
host need to serve, the above analysis can also help deter-
mine the appropriate size of the flash cache. However, for
unknown workloads, their WSSes have be estimated online,
which will be studied in our future work.

5. CACHE OVERHEAD
To further investigate the feasibility of flash-based caching,

we analyze its worst-case overhead using dm-cache. Cache
overhead is directly associated with cache management oper-
ations including lookup, insertion, invalidation, and update.
This overhead needs to be small, especially considering the
fast speed of flash storage which can make any software-
introduced overhead appear significant in the overall IO la-
tency. We compare the IO latencies from when flash caching
is not used to when it is used but with a cold cache, in or-
der to evaluate the overhead of cache lookup and insertion.
We compare the IO latencies from raw flash device (with-
out using dm-cache) to the latencies from warm flash cache
(using dm-cache) to evaluate the overhead of cache lookup
and invalidation/update.

We use fio [8] to create basic read and write intensive
workloads of sequential and random patterns. These work-
loads are issued to the raw storage device using direct IOs
so that any potential optimization done by the file system
and memory cache is bypassed in this performance analysis.
Each workload exercises 1GB of data and is repeated four
times. We consider three caching policies as defined below,
which mainly differ in how they handle a write to the cache.

• Write-invalidate (WI): The write invalidates the cached
block and is submitted to the storage server.

• Write-through (WT): The write updates both the cache
and the storage server.

• Write-back (WB): The write is stored in the cache im-
mediately but is submitted to the storage server later.
Before the storage server gets the write, the block is
locally modified in the cache and considered dirty.

The write-through and write-back polices are well studied
in the processor cache related literature [18], which provide
a tradeoff between data coherence and performance. The
write-invalidate policy sounds contrived, but it simplifies the
handling of writes. There are also some variations in im-
plementing the write-through and write-back policies. For

Workload SATA-SSD PCIe-SSD
type (ms) (ms)

Sequential read 0.14 0.23
Sequential write 0.07 0.03
Sequential read/write 0.08 0.16
Random read 0.18 0.23
Random write 0.07 0.04
Random read/write 0.10 0.19

Table 2: Raw Flash Latencies

Workload SATA-SSD (usec) PCIe-SSD (usec)
type AVG STD AVG STD

Seq read 96.2 28.5 240.1 10.1
Seq write 51.6 111.7 45.9 72.6
Seq read/write 94.6 132.0 171.5 148.9
Rand read 190.5 40.1 239.9 2.7
Rand write 54.5 124.1 57.1 76.5
Rand read/write 102.2 145.1 203.5 171.7

Table 3: Raw Flash Latencies

write-through, the IO experiences a write stall if it waits
for the write to complete in both the cache and back-end
storage [18]. A common optimization is to allow the IO to
be returned to the upper storage layer once it is stored in
the cache, which allows the application to continue while
the back-end storage is being updated. The dm-cache im-
plementation adopts this optimization. For the write-back
policy, a dirty block is written to the back-end storage when
it is replaced. As an optimization for better data reliabil-
ity, dm-cache also supports the automatic flushing of dirty
blocks periodically or when the percentage of dirty blocks
exceeds a threshold (similarly to the Linux pdflush policy)
as well as manual flushing through a IOCTL signal.

For a read workload (Figure 9), the average latency is
about 0.3ms when there is no cache. When the SATA-flash
cache is used the results show a small overhead of less than
0.023ms when the cache is cold, and for the PCI-e flash cache
this overhead is less than 9µs. This overhead is mainly from
looking up the requested block and finding the replacement
block. Both operations are fast because dm-cache employs
a radix tree for cache lookup which has a time complexity of
O
(
logn

)
where n is the maximum number of blocks in the

the cache, and it maintains a linked-list-based LRU list for
replacement. Once the requested block is fetched from the
server, it is immediately returned to the upper layer in the
IO stack while being stored into cache. When the cache is
warm, the average latency drops to 0.107ms for the SATA
cache and 0.23ms for the PCI-e cache, both of which match
the raw flash read latencies (<0.01ms slowdown) and are
substantially faster than reading from the remote HDD.

For a sequential write workload (Figure 10), the average
latency is around 0.4ms when flash cache is not used. When
write-invalidate caching is used, the latencies are the same
as when there is no cache since all the writes still need to be
serviced by the remote server. When write-through or write-
back caching is used, the latencies drop drastically, 0.06ms
for the SATA flash and 0.05ms for the PCIe flash, because
writes can be returned once they are stored by the flash
cache. Their performance matches the raw device latencies
with negligible difference (<0.008ms slowdown) because the
overhead introduced by cache lookup and finding the re-
placement block is small. For a random write workload (Fig-

5

 0
 20
 40
 60
 80

 100
 120

N
ov

 0
1

N
ov

 1
5

N
ov

 2
9

D
ec

 1
3

D
ec

 2
7

Ja
n

10
Ja

n
24

Fe
b

07
Fe

b
21

M
ar

 0
7

M
ar

 2
1

Ap
r 0

4
Ap

r 1
8

M
ay

 0
2

M
ay

 1
6

M
ay

 3
0

Ju
n

13
Ju

n
27

Ju
l 1

1
Ju

l 2
5

Au
g

08

W
S

S
 (

G
B

)
Weekly WSS

Total WSS

(a) Web server

 0
 50

 100
 150
 200
 250
 300

N
ov

 2
6

D
ec

 1
0

D
ec

 2
4

Ja
n

07

Ja
n

21

Fe
b

04

Fe
b

18

M
ar

 0
4

M
ar

 1
8

Ap
r 0

1

Ap
r 1

5

Ap
r 2

9

W
S

S
 (

G
B

)

Weekly WSS
Total WSS

(b) Moodle server

Figure 7: Working set size (WSS) variations over time

2
4

8
16

32
64

128
256

Cache Size (GB)

10
33

43
54

60
95

97

WSS (GB)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

H
it

R
at

e
(%

)

 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

Figure 8: Cache hit rate given different cache Size and WSS

ure 10), the latency difference between write-through/write-
back and no-cache/write-invalidate is even more drastic, be-
cause the HDD-based back-end performs much worse for
random writes than sequential writes while the flash’s per-
formance remains almost the same.

In summary, the above results confirm that the overhead
introduced by dm-cache is small and insignificant even com-
pared to the raw latencies of flash devices, thereby further
verifying the feasibility of flash-based caching with software-
based cache management. In the rest of the paper, we use
only the SATA SSDs for the flash caching experiments.

6. WRITE POLICY ANALYSIS
As shown in Section 3.3, a cloud workload can have a

substantial amount of writes . This observation is also con-
firmed by related work [25, 27], which can be attributed to
the fact that modern computer systems are getting larger
memories which can cache a substantial amount of reads in
memory but do not buffer writes for too long due to durabil-
ity concerns. Therefore, the choice of a write caching policy
is important and it has implications on both performance
and data durability. This section studies the impact of dif-
ferent write cache policies, where we use dm-cache-sim to
study the impact on cache hit rate using long-term traces
and use dm-cache to evaluate the impact on IO performance
using real experiments driven by shorter traces.

6.1 IO Latency
The various write caching policies impact IO latencies dif-

ferently. If there is enough locality in writes, a policy that

0.00

0.10

0.20

0.30

0.40

0.50

NC W
I

W
B

W
T

NC W
I

W
B

W
T

NC W
I

W
B

W
T

NC W
I

W
B

W
T

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

.

cold warm no cache

SATA-SSD RandPCI-SSD RandSATA-SSD SeqPCI-SSD Seq

Figure 9: Dm-cache latency for read workloads

0.00

0.50

1.00

1.50

2.00

2.50

NC W
I

W
B

W
T

NC W
I

W
B

W
T

NC W
I

W
B

W
T

NC W
I

W
B

W
T

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

.

cold
warm

no cache

SATA-SSD RandPCI-SSD RandSATA-SSD SeqPCI-SSD Seq

Figure 10: Dm-cache latency for write workloads

retains writes in cache (i.e., write-through or write-back)
can speed up the IOs including both reads and writes that
hit the cached blocks, compared to another policy that does
not retain writes (i.e., write-invalidate). Otherwise, the lim-
ited cache capacity can be wasted which slows down the IOs
that experience conflict misses. Comparing write-through
policy to write-back policy, they exhibit the same behavior
in terms of the cache hit rates but not necessarily the IO
performance. Although writes can be returned as soon as
they are stored in cache in both policies, the IOs that have
to be serviced by the server experience different latencies.
With the write-through policy, all the writes have to be sent
to the server right away, while with the write-back policy,
writes can be delayed and the following writes that hit the
cached dirty data can be absorbed completely by the cache.
Therefore, the server experiences a higher load under the
write-through policy which in turn affects the performance
of the clients. This difference can be significant in a highly
consolidated environment such as a cloud system.

In order to evaluate the performance impact of different
write caching policies, we consider two real workloads taken
from the Web server and the Moodle server traces described
in Section 3.3, which are relatively more write-intensive and
read-intensive respectively. One typical day of workload was
extracted from each trace and replayed using btreplay at a
20-fold speedup in the environment specified in Section 3.4.
While the accelerated replay makes the replayed workload
more intensive than the original one, it is still a reasonable
setup because, 1) on a typical cloud VM host there can
be well above 20 VMs running concurrently; 2) the original
trace would have also been more intensive on its own if there
was a flash caching deployed to speed up its IOs.

6.1.1 Read-intensive Trace
First, we replayed a one-day read-intensive workload ex-

tracted from the Moodle server trace, which has a 20GB
total working set size and consists of 65% reads and 35%
writes. Figure 11 shows the average IO latencies measured
every 20 minutes during the experiment using dm-cache with
different write policies. The latencies from native iSCSI
without dm-cache are also provided as a reference.

Initially, it takes around 5 hours to warm up the cache,
during which the different write policies offer similar perfor-
mance in term of latency because the performance is domi-
nated by reads that miss the cache and have to be serviced
by the server. Note that the No Cache case also exhibits
a warm-up phase, although it does not employ a client-side

6

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 3 6 9 12 15 18 21A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Time (hours)

Write-Through
Write-Back

Write-Invalidate
No Cache

Figure 11: Performance of a read-intensive workload using different write caching policies

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0 3 6 9 12 15 18 21A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Time (hours)

Write-Through
Write-Back

Write-Invalidate
No Cache

(a) Single Client

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 3 6 9 12 15 18 21A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Time (hours)

Write-Through
Write-Back

Write-Invalidate
No Cache

(b) Three Clients

Figure 12: Performance of a write-Intensive workload using different write caching policies

flash cache, because the memory caches involved in this dis-
tributed storage system also need to be warmed up initially.

During the rest of the experiment, as the flash cache is
warmed up to serve the reads, the difference in the write
policy shows up where the write-back policy consistently
outperforms the other policies. The IO latencies from both
write-back and write-through policies are lower than write-
invalidate by 58ms and 23ms in average respectively, because
writes can be returned immediately after they are stored
in cache. However, because the write-through policy still
submits all writes to server, it slows down the read misses
that have to be serviced by the server, although the latencies
of writes are hidden to the client. Hence, the IO latencies
from the write-through policy are higher than the write-back
policy by 35ms (247%) in average.

6.1.2 Write-intensive Trace
The second experiment considers a one-day write-intensive

workload extracted from the Web server trace, which has a
total of 10GB WSS and consists of 15% read and 85%writes.
We expect to see a larger performance difference among the
different write caching policies compared to the above read-
intensive trace.

Figure 12a shows the IO latencies measured every 20 min-
utes during the trace replay. For the No Cache and Write
Invalidate cases, it also takes around 5 hours to warm up
the caches. In contrast, the Write Through and Write Back
cases do not exhibit a warm-up phase, because most of the
IOs in this write-intensive workload can be directly serviced
from the flash cache. The Write Back and Write Through
policies present latencies lower that the case of Write In-
validate by 19ms and 3ms respectively. More importantly,
throughout the experiment, the Write Back policy’s IO la-
tencies are lower than the Write Through policy by 3.5ms

(230%) in average, mostly because it effectively reduces the
server IO load and allows the IOs that have be serviced by
the server to complete faster.

In order to evaluate the different write caching policies in
a highly consolidated cloud environment, we employ three
storage clients that share the same storage server in the
next experiment, where each client replays a different day
of the write-intensive Web server trace. In this more typi-
cal scenario, we can appreciate the substantial improvement
made by the write-back caching: it’s IO latencies are lower
than the write-through caching by 67ms (5991%) in average.
In fact, the performance of write-through caching is slowed
down to the same level of the much simpler write-invalidate
caching, with only 17ms improvement.

6.2 Server Load
As shown in the above experimental results, the write

caching policies do exhibit evident differences in their im-
pacts to a workload’s IO performance. In particular, the
difference between write-through and write-back can be sig-
nificant. Although both can hide the latency for writes, the
difference in server IO load does impact the client-side per-
formance substantially. As a further validation of these ob-
servations, we extend this write policy analysis to the entire
traces using the dm-cache-sim simulator. However, instead
of collecting hit rates, which are always the same between
write-through and write-back, we collect the number of IO
requests that are serviced by the server, which is the server
IO load during these long-term traces.

Figures 13-16 illustrate how the server load varies over
the entire duration of the four FIU traces. All of them show
that the write-back policy always results in substantially
lower server load than the write-through policy. The largest
improvement is from the Bear file server trace (Figure 16),

7

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

N
ov

 0
1

N
ov

 1
5

N
ov

 2
9

D
ec

 1
3

D
ec

 2
7

Ja
n

10
Ja

n
24

Fe
b

07
Fe

b
21

M
ar

 0
7

M
ar

 2
1

Ap
r 0

4
Ap

r 1
8

M
ay

 0
2

M
ay

 1
6

M
ay

 3
0

Ju
n

13
Ju

n
27

Ju
l 1

1
Ju

l 2
5

Au
g

08

 IO
s

re
ce

iv
ed

 b
y

S
er

ve
r

(M
)

Write-Back
Write-Invalidate
Write-Through

Figure 13: Server IO load for Web server trace

 0

 20

 40

 60

 80

 100

 120

N
ov

 2
6

D
ec

 1
0

D
ec

 2
4

Ja
n

07

Ja
n

21

Fe
b

04

Fe
b

18

M
ar

 0
4

M
ar

 1
8

Ap
r 0

1

Ap
r 1

5

Ap
r 2

9

 IO
s

re
ce

iv
ed

 b
y

S
er

ve
r

(M
)

Write-Back
Write-Invalidate

Write-Through

Figure 14: Server IO load for Moodle server trace

which shows a 94% reduction on IO load. The smallest
improvement is from the Buffalo file server trace (Figure
15), which shows a 52% reduction on IO load.

Figure 17 shows the IO load on the storage server for the
Cloud VPS traces, where each trace is replayed separately.
In general we can see that the write-back policy still achieves
the lowest IO load on the server, and the reduction varies
from 21% to 83% compared to the write-through policy.

7. PERSISTENCY ANALYSIS
7.1 Overhead of Persistency

With the understanding of the impact on hit rate and
IO latency of the different cache policies, we want to fur-
ther analyze the overhead associated with making the cache
persistent—although cached data blocks are always persis-
tently stored on flash, the metadata of these blocks, includ-
ing the source-to-cache address mappings and valid and dirty
bits, also need to be considered in terms of their persis-
tency. Storing the metadata persistently on flash allows the
cached data to be reused after the storage client reboots,
but it incurs more overhead. Moreover, if the write-back
policy is used, the metadata of dirty blocks must be stored
persistently; otherwise, these locally modified data will be
lost after a reboot. Note that even if the storage client is
completely lost, a persistent flash cache can be physically
moved to a different client to reuse or recover the cached
data. Based on the above considerations, we study two dif-
ferent persistency configurations for a flash cache.

• All-persistent : The metadata of all cached blocks are
persistently stored on the flash.

• Write-back-persistent : The metadata of only the dirty
cache blocks are persistently stored on the flash.

To make a flash cache persistent, metadata updates need
to be committed to the cache upon cache insertions, re-
placements, and invalidations. Our current implementation
for making dm-cache persistent is quite straightforward. A
metadata update is written to the flash at the same time
of the corresponding cache insertion or replacement (but
cache invalidations require only metadata updates and no
data updates). The data and metadata updates are issued
in parallel and the original IO request received by dm-cache
is returned only when both are committed to the cache. The
IO latency is hence determined by the slower one between

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

Ja
n

03

Ja
n

17

Ja
n

31

Fe
b

14

Fe
b

28

M
ar

 1
4

M
ar

 2
8

 IO
s

re
ce

iv
ed

 b
y

S
er

ve
r

(M
)

Write-Back
Write-Invalidate

Write-Through

Figure 15: Server IO load for Buffalo server trace

 0

 100

 200

 300

 400

 500

 600

N
ov

 1
6

N
ov

 3
0

D
ec

 1
4

D
ec

 2
8

Ja
n

11

Ja
n

25

Fe
b

08

Fe
b

22

M
ar

 0
8

M
ar

 2
2

Ap
r 0

5

Ap
r 1

9

 IO
s

re
ce

iv
ed

 b
y

S
er

ve
r

(M
)

Write-Back
Write-Invalidate

Write-Through

Figure 16: Server IO load for Bear server trace

the data and metadata updates. Although flash devices typ-
ically have good internal parallelism to handle concurrent
IOs, additional writes introduced by the metadata updates
may degrade the performance of flash caching because writes
tend to be slower than reads and get amplified due to the
need of garbage collection.

More efficient handling of metadata update is possible but
not trivial. For example, it is possible to combine the data
and metadata updates in a single write, but the metadata
is typically small and requires the update on a partial page.
Related work [28] proposed to store the metadata in the
out-of-band (OOB) area of a flash page on the device, but
it requires changing the device’s FTL and occupies the lim-
ited OOB area which is commonly used for important error
correction. In addition to the potential slowdown, storing
metadata in flash cache also reduces the size available for
data caching; in our experiments, using a 120GB flash de-
vice total size, 1GB of the flash capacity needs to be reserved
for metadata storage.

Figure 18 shows the IO latencies for various persistency
configurations when handling a random read/write (50%
reads and 50% writes) workload of different sizes generated
by the fio benchmark. The write-back policy is used for
both persistency configurations. When the workload is small
(4GB random reads/writes with 1GB of WSS), the over-
head of persistency is small (around 0.03ms); but when the
workload is larger (10GB random reads/writes with 5GB of
WSS), the overhead grows to 0.06ms (101.8%) as the addi-
tion metadata updates slow down the other cache accesses.

7.2 Benefits of Persistency
Having a persistent cache allows the client to continue

with a warm cache after it reboots or recover from a crash.
In contrast, with a non-persistent cache, the client has to
flush all the cached data after it comes back and warms
up the cache from scratch, which may lead to substantial
compulsory misses. We study this performance improve-
ment from a persistent cache by analyzing the cache hit
rate from the two different configurations, all-persistent and
write-back-persistent using dm-cache-sim, while considering
different reboot/crash frequencies (daily and hourly).

Figure 19a shows the results from a workload extracted
from the Web server trace, assuming the client reboots or re-
covers upon the start of every day in the experiment. The re-
sults show that upon every reboot/recovery, the write-back-
persistent configuration has to warm up the cache again,
which in average takes 5 hours, whereas the all-persistent

8

 0
 10
 20
 30
 40
 50
 60

vp
s2

63
34

vp
s2

65
42

vp
s2

65
05

vp
s2

60
79

vp
s2

62
73

vp
s2

61
07

vp
s2

65
35

vp
s2

64
85

vp
s2

63
24

 IO
s

re
ce

iv
ed

 b
y

S
er

ve
r

(M
)

VMs

Write-Through
Write-Invalidate

Write-Back

Figure 17: Server IO load for CloudVPS traces

0.00

0.50

1.00

1.50

2.00

2.50

 0 5 10 15 20 25 30 35 40A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Time (min)

No Cache
Write-Back Persistent

All Persistent

0.00
0.05
0.10
0.15

 0 1 2

(a) 1GB random reads/writes

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

 0 20 40 60 80 100 120 140 160A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Time (min)

No Cache
Write-Back Persistent

All Persistent

0.00
0.05
0.10
0.15

 0 1 2 3 4 5 6 7

(b) 10GB random reads/writes

Figure 18: Persistency overhead with fio

configuration always enjoys a warm cache despite of the re-
boots or crashes. In average, the hit rate of all-persistent
configuration is higher than the write-back-persistent con-
figuration by 7.97% in this experiment. Note that the hit
rate drops in the middle of day which happens to both con-
figurations and is caused by the change of data locality.

Figure 19b shows the results from a workload extracted
from the Moodle server trace, assuming the client reboots or
recovers upon the start of every 5th hour in the experiment.
For this workload, using the write-back-persistent configura-
tion, it takes in average 3 hours to warm up the cache again
after a reboot/crash, and as a result the hit rate is lower
by 27.66% than the all-persistent configuration which has a
warm cache persisting across reboots/crashes.

The above cost and benefit analysis shows a clear trade-
off. Making a flash cache entirely persistent slows down IO
latencies during normal operations but improves hit rates
after client reboots. This decision should be made based on
the expected client failure rate for a given cloud system.

8. RELIABILITY
While the persistent flash cache discussed in the previ-

ous section allows the cache to tolerate client restarts and
crashes, it does not protect data against flash device failures,
including memory cell failures that cannot be masked by the
device controller and catastrophic whole-device or whole-
chip failures. This concern for data reliability is the reason
why flash caching is commonly used in write-through mode,
by submitting writes to the storage server while caching
them on the flash device, instead of the write-back mode
in which writes are delayed in cache without immediately
submitted to server. However, as shown in Section 6, write-
back caching can substantially improve the storage client’s
performance and reduce the storage server’s load. This con-
flicts presents a challenge to the effective use of flash caching.

RAID is a classic technique used to tolerate catastrophic

 0

 20

 40

 60

 80

 100

 1 2 3 4

 H
its

 R
at

e
(%

)

Time (days)

(a) Daily crashes

 0

 20

 40

 60

 80

 100

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 H
its

 R
at

e
(%

)

Time (hours)

All Persistence Write-Back Persistence

(b) Hourly crashes
Figure 19: Cache hit rate changes over time with different per-
sistency configurations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

rand-rw
rand-write

seq-rw
seq-write

rand-rw
rand-write

seq-rw
seq-write

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

.

Cache Optimized RAID
Write-Back RAID-0

SATA SSDPCI SSD

Figure 20: Overhead of cache-optimized RAID

failures for hard-disk storage, and has been recently studied
for flash storage [22, 15]. However, compared to the level
of RAID extensively employed on the storage server, the
use of RAID for flash caching faces two major limitations.
First, the cost of using RAID for a flash cache is substan-
tially more expensive than the cost on the storage server.
Following the general principle of forming an effective stor-
age hierarchy, for a storage layer to be fast enough as a
cache for the underlying layer, it has to use a technology
that is typically much more expensive in terms of per unit
size cost. Second, using RAID to improve the reliability for
a flash cache is at conflict with the other objectives, particu-
larly performance—more redundancy leads to less capacity
for storing data localities, and endurance—more redundancy
also leads to more wear-out to the flash of the same size.

To address the above limitations, we propose a new cache-
optimized RAID technique by exploiting different levels of
reliability needs for clean data and dirty data to improve
cache utilization and reduce its cost. On one hand, clean
data in the cache do not require extra redundancy, and their
flash pages can employ RAID-0 across the participating flash
devices to provide only performance improvement via strip-
ing. On the other hand, dirty data in the cache must be
provided the same level of reliability as the primary storage,
so they will employ higher levels of RAID to tolerate differ-
ent types of failures. In this way, the cost of using RAID
to provide fault tolerance can be minimized by introducing
only the necessary redundancy into a flash cache, and this
approach has the potential to make a write-back cache re-
liable and affordable. For the same reason, the adversary
impact of using RAID to cache performance and wear-out
can also be minimized. Furthermore, the tradeoff between
these conflicting objectives can be flexibly adjusted by tun-
ing the amount of dirty data kept in cache.

We have implemented this cache-optimized RAID tech-
nique in dm-cache. In this implementation, reads are striped
among the flash devices in a RAID-0 fashion for performance

9

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 3 6 9 12 15 18 21A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Time (hours)

Write-Through RAID-0
Write-Back RAID-1

Cache optimized RAID

 0
 10
 20
 30
 40
 50

 15 18 21 24

(a) Read-intensive workload

 0

 2

 4

 6

 8

 10

 0 3 6 9 12 15 18 21A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Time (hours)

Write-Through RAID-0
Write-Back RAID-1

Cache optimized RAID

(b) Write-intensive workload

Figure 21: Performance of different reliability configurations

improvement while writes are replicated among the devices
in a RAID-1 fashion for reliability improvement. For re-
placement, a read replaces the LRU block considering all
devices in the RAID group, a write is replicated across the
devices using the LRU block on each device.

The rest of this section evaluates our proposed cache-
optimized RAID technique. First we study the overhead by
comparing the cache-optimized RAID with a vanilla write-
back cache layered on top native Linux RAID-0 (Write-back
RAID-0). Because the Write-back RAID-0 does not provide
any data redundancy, this experiment evaluates the over-
head incurred by replicating the dirty cached blocks in our
cache-optimized RAID. We employed two identical flash de-
vices on the client for the RAID configurations and used fio
to generate different workload patterns for the experiment.
The results in Figure 20 show that this overhead is small
(less than 9.1µs (9%) increase in IO latency).

We further analyze the cache-optimized RAID for real-
world workloads and compare it to the alternative options
for data reliability, including write-through caching on top
of native Linux RAID-0 (Write-through RAID-0) and write-
back caching on native RAID-1 (Write-back RAID-1). We
consider the same two workloads used in Section 6.1, one
read-intensive from the Moodle server trace and the other
write-intensive from the Web server trace. Figure 21a shows
the IO latencies for the read-intensive workload. In av-
erage, the cache-optimized RAID configuration’s latencies
are lower than the Write-through RAID-0 and Write-back
RAID-1 configurations by 63ms (26%) and 172ms (72%) re-
spectively. Because of the slower performance of the write-
back RAID-1, from replicating every block and half-reduced
capacity, its warm-up time is also stretched longer than the
other two configurations. Figure 21b shows the latencies
for the write-intensive workload, where the cache-optimized
RAID configuration’s latencies are again lower than Write-
through RAID-0 and Write-back RAID-1 by 1.97ms (135%)
and 0.23ms (23%) in average, respectively.

9. CONCLUSIONS
Caching is one of the most widely used techniques for im-

proving the performance of data accesses in computer sys-
tems. Its effectiveness is largely determined by the available
locality in the workload that can be exploited by the cache,

and the speedup that can obtained by serving it from the
cache versus from the next layer in the storage hierarchy.
The emergence of flash storage has motivated the consid-
eration of client-side caching in a network storage system
because the speed of flash is substantially faster than the
network and the mechanical disks on the storage server. It
also comes in time to address the serious scalability issues
that cloud computing systems are facing now as the number
and size of VMs quickly increase on a shared storage system.
However, the existing literature does not provide adequate
answers to the key questions on whether there is good local-
ity in typical cloud workloads and whether flash caches can
effectively utilize the locality to achieve good speedup.

This paper provides answers to the above questions based
on dm-cache, a block-level caching solution designed for
cloud environments, and a large amount of real-world traces
collected from both public and private clouds. Our study
confirms that cloud workloads have good cacheability and
dm-cache incurs low overhead with respect to commodity
flash devices. The impact of different write caching policies
is significant to cache performance. In particular, differ-
ent from the conclusion from related work, our results show
that write-back caching can substantially outperform write-
through caching due to the reduction of server IO load. Our
results also show that there is a tradeoff on making a flash
cache persistent across client restarts which saves several
hours of cache warm-up time but also incurs considerable
overhead from committing metadata updates persistently.
Finally, to address the reliability issue of write-back caching,
we propose a new cache-optimized RAID technique which
minimizes the RAID overhead by introducing redundancy to
only cached dirty data and shows to be significantly faster
than traditional RAID and write-through caching.

10. ACKNOWLEDGEMENT
The authors thank the anonymous reviewers and Swami-

nathan Sundararaman from Fusion-io for their helpful com-
ments, and thank Lennard Zwart and Pim Van Riezen from
CloudVPS and Eric Johnson from FIU for assisting the col-
lection of traces. This research is sponsored by National Sci-
ence Foundation under grant CCF-0938045 and CAREER
award CNS-125394, Department of Homeland Security un-
der grant 2010-ST-062-000039, and a gift from CloudVPS.

10

11. REFERENCES
[1] Amazon Elastic Block Store.

http://aws.amazon.com/ebs/.

[2] blktrace: Linuz block I/O traces.
http://linux.die.net/man/8/blktrace.

[3] Cloud VPS. https://www.cloudvps.nl/.

[4] Cloud VPS. http://www.cloudvps.com/blog/
cloudvps-activates-linux-ssd-caching-with-dm-cache.

[5] dm-cache. http://visa.cs.fiu.edu/dmcache.

[6] Dtrace: dynamic tracing framework by Sun
Microsystems.
http://en.wikipedia.org/wiki/DTrace.

[7] Facebook Flashcache.
https://github.com/facebook/flashcache/.

[8] Fio - Flexible I/O Tester Synthetic Benchmark.
http://git.kernel.dk/?p=fio.git.

[9] Fusion-io ioCache.
http://www.fusionio.com/products/iocache/.

[10] GFS Project Page.
http://sourceware.org/cluster/gfs/.

[11] Kernel Based Virtual Machine.
http://www.linux-kvm.org/page/Main_Page.

[12] Network Block Device.
http://nbd.sourceforge.net/.

[13] Openstack Compute Documentation.
http://nova.openstack.org/index.html.

[14] VMware VMFS. http:
//www.vmware.com/products/vmfs/overview.html.

[15] M. Balakrishnan, A. Kadav, V. Prabhakaran, and
D. Malkhi. Differential raid: rethinking raid for ssd
reliability. ACM Transactions on Storage (TOS),
6(2):4, 2010.

[16] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of the nineteenth ACM symposium on
Operating systems principles, volume 37, 5 of
Operating Systems Review, pages 164–177, New York,
Oct. 19–22 2003. ACM Press.

[17] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict,
J. Kimmel, S. Kleiman, C. Small, and M. Storer.
Mercury: Host-side flash caching for the data center.
In Proceedings of the 28th IEEE Conference on
Massive Data Storage, MSST’12, Pacific Grove, CA,
USA, 2012. IEEE.

[18] J. L. Hennessy and D. A. Patterson. Computer
architecture - a quantitative approach, 4th Edition.
Morgan Kaufmann, 2006.

[19] E. V. Hensbergen and M. Zhao. Dynamic policy disk
caching for storage networking. Technical Report
RC24123, IBM, November 2006.

[20] D. A. Holland, E. L. Angelino, G. Wald, and M. I.
Seltzer. Flash caching on the storage client. In
USENIX ATC’13 Proceedings of the 2013 USENIX
conference on Annual Technical Conference. USENIX
Association, 2013.

[21] S. Huang, Q. Wei, J. Chen, C. Chen, and D. Feng.
Improving flash-based disk cache with lazy adaptive
replacement.

[22] N. Jeremic, G. Mühl, A. Busse, and J. Richling. The
pitfalls of deploying solid-state drive raids. In

Proceedings of the 4th Annual International
Conference on Systems and Storage, page 14. ACM,
2011.

[23] R. Koller, L. Marmol, R. Ranganswami,
S. Sundararaman, N. Talagala, and M. Zhao. Write
policies for host-side flash caches. In Proceedings of the
11th USENIX conference on File and Storage
Technologies, 2013.

[24] M. Krueger, R. Haagens, C. Sapuntzakis, and
M. Bakke. Small computer systems interface protocol
over the internet (iSCSI): Requirements and design
considerations. Internet RFC 3347, July 2002.

[25] A. Leung, S. Pasupathy, G. Goodson, and E. Miller.
Measurement and Analysis of Large-Scale Network
File System Workloads. In Proc. of USENIX ATC,
2008.

[26] N. Megiddo and D. S. Modha. Arc: A self-tuning, low
overhead replacement cache. In FAST, volume 3,
pages 115–130, 2003.

[27] D. Narayanan, A. Donnelly, and A. Rowstron. Write
Off-Loading: Practical Power Management for
Enterprise Storage. In Proc. of USENIX FAST, 2008.

[28] M. Saxena, M. M. Swift, and Y. Zhang. Flashtier: a
lightweight, consistent and durable storage cache. In
Proceedings of the 7th ACM european conference on
Computer Systems, EuroSys ’12, pages 267–280, New
York, NY, USA, 2012. ACM.

[29] R. Thornburgh and B. Schoenborn. Storage Area
Networks. Prentice Hall PTR, 2000.

[30] J. Yang, N. Plasson, G. Gillis, and N. Talagala. Hec:
improving endurance of high performance flash-based
cache devices. In Proceedings of the 6th International
Systems and Storage Conference, page 10. ACM, 2013.

[31] M. Zhao and R. J. Figueiredo. Application-tailored
cache consistency for wide-area file systems. In Proc.
Distributed Computing Systems, 2006. ICDCS 2006.
26th IEEE International Conference on, pages 41–41,
2006.

[32] M. Zhao, J. Zhang, and R. Figueiredo. Distributed file
system virtualization techniques supporting
on-demand virtual machine environments for grid
computing. Cluster Computing, 9(1):45–56, January
2006.

11

