
 1

Support for Data-Intensive, Variable-Granularity Grid Applications via
Distributed File System Virtualization – A Case Study of Light Scattering

Spectroscopy

Jithendar Paladugula
ACIS Laboratory

University of Florida
jithenda@acis.ufl.edu

Ming Zhao
ACIS Laboratory

University of Florida
ming@acis.ufl.edu

Renato J. Figueiredo
ACIS Laboratory

University of Florida
renato@acis.ufl.edu

Abstract

A key challenge faced by large-scale, distributed
applications in Grid environments is efficient, seamless
data management. In particular, for applications that
can benefit from access to data at variable
granularities, data management can pose additional
programming burdens to an application developer.
This paper presents a case for the use of virtualized
distributed file systems as a basis for data management
for data-intensive, variable-granularity applications.
The approach leverages on-demand transfer
mechanisms of existing, de-facto network file system
clients and servers that support transfers of partial
data sets in an application-transparent fashion, and
complement them with user-level performance and
functionality enhancements such as caching and
encrypted communication channels. The paper uses a
nascent application from the medical imaging field
(Light Scattering Spectroscopy – LSS) as a motivation
for the approach, and as a basis for evaluating its
performance. Results from performance experiments
that consider the 16-processor parallel execution of
LSS analysis and database generation programs show
that, in the presence of data locality, a virtualized
wide-area distributed file system setup and configured
by Grid middleware can achieve performance levels
close (13% overhead or less) to that of a local disk,
and superior (up to 680% speedup) to non-virtualized
distributed file systems.

1. Introduction

A fundamental challenge faced by large-scale
applications distributed across computational “Grids”
that span multiple administrative domains is data

management. There are important data-intensive
applications that can benefit from the availability of
distributed, computational “Grids”, and require not
only high-performance computing resources, but also
seamless, high-performance access to distributed data.
In several instances, data-intensive applications benefit
from the capability of operating on their data sets at
different granularities – for example, by sampling down
a dataset for a coarse-grain first-order analysis, and
considering the entire dataset for high-resolution
analyses. This paper presents a case for the use of
virtualized, Grid-wide distributed file systems [1] to
support data-intensive, variable granularity
applications. The analysis is based on experiments
conducted based on an emerging medical imaging
application that aims at quantitative, non-invasive
analysis of tissue for the detection of pre-cancerous
lesions – Light Scattering Spectroscopy (LSS)
[2][3][4].

The approach presented in this paper provides
seamless access to data, facilitates application
development by using file system abstractions and
implementations available in existing O/Ss, and
provides efficient support for variable-granularity
programs by leveraging on-demand and application-
transparent transfer of data using NFS (Network File
System). It addresses limitations of conventional
approaches to data management in Grid environments:
these typically rely on mechanisms for data transfer
that either require explicit naming of files to be
transferred by users and/or applications (GASS [12],
GridFTP [18]) or special libraries linked to
applications to support remote I/O [14]. The approach
also addresses limitations of conventional distributed
file systems: non-virtualized native NFS
implementations that rely on single-domain, local-area
network environments for authentication and user

 2

identification [19] are not well-suited for a cross-
domain Grid deployment; wide-area implementations
that rely on whole-file transfers (e.g. AFS [20], CODA
[21]) are not widely deployed, and do not support on-
demand partial transfers in accesses to file data at
different granularities. These limitations are addressed
via user-level, middleware controlled distributed file
system proxies that intercept, modify and forward NFS
remote procedure calls. File system proxies enable
Grid-oriented extensions implemented completely at
the user level, without requiring any kernel-level
modifications to existing O/Ss; these extensions include
Grid-controlled identity mapping for cross-domain
authentication, locality enhancements via per-
application disk-based caching policies, and data
communication privacy via per-session encrypted
channels.

The applicability of the virtual distributed file
system approach to data-intensive, variable-granularity
applications is considered in the case study of a
representative, nascent medical imaging application.
Nonetheless, the approach is not particular to this case,
and can be applied to arbitrary, unmodified
applications that access file-system based data. The
LSS analysis application is based on the processing of
the backscattered spectral image of a region of tissue
using a Mie-theory based inversion procedure. For
each pixel in the image, the size and refractive indices
of the scatterers that best fit the data among those
stored in a database of Mie-theory generated spectra
are found using a least-square error minimization
approach. For high-accuracy analysis, large databases
with fine-grain high resolution of sizes and refractive
indices must be considered. Low-accuracy, coarse-
grain analysis can be achieved with smaller (or
sampled-down) databases, thereby reducing both the
data transfer and computational requirements of the
application.

Performance data reported in this paper shows that
user-level proxy disk caches allow the proposed
approach to achieve performance close to that of local
disk (13% slower) and superior to non-virtualized NFS
setups in both LAN (83% speedup) and WAN (680%
speedup) environments for a 16-processor parallel
execution of LSS analysis. Results also show that the
implementation of a user-level write-back cache policy
allows the parallel generation of LSS databases to
achieve performance close to that of local disk (3%
slower) and non-virtualized LAN (2% faster), and
superior to non-virtualized WAN (280% speedup).

This paper is organized as follows. Section 2
describes the LSS application considered in the case
study: motivations, algorithm and a parallel

implementation based on MPI and file I/O. Section 3
summarizes distributed virtual file system motivations
and the implementation used in the case study, and
Section 4 presents results and analysis of experiments
that consider the performance of LSS on top of such
file system. Section 5 discusses related work, and
Section 6 concludes the paper.

2. Application Background

In the past few decades, high-performance
computing has driven the development of practical
medical applications that are now widely available,
such as magnetic resonance imaging and computerized
tomography. These solutions have been enabled by
sustained performance improvements in the embedded
systems that typically support medical applications.
However, there are important emerging medical
applications for which effective deployments will
depend on the availability of high levels of
performance that cannot be delivered by an embedded
system – thus requiring access to high-performance
remote resources. In recent years, information
processing is undergoing rapid advances driven by the
use of distributed computing systems connected by
world-wide networks. Analogous to power grids,
“computational grids” have the potential to provide
seamless access to high-performance resources (e.g.
parallel supercomputers) from ubiquitous, network-
enabled devices. The unprecedent levels of
computation enabled by this model may foster the
development of new medical applications that can
improve healthcare and find wide-spread applications
in medical facilities of the future.

2.1. Light Scattering Spectroscopy

 LSS is a nascent technique that enables the

extraction of quantitative information about the
structure of living cells and tissues via the analysis of
the spectrum of light backscattered from tissues
[2][3][4]. The information obtained via LSS analysis
consists of the size distribution and refractive index of
a spectral image obtained from an area of interest (e.g.
skin, colon, oral cavity) by means of a special-purpose
optical apparatus.

LSS devices, and the associated analysis techniques
that allow non-invasive detection of pre-cancerous
changes in human epithelium, have been recently
proposed and investigated [3][4]. LSS imaging
differentiates from traditional biopsies by allowing in-
vivo diagnosis of tissue samples, and by providing an
automated, quantitative analyses of parameters related

 3

to cancerous changes (e.g. nuclei enlargement) via
numerical techniques. As a result, LSS can yield
significant advances in healthcare: it has the potential
to detect the majority of currently undetectable cancers
and significantly reduce cancer mortality (by up to
50%) [4]. However, to achieve high accuracy, the
analysis of LSS images requires compute- and data-
intensive solutions that perform spectral analyses based
on Mie theory inversion procedures.

Figure 1. Spectral image obtained from polystyrene
beads (diameter=5.8um, stdev = 0.02um) suspended
in water, and least-square error fit (diameter
=5.796um, stdev = 0.025um)

The LSS technique is based on an optical apparatus
that includes a digital image CCD that records spectra
of backscattered light for both parallel and
perpendicular polarizations [4]. The backscattered
spectrum is analyzed based on Mie theory of light
scattering by spherical particles of arbitrary size, which
enables prediction of the major spectral variations of
light scattered by cell nuclei [2]. There are, however,
no known analytical closed-form general solutions for
inverse Mie functions; LSS analysis requires on the use
of Mie theory to generate a database of LSS spectra
over a representative range of mean diameters, standard
deviations and average relative refractive indices. For
each pixel in the image, the size and refractive indices
of the scatterers that best fit the data among those
stored in the database are found using a least-square
error minimization approach. Therefore, the algorithm
for quantitative LSS analysis requires two inputs: the
spectrum of backscattered light (obtained from an LSS
instrument), and one or more databases (obtained from
the application of Mie equations across a desired range
of diameters and refractive indices).

2.2. Grid-based LSS Analysis

In current medical applications (e.g. computerized
tomography) the physical area covered by the imaging
device is large, thus requiring a large and expensive
apparatus. Cost and area constraints limit the
deployment of such devices to a few units in a medical
facility. In addition, since the cost of the imaging
device is high, a costly high-performance computing
unit attached to the device is justifiable. In contrast, the
physical area of tissue analyzed by an LSS imaging
apparatus is typically small – of the order of square
centimeters. LSS imaging can therefore be performed
with smaller, portable devices deployed in larger
numbers across medical facilities. In this scenario, the
use of a costly high-performance computer attached to
the imaging devices is no longer attractive. However, it
is important to perform high-performance computation
to obtain a quantitative analysis of LSS images in
quasi-real-time, allowing feedback to clinicians while
the patient is under examination.

Previous efforts in the coupling of instrumentation
and distributed infrastructures have considered image-
processing applications – such as parallel analysis of
data collected from electron microscopes [5][6][7].
Results from previous work motivate the use of
network-based computing to solve applications with
similar characteristics – computational-intensive and
with high degrees of parallelism – including medical
applications [8]. LSS imaging is an application that can
greatly benefit from a network-computing model, given
its substantial computational requirements and
amenability to parallelism. This application exhibits
tradeoffs between computation time and accuracy:
ideally, LSS imaging should be performed in quasi
real-time to allow clinical feedback while patients are
under examination; however, a detailed analysis may
be too expensive – in terms of response time or the cost
of utilizing remote resources – to be performed in all
cases. A variable-grain solution that seamlessly
supports multiple execution models – short response
time (and possibly low accuracy), and high accuracy (at
the expense of large response time) – is therefore
desirable.

2.3. LSS Implementation

The programming approach for LSS applications
that implement both Mie database generation and least-
square fitting analysis is built on top of a file system.
This has allowed for simplicity in the design, reuse of
O/S distributed file system implementations, and ease
of integration with Grid middleware and Web-based

 4

problem-solving environments capable of virtualization
[22]. In the resulting system, LSS applications and
problem solving middleware are integrated in a way
that allows users to (from a web browser) upload or
request the generation of LSS databases; upload
images; request the execution of LSS analyses; and
download output images. The underlying Grid
middleware supports user-transparent resource
allocation and dynamic setup of virtual file system
sessions. The web-based LSS Grid environment is
available in the main In-VIGO portal at the University
of Florida (http://invigo.acis.ufl.edu); courtesy
accounts are available.

2.3.1. Database Generation. The LSS analysis relies
on Mie theory inversion to determine the spectral
variations of the light scattered by cell nuclei. Closed-
form solutions to this problem are not available; hence,
the inversion procedure is implemented numerically
through least-square minimization against a database of
spectra generated using the Mie function. The
diameter, diameter deviation and relative refractive
index are used as inputs for the generation of the
lookup database (Figure 2); values chosen for these
parameters need to be derived from the expected
ranges of sizes and refractive indices of cells under
investigation. The Mie function returns the scattering
intensity (∆I) as a function of wavelength and
scattering angle.

Figure 2. LSS database generation. A range of
diameters, diameter deviations and refractive
indices are provided as inputs to a program that
coordinates the execution of Mie function module
and construct database records for each data point.

The implementation of the program that generates
LSS databases takes minimum, maximum and step
values for diameter, diameter deviation and refractive
index and generates a sequence of input files. For each
input, it runs a separate executable that calculates Mie
function spectra and writes results to output files. The

Mie function output file is averaged across scattering
angles, normalized, and appended as a record to the
database file. Data parallelism can naturally be
exploited by using different files for independent
databases.

2.3.2. Least-square error minimization. The LSS
analysis program uses MPI for coordination and for
determining the global minimum from independently
computed local minima, while file I/O is used by each
MPI process to independently access its databases. As
the fit for each database can be processed independent
of each other, the program is parallelized across the
database files in the directory. A master-slave strategy
as shown in Figure 3 is used to parallelize the program.
The master receives the input directory name and
counts the number of database files in the directory,
then assigns files to each processor to balance their
load. Each processor calculates the fit for its own set of
databases, given by number of files/number of
processors. The processors send the local least square
error and the corresponding diameter, diameter
deviation and refractive index to the master processor
in the form of an array. The master receives the local
least square errors from each processor and in turn
calculates the global least value among the errors
received and finally returns the corresponding
diameter, diameter deviation and the refractive index
for the image.

Figure 3. LSS parallelization across database
records. Node 1 is the master. The master node
determines which databases are assigned to each
node; the actual databases are accessed
independently from each node’s file system.

The use of multiple independent lookup databases
that are accessed through a conventional file system
interface allows for 1) the partition of large datasets
across multiple nodes, 2) the seamless execution of the

 5

program in conventional local-area and cluster-based
environments used for MPI-based parallel executions,
and 3) seamless integration with distributed Grid
environments that are built on top of virtual file
systems [1][22]. These issues are addressed in Section
3.
3. Distributed File System Virtualization

Previous work on the PUNCH distributed virtual
file system [1] has considered a virtualization layer on
top of NFS to allow data to be transferred on-demand
between storage and compute servers for the duration
of a computing session. This functionality is realized
via user-level extensions to existing NFS
implementations that allow reuse of unmodified clients
and servers of conventional operating systems;
implementations use middleware-controlled proxies to
map identities between dynamically-allocated logical
accounts and transparently broker a user’s access to
files across administrative domains. It leverages NFS
implementations and does not require any
modifications to either operation systems or
applications. Furthermore, data transfer in the
distributed virtual file system is on demand and
transparent to the user. This behavior is inherited from
the underlying NFS protocol, which allows for partial
transfer of files on a block-by-block basis (typically 4K
to 32Kbytes in size). This property is important when
supporting applications that access large files, but not
necessarily in their entirety – for example, accesses to
the virtual disk of a “classic” VM are typically
restricted to a working set that is considerably smaller
(<10%) than the large virtual disk file [23][24].

In addition to supporting on-demand transfers and
dynamic identity mappings, middleware-controlled
proxies support performance and functionality
extensions that make the virtual file system suitable for
wide-area, Grid applications. Large read/write disk-
based user-level caches can be employed on a per-
application basis to complement typical kernel memory
buffers; write policies can be determined (e.g. write-
back vs. write-through) also on a per-application basis;
privacy and session-key authentication can be
established without requiring modifications to
underlying NFS implementations via the use of SSH
tunnels [25]. The resulting solution, with enhancements
at user-level while preserving unmodified O/S file
system abstractions, is applicable to a wide variety of
applications – even commercial, binary legacy codes
for which there is no possibility for a user to alter
source code and/or re-link to specialized libraries. In
particular, it is well-suited for variable-granularity
applications. The next section presents an analysis of

its performance for the LSS application described in
Section 2.

4. Performance Analysis

This section summarizes an analysis of the
performance of LSS in a distributed virtual file system
environment. Subsection 4.1 describes the
experimental setup, while Subsection 4.2 presents
results and analyses.

4.1. Experimental Setup

The experiments have been performed on a 32-node
Linux-based cluster. Each physical node is configured
as follows: 2.4GHz Pentium-4, 1.5GB RAM, 18GB
disk, Gbit/s Ethernet, Red Hat Linux 7.3. Experiments
have been conducted in a virtual-machine based Grid
[23] with VMware GSX 2.5 VMs (256MB memory,
4GB virtual disk, Red Hat Linux 7.3). The
implementation of MPI for the cluster is based on
LAM/MPI 6.5.9. The directory containing database
files is mounted via a virtual file system [1] on all
nodes. The LAN file server is a dual Pentium-3
1.8GHz server with 1GB RAM and 8-disk/500GB
SCSI RAID5 array. The WAN file server is a dual
Pentium-3 1GHz server with 1GB RAM and 46GB
IDE RAID0 array. Experiments consider both local-
area and wide-area virtual file systems. The WAN
experiments are based on connections between
University of Florida and Northwestern University
through Abilene. The NFS traffic in both local area and
wide area environments is tunneled through an SSH
based private virtual file system. The proxy cache uses
NFS version 2 with 8KB buffer size. The cache at the
client side is configured with 1GB size, 512 file banks
which are 16-way associative.

A database of LSS spectra is generated over a range
of diameters (5.65 to 5.97um in steps of 0.0005um),
diameter deviations (0.005 to 2.5um in steps of
0.005um) and constant refractive index (0). This results
in a database with 320000(640*500*1) records
approximately. The Mie function takes on average 20s
to compute one record (the sequential generation of the
full database would take approximately 74 days). As
each record is independent of each other, the database
can be generated in parallel. Using 32 parallel
processes, the generation of this database takes 3 days,
resulting in 32 data files and 1.9GB disk space. With
respect to the location of the databases, the following
scenarios have been considered:

Local: The databases are stored in a local-disk file
system.

 6

LAN: The databases are stored in a directory NFS-
mounted from a LAN server.

WAN: The databases are stored in a directory NFS-
mounted from a WAN server. File system proxies are
used to forward RPC calls.

WAN+C: The databases are stored in a directory
NFS-mounted from a WAN server. File systems
proxies are used to forward RPC calls and support
client-side disk caching.

In the NFS-mounted cases, two scenarios are
considered with respect to the state of the kernel client
buffer memory cache: one where the file system is re-
mounted (1st run), and one where the file system is not
remounted (2nd run). All execution times cover the
entire run of an application, and are measured at
physical machines. The execution time for LSS
analysis against each of the 32 databases is, on average,
46.5s. The best data fit for the experiment image is
obtained at a diameter of 5.796um, diameter deviation
of 0.025um and refractive index of 0. Figure 1 shows
the image scattering intensity as a function of
wavelength and the corresponding Mie theory fit.

4.2. Results and Analysis

Table 1 shows the execution times for parallel LSS
application in different scenarios; Figure 4 shows the
corresponding speedup plots. In the table, 1st run and
2nd run represent the first and second executions
following an NFS mount. For WAN+C 2nd run, the
proxy cache is “warm” in both mount and unmount
configurations. The results show that the parallel LSS
analysis achieves speedups of up to 13.5. The
advantage of client-side disk caching (WAN+C) in the
presence of temporal locality becomes apparent when
the number of processors is increased. The
performance overhead of WAN+C with respect to local
disk reduces significantly from 459% in case of a
single processor to 12.5% with 16 processors. This can
be explained by the increase in aggregate cache
capacity stemming from the availability of independent
proxy caches in each node. As the number of
processors is increased, the working set size per each
node is reduced and fits the proxy cache, resulting in
high hit rate in the client-side disk cache.

Table 1. Execution times (seconds) for LSS analysis.
Scenarios where databases are stored in local disk,
LAN and WAN files servers are considered.

LAN WAN WAN +C
2nd run #ProcLocal

Disk 1st
run

2nd
run

1st
run 2nd run 1st

run mount unmount
1 1318 1404 1396 13473 11860 12465 7001 7369
2 664 735 718 5961 5883 5979 2204 2225
4 333 432 397 2992 2986 3044 674 1496
8 172 301 269 1993 1482 1580 228 317

16 99 234 203 817 755 804 111 183

The results summarized in Figure 4 support

important conclusions. First, the hit-time overhead
(with respect to local disk) introduced by the proxy-
based virtual file system layer is small for the 16-
processor case when the application exhibits temporal
locality. Second, it can be observed from the
performance difference between the WAN+C and
WAN 2nd run scenarios that that the kernel-level buffer
cache does not have sufficient capacity to hold the
working dataset of an LSS database. The proxy-level
disk cache behaves as a second-level cache to the
kernel buffers; in fact, the 16-processor WAN+C
scenario also achieves better performance than both
LAN cases because kernel buffer misses are served by
proxy disk cache accesses. It is important to point out
that the design of the NFS call-forwarding file system
proxy allows for a series of proxies, with independent
caches of different sizes, to be cascaded between client
and server, supporting scalability to a multi-level cache
hierarchy (e.g. a two-level hierarchy with GBytes of
cache storage space in a node’s local disk, and TBytes
of storage space available from a LAN disk array
server).

LSS Analysis SpeedUp Curve

0

2

4

6

8

10

12

14

16

Number of Processors

Sp
ee

d
U

p

Local disk
LAN, 2nd run
WAN+C, 2nd run mounted
WAN+C, 2nd run unmounted
WAN, 2nd run

 1 2 4 8 16

Figure 4. Speedup plot for parallel LSS analysis
application.

 7

Figure 5 shows speedups for the parallel database

generation process. The database generation is a
computational-intensive process that constantly
exercises the file system – the legacy program that
computes the Mie function reads from input files, and
generates output files that are processed to generate
each database entry. Therefore, this process generates
many write requests that are subsequently invalidated
by a file’s removal. This experiment thus considers
proxy-based configurations (WAN+C) that implement
both a typical NFS write-through (WT) policy and an
alternative write-back policy (WB) of blocks in the
proxy disk cache.

Database Generation SpeedUp Curve

0

2

4

6

8

10

12

14

16

18

Number of processors

Sp
ee

dU
p

Local Disk
LAN
WAN+C, WT
WAN+C, WB
WAN

 1 2 4 8 16

Figure 5. Speedup plot for parallel database
generation. Only 1st run results are shown. The
difference between 1st and 2nd runs is very small
because data is mostly written.

The speedup plot shows that performance is close to

linear with respect to number of processors for local-
disk, LAN and WAN+C/WB. The performance gained
from using a write-back cache policy in user-level
proxies (as opposed to native, write-through schemes)
is evident from the figure. The performance overhead
in WAN+C scenario with local write back cache varies
from 2% to 3% relative to the local disk configuration.
The WAN+C write-back cache scheme performs
slightly better than LAN scenario because it avoids
network transfers for data that is written and then
removed (such as the output Mie function files).

Table 2. Error, WAN execution time and number of
NFS data blocks transfers for database sampling.

Sampling
Interval

LSS
Error Time (s) Number of

Blocks
1 2.899 793 14666
5 2.900 700 14662

10 2.902 432 6894
20 2.916 323 3622
40 2.934 152 1856

Table 2 shows experimental results that consider

variable-granularity executions of the LSS application.
Low accuracy analysis is obtained by down-sampling
the databases: an interval of n indicates that n records
are skipped in the database before reading another
record for analysis. The results shown in the table are
based on the executions performed on 16 nodes in the
WAN configuration. It can be seen that the least-square
error has increased and the execution time has
decreased as the sampling interval is increased. The 4th
column in the table indicates the number of NFS blocks
being transferred from the file server. It can be seen
that the virtual file system transfers the data partially on
demand for the low-accuracy case, reducing the overall
transfer size by a factor of 8 and execution time by a
factor of 5.2 (with respect to whole-file transfer). The
reduction in the number of blocks transferred does not
follow a linear relationship with respect to the sampling
interval due to NFS client-side read-ahead
(prefetching) implemented in the kernel. Nonetheless,
the reduction in transfer requirements is substantial,
and is handled by the virtual file system in an
application-transparent way.

5. Related Work

Grid data management has been investigated in
previous efforts in the context of distributed
instrumentation [9][10][11]. However, proposed
techniques have focused on a model where support for
communication is explicitly provided by the
application and/or grid middleware – typically, the data
is “staged” from instrument to a remote computing
node (and back). In addition, existing techniques are
geared towards cases where substantial computational
infrastructure (hardware and network capacity, and
software expertise) is available at the site where data
collection is performed (e.g. a national research
center). In contrast, medical applications such as LSS
imaging benefit from a different model, where support
for communication is handled transparently from
applications, hence reducing programming complexity,

 8

and where the computational infrastructure support
consists of commodity computers and networks typical
of a medical facility.

Current grid solutions typically employ file staging
techniques to transfer files between user accounts in the
absence of a common file system. Examples of these
include Globus [12] and PBS [13]. As indicated earlier,
file staging approaches require the user to explicitly
specify the files that need to be transferred, or transfer
entire files at the time they are opened. This poses
additional application programming challenges (the
programmer must explicitly identify all data that may
be necessary to perform computation so that it can be
transferred prior to execution) and may lead to
unnecessary data transfers (e.g. of data needed for
high-accuracy analysis that is not used in a low-
accuracy computation). These requirements hinder the
deployment of solutions that can dynamically adapt
computation based on run-time requirements (since the
choice of the working data set is statically determined
before execution). In contrast, the architecture based on
a Grid virtual file system allows for transfers of data
on-demand, and on a per-block basis. Hence, the
amount of data transferred is determined by the amount
of data actually used in computation, and decisions
regarding the data used in computation can be
efficiently performed at run-time. This is important in
applications such as LSS, where the size of working
sets used in computation can vary dynamically based
on accuracy requirements.

Some systems (e.g., Condor [14]) utilize remote I/O
mechanisms from special libraries to allow applications
to access remote files. Kangaroo [15] also employs
RPC-based agents. However, unlike VFS, Kangaroo
does not provide full support for the file system
semantics commonly offered by existing NFS/UNIX
deployments (e.g. delete and link operations). Legion
[16][17] employs a modified NFS daemon to provide a
virtual file system. From an implementation standpoint,
this approach is less appealing than NFS call
forwarding: the NFS server is customized, and must be
extensively tested for compliance, performance and
reliability.

6. Conclusions

Data management is a key challenge to be addressed
in the context of Grid environments. Traditional
approaches to Grid data management rely on
application and/or middleware knowledge of file names
for whole-file transfers, APIs that expose support for
partial file transfers to an application developer, and/or
customized libraries for remote I/O, requiring that

support for on-demand transfers be either customized
via application programming efforts or via library re-
linking. A Grid file system approach to data
management supports on-demand transfers at the O/S
layer, requiring no application modifications. Such
support is especially important for applications that
access data at different granularities.

This paper presents a case for the use of a
virtualized Grid file system for applications of this
kind. A nascent application from the medical imaging
domain (LSS) is used as a basis for this study; its
performance is analyzed for different virtual file system
scenarios. Results show that, in addition to leveraging
native NFS client/server support for on-demand block
transfers, the virtual file system can improve upon the
performance of native implementations by means of
per-session user-level disk caches and write policies.
For an application that exhibits locality (e.g. in the case
of LSS imaging, when multiple images are analyzed
against the same set of databases, or when temporary
file system data is invalidated locally by a write-back
cache avoiding costly network transfers), the proxy
caches can deliver performance levels close to that of a
local disk.

7. Acknowledgements

Effort sponsored by the National Science
Foundation under grants EIA-0224442, ACI-0219925
and NSF Middleware Initiative (NMI) collaborative
grant ANI-0301108. The authors also acknowledge a
gift from VMware Corporation and a SUR grant from
IBM. Any opinions, findings and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of NSF, IBM, or VMware. The authors would like to
thank Vadim Backman and his group at Northwestern
University for valuable discussions and for providing
access to LSS resources and data, and Peter Dinda for
providing access to computational resources for the
experiments.

8. References

[1] R. Figueiredo, N. Kapadia and J. A. B. Fortes, “The
PUNCH Virtual File System: Seamless Access to
Decentralized Storage Services in a Computational Grid”,
Proc. IEEE International Symposium on High Performance
Distributed Computing (HPDC), August 2001.

[2] Backman V, R. Gurjar, K. Badizadegan, I. Itzkan, R. R.
Dasari, L. T. Perelman, M. S. Feld, “Polarized light
scattering spectroscopy for quantitative measurement of
epithelial cellular structures”, IEEE J Sel Top Quant. Elec.,
5, 1019 (1999).

 9

[3] Backman V, et al. “Detection of preinvasive cancer cells
in situ”, Nature, 406, 35-36 (2000).

[4] Backman V, Gurjar R, Perelman LT, Georgakoudi I,
Badizadegan K, Itzkan I, Dasari RR, Feld MS, “Imaging
human epithelial properties with polarized light-scattering
spectroscopy”, Nature Medicine, 7, 1245-1248 (2001).

[5] G. von Laszewski et al., “Real-time Analysis,
Visualization, and Steering of Tomography Experiments at
Photon Sources”, Proc. 9th SIAM Conf. on Parallel
Processing for Scientific Computing, Apr 1999.

 [6] S. Smallen, H. Casanova and F. Berman, “Applying
Scheduling and Tuning to On-line Parallel Tomography”,
Prof. of Supercomputing, Denver, Nov 2001.

[7] S. Smallen et al., “Combining Workstations and
Supercomputers to Support Grid Applications: The Parallel
Tomography Experience”, 9th Heterogeneous Computing
Workshop, May 2000.

[8] A. Apostolico et al, “Requirements for Grid-Aware
Biology Applications”, DataGrid WP10 Workshop,
DataGrid-10-D10.1-0102-3-8, Sept 2001,
http://marianne.in2p3.fr/datagrid/wp10

[9] A. Chervenak, I. Foster, C. Kesselmann, C. Salisbury, S.
Tuecke, “The Data Grid: Towards an Architecture for the
Distributed Management and Analysis of Large Scientific
Datasets”, to appear, Journal of Network and Computer
Applications, 23(3) p187-200 July 2000.

[10] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger
and K. Stockinger, “Data Management in an International
Data Grid Project”, IEEE/ACM Intl. Workshop on Grid
Computing (Grid’2000), Dec. 2000.

[11] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany and
R. Wolski, “The Internet Backplane Protocol: Storage in the
Network”, Network Storage Symposium (NetStore), Seattle,
WA 1999.

[12] J. Bester, I. Foster, C. Kesselman, J. Tedesco and S.
Tuecke, “GASS: A Data Movement and Access Service for
Wide Area Computing Systems”, Proc. 6th Workshop on I/O
in Parallel and Distributed Systems, May 1999.

[13] R. Henderson and D. Tweten, “Portable Batch System:
Requirement Specification”, Technical Report, NAS Systems
Division, NASA Ames Research Center, Aug. 1998.

[14] M. Litzkow, M. Livny and M. W. Mutka, “Condor: a
Hunter of Idle Workstations”, Proc. 8th Int. Conf. on
Distributed Computing Systems, pp104-111, June 1988.

[15] D. Thain, J. Basney, S-C. Son, and M. Livny, “The
Kangaroo Approach to Data Movement on the Grid”, Proc.

10th Intl. Symp. on High Performance Distributed
Computing (HPDC), pp325-333, Aug. 2001.

[16] B. White, A. Grimshaw, and A. Nguyen-Tuong, “Grid-
based File Access: the Legion I/O Model”, in Proc. 9th IEEE
Int. Symp. on High Performance Distributed Computing
(HPDC), pp165-173, Aug 2000.

[17] B. White, M. Walker, M. Humphrey, A. Grimshaw,
“LegionFS: A Secure and Scalable File System Supporting
Cross-Domain High-Performance Applications”,
Proceedings of Supercomputing (SC), Nov 2001.

[18] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, S.
Tuecke. Secure, Efficient Data Transport and Replica
Management for High-Performance Data-Intensive
Computing, IEEE Mass Storage Conference, 2001.

[19] B. Callaghan, NFS Illustrated, Addison-Wesley, 2002,
ISBN 0-201-32570-5.

[20] J. Morris, M. Satyanarayanan, M. Conner, J. Howard,
D. Rosenthal and F. Smith, “Andrew: A Distributed Personal
Computing Environment”, Communications of the ACM,
29(3) pp184-201, March 1986

[21] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E.
Siegel, D. Steere, “Coda: A Highly Available File System for
a Distributed Workstation Environment”, IEEE Transactions
on Computers, 1990, 39(4), 447-459.

[22]. S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J.
Fortes, I. Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M.
Zhao, L. Zhu, and X. Zhu. “From Virtualized Resources to
Virtual Computing Grids: The In-VIGO System”, to appear,
Future Generation Computing Systems, special issue,
Complex Problem-Solving Environments for Grid
Computing, David Walker and Elias Houstis, Editors.

[23]. R. Figueiredo, P. Dinda and J. Fortes, “A Case for Grid
Computing on Virtual Machines”, Proceedings of the 23rd
International Conference on Distributed Computing Systems
(ICDCS), May 2003

[24]. C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam
and M. Rosenblum, “Optimizing the Migration of Virtual
Computers”, Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, 2002.

[25]. R. J. Figueiredo, “VP/GFS: An Architecture for Virtual
Private Grid File Systems”. In Technical Report TR-ACIS-
03-001, ACIS Laboratory, Department of Electrical and
Computer Engineering, University of Florida, 05/2003.

