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Abstract 
 

A key challenge faced by large-scale, distributed 
applications in Grid environments is efficient, seamless 
data management. In particular, for applications that 
can benefit from access to data at variable 
granularities, data management can pose additional 
programming burdens to an application developer. 
This paper presents a case for the use of virtualized 
distributed file systems as a basis for data management 
for data-intensive, variable-granularity applications. 
The approach leverages on-demand transfer 
mechanisms of existing, de-facto network file system 
clients and servers that support transfers of partial 
data sets in an application-transparent fashion, and 
complement them with user-level performance and 
functionality enhancements such as caching and 
encrypted communication channels. The paper uses a 
nascent application from the medical imaging field 
(Light Scattering Spectroscopy – LSS) as a motivation 
for the approach, and as a basis for evaluating its 
performance. Results from performance experiments 
that consider the 16-processor parallel execution of 
LSS analysis and database generation programs show 
that, in the presence of data locality, a virtualized 
wide-area distributed file system setup and configured 
by Grid middleware can achieve performance levels 
close (13% overhead or less) to that of a local disk, 
and superior (up to 680% speedup) to non-virtualized 
distributed file systems. 

 
 
1. Introduction 
 

A fundamental challenge faced by large-scale 
applications distributed across computational “Grids” 
that span multiple administrative domains is data 

management. There are important data-intensive 
applications that can benefit from the availability of 
distributed, computational “Grids”, and require not 
only high-performance computing resources, but also 
seamless, high-performance access to distributed data. 
In several instances, data-intensive applications benefit 
from the capability of operating on their data sets at 
different granularities – for example, by sampling down 
a dataset for a coarse-grain first-order analysis, and 
considering the entire dataset for high-resolution 
analyses. This paper presents a case for the use of 
virtualized, Grid-wide distributed file systems [1] to 
support data-intensive, variable granularity 
applications. The analysis is based on experiments 
conducted based on an emerging medical imaging 
application that aims at quantitative, non-invasive 
analysis of tissue for the detection of pre-cancerous 
lesions – Light Scattering Spectroscopy (LSS) 
[2][3][4]. 

The approach presented in this paper provides 
seamless access to data, facilitates application 
development by using file system abstractions and 
implementations available in existing O/Ss, and 
provides efficient support for variable-granularity 
programs by leveraging on-demand and application-
transparent transfer of data using NFS (Network File 
System). It addresses limitations of conventional 
approaches to data management in Grid environments: 
these typically rely on mechanisms for data transfer 
that either require explicit naming of files to be 
transferred by users and/or applications (GASS [12], 
GridFTP [18]) or special libraries linked to 
applications to support remote I/O [14]. The approach 
also addresses limitations of conventional distributed 
file systems: non-virtualized native NFS 
implementations that rely on single-domain, local-area 
network environments for authentication and user 
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identification [19] are not well-suited for a cross-
domain Grid deployment; wide-area implementations 
that rely on whole-file transfers (e.g. AFS [20], CODA 
[21]) are not widely deployed, and do not support on-
demand partial transfers in accesses to file data at 
different granularities. These limitations are addressed 
via user-level, middleware controlled distributed file 
system proxies that intercept, modify and forward NFS 
remote procedure calls. File system proxies enable 
Grid-oriented extensions implemented completely at 
the user level, without requiring any kernel-level 
modifications to existing O/Ss; these extensions include 
Grid-controlled identity mapping for cross-domain 
authentication, locality enhancements via per-
application disk-based caching policies, and data 
communication privacy via per-session encrypted 
channels. 

The applicability of the virtual distributed file 
system approach to data-intensive, variable-granularity 
applications is considered in the case study of a 
representative, nascent medical imaging application. 
Nonetheless, the approach is not particular to this case, 
and can be applied to arbitrary, unmodified 
applications that access file-system based data. The 
LSS analysis application is based on the processing of 
the backscattered spectral image of a region of tissue 
using a Mie-theory based inversion procedure. For 
each pixel in the image, the size and refractive indices 
of the scatterers that best fit the data among those 
stored in a database of Mie-theory generated spectra 
are found using a least-square error minimization 
approach. For high-accuracy analysis, large databases 
with fine-grain high resolution of sizes and refractive 
indices must be considered. Low-accuracy, coarse-
grain analysis can be achieved with smaller (or 
sampled-down) databases, thereby reducing both the 
data transfer and computational requirements of the 
application. 

Performance data reported in this paper shows that 
user-level proxy disk caches allow the proposed 
approach to achieve performance close to that of local 
disk (13% slower) and superior to non-virtualized NFS 
setups in both LAN (83% speedup) and WAN (680% 
speedup) environments for a 16-processor parallel 
execution of LSS analysis. Results also show that the 
implementation of a user-level write-back cache policy 
allows the parallel generation of LSS databases to 
achieve performance close to that of local disk (3% 
slower) and non-virtualized LAN (2% faster), and 
superior to non-virtualized WAN (280% speedup). 

This paper is organized as follows. Section 2 
describes the LSS application considered in the case 
study: motivations, algorithm and a parallel 

implementation based on MPI and file I/O. Section 3 
summarizes distributed virtual file system motivations 
and the implementation used in the case study, and 
Section 4 presents results and analysis of experiments 
that consider the performance of LSS on top of such 
file system. Section 5 discusses related work, and 
Section 6 concludes the paper. 

 
2. Application Background 
 

In the past few decades, high-performance 
computing has driven the development of practical 
medical applications that are now widely available, 
such as magnetic resonance imaging and computerized 
tomography. These solutions have been enabled by 
sustained performance improvements in the embedded 
systems that typically support medical applications. 
However, there are important emerging medical 
applications for which effective deployments will 
depend on the availability of high levels of 
performance that cannot be delivered by an embedded 
system – thus requiring access to high-performance 
remote resources. In recent years, information 
processing is undergoing rapid advances driven by the 
use of distributed computing systems connected by 
world-wide networks. Analogous to power grids, 
“computational grids” have the potential to provide 
seamless access to high-performance resources (e.g. 
parallel supercomputers) from ubiquitous, network-
enabled devices. The unprecedent levels of 
computation enabled by this model may foster the 
development of new medical applications that can 
improve healthcare and find wide-spread applications 
in medical facilities of the future. 

 
2.1. Light Scattering Spectroscopy 

 
 LSS is a nascent technique that enables the 

extraction of quantitative information about the 
structure of living cells and tissues via the analysis of 
the spectrum of light backscattered from tissues 
[2][3][4].  The information obtained via LSS analysis 
consists of the size distribution and refractive index of 
a spectral image obtained from an area of interest (e.g. 
skin, colon, oral cavity) by means of a special-purpose 
optical apparatus. 

LSS devices, and the associated analysis techniques 
that allow non-invasive detection of pre-cancerous 
changes in human epithelium, have been recently 
proposed and investigated [3][4]. LSS imaging 
differentiates from traditional biopsies by allowing in-
vivo diagnosis of tissue samples, and by providing an 
automated, quantitative analyses of parameters related 
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to cancerous changes (e.g. nuclei enlargement) via 
numerical techniques. As a result, LSS can yield 
significant advances in healthcare: it has the potential 
to detect the majority of currently undetectable cancers 
and significantly reduce cancer mortality (by up to 
50%) [4]. However, to achieve high accuracy, the 
analysis of LSS images requires compute- and data-
intensive solutions that perform spectral analyses based 
on Mie theory inversion procedures. 

 

 
Figure 1. Spectral image obtained from polystyrene 
beads (diameter=5.8um, stdev = 0.02um) suspended 
in water, and least-square error fit (diameter 
=5.796um, stdev = 0.025um) 

The LSS technique is based on an optical apparatus 
that includes a digital image CCD that records spectra 
of backscattered light for both parallel and 
perpendicular polarizations [4]. The backscattered 
spectrum is analyzed based on Mie theory of light 
scattering by spherical particles of arbitrary size, which 
enables prediction of the major spectral variations of 
light scattered by cell nuclei [2]. There are, however, 
no known analytical closed-form general solutions for 
inverse Mie functions; LSS analysis requires on the use 
of Mie theory to generate a database of LSS spectra 
over a representative range of mean diameters, standard 
deviations and average relative refractive indices. For 
each pixel in the image, the size and refractive indices 
of the scatterers that best fit the data among those 
stored in the database are found using a least-square 
error minimization approach.  Therefore, the algorithm 
for quantitative LSS analysis requires two inputs: the 
spectrum of backscattered light (obtained from an LSS 
instrument), and one or more databases (obtained from 
the application of Mie equations across a desired range 
of diameters and refractive indices). 

 

2.2. Grid-based LSS Analysis 
 

In current medical applications (e.g. computerized 
tomography) the physical area covered by the imaging 
device is large, thus requiring a large and expensive 
apparatus. Cost and area constraints limit the 
deployment of such devices to a few units in a medical 
facility. In addition, since the cost of the imaging 
device is high, a costly high-performance computing 
unit attached to the device is justifiable. In contrast, the 
physical area of tissue analyzed by an LSS imaging 
apparatus is typically small – of the order of square 
centimeters. LSS imaging can therefore be performed 
with smaller, portable devices deployed in larger 
numbers across medical facilities. In this scenario, the 
use of a costly high-performance computer attached to 
the imaging devices is no longer attractive. However, it 
is important to perform high-performance computation 
to obtain a quantitative analysis of LSS images in 
quasi-real-time, allowing feedback to clinicians while 
the patient is under examination. 

Previous efforts in the coupling of instrumentation 
and distributed infrastructures have considered image-
processing applications – such as parallel analysis of 
data collected from electron microscopes [5][6][7]. 
Results from previous work motivate the use of 
network-based computing to solve applications with 
similar characteristics – computational-intensive and 
with high degrees of parallelism – including medical 
applications [8]. LSS imaging is an application that can 
greatly benefit from a network-computing model, given 
its substantial computational requirements and 
amenability to parallelism. This application exhibits 
tradeoffs between computation time and accuracy: 
ideally, LSS imaging should be performed in quasi 
real-time to allow clinical feedback while patients are 
under examination; however, a detailed analysis may 
be too expensive – in terms of response time or the cost 
of utilizing remote resources – to be performed in all 
cases. A variable-grain solution that seamlessly 
supports multiple execution models – short response 
time (and possibly low accuracy), and high accuracy (at 
the expense of large response time) – is therefore 
desirable. 
 
2.3. LSS Implementation 
 

The programming approach for LSS applications 
that implement both Mie database generation and least-
square fitting analysis is built on top of a file system. 
This has allowed for simplicity in the design, reuse of 
O/S distributed file system implementations, and ease 
of integration with Grid middleware and Web-based 
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problem-solving environments capable of virtualization 
[22]. In the resulting system, LSS applications and 
problem solving middleware are integrated in a way 
that allows users to (from a web browser) upload or 
request the generation of LSS databases; upload 
images; request the execution of LSS analyses; and 
download output images. The underlying Grid 
middleware supports user-transparent resource 
allocation and dynamic setup of virtual file system 
sessions. The web-based LSS Grid environment is 
available in the main In-VIGO portal at the University 
of Florida (http://invigo.acis.ufl.edu); courtesy 
accounts are available. 

 
2.3.1. Database Generation. The LSS analysis relies 
on Mie theory inversion to determine the spectral 
variations of the light scattered by cell nuclei. Closed-
form solutions to this problem are not available; hence, 
the inversion procedure is implemented numerically 
through least-square minimization against a database of 
spectra generated using the Mie function. The 
diameter, diameter deviation and relative refractive 
index are used as inputs for the generation of the 
lookup database (Figure 2); values chosen for these 
parameters need to be derived from the expected 
ranges of sizes and refractive indices of cells under 
investigation. The Mie function returns the scattering 
intensity (∆I) as a function of wavelength and 
scattering angle. 
 

 
Figure 2. LSS database generation. A range of 
diameters, diameter deviations and refractive 
indices are provided as inputs to a program that 
coordinates the execution of Mie function module 
and construct database records for each data point. 
 

The implementation of the program that generates 
LSS databases takes minimum, maximum and step 
values for diameter, diameter deviation and refractive 
index and generates a sequence of input files. For each 
input, it runs a separate executable that calculates Mie 
function spectra and writes results to output files. The 

Mie function output file is averaged across scattering 
angles, normalized, and appended as a record to the 
database file. Data parallelism can naturally be 
exploited by using different files for independent 
databases. 
 
2.3.2. Least-square error minimization. The LSS 
analysis program uses MPI for coordination and for 
determining the global minimum from independently 
computed local minima, while file I/O is used by each 
MPI process to independently access its databases. As 
the fit for each database can be processed independent 
of each other, the program is parallelized across the 
database files in the directory. A master-slave strategy 
as shown in Figure 3 is used to parallelize the program. 
The master receives the input directory name and 
counts the number of database files in the directory, 
then assigns files to each processor to balance their 
load. Each processor calculates the fit for its own set of 
databases, given by number of files/number of 
processors. The processors send the local least square 
error and the corresponding diameter, diameter 
deviation and refractive index to the master processor 
in the form of an array. The master receives the local 
least square errors from each processor and in turn 
calculates the global least value among the errors 
received and finally returns the corresponding 
diameter, diameter deviation and the refractive index 
for the image. 

 

 
Figure 3. LSS parallelization across database 
records. Node 1 is the master. The master node 
determines which databases are assigned to each 
node; the actual databases are accessed 
independently from each node’s file system. 
 

The use of multiple independent lookup databases 
that are accessed through a conventional file system 
interface allows for 1) the partition of large datasets 
across multiple nodes, 2) the seamless execution of the 
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program in conventional local-area and cluster-based 
environments used for MPI-based parallel executions, 
and 3) seamless integration with distributed Grid 
environments that are built on top of virtual file 
systems [1][22]. These issues are addressed in Section 
3. 
3. Distributed File System Virtualization 
 

Previous work on the PUNCH distributed virtual 
file system [1] has considered a virtualization layer on 
top of NFS to allow data to be transferred on-demand 
between storage and compute servers for the duration 
of a computing session. This functionality is realized 
via user-level extensions to existing NFS 
implementations that allow reuse of unmodified clients 
and servers of conventional operating systems; 
implementations use middleware-controlled proxies to 
map identities between dynamically-allocated logical 
accounts and transparently broker a user’s access to 
files across administrative domains. It leverages NFS 
implementations and does not require any 
modifications to either operation systems or 
applications. Furthermore, data transfer in the 
distributed virtual file system is on demand and 
transparent to the user. This behavior is inherited from 
the underlying NFS protocol, which allows for partial 
transfer of files on a block-by-block basis (typically 4K 
to 32Kbytes in size). This property is important when 
supporting applications that access large files, but not 
necessarily in their entirety – for example, accesses to 
the virtual disk of a “classic” VM are typically 
restricted to a working set that is considerably smaller 
(<10%) than the large virtual disk file [23][24]. 

In addition to supporting on-demand transfers and 
dynamic identity mappings, middleware-controlled 
proxies support performance and functionality 
extensions that make the virtual file system suitable for 
wide-area, Grid applications. Large read/write disk-
based user-level caches can be employed on a per-
application basis to complement typical kernel memory 
buffers; write policies can be determined (e.g. write-
back vs. write-through) also on a per-application basis; 
privacy and session-key authentication can be 
established without requiring modifications to 
underlying NFS implementations via the use of SSH 
tunnels [25]. The resulting solution, with enhancements 
at user-level while preserving unmodified O/S file 
system abstractions, is applicable to a wide variety of 
applications – even commercial, binary legacy codes 
for which there is no possibility for a user to alter 
source code and/or re-link to specialized libraries. In 
particular, it is well-suited for variable-granularity 
applications. The next section presents an analysis of 

its performance for the LSS application described in 
Section 2. 
 
4. Performance Analysis 
 

This section summarizes an analysis of the 
performance of LSS in a distributed virtual file system 
environment. Subsection 4.1 describes the 
experimental setup, while Subsection 4.2 presents 
results and analyses. 

 
4.1. Experimental Setup 
 

The experiments have been performed on a 32-node 
Linux-based cluster. Each physical node is configured 
as follows: 2.4GHz Pentium-4, 1.5GB RAM, 18GB 
disk, Gbit/s Ethernet, Red Hat Linux 7.3. Experiments 
have been conducted in a virtual-machine based Grid 
[23] with VMware GSX 2.5 VMs (256MB memory, 
4GB virtual disk, Red Hat Linux 7.3). The 
implementation of MPI for the cluster is based on 
LAM/MPI 6.5.9. The directory containing database 
files is mounted via a virtual file system [1] on all 
nodes. The LAN file server is a dual Pentium-3 
1.8GHz server with 1GB RAM and 8-disk/500GB 
SCSI RAID5 array. The WAN file server is a dual 
Pentium-3 1GHz server with 1GB RAM and 46GB 
IDE RAID0 array. Experiments consider both local-
area and wide-area virtual file systems. The WAN 
experiments are based on connections between 
University of Florida and Northwestern University 
through Abilene. The NFS traffic in both local area and 
wide area environments is tunneled through an SSH 
based private virtual file system. The proxy cache uses 
NFS version 2 with 8KB buffer size.  The cache at the 
client side is configured with 1GB size, 512 file banks 
which are 16-way associative. 

A database of LSS spectra is generated over a range 
of diameters (5.65 to 5.97um in steps of 0.0005um), 
diameter deviations (0.005 to 2.5um in steps of 
0.005um) and constant refractive index (0). This results 
in a database with 320000(640*500*1) records 
approximately. The Mie function takes on average 20s 
to compute one record (the sequential generation of the 
full database would take approximately 74 days). As 
each record is independent of each other, the database 
can be generated in parallel. Using 32 parallel 
processes, the generation of this database takes 3 days, 
resulting in 32 data files and 1.9GB disk space. With 
respect to the location of the databases, the following 
scenarios have been considered: 

Local: The databases are stored in a local-disk file 
system. 
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LAN: The databases are stored in a directory NFS-
mounted from a LAN server. 

WAN: The databases are stored in a directory NFS-
mounted from a WAN server. File system proxies are 
used to forward RPC calls. 

WAN+C: The databases are stored in a directory 
NFS-mounted from a WAN server. File systems 
proxies are used to forward RPC calls and support 
client-side disk caching. 

In the NFS-mounted cases, two scenarios are 
considered with respect to the state of the kernel client 
buffer memory cache: one where the file system is re-
mounted (1st run), and one where the file system is not 
remounted (2nd run). All execution times cover the 
entire run of an application, and are measured at 
physical machines. The execution time for LSS 
analysis against each of the 32 databases is, on average, 
46.5s. The best data fit for the experiment image is 
obtained at a diameter of 5.796um, diameter deviation 
of 0.025um and refractive index of 0. Figure 1 shows 
the image scattering intensity as a function of 
wavelength and the corresponding Mie theory fit. 

 
4.2. Results and Analysis 
 

Table 1 shows the execution times for parallel LSS 
application in different scenarios; Figure 4 shows the 
corresponding speedup plots. In the table, 1st run and 
2nd run represent the first and second executions 
following an NFS mount. For WAN+C 2nd run, the 
proxy cache is “warm” in both mount and unmount 
configurations. The results show that the parallel LSS 
analysis achieves speedups of up to 13.5. The 
advantage of client-side disk caching (WAN+C) in the 
presence of temporal locality becomes apparent when 
the number of processors is increased. The 
performance overhead of WAN+C with respect to local 
disk reduces significantly from 459% in case of a 
single processor to 12.5% with 16 processors. This can 
be explained by the increase in aggregate cache 
capacity stemming from the availability of independent 
proxy caches in each node. As the number of 
processors is increased, the working set size per each 
node is reduced and fits the proxy cache, resulting in 
high hit rate in the client-side disk cache. 

 
 
 
 
 

Table 1. Execution times (seconds) for LSS analysis. 
Scenarios where databases are stored in local disk, 
LAN and WAN files servers are considered. 

LAN WAN WAN +C 
2nd run #ProcLocal 

Disk 1st 
run 

2nd 
run 

1st 
run 2nd run 1st 

run mount unmount
1 1318 1404 1396 13473 11860 12465 7001 7369 
2 664 735 718 5961 5883 5979 2204 2225 
4 333 432 397 2992 2986 3044 674 1496 
8 172 301 269 1993 1482 1580 228 317 

16 99 234 203 817 755 804 111 183 
 
The results summarized in Figure 4 support 

important conclusions. First, the hit-time overhead 
(with respect to local disk) introduced by the proxy-
based virtual file system layer is small for the 16-
processor case when the application exhibits temporal 
locality. Second, it can be observed from the 
performance difference between the WAN+C and 
WAN 2nd run scenarios that that the kernel-level buffer 
cache does not have sufficient capacity to hold the 
working dataset of an LSS database. The proxy-level 
disk cache behaves as a second-level cache to the 
kernel buffers; in fact, the 16-processor WAN+C 
scenario also achieves better performance than both 
LAN cases because kernel buffer misses are served by 
proxy disk cache accesses. It is important to point out 
that the design of the NFS call-forwarding file system 
proxy allows for a series of proxies, with independent 
caches of different sizes, to be cascaded between client 
and server, supporting scalability to a multi-level cache 
hierarchy (e.g. a two-level hierarchy with GBytes of 
cache storage space in a node’s local disk, and TBytes 
of storage space available from a LAN disk array 
server).  

 
LSS Analysis SpeedUp Curve
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Figure 4. Speedup plot for parallel LSS analysis 
application.  
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Figure 5 shows speedups for the parallel database 

generation process. The database generation is a 
computational-intensive process that constantly 
exercises the file system – the legacy program that 
computes the Mie function reads from input files, and 
generates output files that are processed to generate 
each database entry. Therefore, this process generates 
many write requests that are subsequently invalidated 
by a file’s removal. This experiment thus considers 
proxy-based configurations (WAN+C) that implement 
both a typical NFS write-through (WT) policy and an 
alternative write-back policy (WB) of blocks in the 
proxy disk cache. 
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Figure 5. Speedup plot for parallel database 
generation. Only 1st run results are shown. The 
difference between 1st and 2nd runs is very small 
because data is mostly written. 

 
The speedup plot shows that performance is close to 

linear with respect to number of processors for local-
disk, LAN and WAN+C/WB. The performance gained 
from using a write-back cache policy in user-level 
proxies (as opposed to native, write-through schemes) 
is evident from the figure. The performance overhead 
in WAN+C scenario with local write back cache varies 
from 2% to 3% relative to the local disk configuration. 
The WAN+C write-back cache scheme performs 
slightly better than LAN scenario because it avoids 
network transfers for data that is written and then 
removed (such as the output Mie function files). 

 
 
 
 
 
 
 

Table 2. Error, WAN execution time and number of 
NFS data blocks transfers for database sampling.   

Sampling 
Interval 

LSS 
Error Time (s) Number of 

Blocks 
1 2.899 793 14666 
5 2.900 700 14662 

10 2.902 432 6894 
20 2.916 323 3622 
40 2.934 152 1856 

 
Table 2 shows experimental results that consider 

variable-granularity executions of the LSS application. 
Low accuracy analysis is obtained by down-sampling 
the databases: an interval of n indicates that n records 
are skipped in the database before reading another 
record for analysis. The results shown in the table are 
based on the executions performed on 16 nodes in the 
WAN configuration. It can be seen that the least-square 
error has increased and the execution time has 
decreased as the sampling interval is increased. The 4th 
column in the table indicates the number of NFS blocks 
being transferred from the file server.  It can be seen 
that the virtual file system transfers the data partially on 
demand for the low-accuracy case, reducing the overall 
transfer size by a factor of 8 and execution time by a 
factor of 5.2 (with respect to whole-file transfer). The 
reduction in the number of blocks transferred does not 
follow a linear relationship with respect to the sampling 
interval due to NFS client-side read-ahead 
(prefetching) implemented in the kernel. Nonetheless, 
the reduction in transfer requirements is substantial, 
and is handled by the virtual file system in an 
application-transparent way.  
 
5. Related Work 
 

Grid data management has been investigated in 
previous efforts in the context of distributed 
instrumentation [9][10][11]. However, proposed 
techniques have focused on a model where support for 
communication is explicitly provided by the 
application and/or grid middleware – typically, the data 
is “staged” from instrument to a remote computing 
node (and back). In addition, existing techniques are 
geared towards cases where substantial computational 
infrastructure (hardware and network capacity, and 
software expertise) is available at the site where data 
collection is performed (e.g. a national research 
center). In contrast, medical applications such as LSS 
imaging benefit from a different model, where support 
for communication is handled transparently from 
applications, hence reducing programming complexity, 
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and where the computational infrastructure support 
consists of commodity computers and networks typical 
of a medical facility. 

Current grid solutions typically employ file staging 
techniques to transfer files between user accounts in the 
absence of a common file system. Examples of these 
include Globus [12] and PBS [13]. As indicated earlier, 
file staging approaches require the user to explicitly 
specify the files that need to be transferred, or transfer 
entire files at the time they are opened. This poses 
additional application programming challenges (the 
programmer must explicitly identify all data that may 
be necessary to perform computation so that it can be 
transferred prior to execution) and may lead to 
unnecessary data transfers (e.g. of data needed for 
high-accuracy analysis that is not used in a low-
accuracy computation). These requirements hinder the 
deployment of solutions that can dynamically adapt 
computation based on run-time requirements (since the 
choice of the working data set is statically determined 
before execution). In contrast, the architecture based on 
a Grid virtual file system allows for transfers of data 
on-demand, and on a per-block basis. Hence, the 
amount of data transferred is determined by the amount 
of data actually used in computation, and decisions 
regarding the data used in computation can be 
efficiently performed at run-time. This is important in 
applications such as LSS, where the size of working 
sets used in computation can vary dynamically based 
on accuracy requirements. 

Some systems (e.g., Condor [14]) utilize remote I/O 
mechanisms from special libraries to allow applications 
to access remote files. Kangaroo [15] also employs 
RPC-based agents. However, unlike VFS, Kangaroo 
does not provide full support for the file system 
semantics commonly offered by existing NFS/UNIX 
deployments (e.g. delete and link operations). Legion 
[16][17] employs a modified NFS daemon to provide a 
virtual file system. From an implementation standpoint, 
this approach is less appealing than NFS call 
forwarding: the NFS server is customized, and must be 
extensively tested for compliance, performance and 
reliability. 

 
6. Conclusions 
 

Data management is a key challenge to be addressed 
in the context of Grid environments. Traditional 
approaches to Grid data management rely on 
application and/or middleware knowledge of file names 
for whole-file transfers, APIs that expose support for 
partial file transfers to an application developer, and/or 
customized libraries for remote I/O, requiring that 

support for on-demand transfers be either customized 
via application programming efforts or via library re-
linking. A Grid file system approach to data 
management supports on-demand transfers at the O/S 
layer, requiring no application modifications. Such 
support is especially important for applications that 
access data at different granularities. 

This paper presents a case for the use of a 
virtualized Grid file system for applications of this 
kind. A nascent application from the medical imaging 
domain (LSS) is used as a basis for this study; its 
performance is analyzed for different virtual file system 
scenarios. Results show that, in addition to leveraging 
native NFS client/server support for on-demand block 
transfers, the virtual file system can improve upon the 
performance of native implementations by means of 
per-session user-level disk caches and write policies. 
For an application that exhibits locality (e.g. in the case 
of LSS imaging, when multiple images are analyzed 
against the same set of databases, or when temporary 
file system data is invalidated locally by a write-back 
cache avoiding costly network transfers), the proxy 
caches can deliver performance levels close to that of a 
local disk. 
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