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Large-scale distributed computing systems, such as computational grids, aggregate

computing and storage resources from multiple organizations to foster collaborations

and facilitate problem solving through shared access to large volumes of data and

high-performance machines. Data management in these systems is particularly challenging

because of the heterogeneity, dynamism, size, and distribution of such grid-style

environments. This dissertation address these challenges with a two-level data management

system, in which file system virtualization provides application-tailored grid-wide

data access, and service-based middleware enables autonomic management of the data

provisioning.

The diversity of applications and resources requires a data provisioning solution

that can be transparently deployed, whereas the dynamic, wide-area environments

necessitate tailored optimizations for data access. To achieve these goals, this dissertation

proposes grid-wide virtual file systems (GVFS), a novel approach that virtualizes existing

kernel distributed file systems (NFS) with user-level proxies, and provides transparent

cross-domain data access to applications. User-level enhancements designed for grid-style

environments are provided upon the virtualization layer in GVFS, including: customizable

disk caching and multithreading for high-performance data access, efficient consistency

protocols for application-desired data coherence, strong and grid-compatible security for

secure grid-wide data access, and reliability protocols supporting application-transparent
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failure detection and recovery. Based on GVFS, data sessions can be created on demand

on a per-application basis, where each session can apply and configure these enhancements

independently.

The second level of the proposed data management system addresses the problems of

managing data provisioning in a large, dynamic system: how to control the data access for

many applications based on their needs, and how to optimize it automatically according

to high-level objectives. It proposes service-based middleware to manage the lifecycles

and configurations of dynamic GVFS sessions. These data management services are

able to exploit application knowledge to flexibly customize data sessions, and support

interoperability with other middleware based on Web Service Resource Framework.

In order to further reduce the complexity of managing data sessions and adapt them

promptly to changing environments, an autonomic data management system is built by

evolving these services into self-managing elements. Autonomic functions are integrated

into the services to provide goal-driven automatic control of GVFS sessions on the aspects

including cache configuration, data replication, and session redirection.

A prototype of the proposed system is evaluated with a series of experiments based

on file system benchmarks and typical grid applications. The results demonstrate that

GVFS can transparently enable on-demand grid-wide data access with application-tailored

enhancements; the proposed enhancements can achieve strong cache consistency, security,

and reliability, as well as substantially outperform traditional DFS approaches (NFS) in

wide-area networks; the autonomic services support flexible and dynamic management of

GVFS sessions, and can also automatically optimize them on performance and reliability

in the presence of changing resource availability.
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CHAPTER 1
INTRODUCTION

Computations are becoming increasingly larger scale, in terms of both size and

geographical and administration distribution. Examples include scientific grids [1]

which harness resources among several institutions for coordinated problem solving, and

enterprise information systems that aggregate efforts from multiple sites for collaborative

development. Common in these systems is that applications and data are distributed on

resources across administrative boundaries and wide-area networks. Such environments

can be referred as the “grid-style” environments, which have the following distinctive

characteristics:

• Heterogeneity: There exist a wide variety of applications and resources in a
grid-style environment. The resources typically have different hardware configurations
(e.g., CPU speed and architecture, memory size, disk bandwidth and capacity) and
software setups (e.g., operating systems and libraries); the applications also have
diverse characteristics (e.g., data access pattern) and needs (e.g., desired data access
performance, security, and reliability).

• Dynamism: Systems deployed in a grid-style environment are highly dynamic.
Failures on machines and networks can happen at any time, and non-dedicated
resources may dynamically join and leave the system. On the other hand, applications
are started and terminated on demand, and their workloads also vary over time.

• Scale: Large amounts of resources can be aggregated in a grid-style environment.
They are distributed across different institutions and connected on wide-area
networks, providing the computing power and storage capacity to support executions
of many applications.

This dissertation focuses on two specific aspects of data management in distributed

systems: data provisioning — providing applications running on the computing resources

with remote access to their data stored on the storage resources, and the management of

the data provisioning — the establishment, configuration, and termination of the remote

data access. Computing in a grid-style environment poses unique challenges to these

tasks because of the above mentioned heterogeneous, dynamic, and large-scale nature of

applications and resources.
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First, the diversity of applications and resources motivates a data provisioning

solution that can be transparently deployed, without modifying the existing operating

systems (O/Ss) and changing the application source code or binaries. Second, the

wide-area, cross-domain environments necessitate application-tailored optimizations for

data access to address the inefficiency (long network delay, limited network bandwidth),

insecurity (insecure resources, limited mutual-trust between different domains), and

unsafety (unreliable machines and networks) that are typical in such environments. Last

but not least, the management of data provisioning in a large, dynamic system also

desires flexible control and automatic optimization of the remote data access, in order

to deal with the complexity of providing data to many applications, to agilely adapt to

the changing environments, and to deliver application-desired performance, security, and

reliability.

To address these challenges, this dissertation presents a two-level data management

system in which file system virtualization provides application-tailored grid-wide data

access, and service-based middleware enables autonomic management of the data

provisioning. In particular, this system has made the following contributions:

• It provides on-demand, cross-domain data access transparently for unmodified
applications and O/Ss based on user-level virtualization of widely available O/S-level
distributed file systems (DFSs).

• It supports application-tailored enhancements designed for grid-style environments on
several important aspects of remote data access, including performance, consistency,
security, and reliability.

• It employs middleware services to achieve flexible and interoperable management
of grid-scale data provisioning, which is capable of controlling the lifecycles and
configurations of dynamic data sessions based on application needs.

• It develops autonomic functions to automatically optimize the data management
according to high-level objectives, in order to reduce the complexity of managing data
sessions and adapt them promptly to changing environments.

• Finally, the proposed system has been demonstrated, with thorough experimental
evaluation, that it is effective and can significantly outperform conventional
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DFS-based approaches in grid-style environments; it has also been successfully
deployed in a production grid system [2][3] for several years, supporting scientific
tools and users from many disciplines.

The data management system proposed in this dissertation is architected to address

three important questions, which are discussed in the following subsections respectively.

1.1 Application-Transparent Grid-Wide Data Access

The first question is, how to provide application-transparent grid-wide data access?

Grids differ from traditional distributed computing environments because of their

distinct characteristics, e.g., wide-area networking, heterogeneous end systems, and disjoint

administrative domains. These differences bring new challenges to data management

systems, and the technologies that are successful in local-area networks (LAN), e.g.,

LAN file systems, cannot be directly applied in a grid environment. Instead, grid data

management needs to specifically address these unique issues.

Existing solutions allow applications to access grid data through the use of specialized

APIs or libraries. However, the required modifications on application sources or binaries

often place a burden upon the shoulders of end users and developers, and present a hurdle

to applications that cannot be easily modified. Therefore, application-transparency is

desirable to facilitate the deployment of a wide range of applications on grids, where

grid-enabling should be the responsibility of the grid middleware but not the application

users or developers.

This dissertation presents a user-level DFS virtualization, namely Grid Virtual File

System (GVFS), for application-transparent grid data access. Because the well-known

DFS interface is preserved by GVFS and presented to applications, no modifications are

required to their source code, libraries, or binaries. In addition, the proposed approach is

based on user-level virtualization techniques, which requires no changes to existing O/Ss

and can be conveniently deployed on grid resources. Furthermore, user-level enhancements

designed for grid-style environments are built upon the virtualization layer to enable data

provisioning with application-desired characteristics.
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In short, the proposed GVFS approach answers the first question by providing

transparent grid-wide data access for unmodified applications and O/Ss through the

user-level DFS virtualization.

1.2 Application-Tailored Grid Data Provisioning

The second question is, how to provide data with application-tailored optimizations?

Typical O/Ss are designed to support general-purpose applications, but it is often

the case that “one size does not fit all”. Applications have diverse characteristics and

requirements, in terms of, for example, data access patterns, acceptable caching and

consistency policies, security concerns, and fault tolerance requirements. To provide the

desired performance, security, and reliability to a grid application, data provisioning needs

to be optimized according to the application’s behaviors and needs.

Because an optimization tailored for one application (e.g., aggressive prefetching of

file contents) may result in performance degradation for several others (e.g., sparse files,

databases), application-tailored features are typically not implemented in general-purpose

O/S kernels. In addition, kernel-level modifications are difficult to port and deploy,

notably in shared environments. Toolkit-based solutions typically give users powerful APIs

to program remote data access with desired behaviors, but few programmers are skilled to

make effective use of such APIs.

To solve this problem, user-level DFS customizations are proposed to support

application-tailored GVFS data sessions. In particular, enhancements designed for

grid-style environments are provided upon the virtualization layer in GVFS, which

include customizable disk caching and multithreading for high-performance data

access, efficient consistency protocols for application-desired data coherence, strong

and grid-compatible security for secure grid-wide data access, and reliability protocols

supporting application-transparent failure detection and recovery. Based on GVFS, data

sessions can be created on demand on a per-application basis, where each session can

apply and configure these enhancements independently to address its application’s needs.
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Therefore, the answer to the second question is to use the application-tailored

enhancements enabled by GVFS to provide grid-wide data sessions with application-desired

performance, consistency, security, and reliability.

1.3 Service-Based Autonomic Data Management

The third question is, how to manage data provisioning in a grid-scale system with

dynamically changing environments?

Based on the GVFS approach, data sessions can be started on demand and

independently customized for applications. However, in a large-scale system, the

management of many dynamic data sessions is another challenging task due to its

complexity. Data sessions need to be dynamically established and destroyed based on

the lifecycles of applications and the locations of their instantiations and data storage.

Customization of data sessions also implies the consideration of various relevant factors

and tuning of many parameters, in accordance with the desired behaviors and the

surrounding environments. Dynamically changing application workload and resource

availability further require continuous monitoring of data sessions and timely adaptation of

their configurations.

These requirements are often beyond the capability of end-users and even system

administrators. Yet the goals of users or administrators are rather simple and explicit.

For example, from an application user’s point of view, it is desired that the job execution

is fast, secure, and reliable; from a resource provider’s point of view, it is expected that

the resource use is healthy and profitable. Therefore, this dissertation presents a novel

service-based autonomic data management approach to automatically manage and

optimize the data provisioning according to such high-level objectives.

This dissertation proposes a set of data management services to manage the

per-application GVFS sessions, enforce the isolation among the independent sessions,

and apply the desired customization for each session. They support flexible control

over the lifecycles and configurations of data sessions, and can explore the knowledge
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of applications (e.g., data access patterns, data sharing scenarios, and service quality

requirements) to customize their data sessions on the use of performance, consistency,

security, and reliability enhancements. These services also provide interoperable interfaces

which allow for direct interactions with other grid middleware services and automated

executions of data provisioning tasks.

To further reduce human intervention in managing data sessions and enable them

to promptly adapt to the changing environments, autonomic functions are built into the

data management services to make them capable of automatically monitoring, analyzing,

and optimizing the distributed entities of grid-wide data sessions, and cooperatively

working together to achieve the desired data provisioning and resource usage goals. Such

autonomic management is applied to several important aspects of data sessions including

cache configuration, data replication, and session redirection.

In summary, the GVFS-based data management system addresses the last question by

employing autonomic services to provide automatic management and optimization of data

sessions according to the application needs and changing environments.
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CHAPTER 2
BACKGROUND AND RELATED WORK

2.1 Typical Grid Data Management Approaches

Currently there are three main approaches to grid data provisioning, which are

summarized as follows:

The first approach leverages middleware to explicitly transfer files prior to and after

application execution. This approach is often called “file staging” and is adopted by

several major cluster computing and grid computing systems, such as PBS [4] and Globus

[5]. Typically, the necessary inputs are staged in before a job starts and the produced

outputs are staged out after the job completes, where the files are transferred entirely

using tools such as RCP (Remote Copy), SCP (Secure Copy), and GridFTP [6].

The second approach is based on application programming interfaces (APIs) which

allow an application to explicitly control transfers. For example, Globus GridFTP [6] and

GASS [7] provide APIs for applications to download and upload files entirely for access,

whereas the RFT (Reliable File Transfer [8]) service exposes Web service based interface

for scheduling GridFTP-based file transfers.

The third approach employs mechanisms to intercept data-related events and handle

them with remote data access implicitly to the applications. For example, standard

C library calls (e.g., fread, fwrite) and Linux system calls (e.g., read, write) for local

file access can be intercepted and mapped to operations on a remote file [9][10][11][12];

distributed file system (DFS) calls (e.g., NFS read and write remote procedure calls) on a

regular file can be mapped to the access on a grid object [13][14].

Comparing these three different approaches, the first one is traditionally taken for

applications with well-defined data sets and flows, such as uploading of standard input

and downloading of standard output. It is difficult to support applications that have

obscure, complex data access patterns. The second approach is adopted for applications

where the development cost of incorporating specialized APIs is justifiable for certain
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specific purposes, such as performance and security. It is not applicable for applications

that do not have source code available, such as packaged commercial software. The efforts

required for the modifications also make it difficult to port a wide variety of applications.

In addition, both of the first two approaches need to transfer files in their entirety in order

to read or write them. Thus, they are not efficient for files that are only accessed sparsely

(e.g., database files, virtual machine disk state) and they cannot support fine-grained data

sharing among several distributed users or applications.

In contrast, the third approach achieves great application transparency and can be

used for applications that do not have well-defined data sets or access patterns and for

applications that cannot be easily modified. It is also possible for this approach to transfer

only the needed data blocks of files on demand, so that sparse data access on large files

can be efficient and multiple users or applications can flexibly work on the same files

concurrently.

The Grid Virtual File System (GVFS) described in this dissertation is based

on the third approach. Experience with network-computing environments has shown

that there are many applications in need of such solutions [2][15]. The Condor [9] and

Kangaroo [16] systems provide remote data access to an application through library

call interception by means of either static or dynamic relinking. Static linking requires

the application to be linked to a specialized library that replaces the existing one (e.g.,

the standard C library), so that the data-related library calls can be intercepted and

mapped to remote I/O operations [9]. Dynamic linking achieves the same goal by using

linker control to direct the specialized dynamic library to be used in place of the existing

one when the application is executed. However, static linking requires rebuilding the

application and does not work if its source code is not available; dynamic linking only

works for applications that are dynamically linked and does not support statically-linked

applications. In addition, Kangaroo does not provide full file system semantics and thus
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cannot support many applications that require these missing operations (e.g., delete and

link).

Previous effort on the UFO system [11] and recently, the Parrot file system [12],

leverage system call tracing to intercept an application’s data-related system calls and

map them to remote data access for the application. But they require low-level process

tracing capabilities that are highly O/S dependent and not widely available. It is also

very difficult to implement robust system call interposition and it is unable to support

non-POSIX compliant operations (e.g., setuid).

Compared to the above approaches, DFS-based techniques utilized by GVFS are

key to supporting a wide range of applications, especially the ones that must be deployed

without modifications to source code, libraries, or binaries. Examples include commercial,

interactive scientific and engineering tools and virtual machine monitors that operate on

large, sparse data sets [17][18][19][20].

2.2 Traditional Distributed File Systems

Distributed file systems (DFSs), such as NFS [21][22][23] and CIFS [24], have

been successfully deployed on local-area systems (e.g., computer clusters), for decades,

enabling applications to transparently access large amounts of remotely stored data. Their

architecture is typically designed in a client-server style. A server stores the data in its

local disks and it runs the DFS server to provide the remote file service. The DFS server

hides the actual implementation of its local data access (e.g., a local file system) and the

actual location of the data, and presents a standard interface defined by the DFS protocol

to service the remote file access from clients. A client is where the user or application that

needs the access of remotely stored data is at, and it runs the DFS client to handle the

remote data access for applications. The DFS client, together with other components of

the O/S, offers a generic file system interface, which is the same for both local and remote

data access, to applications and thus hides the complexity of bringing in data from a

remote server.
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Figure 2-1. An NFS setup is typically created by mounting a file system from the server to
the client, and the NFS-mounted file system is presented to applications in the
same way as local file systems. An application’s data access triggers system
calls which are handled by the kernel, and they are passed on to the NFS
client if the requested data are actually mounted from the remote server. The
NFS client handles the data access by sending remote procedure calls (RPCs),
according to the NFS protocol, to the NFS server across the network via either
UDP or TCP. The NFS server processes the incoming client RPC requests and
invokes I/Os on the server local disks to satisfy the access. The results are sent
back from the NFS server to the NFS client and then returned to the
application.

Network File System (NFS) is the de facto DFS since it is the most widely-deployed

one. It has been implemented for a large number of different types of O/Ss, including

UNIX, Linux, and Windows. The widely-used versions of NFS are NFSv2 and NFSv3,

while the latest version, NFSv4, is also becoming available in the recent O/S distributions.

The NFS clients and servers are typically implemented in O/S kernels. In NFS, access to

remotely stored files is serviced in a block-by-block manner, that is, only the data blocks

that are needed by a user or application are transferred across the network.

As illustrated in Figure 2-1, an NFS setup is typically created by mounting a file

system from the server to the client, and the NFS-mounted file system is presented to

applications in the same way as local file systems. An application’s data access triggers

system calls which are handled by the kernel, and they are passed on to the NFS client if

the requested data are actually mounted from the remote server. The NFS client handles

the data access by sending remote procedure calls (RPCs), according to the NFS protocol,
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to the NFS server across the network via either UDP or TCP. The NFS server processes

the incoming client RPC requests and invokes the necessary I/Os on the server’s local

disks to satisfy the access. The results are sent back from the NFS server to the NFS

client and then returned to the application. This whole process is transparent to the

application in that it is completely unaware of where the data are stored and how they are

accessed, except for a probably longer delay of the access.

Many DFSs follow largely the same data access model as NFS. The DFS that is

widely available on Windows-family O/Ss is the Common Internet File System (CIFS).

It is based on the Server Message Block (SMB) protocol in which remote data access

is carried out via SMB requests and responses between the CIFS client and server.

Another noteworthy family of DFSs is AFS (Andrew File System [25]) and its descendants

OpenAFS [26] and Coda [27]. Coda and earlier versions of AFS use a different data access

model in which files are transferred entirely when they are accessed by applications.

AFS and Coda are also designed with wide-area environments in mind and have special

enhancements for such usage. The next section will discuss several important aspects of

wide-area file systems in details, including cache and consistency, security, and reliability.

Similar to the GVFS approach proposed in this dissertation, several related systems

have also leveraged user-level techniques based on loop-back server/client proxies to extend

O/S-level DFS functionality — in essence, virtualizing DFSs by means of intercepting

RPC calls of protocols such as NFS [21], e.g., the automounter [28], CFS [29], and SFS

[30]. In particular, LegionFS [13] interposes a user-level modified NFS server between

a kernel NFS client and a Legion server to provide access to grid objects. NeST [14]

is a storage appliance that services requests for data transfers supporting a variety

of protocols, including NFS and GridFTP. However, only a restricted subset of NFS

operations and anonymous user access are available. Furthermore, the system does

not integrate with unmodified kernel NFS clients, a key requirement for application

transparency. The approach described in this dissertation differentiates from these efforts
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in that it supports application-tailored DFSs which are important for data provisioning in

grid-style environments.

2.3 Application-Tailored Grid File Systems

2.3.1 Need for Application-Tailored Enhancements

Transparency is the main motivation for using DFS-based techniques for grid-wide

data access. However, currently there are no mechanisms that allow a conventional DFS

implementation to be customized to support application- or user-tailored enhancements.

To illustrate with examples, consider the case of a file server exporting user home

directories to clients. Suppose user Alice is a programmer that uses a single client to

perform the bulk of her software development (editing, compiling, debugging). User Bob

is a researcher that uses one or more clients to develop signal-processing algorithms that

later are to be run across many clients concurrently, using as inputs a large number of

benchmark media files.

Existing DFSs are unable to recognize per-session and per-application differences that

could drive performance and functionality improvements to these users. Consider the case

of NFS. Currently widely deployed versions of the protocol (v2, v3) do not store client

state information in the server, rely on client-initiated revalidation requests to check for

consistency, and write-through cache blocks on file closes.

In Alice’s example, an NFS client would not be able to exploit the fact that she uses

a single client to aggressively cache read/write data in local disk, and thus could not avoid

the unnecessary network calls for consistency checks and write requests. Neither would

NFS clients be able to exploit the fact that Bob’s input files do not often change and

would poll the server to revalidate each individual file upon opening. A currently available

customization — increasing cached attribute expiration times — would not be advisable

because it would apply to the entire remotely-mounted file system, potentially forcing

large expiration times on files of other applications/users that share the same file system.
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These examples highlight cases where DFS behavior can be tuned by exploiting

application knowledge such as:

Number of clients. For instance, aggressive caching of attributes and data can be

performed without consistency checks if it is known that only a single client is associated

with a particular computing session.

Sharing role of clients. For instance, consistency models well-suited for scenarios

with one or a few writer clients and many reader clients can be performed if this property

is known to hold true by middleware for a particular computing session.

Other examples of application knowledge that is important to DFSs include the

application’s need on the use of full-file or partial-file access, the strength of security

enforcement, and the level of fault tolerance. The inability of performing optimizations

based on such information presents a hurdle to the deployment of pervasive LAN file

systems (e.g., NFS) across grid-style environments. As illustrated in the above Alice’s

and Bob’s examples, if DFSs are capable of leveraging application knowledge, the number

of client-server interactions can be reduced, thereby reducing server loads and average

request latencies. However, typical DFS implementations are not designed to exploit such

knowledge, for two important reasons.

First, traditionally DFSs are setup by system administrators, who, for management

efficiency reasons, favor static, long-lived, homogeneous configurations at the granularity of

a collection of users rather than dynamic, short-lived, customized setups at the granularity

of an application session. In addition, current systems have no mechanisms allowing users

to convey information about DFS features that they desire for their applications to system

administrators.

Second, integrating application-tailored features with DFS implementations in

commonly available kernels is very difficult in practice. For designers of a stable kernel

tree, selecting which enhancements should be added based on application needs is

difficult: an optimization tailored for one application (e.g., aggressive pre-fetching of
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file contents) may result in performance degradation for several others (e.g., sparse files,

databases). Furthermore, it is difficult for the kernel to gain application knowledge that is

needed for driving the usage of such features — it may require additional system calls or

non-standard APIs that must then be present in future releases for legacy support, even if

the features are rarely used. In addition, kernel-level modifications (even if encapsulated

into modules) are difficult to port and deploy, notably in shared environments. For

management and security reasons, administrators are often strict about controlling their

kernel configurations and are reluctant to allow modifications that deviate from stock O/S

distributions.

The proposed GVFS-based approach addresses the need for application-tailored

data provisioning by enabling user-level per-application customization on remote

data access. The lack of support for application-tailored optimizations has also been

recognized as a limitation by BAD-FS [10], which exposes the control decisions on caching,

consistency, and replication to grid middleware. However, it relies on system-call based

interposition agents, and therefore, as discussed in Section 2.1, it only supports specific

types applications and O/Ss. In contrast, the techniques described in this dissertation

enable application and O/S transparent grid file systems with application-tailored

enhancements. These enhancements cover several important aspects of remote data

access, including caching, consistency, security, and fault tolerance, which are discussed in

details in the rest of this section.

2.3.2 Caching and Consistency

Caching is a classic, successful technique to improve the performance of various

types of computer systems by exploiting temporal and spatial locality of data references

and providing high-bandwidth, low-latency access to cached data. The basic idea

of (client-side) caching is that when a client requests data from a storage facility,

it temporarily stores a copy of the data in another layer of storage, namely cache,

which is closer to the client and provides faster data access than the original storage.
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Different levels of caching exist in a typical computer system. For example, CPUs use

hardware-implemented caches to speed up the access to data stored in memory; O/Ss

manage part of memory as caches to improve the access times to data stored on disks; and

a DFS can use disks as caches to provide high-performance access of data from the remote

file server.

Caches leverage the locality that typically exists in data references to improve its

performance. There are two types of locality: temporal locality refers to that if a client

accesses some data, it is highly probable that these data will be used again by the client in

the near future; spatial locality means that when a piece of data is accessed, its spatially

nearby stored data are also very likely to be needed by the client. If a data request can

be satisfied from the cache, it is called a cache hit ; otherwise, it is a cache miss, and

the requested data need to be satisfied from the remote storage. Apparently, a cache is

effective when most of the data accesses can be served from the cache, i.e., the hit rate is

high and miss rate is low. A cache is initially “cold”, which means it does not have any

data to serve any requests; and as data are brought into the cache, it becomes “warm” and

able to satisfy data requests leveraging the locality.

Different caching policies are possible: read-only caching only stores the data

requested by read operations in caches, whereas write caching also caches the data

accessed by write operations. There are two types of write caching: write-through caching

allows a client to directly modify data in its cache and forward the update to the remote

storage at the same time; write-back caching further delays the propagation of data

updates and keeps the modified data only in caches for a period of time. Read-only

caching works well for read-mostly data accesses, and it is also easy to be implemented

in a robust manner. Write-through caching potentially offers improved performance over

read-only caching as the data cached from writes can be reused by the following reads.

Write-back caching is important to the data access performance when there are intensive

writes, because the locality existed across write operations can be leveraged to reduce the
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amount of data updates on the remote storage. It is, however, more complex to implement

and more difficult to handle client failures and maintain data consistency between the

cache and remote storage.

Cache consistency concerns that when there are multiple clients sharing the data

stored on the remote storage, a client’s read on a piece of data should always return value

from the latest write on it, no matter whether the write is from the same client or others.

Inconsistency happens when a client reads data from its cache while the data are already

modified by another client, and when a client delays its updates in its cache while the

other clients get a stale copy of the data from either their caches or the remote storage.

Due to the lack of an absolute global time, it is impossible to determine which operation

is the “latest” one, so a formal definition of cache consistency typically considers that the

operations from all the clients on the same piece of data follow a hypothetical serial order.

In this serial order, operations from any particular client follow the order in which they

are issued by the client, and the value returned by each read operation is the value written

by the last write to the piece of data in the serial order. This consistency model is able to

present a coherent view of data to clients, but it can be very expensive to implement in

practice. Existing DFSs often use other cache consistency models which are more or less

relaxed from this one and provide relatively weaker data coherence.

Conventional DFSs usually employ client-side caching in memory, but the use of

disk caching is not typical, since most of them are designed for local-area environment

where the latency of network transactions is comparable to the latency of local disk access.

For example, it is common among different NFS client implementations to cache file

data blocks, attributes, file handles, and directories in memory, but disk caching is only

available on Solaris with the kernel-level CacheFS [31] service. There are several related

kernel-level DFS solutions that are specially designed for the use in WAN and exploit the

advantages of disk caching. In particular, AFS [25][26] and Coda [27] make use of disk

caching to improve both performance and availability. Coda and the earlier versions of
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AFS cache files entirely on local disks, whereas the later versions of AFS also support

partial-file caching (i.e., cache only certain data blocks of files on demand).

As caching is widely used in DFSs, cache consistency is an important task for DFSs

to support the concurrent sharing of data for distributed clients. Traditionally NFS

replies on a timestamp-based algorithm to maintain consistency of cached data. When

a client caches any block of file (in the data cache), it also stores the file’s modification

time (in the attribute cache). The cached blocks of the file are assumed to be valid for

a finite interval of time, and the first reference to any block of the file after this interval

forces a revalidation, in which the client compares the recorded timestamp with the file’s

modification time on the server. If the later is more recent, it means that the file has been

recently modified by someone else, so the client invalidates the cached blocks of the file

and refetches them on demand. Because of this timestamp-based algorithm, a client needs

to periodically revalidate a file if it is continuously referenced.

The NFS protocol also provides a close-to-open consistency in which a client always

revalidates a file when it opens it and always flushes the locally modified data of a file

when it closes it. This consistency model is useful for the “sequential write-sharing”

scenario, in which a shared file is never open simultaneously for reading and writing by

different clients. It makes sure that a client always gets the latest copy of a file when the

client starts to work on it. However, if a file is open simultaneously by several clients and

one of them modifies it, which is called “concurrent write-sharing”, a stronger consistency

model is needed to allow the other clients to see the changes immediately.

Several solutions are proposed to improve upon NFS and provide stronger cache

consistency. Spritely NFS [32] applies the cache consistency protocol designed in Sprite

[33] to NFS: it adds open and close calls to the NFS protocol to allow a server to keep

track of the clients that open the file for reading and writing; and when the write-sharing

of a file is detected, the server uses callback calls to inform the clients that the file is no
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longer cacheable and force them to invalidate and/or write back their cached data of this

file.

The NQNFS [34] uses leases to allow a client to cache data for reading or writing

without worrying about conflicts. Such a lease has a limited duration and must be

renewed by the client if it wishes to continue to cache the data. A read-caching lease

allows a client to use read-only caching; a write-caching lease permits write-back caching,

and the cached modifications are submitted when the lease expires or is terminated by an

eviction callback (issued from the server when the sharing conflict is detected).

The most recent version of NFS (v4 [35]) differs from the earlier versions by including

open and close calls in the protocol and provides open delegations to clients. With a

read delegation, the client can use cached data without periodic consistency checks; a

write delegation further allows the client to retain modified data in its caches. A lease is

associated with every delegation and its expiration automatically revokes the delegation.

When a sharing conflict is detected by the server, it can also revoke the delegation using a

server-to-client callback call.

The cache consistency model provided by AFS [25][26] and Coda [27] is similar to the

aforementioned close-to-open model, in which a client gets the latest copy of a file on open

and propagates the modified file on close. There are two limitations of this model: first,

modifications on a file cannot be retained in cache after the file is closed; second, it cannot

support concurrent file sharing, since the modification made by a client cannot be seen by

the others immediately.

In AFS and Coda, consistency is maintained by means of callbacks. When a client

caches a file, the server keeps track of that and promises to inform the client if the file is

modified by other clients. With this promise, the client can use the cached copy without

checking the server. When a client updates the file, the server sends out callback break

messages to the other clients, which have cached this file, since the server will discard the

callback promises it held for these clients on this file. On the other hand, if a client opens
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a file and finds it in its cache, it needs to check with the server whether the promise still

holds. If not, it has to to fetch the latest version of the file from the server.

However, the above caching and consistency designs require kernel support that

is difficult to deploy across shared grid environments, and they are not able to employ

per-user or per-application cache policies. In contrast, GVFS enhances caching and

consistency at user-level based on the virtualization of widely available NFS versions (v2

and v3), and supports per-user and per-application customization on the use of disk caches

and consistency protocols.

Caching or replication on persistent storage is also widely used among the related

scalable distributed data storage/delivery systems. Pangaea [36] is a decentralized

wide-area file system that uses pervasive replication in a peer-to-peer fashion to improve

system performance, but it supports only one consistency model — “eventual consistency”,

i.e., it only promises that a user sees a change made by another user in some unspecified

future time. OceanStore [37] is an architecture designed for global-scale persistent storage;

Pond [38] is its prototype that implements a file system interface using NFS loop-back

server and allows for application-specific consistency, but it is not application-transparent,

requiring the use of its API to achieve this goal. In the context of Web content caching, a

related proxy cache invalidation approach has been studied in [39]. These systems differ

from the proposed GVFS approach in that they are not architected to provide different

consistency models transparently to applications according to their requirements and

usage scenarios.

Note that the consistency models and protocols discussed in this dissertation only

consider the order of read and write operations on a single data item (e.g., a file) and do

not consider the order of operations on different data items (e.g., all the files in the file

system). In the terminology typically used in shared memory multiprocessor systems, a

consistency model specifies the constraints on the order of operations on the entire data

set, whereas a coherence model only considers that with respect to a single data item
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[40]. However, this definition of cache coherence has been traditionally referred as cache

consistency in the literature of DFSs and it is thus followed in this dissertation.

2.3.3 Security

Security for a DFS typically concerns both confidentiality and integrity: confidential-

ity refers to that data accessed through the DFS are disclosed only to authorized clients;

integrity means that alterations to the data can only be made in an authorized way. There

are several important mechanisms to protect the security of a DFS. Encryption makes

use of cryptography to transfer data into something that an attacker cannot understand,

and the encrypted data can only be decrypted by someone with the proper key. Authen-

tication is used to verify the claimed identity of a party and it is typically also based

on cryptography. After a party is authenticated, authorization is the process to check

whether that party is authorized to perform the requested access on the data, and the

access control can be performed by checking the party’s identity against an Access Control

List (ACL) which lists the permitted operations. Integrity check makes sure that the data

are not altered by unauthorized parties, and it can be done using Message Authentication

Code (MAC) or digital signatures.

Full-featured security needs to support all of the above mentioned security mechanisms:

authentication, encryption, integrity check, and access control. Strong security in DFSs

is often based two types of security systems: Kerberos [41] and Public-key Infrastructure

(PKI [42]). A Kerberos system is built around Key Distribution Centers (KDCs). Users

are organized into realms and each realm’s KDCs are managed by its administrators.

A user authenticates into her realm through the realm’s KDCs, from which she obtains

the tickets for secure access to the resources in the realm. Across-realm access requires

the cooperation of the administrators in each realm to develop trust relationships and

exchange per-realm keys. In PKI-based security, a public-key based certificate (e.g., X.509

[43]) along with its associated private key uniquely identifies a user. Two parties can use

their certificates to establish mutual authentication and then create a secure channel for
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access. Validation of a certificate is done by checking the signature of its issuer, and a

trusted third party known as Certificate Authority (CA) is typically leveraged to issue

certificates.

2.3.3.1 Security in distributed file systems

Existing DFSs have diverse security designs and strengths. Earlier versions of NFS

(v2 [22] and v3 [23]) rely on UNIX-style authentication, using user and group IDs.

Although stronger authentication flavors are defined in the specifications, they have never

prevailed in deployments. There is also no support for privacy and integrity in these

versions, and NFS RPC messages can be easily spoofed, altered, and forged. Complete

support of security has not been available until the latest version (NFSv4 [35]), which

mandates the support of RPCSEC GSS [44], a RPC-layer security protocol based on the

Generic Security Services API (GSS-API [45]). It is required that a conforming NFSv4

implementation must implement RPCSEC GSS with two security mechanisms, one based

on Kerberos (V5 [41]) and the other based on PKI (LIPKEY, Low Infrastructure Public

Key [46]).

All NFS versions use an exports file to specify the hosts that are allowed to access

an exported directory. The ACCESS procedure call was introduced in NFSv3 to provide

fine-grained access control using POSIX-model ACLs, but again it is not widely used in

practice. NFSv4 improves upon this by providing Windows NT-model ACLs which have

richer semantics and wider deployments. In addition, NFSv4 represents users and groups

with string IDs instead of integers, which facilitates cross-domain identity mapping.

The AFS [25][26] and Coda [27] use Kerberos-based systems to provide strong

security. Access control is achieved by associating an ACL with directories that list

positive or negative rights for a user or group. The Kerberos security relies on centralized

control and works well within an intranet. But cross-domain security is difficult to set up

because it requires the involved administrations to negotiate a trust relationship.
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None of these conventional DFSs has been designed to support grid security

requirements. There is related work on extending DFS security at kernel-level. In

particular, the GridNFS [47] project develops a GSI-compatible security in NFSv4.

However, such a design requires kernel support that is difficult to deploy across shared

grid environments. Kernel-level security techniques are also unable to employ per-user or

per-application security configurations. In contrast, a GVFS-style user-level solution can

support flexible customization on security mechanisms and policies based on individual

application and user needs.

User-level techniques can achieve privacy and integrity of NFS through secure

tunneling, where SSH or SSL can be leveraged to establish a secure end-to-end connection

between the client and server for NFS traffic [48]. A secure tunnel multiplexed by users

faces the same limitations as NFS, since RPC-layer mechanism is still required for

authentication and authorization within the tunnel, and such tunnels are created statically

by system administrators. In GVFS, per-session SSH channels are created on demand to

ensure privacy and integrity of the data sessions, whereas authentication and authorization

can be performed by proxies using middleware-managed session keys.

Self-certifying File System (SFS [49]) also leverages user-level loop-back client and

server to enhance DFS security. It addresses the problem of mutual authentication

between a file server and users by providing self-certifying pathnames for files. Such

a pathname has the server’s public key embedded inside, which is used by a client to

verify the authenticity of the server, and then to create a secure channel to protect the

file system traffic. The SFS approach is also extended to provide decentralized access

control, in which users are allowed to create file sharing groups with ACLs in the file

system [50]. When a user tries to access a file, the authentication server fetches the

user’s credentials and check them against the ACL to authorize the access. Compared

to SFS, the proposed GVFS focuses on providing data access that meets grid security

requirements, employs dynamically-created per-user, per-application file system proxies,
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and allows for middleware-controlled security configurations on a per-user, per-application

basis.

2.3.3.2 Security in grid systems

The dynamic and multi-institutional nature of grid-style environments introduce new

challenges to security. In [51] several key requirements were studied for a grid security

model, including the support for multiple security mechanisms, dynamic creation of

services, and dynamic establishment of trust domains. This research resulted in a de facto

grid security standard, GSI (Grid Security Infrastructure). GSI employs public-key based

certificates for grid authentication. Authorization is done by checking a grid user’s identity

(the distinguished name in the user’s certificate) against certain access control mechanism

(e.g., gridmap file in GSI, MayI layer in Legion [52]). One important security requirement

unique to grid systems is delegation, which allows a service to act on behalf of a user. This

can also be supported with extensions to public key certificates, e.g., proxy certificates in

GSI and credentials in Legion.

Grid security can be implemented at two different levels. Transport-level security

[53][54] uses public-key certificates to create a secure socket layer connection between two

end points and protect the data exchanges between them. It is a mature technology that

has efficient implementations (e.g., OpenSSL [55]), but it lacks service-level semantics

and does not work for multi-hop connections. Message-level security is a suite of

standards arising from the emerging Web service technologies [56][57][58], which provides

security at the layer of SOAP messaging. It is agnostic to transport-layer protocols and

connections, and supports more service-level functionalities. However, its performance is

not comparable to transport-level security because XML processing is expensive. In this

dissertation, a two-level security architecture that exploits the advantages of both levels of

security is proposed for the GVFS-based grid data management.

In the related data management solutions, GSI-based GridFTP [6] provides API for

programming grid data access, and RFT is a web service for reliable file transfer using
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GridFTP; the Legion system [59] is an object-based grid system, which employs a modified

NFS server to provide access to grid objects, and it integrates GSI in Legion-G [60];

the Condor system [9] uses library call interception to provide remote I/O, and it also

supports GSI in Condor-G [61]. This dissertation proposes a grid-wide file system with

compatible security mechanisms with these efforts. It differentiates from and complements

them in that GVFS-based data sessions allow unmodified application binaries to access

grid data using existing kernel clients and servers, and support application-tailored

per-session customization.

2.3.4 Fault Tolerance

Reliable remote data access requires DFSs to tolerate the possible failures happened

in the systems. This is especially important for grid/wide-area file systems because of

the dynamic nature of such environments. The common types of failures include server

and client crashes due to software or hardware problems, as well as network partitioning

caused by crashed network devices which break the physical network connection between

the client and server. Another type of failures is data corruption happened during data

storage and transmission, causing incorrect results from data access. In addition, resources

can also become unavailable to a DFS when resources voluntarily leave the system, which

is common in grid and peer-to-peer systems built upon non-dedicated resources. In the

worst possible failure semantics, any of the above types of failures may occur and a client

cannot tell whether the result received from a server is correct or not — such a scenario is

referred to as arbitrary or Byzantine failure.

Fault-tolerant systems are often built by replicating the data to introduce redundancy

into the system. Server failures can be masked if the data are replicated across different

servers, and tolerance of network partitions can also be provided by replicating the data

across different sites. Successful recovery of an application’s execution after a client

failure often relies on the use of checkpointing mechanism, which saves the state of

the application on persistent storage. After the client comes back from a failure, the
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application can roll back to its most recent checkpoint and continue its execution from

there.

There are two basic models of replication, passive (primary-backup) and active

replication. In the primary-backup replication model, only the primary replica services

data requests and it synchronizes with the backups by sending the updated data to them.

If the primary replica fails, one of the backups is promoted to act as the primary. In

active replication, all replicas execute operations in the same order, which usually causes

higher overhead compared to passive replication, but it can tolerate Byzantine failures by

collecting the results received from the replicas and using voting to find out the correct

one.

Conventional DFSs have limited support for fault tolerance. AFS [25][26] supports

read-only replication of data that are frequently read but rarely modified, in order to

enhance data availability; Coda [27] supports read-write replication with a read-one,

write-all approach. Earlier versions of NFS (v2 [22] and v3 [23]) do not provide any

support for replication; with the help from Automounter [28], a remote mount point can

be specified as a set of servers instead of a single one which allows the use of replication,

but propagation of modifications to replicas has to be done manually. FT-NFS [62] is

a user-level NFS that employs a primary-backup replication scheme to improve data

availability. BFS [63] is another NFS service which employs a replication algorithm

for tolerating Byzantine faults. The latest version of NFSv4 [35] provides very limited

support for using read-only replication: each file can have a attribute to list the file system

locations where the file’s replicas are stored, but the management of replicas is left out of

the protocol.

Fault-tolerance techniques are widely used in large-scale distributed storage systems.

Oceanstore [37] and its prototype Pond [38] encode data with an erasure code to introduce

redundancy and spread the coded data over a large number of servers to provide high

availability. The PAST project [64] is peer-to-peer storage system that uses replication for
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durability. The FarSite system [65] aims to build a scalable serverless network file system,

using replication to provide file availability and reliability. Wide-area data replication

is presented in [66] for scientific collaborations. It manages grid data replication for

read-only scientific data sets using Globus Reliable File Transfer service for scheduling of

GridFTP-based data transfer, and using Globus Replica Location Service for locating data

replicas.

Compared to these systems, the GVFS-based approach described in this dissertation

supports application-tailored customization on fault-tolerance mechanisms and policies,

and it leverages middleware services for autonomic replication management and

optimization.

2.4 Service-Oriented and Autonomic Data Management

Service-oriented architecture (SOA) is an approach to building loosely coupled

distributed systems with minimal shared understanding among system components.

In particular, the Web services architecture [67] has been broadly accepted as a means

of structuring interactions among distributed software services, which exchange XML

documents using SOAP messages over a network. Web Service Resource Framework

(WSRF [68]) is a specification that describes a consistent and interoperable way of dealing

with stateful resources that typically exist in a grid system, e.g., files in a file system and

records in a database. This framework is becoming widely adopted by grid middleware

including Globus Toolkit version 4 [69], WSRF.Net [70], and WSRF::Lite [71]. The system

described in this dissertation focuses on data management and is unique in the support for

dynamic and customizable data sessions, and it can also provide interoperable service to

other grid middleware services based on WSRF.

Autonomic computing addresses the complexity of managing large-scale, heterogeneous

computing systems by endowing systems and their components with the capability

of self-managing according to high-level objectives [72]. The building blocks of an

autonomic system are autonomic elements. An autonomic element manages its own
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Figure 2-2. An autonomic element employs an autonomic manager to monitor the
managed element, analyze the monitored information, plan management
actions upon the element, and execute the plan accordingly. Self-management
of the element is realized through this feedback-control loop.

resource or service guided by policies, and its typical architecture is illustrated in Figure

2-2. It employs an autonomic manager to monitor the managed element, analyze the

monitored information, plan management actions upon the element, and execute the plan

accordingly — self-management of the element is realized through this feedback-control

loop. Furthermore, such autonomic elements also interact with each other to achieve the

desired system-level self-management [73]. The proposed research follows this approach by

building grid data management services as self-managing interacting autonomic elements.

Automatic performance optimization and fault tolerance are proposed in [74] for

file staging based data provisioning. In this approach, performance improvement is

through the tuning of data block size and TCP parameters; failure recovery is achieved

by logging transfer progress and retry it after a failure. In comparison, the approach of

this dissertation supports general data access patterns beyond bulk data transfer, and in

particular, it can support interactive applications and efficient sparse file accesses. It also

supports flexible customization and autonomic optimization on a variety of important

aspects of data sessions based on application needs.
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There is extensive research on autonomic storage management. In particular, in [75]

a utility-based algorithm is used to decide the replication degree (the number of replicas

for a data set) for resource managers; the IBM autonomic storage manager implements

policy-based storage allocation [76]. Automatic replica generation and distribution are

studied in the context of Content Delivery Network (CDN) [77] and peer-to-peer storage

systems [78]. Compared to these systems, this dissertation proposes autonomic storage

and replica management in order to support dynamic grid-wide file systems that provide

application transparent and tailored grid data access.

2.5 Support for Distributed Virtual Machines

A virtual machine (VM) presents the view of a duplicate of the underlying physical

machine to the software that runs within it, allowing multiple operating systems to run

concurrently and multiplex the resources of a computer, including processor, memory,

disk, and network. Such VMs are often called system-level VMs, in order to differentiate

with other types of VMs, and they are becoming increasingly valuable to provide flexible

resource containers and portable encapsulations of execution environments. In particular,

there are growing interests in employing VMs in grid computing [17][79].

System-level VMs are mainly provided by the software called virtual machine

monitor, also known as hypervisor (sometimes also with certain level of hardware

support). A VM’s entire state, including CPUs, memory, and disks, can be represented

as data. In typical VM technologies, such as VMware [80], Xen [81], and UML [82], a

VM’s state data are often encapsulated in files and stored on physical disks. Thus the

GVFS-based approach proposed by this dissertation can be applied to manage VM state

and provide remote state access for VMs instantiated across grids.

There is a related project which has investigated techniques that improve the

performance of VM migrations [83][84]. Their work focuses on mechanisms to transfer

the state of virtual desktops, possibly across low-bandwidth links. Common between

their approach and this dissertation are mechanisms for on-demand block transfers, and
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optimizations based on the observation that zero-filled blocks are common in suspended

VM memory state. The key differences are: the techniques described in this dissertation

are generic to various VM technologies, implemented through intercepting NFS RPCs

and leveraging O/S clients and servers available in typical grid resources, whereas their

approach is specific to a particular type of VM, using modified libraries as a means of

intercepting VM monitor accesses to files with a customized protocol.

The work presented in [85] introduces techniques for low overhead migration of VM

memory state in LAN environments. The approach presented in this dissertation provides

an efficient way of migrating VMs across the WAN. In addition, the implementation of [85]

requires access to the VM’s shadow page table, which is not possible for commercial VM

software, such as VMware. On the contrary, the techniques described in this dissertation

are applicable to different types of VMs.
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CHAPTER 3
DISTRIBUTED FILE SYSTEM VIRTUALIZATION

Conventional distributed file systems (DFSs) are designed for general-purpose usage,

and implemented in operating systems (O/Ss) (as part of kernels or privileged user-space

software). They are unable to incorporate application-tailored features, because an

optimization tailored for one application (e.g., aggressive pre-fetching of file contents)

may result in performance degradation for several others (e.g., sparse files, databases).

Modifications to DFSs at O/S-level are also difficult to port and deploy, notably in shared

environments. On the other hand, such DFSs are unable to employ configurations that are

customized for specific applications: they are typically deployed by system administrators

with relatively static, long-lived, and homogeneous configurations at the granularity of a

collection of users, rather than dynamic, short-lived, and different setups at the granularity

of an individual user or application session.

This dissertation addresses these limitations by proposing virtual DFSs, namely

Grid Virtual File Systems (GVFSs) (Figure 3-1). These virtual DFSs are built upon the

conventional DFSs, but they can behave differently than the physical ones in terms of

data accessibility and characteristics. They share the underlying software and hardware

resources, but they are isolated from each other and can be dynamically created and

configured independently. With GVFS, application-tailored data provisioning can

be realized by establishing per-application virtual DFSs and customize each of them

according to its application’s requirements and characteristics.

3.1 User-Level Proxy-Based Virtualization

3.1.1 Architecture

A GVFS-based virtual DFS consists of several virtual clients and servers which are

implemented by unprivileged user-level file system proxies. These proxies virtualize the

physical O/S-level DFS clients and servers by interposing between them and broker the

data sharing across the distributed systems (Figure 3-2): the O/S servers delegate the
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Figure 3-1. The GVFS-based virtual DFSs are built upon the conventional DFSs, but they
can behave differently than the physical ones in terms of data accessibility and
characteristics. They share the underlying software and hardware resources,
but they are isolated from each other and can be dynamically created and
configured independently.

control of data sharing to the proxies on the server-side (namely, proxy servers), and

the O/S clients access the remote data through the proxies on the client-side (namely,

proxy clients). The layer of indirection provided by the proxies forms the virtualization,

which allows the proxies to multiplex the physical DFS clients and servers and to establish

independent virtual DFSs for applications, with access to different data sets and with

different configurations.

The GVFS can leverage the widely available DFS implementations in existing

O/Ss, such as NFS and CIFS/Samba, to provide virtual DFSs across heterogeneous

platforms. Network File System (NFS [22][23][35]) is the de facto DFS, available on

many O/Ss, including UNIX and Linux as well as Windows (with an extension service).

Common Internet File System (CIFS [24]) is provided by the Windows-family O/Ss and

is interoperable with Samba [86] on UNIX and Linux. By virtualizing these DFSs with

user-level proxies, GVFS can be seamlessly deployed on a wide variety of systems, without

any changes to the existing O/Ss.
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Figure 3-2. A GVFS-based virtual DFS consists of several virtual clients and servers which
are implemented by unprivileged user-level GVFS proxies. These proxies
virtualize the physical O/S DFS clients and servers by interposing between
them and broker the data sharing across the distributed systems.

Unlike a conventional DFS statically deployed in a local-area environment, GVFS

can be dynamically created across wide-area networks and administrative domains. In a

wide-area environment, a user’s identity is often not consistent across domains due to the

lack of centralized administration. In a grid system, virtual organizations are dynamically

established on resources distributed across different physical organizations, where a grid

user’s identity needs to be dynamically mapped to the physical ones. Therefore, an

important task performed by a GVFS proxy is cross-domain identity mapping, which

dynamically maps the identities between the account where the job is running and the

account where the files are stored.

While virtualizing a conventional DFS, the GVFS proxies communicate with the

O/S clients and servers via the native DFS protocols (e.g., NFS RPC, CIFS SMB).

Nonetheless, the protocol used between the proxy clients and servers can be different
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from the native protocol. It can be extended to provide more functionality and improved

to achieve optimization on various important aspects of remote data access, including

performance, consistency, security, and fault-tolerance.

Based on the GVFS approach, both NFS and CIFS can be virtualized by interposing

file system proxies between native NFS and CIFS clients and servers. The resulting virtual

NFS’s or CIFS’s data access is managed by its proxies, which process and forward the

corresponding NFS RPC or CIFS SMB messages. Because of the good standardization

and availability of the NFS specifications [22][23][35], this dissertation uses NFS-based

GVFS to present its design and implementation, as well as to develop and evaluate the

prototype system.

3.1.2 NFS-Based GVFS

3.1.2.1 User-level NFS proxy

In a typical NFS setup, the kernel NFS server exports the shared file systems to

certain users and clients, and an authorized user access the remote data via the kernel

NFS client’s RPC. With GVFS, a virtual NFS can be created by placing a user-level

file system proxy between the kernel NFS client and server. To the kernel client, the

proxy works as a server; to the kernel server, the proxy works as a client. When a user or

application on the client needs to access the remote data on the server, the RPCs from the

kernel NFS client are processed by the proxy and then forwarded to the NFS kernel server.

Specifically, due to the decoupling of mount protocol and NFS protocol (in NFSv2

and NFSv3), a proxy consists of two user-level daemons, gvfs.mountd and gvfs.nfsd, for

handling mount RPCs and NFS RPCs respectively. When a client tries to mount the

remote file system, the request is processed by the GVFS mount daemon which first

checks whether the client is allowed to mount it. If it is allowed, the proxy forwards the

request to the server’s native NFS mount daemon, and the result from the server (the root

file handle of the remote file system) is returned to the client. Otherwise, the request is

rejected by the GVFS mount daemon and is not forwarded to the server.
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A GVFS is established once the remote file system is mounted on the client. A

user’s data access to the remote file system on the client triggers the kernel NFS client

to issue RPCs to the GVFS proxy’s NFS daemon. The proxy checks whether the client

and user are allowed to access the requested data, forwards the permitted ones to the

native NFS server, and returns the results to the client. Invalid requests are rejected by

the proxy without being forwarded to the server. In the end, a GVFS can be destroyed by

unmounting the remote file system and terminating the proxy daemons.

The GVFS enforces access control for the mount and NFS requests by checking the

user’s identity (typically user ID and group ID) and the client’s identity (typically the

IP address) against its access control list files. It uses an exports file to list the clients

that are allowed to access the remote file system and their read and write permissions.

Another map file is used by GVFS to list the users that are allowed to access the remote

file system.

This map file also stores the cross-domain user identity mappings between the

account where the user’s job is running and the account where her files are stored. Upon

receiving a request, the proxy checks the identity of the job account (embedded in the

RPC message) against the map file and finds out the corresponding file account’s identity.

It then changes the user and group IDs of the job account to the IDs of the file account in

the the RPC message before forwarding it to the server. If a job account’s identity is not

found in the map file, the request is either denied or the account is mapped to nobody (the

least privilege account) depending the configuration of GVFS.

Figure 3-3 illustrates an example setup of two NFS-based GVFSs. Grid user X and

Y are running their jobs under account shadow1 and shadow2 on computer server C1

and C2 respectively. On the file server S, the corresponding user data are located in

subdirectory X and Y of file account F (/home/F ). The native NFS server exports user

data to to itself (localhost) since the proxies are running on the file server. When a job

needs to access the remote data on GVFS, the corresponding requests from the kernel
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Figure 3-3. Two grid users (X, Y ) execute jobs with their allocated shadow accounts
(shadow1, shadow2 ) on computer server C1 and C2, respectively. They access
their data remotely stored on file server S under the file account F. Their data
requests are authenticated and processed by the user-level GVFS proxies on S.
The accepted requests are forwarded to the NFS server, and their credentials
inside the requests are mapped from the shadow accounts to the file account.

NFS client are processed by its proxy. For a valid request, the proxy modifies the RPC

message to map the job account’s identity (shadow1 or shadow2 ) to the file account’s (F ),

so that the request can be properly serviced by the kernel NFS server. Upon receiving the

result from the server, the proxy also modifies the RPC message to map the file account’s

identity back to the job account’s and then forward it to the client. Because the user data

are only exported to localhost on the server, the remote data access is completely under

the control of the proxies: the clients do not have direct access to the data; they can only

access them through the proxies. The path exported by a proxy also ensures that a user

(e.g., X ) can only access her own data (/home/F/X ); she cannot access the other users’

files (e.g., /home/F/Y ) since they are not exported to her client by the proxy.
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3.1.2.2 Multi-proxy GVFS

Although a GVFS-based virtual DFS can be created by leveraging a single native

NFS server-side proxy [87], the design supports connections of proxies “in series” between

a native NFS client and server. In particular, a pair of proxies can be placed on the kernel

client and server to provide both virtual client and server as described at the beginning of

this chapter. In this setup, the kernel server still exports the file system to its local proxy

server (the proxy running on the server side), the proxy server exports it to the proxy

client (the proxy running on the client side), and the proxy client exports it to the kernel

client. So the client can only access the remote file system through the proxy client: the

proxy client forwards the access to the proxy server, and the proxy server then forwards

it to the kernel server. The proxy server also performs necessary user identity mapping to

support cross-domain data access, which is not needed for the proxy client.

As illustrated in Figure 3-4, a pair of proxy client and server cooperate between the

native NFS server and client to establish a GVFS (e.g., GVFS1 ). The proxy server works

in the same way as in a single-proxy GVFS: the kernel NFS server exports the user data

directory (/home/F/X ) to localhost, so the proxy server on S is responsible for processing

and forwarding the remote access to the data (it also maps the job account’s identity

shadow1 in the RPCs to the file account’s identity F ). On the other hand, the client

accesses the remote data through the proxy client on C. The proxy client exports the

remote file system to its localhost, so it accepts only the requests coming from the kernel

NFS client and it then forwards them to the proxy server.

Although a multi-proxy design may introduce more overhead from processing and

forwarding RPC calls, there are important design goals that lead to its consideration:

Improved performance: The addition of a proxy at the client side enables

techniques which address the inefficiency of native NFS protocol and improve the

performance of remote data access. For example, a proxy client can introduce a level

of caches on local disks additional to kernel-level memory buffers and improve access
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Figure 3-4. Multi-proxy GVFS setup. Two proxies work between the native NFS server
and client cooperatively to provide remote data access. Kernel NFS server
exports the user data directory (/home/F/X ) to localhost, so the proxy server
on S is responsible for processing and forwarding the remote access to the
data. It also maps the job account’s identity shadow1 in the RPCs to the file
account’s identity F. On the other hand, the client accesses the remote data
through the proxy client on C. The proxy client exports the remote file system
to its localhost, so it accepts only the requests coming from the kernel NFS
client and it then forwards them to the proxy server.

latency for requests that exhibit locality; the proxy client and server can also employ

inter-proxy high-throughput data transfer protocols (e.g., Secure FTP, GridFTP [6]) for

access of large files.

Additional functionality: Extensions to the NFS protocol can be implemented

between proxies without modifications to native NFS clients/servers or applications.

For example, secure remote data access can be achieved by inter-proxy authentication,

authorization, data encryption, and integrity check; the proxy client and server can also
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cooperate to realize fine-grained consistency models to maintain the data coherence

between client-side caches and server.

These potential enhancements enabled by multi-proxy GVFS are discussed in detail

in Chapter 4. The rest of this chapter presents a thorough performance evaluation of the

basic NFS-based GVFS implementation.

3.2 Evaluation

3.2.1 Setup

A prototype of GVFS is implemented based on virtualizing NFS (v2 and v3) and it

is evaluated in this subsection using experiments with typical file system benchmarks in

a local-area environment. These benchmarks exercise GVFS with intensive file system

operations and demonstrate its performance compared to conventional DFSs. The

experiments were conducted on a high-speed LAN (Gigabit Ethernet) in order to reveal

the worst-case overhead of the user-level virtualization. Two physical servers were used

as the file system client and server, and each has dual 2.4GHz hyper-threaded Xeon

processors with 4GB memory and runs Fedora Core 6 with kernel 2.6.17.

These experiments compare the performance of the NFS-based GVFS with the native

NFS, where the version 3 of NFS over TCP was used for both. The servers exported the

file system with write delay and synchronous access. The native NFS daemon used the

default configuration of 8 threads, whereas the GVFS proxies were also multithreaded with

8 worker threads. (See 4.2.2 for a detailed discussion on GVFS multithreading.) Due to

the limitation of the kernels, the maximum block size for read and write RPCs was set to

32KB. No swap was used on the physical machines during the experiments. Every run was

started with cold kernel buffer by unmounting the file system.

3.2.2 Stat

The virtualization provided by GVFS involves overhead from processing RPCs

with the user-level proxies. The first experiment studies this overhead by using a micro

benchmark to measure the latency of a single RPC. This benchmark uses the stat system
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Figure 3-5. Latency of a stat system call that triggers a single GETATTR RPC to the file
server. Three different DFS setups were considered: native NFS (NFS ), GVFS
based on only proxy server (GVFS-1-Proxy), and GVFS based on both proxy
client and server (GVFS-2-Proxy).

call to check a directory on the remote file system, which triggers the kernel client to

issue a single GETATTR RPC to retrieve the directory’s attributes. These attributes are

preloaded in the server’s memory, and thus the latency of the stat call mainly entails the

network round-trip time and the RPC processing delay.

Compared to using NFS to serve the stat call, GVFS introduces additional latency

from the user-level RPC processing and the kernel-user space switching. To take a closer

look at this, two different GVFS setups were tested: in GVFS-1-Proxy, only the proxy

server was used to create the virtual DFS; and in GVFS-2-Proxy, both proxy client and

server were employed. Both UDP and TCP were considered as the transport to carry the

RPCs. Figure 3-5 illustrates the latencies of the stat call on these different setups. With a

single proxy, GVFS adds 0.23 ms and 0.27 ms of delay with UDP and TCP, respectively.

When both the proxy client and server are used, the virtualization overhead increases to

0.48 ms for UDP and 0.51 ms for TCP.
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Figure 3-6. Throughputs of IOzone with different numbers of threads reading large files
through separate NFS/GVFS connections to the file server. (The standard
deviations are all under 1% of the reported average values.)

This micro benchmark shows that the latency for a single RPC is doubled or tripled

using GVFS. However, the application perceived overhead can be much smaller, because

the processing of multiple outstanding RPCs can be overlapped, and the latency of disk

accesses can also diminish the user-level delay. This is demonstrated by the following

experiments. The typical GVFS setup which utilizes both proxy client and server is used

throughput the rest of this subsection.

3.2.3 IOzone

The second experiment evaluates the throughput of GVFS with a typical file system

benchmark, IOzone [88]. It is used to sequentially read a large file (1GB) from the remote

file system. The file is preloaded in the file server’s memory, and thus there is no disk

access to slow down the benchmark’s request rate. This “extreme” intensive setup reveals

the worst-case overhead from the user-level virtualization. The throughputs on NFS and

GVFS are plotted in Figure 3-6 (the first group of bars). Note that the maximum TCP

throughput between the client and server is 111MB/s (measured with Iperf [89]). In
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Figure 3-7. The CPU usage of the GVFS proxy client and proxy server during one typical
run of IOzone on GVFS. The average user time percentages for the proxy
client and server are about 14% and 8% respectively.

comparison, GVFS delivers a performance that is 70% of the maximum and 80% of NFS.

This confirms that the capability of handling many outstanding requests helps GVFS to

significantly reduce the overhead of user-level virtualization.

This overhead was further measured in terms of CPU usage of its user-level proxies.

The user CPU time percentages for the proxy client and server were collected throughout

the benchmark’s executions. In average, they consume about 14% and 8% of CPU on

the client and server, respectively. Figure 3-7 shows the proxy client’s and proxy server’s

CPU consumptions for one typical run of the benchmark. Considering the intensity

of the workload, these usages are reasonable, and they can be much lower for typical

applications. The proxy client spends more cycles than the proxy server because its RPC

takes longer to finish, which is serviced across the network, whereas the proxy server’s

RPC is replied from its localhost.

This experiment has also studied the scalability of GVFS with a multi-client setup,

where a single proxy on the server services concurrent data access from multiple proxies on
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the client. IOzone was executed with several threads, each sequentially reading a different

file through a separate proxy client. As the number of threads was increased, the size of

the files was reduced accordingly (from 1GB to 192MB), so they could still be preloaded

in the server’s memory. For comparison, the benchmark was also executed on native NFS,

where separated connections between the kernel client and server were used for the IOzone

threads to access files.

The aggregate throughputs with various numbers of threads are shown in Figure

3-6. Compared to the results from the previous single-client tests, the throughput of

GVFS is consistent with respect to both the maximum achievable throughput and

NFS’ throughput. Regardless of the number of concurrent intensive clients, GVFS can

always effectively utilize the resources and deliver the same level of performance. This

demonstrates that GVFS can support scalable data sharing by using a single proxy server

to service a large number of clients. It also shows that having several proxies running on

the same host can be an efficient way of providing multiple virtual DFSs upon a single

physical resource.

3.2.4 PostMark

The third experiment chooses a more realistic file system benchmark, PostMark [90],

which simulates the workloads from emails, news, and Web commence applications. It

starts with the creation of a pool of directories and files (creation phase), then issues a mix

of transactions, including create, delete, read, and append (transaction phase), and finally

removes all the directories and files (deletion phase). In contrast to the uniform, sequential

data accesses used in the IOzone experiment, the file system is randomly accessed by

PostMark with a variety of data and metadata operations. In the experiment, the initial

number of directories and files were 200 and 2000, the file sizes ranged from 512B to

50KB, and the number of transactions was set to 20000.

The execution times of PostMark’s various phases and its total runtime on NFS

and GVFS are shown in Figure 3-8. Compared to NFS, the total runtime on GVFS is
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Figure 3-8. Runtimes of the various phases of PostMark as well as its total runtimes on
NFS and GVFS.

only longer by 7%, and for the very intensive transaction phase, where a large volume

of metadata and data updates are involved, GVFS is slower by 6%. It is evident that

the overhead of GVFS’ user-level virtualization is very small for such a benchmark that

involves a large amount of disk accesses and exhibits a more typical data access pattern.
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CHAPTER 4
APPLICATION-TAILORED DISTRIBUTED FILE SYSTEMS

User-level virtualization in GVFS provides the foundation for application-tailored

DFSs. Based on virtualization, GVFSs can be managed on demand by middleware on

a per-application, per-session basis (Figure 3-4): a GVFS is created before a compute

session starts to provide remote data access for the application, and it is destroyed after

the compute session completes. Such a data provisioning cycle is called a GVFS session.

Since each GVFS session is dedicated to serving its application’s remote data access,

it can be customized with configurations that are tailored to the application’s needs.

Concurrent GVFS sessions can share the underlying physical software and hardware

resources, whereas the virtualization layer enforces the isolation among them and allows

them to be created and customized independently.

This virtualization also allows GVFS sessions to employ extensions and improvements

that are not available in the physical DFS, and address the limitations and inefficiencies

of the physical DFS. This chapter introduces such enhancements that are designed

for application-tailored data provisioning, particularly in a wide-area, cross-domain

environment. They cover various important aspects of DFSs, including performance,

consistency, security, and fault-tolerance. Note that optimizations on these aspects (and

others such as cost) cannot be considered in an isolated manner, because one often has

implications on others. Therefore, tradeoffs have to be made to balance among these

different goals. The flexibility provided by GVFS allows individual GVFS sessions to

choose the configurations that best suit their needs.

4.1 Motivating Examples

While application transparency is a strong asset of DFS-based data provisioning

approaches, it can also become a liability when DFSs are scaled to grid-style environments.

The nature of WAN and grid resources decides that optimizations must be made for

such environments in order to provide application-desired performance, consistency,
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security, and reliability. However, it is often the case that “one size does not fit all”.

The enhancements need to be customized according to the data access characteristics

and requirements, and considered in a context where application-specific modifications

are unlikely to be implemented in kernels. These motivate the pursuit of user-level

application-tailored DFS enhancements in this chapter. Potential uses of such enhancements

can be illustrated with the following concrete scenarios.

Distributed virtual machines: Virtual machines (VMs) are increasingly used in

distributed systems [17][79]. Efficient provisioning of VM images, which are typically very

large in size, is key to dynamic instantiations of VMs across networks. Using DFS for

remote VM state access allows distributed VMs to be quickly started without entirely

transferring the large VM state files, and it supports many VM instances to be created

from a small set of templates by read-only sharing their templates with independent

copy-on-write state. Due to the absence of write sharing, both reads and writes can

be cached (with write delay) on the client side to support efficient executions of the

instantiated VMs, where a customized caching scheme is necessary to provide the capacity

and persistence needed for the aggressive caching.

Software repositories: Software repositories are popular in enterprises as a means

of sharing software among users. Such repositories are often set up on a DFS in an

enterprise-scale network, read-only shared by organization users, and centrally managed by

system administrators. However, as the scale of the enterprise’s resources and users grows,

support for wide-area sharing becomes a challenge to traditional DFS technologies. In this

example, client-side data caching is important to improving user-perceived performance of

using applications from the repository, but a cache consistency protocol is also needed to

let the users see the latest software after it is updated by the administrator.

Scientific data processing: Scientific data are often continuously produced

on-site and at the same time processed off-site in computing facilities. A DFS helps

the distributed programs to conveniently share the possibly massive amount of data,
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and it allows the analysis to be performed over different data ranges and with different

granularity [91]. This scenario precludes the use of write delay on the data producing

side, but permits reads to be cached on the processing side to speed up the analysis.

The cache consistency protocol needs to support effective use of the cached data with

small consistency maintenance overhead. Meanwhile, it should still provide a consistency

guarantee that allows the generated data to be available for processing in a timely fashion.

GSI-enabled grid file systems: Employing DFSs to provide data to grid

applications allows unmodified applications to transparently utilize computing and

data resources across administrative domains. Security is critical in such grid file systems

because data are shared among organizations with limited mutual-trust, and stored and

transferred on resources with limited security. It is necessary to enhance the DFSs to

support strong authentication, privacy, and integrity. These mechanisms also need to be

compatible with the widely adopted grid security infrastructure (GSI [51]), so that the

data management can be interoperable with other grid middleware and integrated with

existing grid systems.

Long-running computation tasks: Large computation tasks, such as simulation

and data mining, are often conducted in parallel on computing resources aggregated across

LAN and WAN. Using DFSs to support these tasks enables the parallel processes to

transparently share the inputs and outputs without explicitly transferring them. These

tasks often take a long time, possibly days or even weeks, to finish, and thus require highly

reliable executions. Their DFSs need to be tailored to provide good data availability that

can tolerate failures happened on clients, servers, and networks. It is also desirable that

they be able to automatically detect and recover from the failures, and support continuous

remote data access for these tasks transparently.

To satisfy the diverse needs of applications, such as the ones in the above examples,

the rest of this chapter presents the application-tailored enhancements on several

important aspects of DFSs, including performance, consistency, security, and reliability.
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4.2 Performance

Performance is one of the main hurdles preventing conventional DFSs to scale

in wide-area environments. Those design decisions made under the assumption of a

LAN-speed connection between client and server do not apply to WAN, where the

round-trip latencies are often larger by orders of magnitude. Consequently, inefficiency

appears when such DFSs are used in wide area, e.g., excessive interactions between client

and server on a long-latency network link can cause significant increase on the response

time and reduction on the throughput.

4.2.1 Client-Side Disk Caching

One particular limitation of conventional DFSs is on the use of client-side caching.

Caching is a classic and successful technique to improve the performance of computer

systems by exploiting temporal and spatial locality of data references and providing

high-bandwidth, low-latency access to cached data. However, typical DFS clients

employ only memory caching, because they assume that servers are in close proximity.

Nonetheless, memory often does not have sufficient capability to exploit locality, and

it is non-persistent and thus unable to support extensive write delay. For example, the

NFS protocol allows the results of various NFS requests to be cached by an NFS client

[21]. Although memory caching is generally employed by NFS clients, disk caching is not

typical.

On wide-area file systems, caching is key to hiding long network latencies and

improving an application’s or user’s data access experience, because the overhead of a

network transaction is much higher compared to that of a local I/O access. Hence, GVFS

provides persistent caching on client-side local disks to enhance the performance of remote

data access on WAN.

4.2.1.1 Design

The GVFS disk caching effectively complements the existing memory caches in

the native DFS. Its greater disk capacity promises reduction on cache capacity and
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conflict misses [92] and thus less high-latency network communications. Its use of

nonvolatile storage also allows more aggressive write-back caching because the delayed

data modifications can be recovered across client restarts or crashes. Therefore, employing

disk caching can form an effective cache hierarchy: memory is used as a small but fast

first-level cache, whereas disk works as a relatively slower but much larger second-level

cache.

Disk caching in GVFS is implemented at user-level by the file system proxy. A virtual

DFS can be established by a chain of proxies, where the native O/S client-side proxy

(the proxy client) can be employed to establish and manage disk caches. As illustrated

in Figure 4-1, kernel buffer misses can be satisfied locally if they hit in the disk caches;

otherwise they are forwarded to the server and the returned results are stored in the disk

caches. The GVFS disk caching operates at the granularity of NFS remote procedure

calls (RPCs). A GVFS disk cache is generally structured in a way similar to traditional

block-based hardware designs: it contains file banks that hold frames in which data blocks

and cache tags can be stored. Cache banks are created on the local disk by the proxy

client on demand. The indexing of banks and frames is based on a hash of the requested

NFS file handle1 and offset and allows for associative lookups. The hashing function is

designed to exploit spatial locality by mapping consecutive blocks of a file into consecutive

sets of a cache bank, so that when a data block is serviced from the cache, its adjacent

blocks can be quickly accessed from the cache as well. (More details about the cache

design and implementation can be found in [93].)

The GVFS disk caching supports different policies for write operations: read-only,

write-through, and write-back, which can be configured by middleware for specific user

and application on a per GVFS session basis. Write-back caching is an important feature

1 Files and directories are referred by file handles. A file handle is an opaque binary value which can be
up to 64 bytes long in NFSv3 and even longer in NFSv4. A file’s file handle is assigned by an NFS
server, and it uniquely identifies the file on the server throughout its lifetime.
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Figure 4-1. A GVFS-based virtual DFS can be established by a chain of proxies, where the
native O/S client-side proxy can establish and manage disk caches. Kernel
buffer misses can be satisfied locally if they hit in the disk caches; otherwise
they are forwarded to the server and the returned results are stored in the disk
caches.

in wide-area environments to hide long write latencies by leveraging the locality among

write accesses. Furthermore, write-back disk caching can avoid transfer of temporary

files. After the computing session completes, a user or data scheduler can remove

temporary files from the working directory, which automatically triggers the proxy to

invalidate cached modifications of those files. Thus when the proxy writes back the cached

modifications, only the useful data are submitted to the server, so that both bandwidth

and time can be effectively saved.

4.2.1.2 Deployment

As GVFS sessions are dynamically set up by middleware, disk caches are also

dynamically created and managed by their proxy clients on per-session basis. When a

GVFS session starts, its proxy client initializes the cache with middleware configured

parameters, including cache path, size, associativity, and policies. During the session, some

of the parameters, including cache write and consistency policies, can also be reconfigured.

When the session finishes, policies implemented by grid middleware can drive the proxy to

flush, write-back, or preserve cached contents as needed.
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Typically, kernel-level NFS clients are geared towards a local-area environment

and implement a write policy with support for staging writes for a limited time in

kernel memory buffers. Kernel extensions to support more aggressive solutions, such

as long-term, high-capacity write-back buffers are unlikely to be undertaken; NFS clients

are not aware of the existence of other potential sharing clients, and thus maintaining

consistency in this scenario is difficult. The write-back caching in GVFS can leverage

middleware support to implement a session-based consistency model from a higher

abstraction layer: it supports middleware to command a proxy client through O/S signals

and control it to write back and flush cache contents.

Such middleware-driven consistency is sufficient to support many grid applications,

e.g., when tasks are known to be independent by a scheduler for high-throughput

computing. Furthermore, it is also possible to achieve fine-grained cache consistency

models through inter-proxy coordination mechanisms, which are presented in Section 4.3.

4.2.1.3 Application-tailored configurations

There are several DFSs that exploit the advantages of disk caching too, for example,

AFS [25] transfers and caches entire files in the client disk, and CacheFS [31] supports

disk-based caching of NFS blocks. However, these designs require kernel support, and are

not able to employ per-user or per-application caching configurations. In contrast, GVFS

is unique in supporting customization on a per-user, per-application basis [94].

The GVFS sessions can employ disk caches independently from one another. The

configurations of cache parameters (size, associativity) and policies (write-through,

write-back) can be customized according to the data access patterns and requirements

of applications. Specifically, for applications that use intensive writes, write-back caching

can be employed to improve the application’s data access performance; for read-mostly

applications, the use of write-through can improve the tolerance of client-side failures and

maintenance of data consistency.
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The size of a GVFS session’s disk cache can also be customized according to its

application’s needs. For example, when the use of storage is not free, the application can

balance between performance and cost by adjusting its disk cache size. On the other hand,

when the available storage capacity is limited, the middleware can allocate the disk space

among the caches of concurrent GVFS sessions according to the resource utilization policy,

e.g., based on the priority of applications, or based on the profits generated by hosting the

applications. (See Section 6.2 for more discussions on policy-driven resource allocation for

GVFS sessions.) Another concrete example of application-tailored disk caching is enabling

heterogeneous disk caching using metadata handling and application-specific knowledge, in

order to support block-based caching for virtual machine disk state and file-based caching

for virtual machine memory state, as discussed in Chapter 5.

While caches of different GVFS sessions are normally independently configured and

managed, GVFS also allows them to share read-only cached data for saving storage usage

and exploring more data locality. Proxy clients running on the same host can access the

shared caches directly. On the other hand, a series of proxies, with independent caches

of different capacities, can be cascaded between client and server, supporting scalability

to a multi-level disk cache hierarchy. For example, the proxy clients located in the same

LAN can employ a dedicated cache server managed by an additional proxy that interposes

between the proxy clients and servers, which forms a two-level hierarchy with GBytes

of capacity in a client’s local disk to exploit locality of data accesses from the node, and

TBytes of capacity available from a LAN disk array server to exploit locality of data

accesses from clients in the same LAN. Such a setup is studied in Section 5.4.3 to support

fast virtual machine cloning.

4.2.1.4 Evaluation

This subsection presents the experimental evaluation of GVFS with disk caching

using a prototype implemented based on the virtualization of NFS (v2 and v3). The

evaluation focuses on the performance in WAN, the target environment of GVFS. For
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easy deployment and control of the test bed, VMware-based virtual machines were used

to set up the file system clients and servers, and a network emulator (NIST Net [95])

was employed to emulate the wide-area links among them. Each virtual machine was

configured with 1 CPU and 512MB memory and was installed UBUNTU 7 with kernel

2.6.20. These virtual machines were hosted on a cluster, where each physical node has

dual 2.4GHz hyper-threaded Xeon processors and 1.5GB memory. The system clock on a

separate physical server was used to measure time, which suffices the granularity required

by this evaluation.

This experiment compares NFS-based GVFS implementation with the native NFS.

Unless otherwise noted, the version 3 of NFS over TCP was used for both. The servers

exported the file system with write delay and synchronous access. The native NFS

daemons used the default configuration of 8 threads, whereas the GVFS proxies were also

multithreaded and use 8 worker threads. (See 4.2.2 for a detailed discussion on GVFS

multithreading.) The data block size for read and write RPCs was set to 64KB. No swap

was used on the physical and virtual machines during the experiments. Every run was

started with cold kernel buffer and disk caches, if used, by unmounting the file system and

flushing the disk cache.

The experiment evaluates the throughput of GVFS with a typical file system

benchmark, IOzone [88]. It was executed in the read/reread mode, which sequentially

reads a 512MB file twice from the server. Since the client and server have only 512MB

of memory, the buffer cache does not help with its LRU-based replacement for the

benchmark’s sequential reads. This experiment is designed to study the overhead of

virtualization in wide-area environments with the read phase, and demonstrate the

benefits of disk caching with the reread phase. On NFS, both phases need to fetch the file

entirely across the network from the server’s disk. With the disk cache’s greater capacity,

GVFS can satisfy the reread phase’s data access locally without contacting the server.
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Figure 4-2. Throughputs of IOzone’s read phase on NFSv3, NFSv4, and GVFS, with
different network latencies between the client and server. (The standard
deviations are all under 10% of the reported means.)

The throughputs of the read phase on NFSv3, NFSv4 and GVFS are compared in

Figure 4-2, with different route-trip time (RTT) between the client and server. When the

network latency is relatively small (less than 20ms), GVFS’ throughput is 16% less than

NFS. Recall that in the LAN experiment (discussed in Section 3.2.3), where the RTT is

0.071ms, the slowdown of GVFS is 25%. The longer network latency effectively diminishes

the latency from the user-level virtualization and brings GVFS performance closer to NFS.

When the RTT is beyond 40ms, GVFS behaves as well as NFS.

On the other hand, GVFS substantially outperforms NFS by leveraging data locality

with disk caching. This is demonstrated by the throughput of the reread phase shown in

Figure 4-3. With the help of warm disk caches, the throughput on GVFS is not affected

by the growing network latency, and in fact, it is only bounded by the bandwidth of

the client’s local disks. Consequently, the speedup with respect to NFS increases as the

network latency grows, and GVFS is four times faster when the RTT reaches 80 ms.
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Figure 4-3. Throughputs of IOzone’s reread phase on NFSv3, NFSv4, and GVFS, with
warm caches, with different network latencies between the client and server.
(The standard deviations are all under 10% of the reported means.)

4.2.2 Multithreaded Data Transfer

4.2.2.1 Design and implementation

The ability of overlapping data request processing and data block transfer is

important to the throughput of remote data access. Conventional DFSs often use multiple

daemons to serve incoming data requests, so that multiple outstanding data requests can

be handled at the same time while waiting for the data accesses to complete on disks.

For example, on a typical NFS server, 6 to 8 NFS daemons are usually running to serve

the RPC requests from clients. This ability is even critical in a wide-area environment

where the network latency is very high but the network bandwidth is sufficient to transfer

data for multiple requests. If at any give time only one data request could be sent

across the network, the remote data access would be significantly slowed down even

though the network bandwidth is highly underutilized. Therefore, while virtualizing a

conventional DFS such as NFS, the GVFS proxies need to be able to service data requests

in a non-blocking manner in order to improve the remote data access throughput.
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To achieve this goal, the GVFS proxy is enhanced by making it capable of multithreading.

Specifically, the GVFS’ NFS daemon consists of multiple threads which work around a

RPC queue. A dispatcher thread is responsible for receiving RPC requests from the

client and putting them in the queue. The other worker threads concurrently retrieve the

requests from the queue, send them out to the server, and return the results to the client.

In this way, even though every worker thread can only handle a single RPC request in a

blocking manner, the entire proxy is processing the requests in a non-blocking manner.

The prototype of multithreaded GVFS proxy is developed on Linux, and its

implementation is not trivial due to the fact that the standard RPC library is not

multithreading-safe (MT-safe). Programs that make use of RPC on Linux typically

utilize the existing RPC library provided by the standard C library, but the program

cannot work correctly if it uses multiple threads to issue and service RPC requests.

(This is caused by the fact that certain data handling structures in the RPC library is

shared and thus conflicts happen when multiple threads are accessing it concurrently.)

To address this problem, the prototype uses the TI-RPC library [96] to provide the RPC

functionality. This library is an improved version of the existing RPC library in Linux,

which provides generic RPC functionality to applications independently of the underlying

transport protocols. (The existing library is transport-dependent and will eventually be

replaced by the TI-RPC library.) Note that the TI-RPC library is still not completely

MT-safe, and the proxy employs techniques to further improve upon that and make itself

MT-safe (by replicating the shared data processing structures in the proxy to make sure

that each thread has its dedicated copy to work with).

The use of multithreading in GVFS proxy also allows a GVFS session to customize

its bandwidth usage according to its needs. Although the native NFS server is also

multithreaded and can serve multiple clients’ data accesses at the same time, it is not

possible to isolate them from each other and control the bandwidth consumed by each

client. In contrast, with multithreaded proxy, a GVFS session’s bandwidth usage can be
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Figure 4-4. Throughput of IOzone with the number of GVFS worker threads varying from
0 to 16. The dispatcher thread is responsible for queuing the incoming RPC
requests, whereas the worker threads are responsible for issuing the queued
RPC requests to the server. When the number of worker threads is 0, the
proxy is in fact not multithreaded and it blocks on every RPC request until
the remote call is completed.

flexibly controlled by tuning the number of threads used by the proxy. As discussed in the

customization of cache size in Section 4.2.1.3, the ability of controlling a GVFS session’s

bandwidth usage is important in two folds. First, it is important for an application to

trade data access throughput for other considerations, e.g., cost, when the application

has to pay for the resource usage. Second, it is necessary to allocate the shared network

bandwidth resource among the concurrent DFSs based on policies so that the resource

provider can optimize its resource provisioning.

4.2.2.2 Evaluation

This subsection uses an experiment to demonstrate the efficiency of multithreaded

data transfer and the effectiveness of using the number of threads to control the

bandwidth usage. The experiments was conducted on a Gigabit Ethernet where the

file system client and server were set up on two virtual machines. Each virtual machines
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was configured with 1 CPU and 512MB memory, and was installed with UBUNTU 7 with

kernel 2.6.20. They were hosted on two physical servers, where each has 3.0GHz Pentium

D processor with 4GB of memory. The experiment evaluates the throughput of GVFS

with a typical file system benchmark, IOzone [88]. The benchmark was executed in the

read mode, which sequentially read a 512MB file from the server.

Figure 4-4 compare the throughputs of IOzone with the number of GVFS worker

threads varying from 0 to 16. The dispatcher thread is responsible for queuing the

incoming RPC requests, whereas the worker threads are responsible for issuing the queued

RPC requests to the server. When the number of worker threads is 0, the proxy is in fact

not multithreaded and it blocks on every RPC request until the remote call is completed.

The results show that the throughput grows practically linearly as the number of worker

threads increases up to 8. However, when the number of worker threads goes beyond

8, the throughput slightly decreases. This is because 8 worker threads are sufficient to

handle the incoming requests and sustain the maximum throughput in this setup, whereas

more threads only causes more overhead from multithreading and degrades the overall

performance. Nonetheless, these results prove that controlling the number of threads

(between 0 and the number needed for the maximum throughput) can be an effective way

to throttle the throughput of a GVFS session.

4.3 Consistency

As DFS clients widely employ local caches for performance improvement, cache

consistency becomes a problem in that stale data may be seen by a client while another

client has it modified. This happens when a client reads a stale copy of the data from

its cache or when a client does not propagate its modified copy of data in a timely

manner. To address this problem, a DFS needs to provide a proper cache consistency

semantics to the clients in order to support the concurrent data sharing and deliver the

application-desired data access behaviors. As discussed in Section 2.3.2, the definition of

consistency in this dissertation only considers the order of read and write operations on

71



a single data item (e.g., a file). Although it is a weaker form of consistency compared to

the models such as sequential consistency that specify constraints on the ordering with

respect to the entire data set, it is sufficient to satisfy the needs of many applications. On

the other hand, for applications that do require the stronger form of consistency, GVFS

supports the use of file locking mechanisms to achieve that.

4.3.1 Architecture

The choice of a consistency model in a DFS is an important and difficult one, because

it has implications in the complexity of developing applications (and the DFS itself) and

in the performance of applications. A relaxed model may be acceptable (and desirable) to

a simulation application, but may fall short of supporting database applications that rely

on locks. A complex protocol that implements strong consistency may be desirable if it

delivers high performance, but undesirable if it is difficult to implement, test, and deploy

in existing O/Ss or if it requires applications to use a consistency-aware API.

A cache consistency protocol describes the implementation of a specific consistency

model. For wide-area DFSs, such a protocol is important not only to the correct execution

of the application, but also to its data access performance, because the client-sever

interactions needed to maintain the consistency according to the protocol are very

expensive on WAN. If DFSs are capable of leveraging application knowledge, the number

of network transactions can be reduced, thereby reducing server loads and average request

latencies.

The architecture described in this dissertation enables applications to use consistency

protocols better suited than those native to a DFS in a manner transparent to the kernel

and applications. In this architecture, illustrated in Figure 4-5, different consistency

protocols can be overlaid upon the native DFS consistency mechanisms, and be applied

to data sessions selectively and independently, based on the virtualization in GVFS. For

example, native NFS protocols (v2 and v3) mainly rely on client-initiated revalidation

requests to check for consistency. A proxy client hides the kernel client’s consistency
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Figure 4-5. Application-tailored cache consistency protocols on GVFS sessions. The
sessions consist of virtual clients (VC1 -VC5 ) and servers (VS1 -VS3 )
implemented by user-level proxies. They are dynamically established and
managed by middleware and are overlaid upon shared physical resources
(C1 -Cn, S1 -S2 ). Each GVFS session can employ independent application
tailored user-level disk caching and consistency protocol. E.g., session 1 applies
the delegation-callback based protocol (Section 4.3.3) and supports a scenario
where real-time data are collected on-site (VC1 ) and processed off-site (VC2 );
Session 2 uses the invalidation-polling protocol (Section 4.3.2) to enable
read-only sharing of a software repository (VS2 ) among WAN users (VC3,
VC4 ) and maintenance update by LAN administrator (VC5 ).

checks from the data session by serving them locally, and it instead uses the user-level

mechanisms to cooperate with the proxy server to keep data consistent across the network.

In this way, kernel clients and servers are oblivious to these user-level protocols; the GVFS

proxies, however, can be configured to maintain the consistency for the data sessions

according to their selected protocols.

A variety of protocols are supported in GVFS, including the underlying DFS

consistency itself, and more importantly, alternative ones that are specially designed

for wide-area environments. These customized protocols are explained in detail in the

rest of this section. They can achieve different levels of consistency, and can be selected

and tuned by middleware based on the application needs on a per-session, per-application
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Figure 4-6. Sample configuration file used to customize a GVFS proxy cache as well as the
consistency protocol. The parameters include the path and session ID of the
proxy cache, the size, associativity and bank numbers of the attribute cache
(acache), data cache (dcache), and the use of write-back and
invalidation-based consistency.

basis. Figure 4-5 illustrates two GVFS sessions that are customized to support data

provision for two example applications described in Section 4.1.

Two components are key to realizing GVFS-based application-tailored cache

consistency over a wide-area environment: 1) file system proxies providing per-application

GVFS sessions and enhanced with user-level disk caching and consistency; and 2) a

middleware-based service that schedules the GVFS sessions and configures their use of

caching and consistency according to application needs. Figure 4-6 shows an example of

a configuration file used to customize a proxy cache as well as the consistency protocol.

The parameters include the path and session ID of the proxy cache, the size, associativity,

and bank numbers of the attribute cache (acache) and data cache (dcache), and the use

of write-back and invalidation-based consistency. Such a configuration file is used by

middleware to establish an application-tailored GVFS session. This chapter focuses on
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Figure 4-7. A GVFS session using the invalidation polling consistency protocol between
the proxy clients at C1, C2 and the proxy server at S1. The RPCs issued from
kernel NFS clients can be served from the disk caches, while the proxy clients
poll the proxy server for contents of per-client invalidation buffers (BC1, BC2 )
to maintain consistency.

the core mechanisms supporting the first component. The mechanisms to schedule and

configure GVFS sessions on demand will be investigated in Section 6.1.2.

4.3.2 Invalidation Polling Based Cache Consistency

4.3.2.1 Protocol

This protocol employs invalidation buffers that reflect potential modifications to

many files to reduce the rate at which per-file information is polled. Such an approach

proves effective when modifications to the file system are infrequent and need to be quickly

propagated to clients. The approach is illustrated in Figure 4-7: the proxy server of a

GVFS session keeps track of logically timestamped file handles that need to be invalidated

in per-client buffers; the proxy clients use a new protocol message — GETINV — to

request information related to the invalidation buffer.

Server-side: When the proxy server receives a file modification request from a

client (e.g., CREATE, WRITE), it adds the file’s NFS file handle into the other clients’
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invalidation buffers, since this file needs to be invalidated from the other clients’ caches

later. These per-client invalidation buffers are of finite size and implemented as circular

queues. Multiple invalidations to the same file in an invalidation buffer can be coalesced in

order to save space. The timestamps associated with each invalidation entry are generated

by the server and increased monotonically with incoming requests. A proxy client’s

GETINV request contains the timestamp of the last invalidation it has performed, and

the proxy server returns the file handles stored in the client’s invalidation buffer, which

represent the files that the client needs to invalidate in its cache. The proxy server also

returns its current, updated timestamp to the proxy client, which will be used in the

client’s next GETINV request. The server can handle protocol cases where invalidation

information is not fully available by using a flag (force-invalidate) to inform the client to

invalidate its entire attribute cache. The proxy server processes a GETINV call as follows:

1. If this is the first GETINV call received from the client: initialize an invalidation
buffer for the client, return updated timestamp and force-invalidation flag with value
1. Else,

2. If the timestamp in the GETINV request is earlier than the earliest one in the client’s
invalidation buffer: flush buffer and return updated timestamp and force-invalidation
flag with value 1. Else,

3. Return buffer contents (and clear them), updated timestamp, and force-invalidation
flag with value 0. If the buffer contents do not fit in a single RPC message, then
return a poll-again flag with value 1 along with partial buffer contents.

Client-side: The proxy client polls the server with GETINV calls for potential

invalidations occurred since its last known timestamp within a short time window.

The polling time window can be fixed or varied within a configurable range using an

“exponential back-off” style policy — the window size doubles every time when there is

no invalidations during the previous window, until it reaches the maximum value, and it

drops to the minimum value if invalidations have happened during the previous window.

The received invalidations are performed by invalidating the cached attributes of the
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concerned files, which will cause the proxy client to revalidate these files when they are

accessed again. The proxy client processes the result from the GETINV call as follows:

1. Update a local variable holding the last known server timestamp.

2. If force-invalidation is equal to 1: invalidate its entire attribute cache. Else,

3. Scan the returned buffer and invalidate the attributes of the concerned files in its
cache. And,

4. If poll-again is equal to 1: send another GETINV call to the server immediately.

In summary, only the file modifications observed by the proxy server cause invalidations

on the proxy clients and they are transferred in a small number of GETINV replies. Only

the files that are modified by the other clients during the past polling time window need to

be revalidated by a proxy client, but all the other per-file consistency checks issued from

the kernel NFS client will be filtered out during the next time window.

4.3.2.2 Bootstraping

The protocol uses logical timestamps to manage invalidation buffers. These are

created by proxy server and used as arguments to GETINV calls by proxy client. The

bootstrapping mechanism that provides an initial timestamp to a client uses a GETINV

call with a null argument. Another form of bootstrapping takes place if the server fails or

restarts and loses timestamp information. In this case, a client has a timestamp which is

invalid and must obtain a new, valid timestamp. The server handles this case by returning

a new timestamp and a force-invalidation flag to each client’s first GETINV after it comes

back.

4.3.2.3 Failure handling

The main factor that facilitates failure handling in this protocol is that the state

stored on proxy server (invalidation buffers, timestamps) and clients (cached attributes

and timestamps) is soft state which can be safely discarded. If the server crashes, once

recovered it can initialize new invalidation buffers from scratch, bootstrap clients with

new timestamps as described above, and continue to serve the clients’ GETINV calls.
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If a client crashes and loses its timestamp, then after recovery it issues GETINV with

a null argument, and the server returns the latest timestamp with a force-invalidation

flag. The same mechanism can be used if the client implements a policy to limit the

number of invalidations it should process and bound the overhead from performing the

individual invalidations, effectively allowing the client to force a self-invalidation on its

entire attribute cache.

If a network partition happens, it is possible that the server’s invalidation circular

queue for the client has wrapped-around when it receives a GETINV from the client again.

The server can detect this case by comparing the client’s current timestamp with the

earliest timestamp in its buffer. If the former one is earlier, it means that the client has

not kept up with the invalidations, so the server should return the force-invalidation flag

and an updated timestamp.

The invalidation mechanism is intended to provide relaxed consistency for the benefit

of performance, but inconsistency can occur during the polling time window: a client may

read a stale data block or file handle. It is appropriate for applications that can tolerate

modest inconsistency (with the help from user or middleware). In practice, write sharing

happens much less often than read sharing. Therefore this protocol is capable of providing

applications with good performance and acceptable consistency. However, if stronger

consistency is required, the delegation callback based protocol described below is better

suited.

4.3.3 Delegation Callback Based Cache Consistency

4.3.3.1 Delegation

Strong consistency can be achieved in GVFS via delegation and callback mechanisms.

A delegation gives a proxy client the guarantee to perform operations on the cached data

without consistency compromises, whereas callback is used by a proxy server to revoke the

delegation in order to avoid potential conflicts. Delegation and callback decisions are made

by the proxy server on per-file basis. A GVFS session can realize strong consistency by (1)
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Figure 4-8. A GVFS session using the delegation callback based consistency protocol
between the proxy clients at C1, C2 and the proxy server at S1. The figure
shows the sequence of interactions happened during a read delegation and its
callback.

disabling the kernel NFS client’s attribute cache to force revalidations on every accessed

file, and (2) enabling the GVFS cache’s delegation callback protocol to handle consistency

enforcement. Two types of delegations are provided. Read delegation allows a client to

read cached data without revalidation; the periodic consistency checks issued by kernel

NFS client can be fully handled at client side. With a write delegation, the proxy client

can further delay writes; both read and write requests to the file can be satisfied from the

GVFS cache without contacting the server.

In the absence of open and close file operations in NFS (v2, v3), a proxy server

speculates about these operations by tracking a client’s data access. When a read or write

request is received the corresponding file is considered “opened” by the client. In a read

sharing scenario, multiple clients can have read delegations on the same file at the same

time. But write delegation can be granted only if no other clients have the file opened.

When there is no sharing conflict a client obtains a delegation automatically with its first
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read/write request for the file. Otherwise, the conflicting request triggers the proxy server

to recall the file’s existing delegations and make it temporarily non-cacheable until the

conflict is resolved.

On the other hand, when a file has not been accessed by a client for a while, it is

speculated as closed by the client and the proxy server issues callback if this client has a

delegation on the file. To allow a client to automatically renew a delegation, the proxy

client periodically let a request for the file bypass the cache. The delegation’s expiration

and renew periods are both configurable per session, e.g., 10 minutes and 8 minutes

respectively. The callback ensures the correctness of consistency even if the clocks on the

server and client are badly skewed.

For the above mentioned proxy server-to-client interactions, the delegation and

cacheability decisions are either piggybacked on a native NFS reply message, or enclosed

in the GVFS callback calls. Figure 4-8 shows an example of these interactions.

4.3.3.2 Callback

A callback requires a server-to-client RPC call, which is inherently supported in

GVFS because a proxy works as both RPC client and server. A proxy client encapsulates

its listening port number along with its identification in regular RPC requests, so the

proxy server knows how to connect an authenticated client for callbacks. To avoid

deadlocks, the proxies are multithreaded to serve both NFS RPCs and GVFS callbacks.

Correspondingly, separated queues are also maintained to buffer these two types of calls.

Callback of a read delegation invalidates the file’s attributes in the proxy client’s

cache, which causes revalidation of the file’s cached data when they are accessed

again, whereas callback of a write delegation also forces the write back of cached data

modifications. In a simple implementation, the callback does not return until all the data

have been submitted to the server. However, the volume of dirty data can be very large

and thus the callback as well as the other client’s request which triggers this callback have

to be blocked for a long time and may eventually time out. Note that this is still safe
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because both NFS and callback requests can be simply retried. But it is not desirable if

the application which waits on the write-back perceives a substantial response delay.

Since a request to a single block does not have to wait for the entire file being

written back, the protocol is optimized as follows. If the number of cached dirty blocks

is considerably large (e.g., more than 1K blocks), the proxy client returns a list of these

blocks’ offsets for the received callback. The block that is requested by the other client

is immediately written back (if it is indeed dirty), but the other blocks are submitted

afterwards. (To realize this, the requested block’s offset is sent along with the file’s NFS

file handle in the callback.) Upon receiving the block list and the first block, the proxy

server considers the write delegation revoked. However it needs to monitor the progress

of the write-back and update the list accordingly until it completes. Meanwhile, requests

from other clients to the blocks that are not written back will still generate callbacks to

force the client to submit them promptly.

4.3.3.3 State maintenance

The proxy server manages a GVFS session’s state using a list for participating clients

and a hash table for opened files. Client identification is provided by unique session key

or distinguished name encapsulated by proxy client in every RPC request. (Please see

Section 4.4 for details on authentication mechanisms.) The client list stores their IDs and

callback ports. Each opened file has an entry in the hash table to record its current state

and sharers’ client IDs. A timestamp is also kept along with a client ID and updated every

time the file is accessed by the client, which is used to speculate on the file close. Once

the file is considered closed by a client, the client’s information is removed from the file’s

entry; an entry is deleted from the hash table when the file is not opened by any client any

more.

The expiration time determining whether a client has closed a file or not presents a

tradeoff. Its value cannot be too small; otherwise delegations are given out too often which

requires many callbacks to maintain the consistency. In contrast a long expiration time
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snags a client from getting delegations and can potentially hurts its performance, while the

proxy server also needs to track a large number of files and sharers. In the latter case, the

proxy server can reduce the amount of state by proactively issuing callbacks on the least

recently accessed files and then evicting their entries.

4.3.3.4 Failure handling

Failure handling is more important to this consistency protocol than the invalidation

polling based protocol, because the state stored at the proxy server is crucial to strong

consistency. But delegations also provide the proxy clients opportunities to continue

serving applications’ requests from locally cached data even in presence of server crash or

network partition. After the server comes back it can reconstruct the session’s state by

issuing special callbacks to all the known participating clients. To realize this, the client

list data structure mentioned above is always stored directly in disk.

This type of callback is different because it targets at the entire cache rather than

a specific file. The read delegation holders will invalidate all the cached attributes and

thus require revalidation of every cached file when it is reaccessed. A proxy client that has

write delegations will also reply the callback with a list of locally modified files so that

the proxy server can rebuild the hash table. Note that before every client has answered

the callback, the proxy server should block all the incoming requests. However, this grace

period is considerably short because it only requires a single multicasted callback to the

clients. If the callback to a client times out, the client is assumed failed and not considered

any more.

The nature of disk caching guarantees that a proxy client would not lose anything

after it recovers from a failure and it can easily reconstruct the list of dirty blocks by

scanning the entire cache once. However, it needs to contact the server to reconcile any

inconsistency happened during its crash. Therefore, it invalidates the entire attribute

cache to force revalidation on all the cached files. In addition, for a file that has

modifications delayed in cache, the proxy client checks with the proxy server whether

82



the file is updated by other clients or not during the crash. If not, the proxy client then

writes back the cached modifications; otherwise, those data are considered stale and are

discarded. Note that if the user or middleware that manages the session makes sure that

no write sharing happens during the client’s crash, then no data loss will happen after

the client is recovered. On the other hand, this protocol also allows the client/middleware

to quickly give up on the failed client and redo the data operations on the session from

another client.

4.3.4 Evaluation

4.3.4.1 Setup

The proposed GVFS cache consistency protocols are evaluated in this section using

experiments on both microbenchmarks and application benchmarks. Microbenchmarks

exercise GVFS with simple programs to demonstrate its performance compared to

conventional DFSs, whereas application benchmarks use real scientific tools to investigate

GVFS in typical grid computing scenarios.

The emphasis of the experiments is in wide-area environments, which were emulated

using NIST Net [95]. Each link between the file system clients and server was configured

with a typical wide-area RTT of 40ms and bandwidth of 4Mbps. Six file system clients

and one file system server were set up on VMware-based virtual machines, which were

hosted on two physical servers. Each physical server has dual 2.4GHz hyper-threaded

Xeon processors and 1.5GB memory. Each virtual machine was configured with 256MB

memory and was installed with SUSE Linux 9.2. The use of network emulator and VMs

facilitates the quick deployment of a controllable, duplicable experimental setup. However,

timekeeping within a virtual machine is often inaccurate, so the system clock on a physical

server was used to measure time, which suffices the granularity required by this evaluation.

The experiments were mainly conducted on file systems mounted through native

NFSv3 and NFSv3 based GVFS, both with ACL disabled. The file system server exported

the file system with write delay and synchronous access. Every experiment was started
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Figure 4-9. (a) Numbers of RPCs transferred over the network during the execution of the
Make benchmark. (b) Runtimes of the Make benchmark. The benchmark was
executed on different setups: NFS (NFS ), GVFS with read-only disk caching
(GVFS ), and GVFS with write-back disk caching (GVFS-WB).

with cold kernel buffer and GVFS disk caches by unmounting the file system and flushing

the disk cache.

4.3.4.2 Make

The first benchmark demonstrates the performance edge of GVFS caching in a

single client scenario. It runs “make” on an application’s source code (Tcl/Tk8.4.5),

similar to the Andrew benchmark [25]. The make takes 357 C sources and 103 headers to

generate 168 objects. It was executed on a file system mounted from the server via three

different setups: native NFS (NFS ), GVFS with read-only caching (GVFS ), and GVFS

with write-back caching (GVFS-WB). This benchmark mainly exercises the GETATTR,

LOOKUP, READ, and WRITE RPCs. The execution times and RPC counts are reported

in Figure 4-9.
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The data from executions on NFS show that, although the make only accesses

hundreds of files, it generates tens of thousands of cache consistency checks (GETATTR

calls) in the process of cross-referencing existing files to produce new objects. However,

the results from GVFS prove that the disk cache can virtually satisfy all of them with

its consistency protocol. When the client uses invalidation-polling with a typical period

(e.g., 30 seconds), only tens of GETINV calls are required; with delegation callback

based consistency there are no extra calls. The larger capacity of the disk cache also

substantially reduces the number of LOOKUP calls, and the use of write-back further

decreases the number of READs and WRITEs. Consequently, in WAN environment GVFS

runs the benchmark three times faster than NFS. The runtime of the benchmark in a

100Mbps LAN was also measured and is reported in the figure. It shows that GVFS is

relatively slower than NFS in LAN due to the overhead from RPC interception and cache

management. However, this overhead is very small: only 4% with read-only caching and

8% when write-back is also used, and as network latency grows it should be overcome by

the gain from saving network trips, as confirmed by the next experiment.

4.3.4.3 PostMark

The second experiment uses the PostMark [90] benchmark which simulates the

workloads from emails, news, and web commence applications. The experiment with

PostMark was conducted on NFS and GVFS in different network environments by

varying the end-to-end latency. Two GVFS setups that employ different cache consistency

protocols are used: GVFS-inv uses the invalidation-polling protocol, overlaid upon the

default kernel NFS cache configuration; and GVFS-cb disables the kernel attribute caching

and applies the delegation-callback protocol. The benchmark was configured with the

following parameters: the initial number of directories and files are 20 and 200, the file

sizes range from 512B to 16KB, and the number of transactions is set to 2000.

The total execution times of PostMark on the above setups with different network

latencies are compared in Figure 4-10, and the runtimes of the benchmark’s various phases
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Figure 4-10. Runtimes of PostMark with different network latency over NFSv3 (NFS3 ),
NFSv4 (NFS4 ), GVFS with default kernel buffer setup (GVFS-inv), and
GVFS with kernel attribute caching disabled (GVFS-cb).

for the case of 80ms-RTT are plotted in Figure 4-11. The results show that both GVFS

setups substantially outperform NFS in typical WAN environments, and the speedup is

about 2-fold when the RTT is beyond 20ms. This can be attributed to the significant

amount of client-server interactions saved by using GVFS cache consistency protocols.

Specifically, when the RTT is 80ms, the number of RPCs received by the server during the

execution on GVFS is 47% and 37% of that on NFS v3 and v4, respectively.

Because GVFS-cb has the kernel attribute caching disabled, it needs to handle more

requests from the kernel client and thus it is relatively slower than GVFS-inv. This is

the price it has to pay in order to realize strong consistency, but the slowdown is very

small and its performance is still considerable better than native NFS protocols. Note that

the NFSv4 implementation is still at the experimental stage, and future improvements

may support more aggressive caching and deliver better performance. Nonetheless, such

support will still be deeply embedded in the kernel, and it is unlikely to be tuned or

modified according to the needs of specific applications.
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Figure 4-11. Runtimes of the different phases of the PostMark benchmark over NFSv3
(NFS3 ), NFSv4 (NFS4 ), GVFS with default kernel buffer setup (GVFS-inv),
and GVFS with kernel attribute caching disabled (GVFS-cb). The network
RTT is 80ms.

4.3.4.4 Lock

The third benchmark studies the behavior of GVFS’ different consistency protocols

when supporting cooperative, multiple-client workloads. It uses a popular mutual

exclusion mechanism on file systems: file-based locks. In the experiment, six distributed

clients compete for a lock by creating an independent temporary file and attempting to

hard-link it to the shared lock file. If a client gets the lock, it pauses for a period of ten

seconds and then releases the lock by unlinking the lock file. Otherwise, it pauses for a

second and tries for the lock again till it gets the lock. After a client releases the lock, it

also pauses for a second and then rejoins the competition till it succeeds for ten times.

This experiment was conducted in WAN with different consistency protocols. It

serves as a good example of the tradeoff between consistency and performance. When

consistency is relaxed, a client may not see the release of the lock immediately, and the

previous owner of the lock tends to get it again. On the other hand, stronger consistency
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Figure 4-12. (a) Numbers of RPCs transferred over the network during the execution of
the Lock benchmark. (b) Runtimes of the Lock benchmark. The benchmark
was executed across WAN with different setups: NFS with 30s revalidation
period (NFS-inv), NFS with no attribute cache (NFS-noac), GVFS with 30s
invalidation period (GVFS-inv), GVFS with delegation and callback
(GVFS-cb), and AFS. The RPC counts used by AFS are not shown because
it uses a different RPC protocol and is not comparable.

provides better fairness among the clients but also consumes more bandwidth and

generates higher server loads due to the use of more consistency calls. To demonstrate the

first case, the benchmark was executed on NFS and GVFS both with a revalidation/invalidation

period of 30 seconds (NFS-inv and GVFS-inv). For the second case, the experiment was

conducted with NFS with no attribute cache (NFS-noac) and GVFS with delegation and

callback (GVFS-cb).

By analyzing the distribution of lock acquired from the experimental results, it is

confirmed that fairness can be achieved with the strong consistency models but not with

the weak ones. Further, Figure 4-12 shows that, in the latter case the benchmark takes
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nearly twice longer to execute, also because of the delay for a lock release being observed

by other clients.

The overhead involved in achieving the same level of consistency is significantly

different between NFS and GVFS. GVFS’ client polling protocol uses 44% less consistency

checks (GETATTR, GETINV) than NFS (GETATTR). In the stronger consistency case

the difference between NFS and GVFS is even more dramatic. The consistency related

calls issued by NFS (GETATTR) outnumbers that of GVFS (GETATTR, CALLBACK)

by more than 10-fold. Hence substantial bandwidth and load are saved by using GVFS.

Note that although the benchmark runs faster on GVFS than on NFS, the advantage

is not so large as in the number of RPCs. This is because most of the extra RPCs’

latencies are overlapped with lock owners’ pausing times during the execution.

As a reference, another traditional DFS that delivers strong consistency, AFS

(OpenAFS 1.2.11 [25][26]), was also tested with the benchmark. The above experiments

prove that GVFS can flexibly and efficiently provide different application-tailored

consistency protocols, which is difficult to achieve with traditional DFSs.

4.3.4.5 Software repository

The wide-area shared software repository scenario discussed in Section 4.1 is studied

here with NanoMOS, a 2-D n-MOSFET simulator. This is a compute-intensive application

and benefits from parallel execution on grid resources. A wide-area file system supports

it by allowing the WAN users to read-share the application and its required software,

including MATLAB with the MPI toolbox (MPITB), and allowing the local administrator

to maintain the repository at the same time. In the experiment, NanoMOS was stored

along with the other software in the repository on the server, and it was executed in

parallel on six clients for eight consecutive iterations. The repository was maintained by

the administrator from another client, and between the fourth and fifth run a software

update was performed on the repository. Two different cases of updates were considered:

update to MPITB only and to the entire MATLAB package. The repository was shared
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Figure 4-13. Runtimes of the parallel NanoMOS benchmark accessed from a wide-area
shared software repository. The benchmark was executed in parallel on six
clients, while the repository was maintained by the administrator from
another client. The repository was shared among all the clients via native
NFS or GVFS with 30s invalidation period. Between the 4th and 5th run an
update happened on: (a) the entire MATLAB directory; (b) the MPITB
directory only.

among all the clients via native NFS or GVFS with invalidation polling based consistency.

The runtimes of the NanoMOS executions are shown in Figure 4-13.

NanoMOS’ working data set is relatively small (about 30MB per client), so both

NFS and GVFS clients can cache it and reduce the runtime since the second run. But

the difference is that the NFS client has to frequently check consistency for the cached

data (about 2.7K GETATTRs per client per run), which can be almost eliminated by

the GVFS client with its cache consistency. As a result, GVFS delivers more than 2-fold

speedup compared to NFS. When an update happens, the NFS client cannot know how

many files are affected (the MATLAB package consists of 14K files/directories, but the

MPITB has only 540), so it has to always issue the same volume of consistency checks
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Figure 4-14. Runtimes of consecutive executions of the CH1D data-processing program.
Data generation and processing were performed across WAN, where data
were shared via native NFS or GVFS with delegation callback based
consistency. The data-processing program started each run with 30 more
input files from the data-producing program.

for the entire package. However, the GVFS client only uses invalidations proportional to

the size of the update and batches them together in a few transactions (MATLAB update

needs about 30 GETINV calls per client; MPITB update needs only two calls per client).

4.3.4.6 Scientific data processing

Another benchmark uses a coastal ocean hydrodynamics modeling application,

CH1D, to model the distributed scientific data processing scenario discussed in Section

4.1: real-time data are accumulated on coastal observation sites and meanwhile processed

on off-site computing centers. A wide-area file system helps the programs to share data

naturally without explicitly transferring data back and forth. In the experiment, the

data-processing program ran consecutively for 15 times, where each run was started with

30 more input files from the data-producing program. The data were shared between the

programs via native NFS or GVFS with the delegation and callback consistency protocol.
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Similar to the previous benchmark, the input data set to the data-processing program

is small and even 15 runs of data can still fit into its kernel client’s memory buffer.

However, as the data set grows the amount of consistency that the kernel client has to

maintain also increases accordingly. The runtimes of the data-processing program (Figure

4-14) clearly demonstrate this trend: the overhead from maintaining cache consistency

increases linearly as the size of the data set. In contrast, with GVFS’ consistency protocol

this overhead is much smaller and remains practically constant for each run (only 30

callbacks). Accordingly, the performance speedup achieved by GVFS also grows as the

data set does and at the 15th run the benchmark runs already 5 times faster than on NFS.

4.4 Security

Security has always been one of the most important concerns for data management

in grid-style environments, where data are shared across organizations and domains

with limited mutual-trust, and stored and transferred on resources with limited security.

However, conventional DFSs designed for the use on LAN support only weak security,

because they are often deployed in a relatively more trustworthy environment. For

example, NFS (v2 and v3) typically employs UNIX-style authentication with user and

group identifiers (IDs), which is difficult to be used across domains. It also does not

provide privacy and integrity, and thus NFS RPC messages can be easily spoofed, altered,

and forged. Several WAN-oriented DFSs (AFS [25][26], Coda [27]) provide strong security

mechanisms, but they need a complex security infrastructure (Kerberos [41]) in place,

which requires substantial administrative work from the involved domains.

In addition, conventional DFSs are not designed to support application-tailored,

dynamically configurable security mechanisms and policies. Nonetheless, in a grid

system, virtual organizations are dynamically established, applications and services

are dynamically initiated, and entities and trust are dynamically created. Applications and

their execution environments also have very diverse needs for security. In some cases, a

cross-domain user and group ID mapping is sufficient for authentication and authorization,
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Figure 4-15. Private grid file system built upon GVFS virtualization, SSH tunneling, and
session-key based cross-domain authentication.

whereas in others, a security token that uniquely identifies a user across the distributed

systems is necessary. To some applications, privacy is not important and thus encryption

can be avoided to improve the performance, whereas others may access highly sensitive

data and need strong encryption mechanism that requires substantial computation.

Hence, strong security is needed for wide-area DFSs, whereas per-application

configuration is also important since it has impacts on both security and performance.

GVFS supports both of these goals on top of the virtualization layer by providing strong

security mechanisms with high customizability, which are achieved through the two

different security approaches discussed in the rest of this section.

4.4.1 Secure Tunneling Based Private Grid File System

In the context of RPC-based applications, security in communication can be provided

within or outside the RPC protocol. A key advantage of the latter approach lies in the

fact that existing RPC-based clients and servers can be reused without modifications. This

subsection describes such an approach taken by GVFS to provide private grid file systems

based on secure data tunneling (Figure 4-15).

4.4.1.1 Secure data tunneling

Secure RPC-based connections can be established through the use of TCP/IP

tunneling. A tunnel allows the encapsulation and encryption of datagrams at the

client side, and corresponding decryption and de-capsulation at the server site. It
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supports private communication channels in an application-transparent manner. The

application-transparent property of tunneling is a key advantage of this technique and

has found wide use in applications such as Virtual Private Networks (VPNs) and secure

remote X-Windows sessions.

Tunneling of RPC-based connections can be achieved through mechanisms such

as SSL and SSH. The latter is a de facto standard for secure logins, providing strong

authentication, data privacy, and data integrity for remote login sessions, as well as

tunneling of arbitrary TCP connections. GVFS leverages the functionality of SSH

to create authenticated, encrypted tunnels between proxy client and proxy server as

illustrated in Figure 4-15. Tunneled GVFS connections are TCP-based. This, however,

does not prevent GVFS from supporting UDP-based kernel clients and servers. A proxy

client can receive RPC calls over UDP from localhost and forward to the proxy server

using TCP, and the proxy server can receive RPC calls over the TCP tunnel and forward

to localhost using UDP.

The use of SSH to tunnel NFS traffic has been pursued by related efforts, such as

Secure NFS [48]. A key differentiator of GVFS from previous approaches is that private

GVFS sessions are established dynamically by middleware on a per-session basis, rather

than statically by a system administrator for groups of users. Another key difference is the

GVFS support for per-user identity mappings across network domains.

Per-user tunnels and user mappings are key to establishing dynamic file system

sessions in a grid-oriented environment, where users belong to different administrative

domains. A secure tunnel multiplexed by users faces the same limitations for cross-domain

authentication as NFS, since RPC-based security must be used to authenticate users

within a tunnel. With per-user, per file system secure channels, the task of guaranteeing

privacy and integrity can be leveraged from the secure channels, whereas the task of

authenticating users can be independently carried out by each private file system outside

of its channel.
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4.4.1.2 Security model

The GVFS private file system channels rely on existing kernel-level services at the

client (file system mounting), server (file system exporting), user-level middleware-controlled

proxies at both client and server, and SSH tunnels established between them. Hence, the

deployment of GVFS involves the setup of appropriate trust relationships between client,

server, and middleware.

In the GVFS security model, the data server administrator needs to trust grid

middleware to the extent that it allows access to an exported directory tree to be

brokered by proxies (e.g., /GVFS/X on server S in Figure 4-15). In essence, the server

administrator delegates access control to one or more exported directories to the grid

middleware. This is a trust relationship that is similar to those found in other grid

data deployments (e.g., GridFTP [6]). The architecture of GVFS allows kernel export

definitions to be implemented by local system administrators in a simple manner — the

kernel server exports only to the localhost, and exports only the directories that should be

accessible via GVFS. Users outside the localhost cannot directly mount file systems from

the kernel — only via GVFS proxies. A typical scenario, where a base home directory for

grid users is exported through GVFS, requires a single entry in an exports definition file.

Then, the proxies are responsible for authenticating accesses to those file systems

exported by GVFS. This is accomplished by means of two mechanisms. The first

authentication mechanism is independent from the proxy and consists of the client

machine being able to present appropriate credentials (an SSH key or an X.509 certificate

for GSI-enabled SSH) to the server machine to establish a tunnel. Second, once the tunnel

is established, it is necessary for the proxy server to authenticate requests received through

it. Typically, NFS servers authenticate client requests by checking the origin of NFS

calls and only allowing those that come from privileged ports of trusted IPs to proceed.

In the private GVFS setup, the originator of requests sent to the proxy server is the

server’s tunnel end-point. Hence, the proxy server receives requests from the localhost
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and from non-privileged ports and cannot authenticate the client based on trusted

IP/port information. It thus becomes necessary to implement an alternative approach for

inter-proxy authentication between tunnel end-points.

The authentication in the private GVFS approach consists of the dynamic creation

of a random session key by middleware at the time the proxy server is started and its

transmission over a separate private channel to the proxy client (e.g., using GSI-enabled

Secure Copy). Then the proxy client appends the key to each NFS procedure call, and

the proxy server only authenticates a coming request if it is originated from the localhost

and it has a session key that matches the proxy server’s key (Figure 4-15). Hence, the

use of session keys is completely transparent to kernel clients and servers and requires no

changes to their implementations; it only applies to inter-proxy authentication between

tunnel end-points. These session keys are used for authentication, similarly to X11/xauth,

but not for encryption purposes (the privacy of GVFS is provided by its SSH channel). In

the implementation, a session key is a randomly generated 128-bit string and encapsulated

in original NFS RPC messages by replacing an unused credential field, so the runtime

overhead of supporting this method is very small, consisting of only encapsulation and

decapsulation of a session key, and a simple comparison between key values.

The proxy server thus needs to trust the grid middleware to authenticate user

credentials and establish an encrypted tunnel, create a random session key, and provide

the key to the proxy client through a separate private channel. These mechanisms can be

provided by existing grid security infrastructure, such as Globus GSI. Finally, the client

administrator needs to trust grid middleware to the extent that it needs to allow NFS

mount and unmount operations to be initiated by grid middleware (possibly within a

restricted set of allowed base directories, e.g., /GVFS/X in Figure 4-15). In current GVFS

setups, this is implemented with the use of sudo entries for these commands.
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4.4.1.3 Evaluation

A prototype of the proposed secure tunneling based private GVFS is evaluated with

experiments in this subsection. The experiments were conducted in both local-area and

wide-area environments. The file system client is a 1.1GHz Pentium-III cluster node with

1GB of RAM and 18GB of SCSI disk. In the LAN experiment, the file system server is

a dual-processor 1.3GHz Pentium-III cluster node with 1GB of RAM and 18GB of disk

storage; in the WAN experiment, it is a dual-processor 1GHz Pentium-III cluster node

with 1GB RAM and 45GB disk. The LAN setup is a 100Mbps Ethernet and the WAN is

through Abilene between Northwestern University and University of Florida. The RTT

between the client and server is around 0.17ms in the LAN and around 32ms in the WAN,

as measured by RTTometer [97].

The experiments compare the performance of private GVFS (with and without disk

caching) with native NFS. In the experiments on GVFS with disk caching, the cache was

configured with 8GByte capacity, 512 file banks, and 16-way associativity. The GVFS

proxy prototype used here is based on NFSv2, which limits the maximum size of an

on-the-wire NFS read or write operation to 8KB. Thus NFSv2 with 8KB block size was

used for GVFS. However, in the experiments on native NFS, NFSv3 with 32KB block

size was used to provide the best achievable results for comparison. Furthermore, all the

experiments were initially set up with cold caches (both kernel buffer cache and possibly

enabled proxy disk cache) by unmounting the remote file system and flushing the disk

cache if it was used.

The experimental results shown in this subsection consider application-perceived

performance measured as elapsed execution time for the following benchmarks:

SPECseis: a benchmark from the SPEC high-performance group. It consists of four

phases, where the first phase generates a large trace file on disk and the last phase involves

intensive seismic processing computations. The benchmark was tested in sequential mode
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with the small data set. It models a scientific application that is both I/O-intensive and

compute-intensive.

LaTeX: a benchmark designed to model an interactive document processing session.

It is based on the generation of a PDF (Portable Document File) version of a 190-page

document edited by LaTeX. It runs the “latex”, “bibtex”, and “dvipdf” programs in

sequence and iterates 20 times, where each time a different version of one of the LaTeX

input files is used.

These benchmarks were executed on the clients, where the working directories

were either stored on local disks or mounted from the remote LAN or WAN servers. To

investigate the overhead incurred by private file system channels, in the LAN environment

the performance of native NFS (LAN/N ) is compared with private GVFS (LAN/G)

without disk caches. Experiments conducted in the WAN environment must use private

GVFS to ensure data privacy and traverse firewalls2 , but the performance of GVFS

without disk caches (WAN/G) and with caches (WAN/GC ) are both compared against

the performance of the local disk (Local), in order to investigate the overhead of GVFS

security and the potential performance improvement achieved by using disk caching.

The experiment results are summarized in Table 4-1. Consider the execution of the

LaTeX benchmark. In the LAN scenarios, the overhead of private GVFS (LAN/N vs.

LAN/G) is large at the beginning but is substantially reduced once the kernel buffer

cache holds the working data set. This overhead is caused by the latency from both SSH

tunneling and proxy processing of RPC calls. The results also show that the kernel buffer

cache alone is not sufficient to lower WAN execution time of the LaTeX benchmark in

WAN/G, but the use of disk caching in GVFS can remarkably reduce the overhead to

17% in WAN/GC compared to Local. Two factors allow the combination of kernel buffer

2 Firewalls often restrict network access from outside networks, but SSH connections are typically
allowed because of its strong security.
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Table 4-1. The overhead of private GVFS for the LaTeX and SPECseis benchmarks. The
overhead data are calculated by comparing the execution time of the
benchmarks in different scenarios: Local disk (Local), LAN on NFS (LAN/N ),
LAN on GVFS (LAN/G), WAN on GVFS without disk caching (WAN/G) and
with disk caching (WAN/GC ). For the LaTeX benchmark, the comparisons for
the execution time of the first iteration, the average execution time of the
second to the twentieth iterations, and the total execution time are listed. For
the SPECseis benchmark, the comparisons for the execution times of the first
phase, the fourth phase, and the total execution time are listed. For both
benchmarks, in the WAN/GC scenario the write-back cached data were
submitted to server after the executions and the needed time was summed into
the total execution time.

Overhead
LaTeX SPECseis

1st run 2nd 20th run total phase 1 phase 4 total
LAN/G vs. LAN/N 124% 7% 13% 47% 0% 9%
WAN/G vs. Local 797% 180% 21.5% 1500% 1% 265%

WAN/GC vs. Local 691% 17% 60% 24% 0% 26%

and disk caches to outperform a solution with kernel buffer only. First, a larger storage

capacity; second, the implementation of a write-back policy that allows write hits to

complete without contacting the server.

For the execution of the SPECseis benchmark, the compute-intensive phase (phase

4) as expected achieves very close performance in all scenarios, but the performance of

the I/O-intensive phase (phase 1) differentiates very much. It is reasonable to see that

the overhead of private GVFS becomes larger as more network communication requires

more time for SSH tunneling and proxy processing. This overhead is especially large in

WAN/G due to the much higher network latency in the wide-area environment; however

in WAN/GC the use of disk caching effectively hides the latency and significantly reduces

the overhead to 24% with respect to Local. Besides, the write-back caching also helps to

improve performance by avoiding the transfer of temporary data to server. In fact, the

benchmark generates hundreds of MBytes of data in the working directory during its

calculations, where only tens of MBytes are the required results. In WAN/GC, the cached

data modifications were written back to the server after the execution and the needed time

was summed into its total execution time, which is still less than tenth of that of WAN/G.
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In overall, the performance of the proposed private GVFS is close to NFS in LAN

within 10% for both benchmarks, and with the help from disk caching the overhead

in WAN is within 20% for the LaTeX benchmark and within 30% for the SPECseis

benchmark relative to the local-disk file system.

4.4.2 The SSL-Enabled Secure Grid File System

The key advantages of the aforementioned secure tunneling based private GVFS are

in that existing RPC-based clients and servers can be reused without modifications, and

it leverages mature security technologies. However, it requires additional middleware

to set up tunnels and keys, and its performance also suffers from the overhead of

double user-level forwarding incurred by proxy RPC processing and SSH tunneling. In

addition, it is not compatible with widely accepted grid security infrastructure [51], which

presents a hurdle to the interoperability with other grid middleware. This subsection

presents another security approach that preserve the merits of the secure tunneling based

approach and addresses its limitations by protecting RPC communication directly with

transport-level security, without the addition of tunneling, and uses widely-accepted grid

security tokens to provide compatible authentication and authorization.

4.4.2.1 Design

Secure data access in this approach is provided by transport-level security mechanisms,

which enable an efficient secure end-to-end connection between proxy client and proxy

server to protect RPC communications. In order to create a secure GVFS session for

a grid user to access a file server, public-key based user and server certificates are used

to establish the mutual authentication between the proxies. (A user certificate can be

the user’s grid identity certificate, or a proxy certificate issued by the user that supports

delegation [51].) After successful authentication, a shared key is negotiated between the

two parties and is used to encrypt the GVFS traffic, whereas the data integrity can also be

protected using digital signatures or Message Authentication Code (MAC).
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An authenticated user’s certificate is used by the proxy server to make authorization

decisions, i.e., whether to grant the user’s access to the exported files. This is achieved

using a grid-style access control mechanism which associates file system access permissions

with the grid user’s identity embedded in the certificate. Such access control is provided

with different granularity which allows for flexible selection based on application needs.

For an authorized data access request, the necessary identity mapping is also performed by

the proxy server so that the request can be successfully executed on the file server.

The choice of security mechanisms and policies is flexible and customizable per GVFS

session, in order to satisfy different security requirements from users and applications.

This is important because such configurations have implications on both security

and performance. For example, if the data transferred by GVFS are not confidential,

encryption can be avoided to improve the data access performance, whereas digital

signatures can still be employed to protect its integrity. In contrast, for a GVFS session

created for highly sensitive data, encryption must be enabled with strong ciphers which

consumes considerable CPU cycles.

4.4.2.2 Implementation

The SSL-enabled secure RPC:

In this approach, secure communication for NFS RPC is achieved using transport-layer

security protocols (SSL/TLS [53][54] — referred to generally as SSL in the rest of this

subsection). Although secure RPC can be realized at the RPC-layer itself (RPCSEC GSS

[44]), several factors have motivated the use of SSL: it has very mature and efficient

implementations, which have been successfully employed by many important applications;

it supports a wide range of algorithms, which can be leveraged to support flexible security

configurations; GVFS sessions are established on per-user/application basis, and thus can

use SSL to provide full-featured security without using any RPC-layer mechanisms.

An SSL-enabled secure RPC library has been developed for GVFS based on two key

packages, TI-RPC [96] and OpenSSL [55]. TI-RPC (Transport Independent RPC) is the
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replacement for the original transport-specific RPC. It allows distributed applications to

transparently support RPC over connectionless and connection-oriented transports for

both IPv4 and v6. OpenSSL is an excellent implementation of SSL, and it has recently

also included the support for datagram protocols (DTLS). Therefore, these tools can be

effectively utilized to build a secure RPC library that supports both TCP and UDP.

In this library secure RPC APIs are provided in a way that closely resembles

the regular RPC APIs. For example, clnt tli ssl create and svc tli ssl create are two

expert-level APIs for creating a RPC client and server, respectively, using a secure

transport for communications. These APIs take the same parameters as their regular

counterparts with an additional one for the security configuration structure. The use of

authentication, encryption, and MAC as well as their specific algorithms can be specified

through this structure and passed on to the library to create secure transports for RPC

with the desired security mechanisms.

This secure RPC library is generic to support all RPC-based applications. The fact

that both TI-RPC and OpenSSL are stand alone packages helps its use by ordinary users

without the need to change any system-level configurations. The current implementation is

based on Linux; support for other platforms is also conceivable.

The GSI-based GVFS proxy:

The GVFS proxies are enhanced to use the SSL-enabled secure RPC library for

communications, and are also extended with the capability of parsing and validating

GSI-based certificates. Using these proxies to establish a grid-wide file system, the privacy

and integrity of data access are protected in the secure RPCs, whereas grid authentication

and authorization are performed based on the user and server certificates.

A GVFS proxy is configured by a user or service through a configuration file,

which is useful for customizing several important aspects of a GVFS session (e.g., the

use of disk caching and its parameters) as shown in Figure 4-6. This configuration

mechanism is augmented to include the security configurations, including the algorithms
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for authentication, encryption, and MAC, and the paths to user, host, and trusted CA

certificates. In this way, both the proxy client and proxy server can be properly configured

to use the grid user’s and server’s certificates to authenticate with each other, and set up a

data session with the desired security mechanisms and policies.

A GVFS session’s security customization can also be reconfigured by signaling the

proxies to reload the configuration files. Such dynamic reconfiguration is very useful in

several important scenarios. For example, it can force a proxy to reload the certificate

when the original one is expired or believed to be breached. It can reset a session’s

security setup when the desired configuration is changed. It can also be used to force a

SSL-renegotiation and refresh the session key for a long-lived session. In fact, a proxy can

be configured with a timeout value to enable periodic automatic renegotiation.

Grid file access control:

After successful mutual authentication, the grid user’s certificate presented by the

proxy client is used by the proxy server for authorization of the data requests received

from this session. The user credentials (UNIX user and group ID) in each NFS RPC

message are from the client-side account allocated for a grid user or job. They do not

represent the grid user’s identity and cannot be used for the purpose of authorization,

but they are still necessary for cross-domain identity mapping. For each authorized RPC

request, these credentials are mapped to a local user account’s credentials, which are then

used by the kernel NFS server to grant access to files. Such authorization and mapping are

determined by the grid file access control policies.

With GSI-enabled proxies, a variety of ACL mechanisms can be employed to enforce

access control for GVFS sessions. The basic mechanism is based on a gridmap file which

is similar to GSI’s gridmap file [51] and provides access control per exported file system.

This file describes the mapping between a user’s grid identity (distinguished name) in the

certificate and a local account’s name. If a mapping exists for a user in the gridmap file,

the user gains the same access rights to the exported file system as the corresponding local
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user. Otherwise, the user is mapped to an anonymous user, or denied of access completely,

depending on the session’s configuration. In GVFS, the gridmap file can be set up on a

per-session basis to enable flexible sharing. For example, if a user wants to share her files

with another user, she only needs to add the mapping between that user’s distinguished

name and her local account name in the session’s gridmap file.

Fine-grained access control is realized by leveraging the ACCESS procedure call

available in NFSv3 and NFSv4. Each file or directory can have an ACL file associated

with it (under the same path and named in the style of .filename.acl). A user or service

can grant or deny a user’s access to a file or directory by putting the user’s distinguished

name inside the corresponding ACL file along with a bit mask encoding the access

permissions. (Only the NFSv3 style ACL is supported in the current implementation.)

Upon receiving an ACCESS request, the proxy server checks the user’s grid identity

against the requested file or directory’s ACL, and returns the corresponding bit mask if

the user is found in the ACL, or a zero which disables all access permissions.

A file or directory automatically inherits its parent’s ACL if it does not have a

dedicated ACL file. This inheritance mechanism can reduce the management complexity

of ACLs. For the sake of performance, the ACLs are cached in memory by the proxy

server once they are read from disk. The ACL files are protected by the proxy server

from remote access, and can only be modified by the local owner of the files (typically

the GVFS management account, as described below) manually or through an authorized

middleware service. Note that in the GVFS security model, the NFS server delegates

the access control of the exported file systems completely to the proxies. So the ACL

mechanisms in kernel (except for the kernel exports file) are no longer useful for the

exported file system and should be disabled to avoid overhead.

4.4.2.3 Deployment

GVFS can be conveniently deployed on grid resources because it does not require any

modifications to either applications or kernels. It also obeys the least-privilege principle
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in that the proxies and their management services (Section 6.1) work completely at user

level and use unprivileged network ports, and they can be managed using a single regular

user account (e.g., user gvfs) on each host. On the server side, the only privilege required

is the configuration of a host-wide exports file used by the kernel NFS server. This can

be restricted to a single entry in the exports file by organizing all the grid-accessible

file systems under a single path (e.g., /GVFS ), which needs to be exported to only the

localhost. On the client side, the use of file system mount and unmount is necessary,

and it can also be minimized by giving only the local GVFS management account the

permission to use sudo or a setuid program to mount and unmount GVFS sessions to a

restricted path (e.g., /GVFS ).

To use GVFS, it is not necessary for a grid user to have a personal account on

the client or server. The proxies and their management services create a secure file

system session on behalf of the user between the account where her job is running and

the account where her files are stored. These job and file accounts are often provided

by mapping a grid user to a local user [51], or allocated on-demand for dynamically

submitted jobs [87].

4.4.2.4 Evaluation

A prototype of the SSL-enabled GVFS is evaluated in this subsection with experiments.

File system benchmarks (IOzone and PostMark) are used to investigate the overhead of

achieving strong security under intensive I/O load. Application benchmarks modeling

workloads in software development and scientific computing are also employed to study

GVFS performance with typical file system usages.

Both LAN and WAN environments were considered in the experiments. LAN-based

runs study the overhead from the user-level techniques, whereas tests in an emulated

WAN reveal its performance for the target grid environments. NIST Net [95] was used to

emulate different wide-area network latencies. The file system client and server as well as

the NIST Net router were set up on VMware-based virtual machines. They were hosted on
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separated physical servers connected via Gigabit Ethernet. Each physical server has dual

3.2GHz hyperthreaded Xeon processors and 4GB of memory. The client and server VMs

both have 1 CPU but with different amount of memory, 256MB and 768MB, respectively.

The use of a network emulator and virtual machines facilitates the quick deployment

of a controllable and replicable experimental setup. However, the timekeeping within

a virtual machine may be inaccurate so the system clock on a physical server was

used to measure time, which suffices the granularity required by this evaluation. All

the experiments were conducted on virtual machines running on dedicated physical

servers without interference from other workloads. Different (secure) DFS setups were

experimented, including:

NFSv3 and NFSv4: The native kernel-level NFSv3 and NFSv4 provide the

baseline performance for comparison. Although not evaluated here, kernel-level secure

NFS solutions (e.g., Kerberos-enabled NFS, GridNFS) can be expected to have worse

performance than these results. Kernel NFS implementations use only memory for caching

and revalidate the cached data when the file is opened or its attributes have timed out.

NFSv4 also provides delegation, which allows a client to aggressively cache data.

GVFS-BASIC and GVFS-SSH: The basic GVFS without any security enhancements,

and the SSH-enabled private GVFS presented in Section 4.4.1. Their results demonstrate

the overhead from the user-level RPC processing and SSH tunneling.

SFS: The related work of Self-certifying File System [30] — another NFS-based

user-level secure file system. The overhead from the user-level techniques can also be

observed from its performance. SFS aggressively caches attributes and access permissions

in memory, which improve the performance for metadata operations.

GVFS-SSL: The proposed SSL-enabled secure GVFS approach. By comparing

to the above systems, the experiments examine the performance of the SSL-enabled

strong authentication, privacy, and integrity. Aggressive disk caching of attributes, access
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permissions, and data were used in the WAN-based tests, so those results also reflect the

potential performance improvement from that.

In all of the above setups, the server exported the file system with write delay and

synchronous update, and the client accessed the server using TCP and 32KB block size for

reads and writes. All the experiment results are reported with the average and standard

deviation values from multiple runs. Every run was started with cold client-side caches by

unmounting the file system and flushing the disk cache.

IOzone:

The first experiment considers the IOzone [88] benchmark which analyzes a file

system’s performance by performing read and write operations on a large file with a

variety of access patterns. In this experiment, it was executed on the client in read/reread

mode, which sequentially reads a 512MB file twice from the server. Since the client has

only 256MB of memory, the buffer cache does not help with its LRU-based replacement

for the benchmark’s sequential reads. In fact, the client needs to read a total of 1GB

data from the server during the execution. On the server side, the file is preloaded to

the memory before each run, so there is no actual disk I/O involved in the tests. This

“extremely” intensive setup reveals the worst-case overhead from GVFS’ user-level

virtualization and security enhancements.

The experiments evaluate various SSL-enabled GVFS configurations that have

different security strengths, as follows:

GVFS-AES uses AES (Rijndael [98]) in CBC mode with 256bit key, a very strong

cipher, to encrypt RPC traffic, and ensures data integrity with SHA1-based HMAC [99].

GVFS-RC uses RC4 (ARCFOUR [100]) with 128bit key, a relatively weaker cipher

for encryption, and it also enables SHA1-HMAC for data integrity.

GVFS-SHA does not use any encryption but still provides integrity using SHA1-HMAC.

To compare with GVFS, in GVFS-SSH the SSH tunnels were configured to use 256bit

AES-CBC and SHA1-HMAC, which is similar to the GVFS-AES configuration; SFS
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Figure 4-16. Runtimes of IOzone on the different file system setups in LAN: NFSv3,
NFSv4, SFS, basic GVFS without security enhancement (GVFS-BASIC ),
secure GVFS with only integrity check but not encryption (GVFS-SHA),
secure GVFS with RC4 cipher (GVFS-RC ), secure GVFS with AES cipher
(GVFS-AES ), and SSH-enabled private GVFS (GVFS-SSH ).

provides privacy and integrity using a customized RC4 and SHA1-HMAC, which is close

to the GVFS-RC setup.

Figure 4-16 illustrates the runtimes of IOzone on the above DFS setups in LAN. The

user-level file systems all show a slow down of more than two-fold compared to the kernel

NFS implementations. However, such intensive workload is very rare in practice, and the

user-level processing latency can often be overlapped with application “thinking” time

or be diminished by disk I/O latency. More importantly, in a WAN environment, the

network latency becomes the dominant factor and renders the user-level latency negligible.

User-level caching techniques can further hide the latency and improve the file system’s

performance. These discussions will be validated with the experiments presented later in

this subsection.
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Comparing the different secure GVFS configurations, GVFS-SHA has the lowest

overhead from the security enhancements (9% w.r.t. GVFS-BASIC ), because it only

calculates HMAC but does not perform any encryption/decryption on the file system

traffic. With the use of encryption, the overhead is increased to 15% in GVFS-RC, and

50% in GVFS-AES. GVFS-SSH has a much higher overhead than the other ones (more

than six-fold slowdown w.r.t. GVFS-BASIC ). This can be at least partially attributed to

the penalties from the double user-level forwarding: for every RPC message, two network

stack traversals and kernel-user space switches are required by GVFS and SSH to process

it. As discussed earlier, such an overhead is highlighted by this intensive experiment setup.

The SSL-enabled secure GVFS approach removes this extra penalty, and thus improves

the performance substantially3 .

The experiment also measured the overhead of the user-level file systems in terms of

CPU usage. The user time percentages for GVFS proxies and SFS daemons were collected

every 5 seconds throughout the benchmark’s execution. The client- and server-side results

are plotted in Figure 4-17 and Figure 4-18 respectively. On the client, the basic GVFS’

CPU usage is very low, averaging 0.6% and under 1% for all the time. For SSL-enabled

secure GVFS, the usage goes up to 5% with SHA1-HMAC, and further increased to about

8% when encryption/decryption is also used (256bit-AES consumes slightly more CPU

than 128bit-RC4). On the server, the CPU usage is even less for GVFS, GVFS-SHA, and

GVFS-RC, averaging 0.3%, 1.5%, and 3.6% respectively. All the GVFS configurations

need less CPU than SFS which has more than 30% usage on both sides.

PostMark:

3 The performance of GVFS-RC is relative worse than SFS, because the GVFS prototype used in this
evaluation is a single-threaded implementation, which cannot handle multiple outstanding RPCs si-
multaneously. In contrast, SFS makes use of asynchronous RPC and can process several requests at
the same time. However, it is reasonable to believe that a multithreaded secure GVFS implementa-
tion can deliver much better results, as demonstrated in Section 4.2.2
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Figure 4-17. Client-side CPU usage of the user-level file system proxy/daemon during the
execution of IOzone on different setups: basic GVFS without security
enhancement (GVFS-BASIC ), secure GVFS with only integrity check but
not encryption (GVFS-SHA), secure GVFS with RC4 cipher (GVFS-RC ),
secure GVFS with AES cipher (GVFS-AES ), and SFS.

The second experiment uses the PostMark [90] benchmark, which is a more realistic

file system benchmark that simulates the workloads from emails, news, and web commence

applications. It starts with the creation of a pool of directories and files (creation phase),

then issues a number of transactions, including create, delete, read, and append, on

the initial pool (transaction phase), and finally removes all the directories and files

(deletion phase). In contrast to the uniform, sequential data accesses used in the IOzone

experiment, the file system is randomly accessed with a variety of data and metadata

operations from PostMark.

In this experiment, the initial number of directories and files were 100 and 500

respectively, and the number of transactions was 1000. The transactions were equally

distributed between create and delete, and between read and append. The file sizes

ranged from 512B to 16KB, and thus the benchmark excised mostly on metadata
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Figure 4-18. Server-side CPU usage of the user-level file system proxy/daemon during the
execution of IOzone on different setups: basic GVFS without security
enhancement (GVFS-BASIC ), secure GVFS with only integrity check but
not encryption (GVFS-SHA), secure GVFS with RC4 cipher (GVFS-RC ),
secure GVFS with AES cipher (GVFS-AES ), and SFS.

operations and small writes. Figure 4-19 shows the runtimes of each PostMark phase

for the aforementioned DFS setups. In order to demonstrate the worst-case overhead,

the strong GVFS configuration GVFS-AES is used for the rest of this subsection and is

denoted as GVFS or GVFS-SSL from here on. For the creation and deletion phases, the

runtimes of the secure file systems are all very close to the native NFS’ (GVFS-SSH is

marginally worse than the others). However, for the more intensive transaction phase,

where a large number of small data and metadata updates are involved, only GVFS shows

a close performance to NFSv3, and it is better than SFS and GVFS-SSH by 17% and

14% respectively.

The above experiment was conducted in a LAN environment, where the network

round-trip time (RTT) between the file system client and server is about 0.3ms. Then it

was repeated in the emulated WAN with different network latencies. Figure 4-20 compares
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Figure 4-19. Runtimes of various PostMark phases on the different DFS setups in LAN:
NFSv3, NFSv4, SFS, SSL-enabled secure GVFS (GVFS-SSL), and
SSH-enabled private GVFS (GVFS-SSH ).

the total runtimes of PostMark on NFSv3 and GVFS-SSL. Benefited from the use of

disk caching, GVFS shows a very slow decrease in performance as the network latency

grows. It is also significantly more efficient than native NFS in wide-area environments,

and the speedup is about two-fold when the RTT is 80ms. These results prove the earlier

discussions that a user-level secure file system based on GVFS can be very efficient for

grid-scale systems.

Since no performance advantage has been observed in the version of NFSv4 used in

the experiments, only the results from NFSv3 are reported here as well as in the following

experiments, and it is referred to as NFS.

Modified Andrew benchmark:

The third experiment models the typical software development process using a

modified Andrew benchmark (MAB). It consists of four phases that exercise different

aspects of a file system. The first phase (copy) makes a copy of a software source tree,

which transfers a large number of small files within the file system. The second phase
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Figure 4-20. Total runtimes of PostMark on NFSv3 and SSL-enabled secure GVFS with
varying network round-trip time (RTT).

(stat) recursively examines the status of every file and thus exercises metadata lookups

intensively. The third phase (search) reads every file thoroughly to search for a keyword.

The last phase (compile) compiles the entire source tree, which generates a large number

of data and metadata operations. Because the original Andrew benchmark [25] uses

a workload that is too light for today’s file systems, the source tree is replaced with

the package of an OpenSSH client (openssh-4.6p1). It is a 3-level source tree with 13

directories and 449 files, and the entire compilation generates 194 binaries and object files.

The benchmark was executed on NFS and the proposed SSL-enabled secure GVFS

in both LAN and emulated WAN (with 40ms RTT). Their results are shown in Figure

4-21. The secure GVFS performs as well as NFS for the first three phases in LAN, and

in the intensive compile phase, it shows a relatively small overhead of 14%. In WAN,

GVFS caching effectively hides the network latency, and the total runtime of MAB is

slowed down by only 2.5 times. Compared to NFS, it is more than four times faster, and

the speedup is approximately nine-fold, five-fold, and eight-fold for the stat, search, and
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Figure 4-21. Runtimes of various MAB phases on NFS and secure GVFS in both LAN and
WAN. The time needed to write back data at the end of execution is 51.2s in
average with a standard deviation of 1.3s.

compile phases respectively. Although not shown here, the performance of secure GVFS in

LAN can also be improved if disk caching is used, in which the compile phase is only 2%

slower than NFS.

SPECseis:

The last benchmark uses a scientific tool, SPECseis, which implements algorithms

used by seismologists to locate resources of oil. It is taken from the SPEC HPC96 suite,

and its sequential version is considered in the experiment. The execution consists of

four phases: (1) data generation, (2) data stacking, (3) time migration, and (4) depth

migration. Phase 1 prepares a large initial data file, and each of the following phases

performs certain computation based on its previous phase’s output file and then generates

its own results on disk. In the end, the intermediate outputs are removed and only the

results from the last two phases are preserved. This benchmark models a grid application

that is both I/O and computation intensive.
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Figure 4-22. Runtimes of various SPECseis phases on NFS and secure GVFS in both LAN
and WAN. The time needed to write back data at the end of execution is
14.2s in average with a standard deviation of 1.3s.

This experiment was conducted in both LAN and emulated WAN (with 40ms RTT).

Based on the results shown in Figure 4-22, similar observations can be made as in the

previous experiment: in LAN, the performance of secure GVFS is very close to NFS; in

WAN, GVFS still delivers a good performance and is substantially better than NFS. In

phase 1, GVFS stores the large output entirely in cache with the use of write-back; in

phase 2, a large number of reads can be satisfied from the data cached in disk, which are

not available in memory; and at the end, GVFS also saves considerable time from writing

back only the final results but not the temporary data to the server. Consequently, GVFS

shows no slow down in WAN. Compared to NFSv3, it is more than five times faster in

the total runtime, and the speedup is about two-fold, forty-fold, and four-fold for the first

three phases respectively.

4.5 Fault Tolerance

As DFSs getting deployed on WAN, their scale and dynamism also grow dramatically.

Unreliable machines and networks often cause the interruption of remote data access
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on a DFS and even the loss of data due to unrecoverable failures. In a system built on

non-dedicated resources, such as a grid or peer-to-peer system, the dynamic leaving of

resources also makes the data stored on them unavailable to others. Therefore, strong

tolerance of dynamic failures is critical to using DFSs in such environments, especially to

applications that take long time to finish and cannot be easily recovered in case of failures.

Widely deployed DFSs typically do not provide any support for fault tolerance,

since they are designed for a relatively reliable and stable environment. However, the

GVFS-based virtual DFSs built upon them can employ user-level fault-tolerance protocols

to improve the data reliability and availability. In these protocols, fault tolerance is

provided by introducing redundancy to the data sets, through the use of replication or

coding. Redundancy can be deployed across different servers and different sites to protect

against various sorts of failures, including the loss of data due to system crashes, the loss

of connections due to network partitions, and the corruption of data due to faulty storage

or transmissions. This section presents the replication-based fault-tolerance protocol that

makes use of redundancy to improve the reliability of data access on GVFS.

4.5.1 Virtualization of Data Sets

Replication is a common practice for improving reliability. A GVFS-based data

session can employ multiple file servers to replicate its data set and provide fault tolerance

to the application or user’s data access. In such a setup, a proxy server is started on each

of the replication servers, allows the connection from the proxy client, and services the

client’s data requests using its local replica. Data virtualization is provided by the proxy

client to hide the different physical location and identity of the replicas, and present a

single, consistent view of the data set to the application.

In NFS, a client references files and directories by file handles (FHs), which are

typically less than 64 bytes in length and stores contents that are opaque to the client.

A file is uniquely identified by its file handle on its file server. However, after replication,

a file or directory may have a different FH on every file server, and the client cannot use
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the same one to reference its replicas. To address this, virtual FHs are provided by GVFS

to virtualize a data set across the replication servers. The proxy client presents virtual

FHs to the client and maps them to the physical ones on-the-fly while the data are being

accessed.

When a client first mounts a replicated remote file system through GVFS, the proxy

client creates a virtual root FH for the virtual DFS, forwards the request to all the servers

to obtain the physical root FHs, stores the virtual-to-physical mappings persistently in

its local disk caches, and returns the virtual one to the client. Henceforth, the client can

use this virtual FH to reference the root in its RPCs, and the proxy client will translate

it to the physical root FHs before it forwards the calls to the servers. Similar steps are

followed when the client creates a regular file or directory, or looks up one that is not

already cached by the proxy.

4.5.2 Replication Schemes

Initial replication of a data set is done by a user or middleware that manages it

(please see Section 6.1.3.3 for more details on the replication management). After a GVFS

session is created to provide an application with access to the data, the consistency among

the replicas is maintained using an active-style protocol [101], with several variations to

allow application-tailored customizations. In the basic scheme, every data and metadata

update request from the client is multicast to the proxy servers and performed on all the

replicas, and it does not return until the proxy client has received an acknowledgement

from everyone. Consequently, each replica has the exact same copy of the data set, and if

any of them crashes, it has no impact upon the application since the remaining replicas

can continue to service as usual.

The above scheme performs updates synchronously and thus limits the performance

to the slowest replication server. It can be relaxed to allow asynchronous updates

and reduce the overhead for write-intensive applications. In this variation, one of the

replication servers, namely the primary server, is updated synchronously, whereas the
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others are done asynchronously. Specifically, the proxy client responds to an update

immediately after the primary server acknowledges it without waiting for the others. (The

ordering of requests to a file is provided by the reliable multicast mechanism described

below.) Therefore, the performance of the updates can be improved by choosing the

fastest server as the primary. It is useful for supporting heterogeneous replication servers,

which have, e.g., different level of loads or different network latency to the client.

The synchronization of updates can be further delayed by the proxy client using

its disk caches to buffer them locally. Given sufficient cache capacity, the updates are

submitted to the servers in batches when the application is idle or completes. In addition

to exploiting the locality of updates, the use of write-back reduces the overhead of

maintaining replication consistency. The drawback of this scheme is that, in case of client

crashes, the updates cannot be recovered until the client is back, or the application need

be restarted on another client.

Reliable multicast of updates in the above protocol is realized by client-side logging

and multithreaded RPCs. Before the proxy client multicasts a update request, it logs it

synchronously on persistent storage. Then it uses multiple threads to forward the update

RPCs to the proxy servers concurrently. The RPCs can use both UDP and TCP, and the

proxy client will retransmit upon a timeout until a failure is determined. After the request

is acknowledged by all the proxy servers, it is considered completed and removed from the

log. If the proxy client crashes in the middle of the multicast procedure, then after the

recovery, it can check the log and resend the incomplete updates. To enforce the ordering

of multicast, during an update multicast, the following requests to the same file will be

blocked by the proxy client until the update is completed.

Although it is necessary to propagate an update to the entire replication group, a

GVFS session can choose to whether perform read operations on all the replicas or only

on the primary one. The former scheme is necessary to provide fault tolerance against

Byzantine failures, in which the proxy client compares replies from the servers and returns
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one based on the majority vote. This scheme is often combined with the synchronous

update approach, and it has a similar disadvantage of limiting the performance to the

slowest replication server.

A GVFS session can also use a primary-backup based scheme for read operations,

in which the proxy client sends reads only to the primary server. By choosing the server

that delivers the best data access performance as the primary, it can not only reduce the

overhead from using replication but also improve the data access performance, which

is discussed in details in in Section 6.2.3.1. In combination with the above active-style

schemes for write operations, this approach in essence provides a “read-one, write-all”

fault-tolerance protocol, which can be employed by a read-mostly GVFS session to

improve its both performance and reliability.

4.5.3 Application-Transparent Failover

Based on replication and virtualized data sets, fault tolerance can be provided for

GVFS data sessions with application-transparent failover. In order to detect a server-side

failure happened in a session, the proxy client keeps in touch with the proxy servers

through the requests from the application, or by sending periodic heartbeats using NULL

RPCs if the application is idle. If a RPC times out, it is first retransmitted in case the

failure is caused by a transient network or server problem. When a major timeout (e.g.,

100 times of the average response time) is reached before any of the retransmissions

succeeds, it assumes that an unrecoverable failure has occurred on that server.

A failed server is excluded from the group of replication servers for the GVFS session,

and its application can continue access the remote data using the available servers. If

a primary-backup based replication scheme is used and the primary server is failed, the

proxy client immediately chooses a new primary server from the backup ones and forwards

the failed call as well as the following ones to it. In this way, the failure detection and
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recovery is completely masked from the application4 , and except for a short delay, its data

access is not affected at all in this process.

To support timely replica repair and regeneration, a proxy client notifies of a detected

failure to the user or the middleware service that manages the GVFS session, so that

actions can be taken to recover the replicas either online or offline. GVFS also supports

non-interrupt online replica regeneration by allowing a user or service to temporarily

switch the GVFS session to the repair mode, in which all the application’s updates

are buffered by the proxy client in local disk caches and synchronized later with the

replication servers after the new replica is generated. The replication management service

is discussed in details in Section 6.1.2.

4.5.4 Evaluation

The effectiveness of the replication-based fault-tolerance protocol is evaluated in

this subsection with a GVFS data session established for the SPECseis96 benchmark

application. The file system client and server were set up on VMware GSX 2.5 based

virtual machines (VMs), connected by the WAN between University of Florida (UFL) and

Louisiana State University (LSU). The server VM was replicated to provide redundancy

for the data set.

During the execution of the benchmark on the client VM, a failure was injected

by powering off the server VM. The failure was detected when a timeout of a RPC call

happened, and was immediately recovered by establishing a new connection to the replica

VM and redirecting the calls through it. The benchmark finished successfully, without

being aware of the server failure and recovery during its execution. The elapsed time

of such a run (268 seconds) is compared with the execution time of the benchmark in a

4 To hide a long timeout from the application, the GVFS session needs to be mounted in a “hard”
manner, in which the kernel NFS client continues retrying the failed operation indefinitely until it
succeeds. If the session is mounted in a “soft” manner, the kernel NFS client will report an I/O error
to the application after a long timeout.
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normal GVFS session (without injected failure, 258 seconds). The results show that the

overhead of error detection and redirection setup is 5 seconds (plus the specified timeout

value — 5 seconds, which is adjustable through the proxy). Considering a long-running

application, this overhead is negligible.
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CHAPTER 5
APPLICATION STUDY: SUPPORTING GRID VIRTUAL MACHINES

The GVFS-based file system virtualization and application-tailored enhancements

discussed in the above chapters have been successfully employed to support applications

from many different disciplines, including spectroscopy study for biomedical scientists

[91] and storm surge modeling for costal researchers [102]. A particularly important and

interesting application of this solution is to support virtual machines (VMs) as execution

environments for grid applications, where efficient and secure access to both user and VM

data is transparently provided to the applications and VMs instantiated on-demand across

grids.

5.1 Architecture

A fundamental goal of computational grid systems is to allow flexible, secure sharing

of resources distributed across different administrative domains [1]. To realize this

vision, a key challenge that must be addressed by grid middleware is the provisioning

of execution environments that have flexible, customizable configurations and allow

for secure execution of untrusted code from grid users [103]. Such environments can

be delivered by architectures that combine system-level VMs [104] and middleware for

dynamic instantiation of VM instances on a per-user, per-application basis [17]. Efficient

instantiation of VMs across distributed resources requires middleware support for transfer

of large VM state files (e.g., memory state, disk state) and thus poses challenges to data

management infrastructures.

Mechanisms that present in existing middleware can be utilized to support this

functionality by treating VM-based computing sessions as processes to be scheduled (VM

monitors) and data to be transferred (VM state). In order to fully exploit the benefits of a

VM-based model of grid computing, data management is key: without middleware support

for transfer of VM state, computation is tied to the end-resources that have a copy of a

user’s VM; without support for the transfer of application data, computation is tied to
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Figure 5-1. The GVFS supported data management for both virtual machine state and
user data allows for per-user, per-application VM instantiations (VM1, VM2,
and VM3 ) across grid resources (compute servers C1 and C2, state servers S1
and S2, data servers D1 and D2 ).

the end-resources that have local access to a user’s files. However, with appropriate data

management support, the components of a grid VM computing session can be distributed

across three different logical entities: the “state server”, which stores VM state; the

“compute server”, which provides the capability of instantiating VMs; and the “data

server”, which stores user data (Figure 5-1).

As an important application of the GVFS virtualization approach, a data management

solution based on GVFS and its application-tailored enhancements is proposed to allow

fast dynamic VM instantiation and efficient runtime execution to support VMs as

execution environments in grid computing. In particular, as illustrated in Figure 5-2,

GVFS disk caching is important to improving the performance of remote VM state access
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Figure 5-2. The GVFS extensions for VM state transfers. At the compute server, the VM
monitor issues system calls that are processed by the kernel NFS client.
Requests may hit in the kernel-level memory buffer cache (1); those that miss
are processed by the user-level proxy (2). At the proxy, requests that hit in
the block-based disk cache (3), or in the file-based disk cache if matching
stored metadata (4), are satisfied locally; proxy misses are forwarded as
SSH-tunneled RPC calls to a remote proxy (5), which fetches data directly (for
VM memory state) (6) or through the kernel NFS server (for VM disk state)
(7).

for many VM technologies, including VMware [80], UML [82], and Xen [81], where VM

state (e.g., virtual disk, virtual memory) is stored as regular files or file systems. The

GVFS private file system channels can also be used to provide secure VM state access over

insecure grid resources.

Another user-level extension made to GVFS is the handling of application-specific

metadata information. This technique is employed to support grid VMs and realize

VM-aware data transfer for on-demand VM instantiation, as discussed in the next section.

5.2 Virtual Machine Aware Data Transfer

The main motivation for metadata handling is to use middleware information

to generate metadata for certain categories of files to capture the knowledge of grid

applications. Then, a GVFS proxy can take advantage of the metadata to improve data

transfer. Metadata contain the data characteristics of the file it is associated with, and

define a sequence of actions which should be taken on the file when it is accessed, where
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each action can be described as a command or script. When the proxy receives a NFS

request to a file which has metadata associated with, it processes the metadata and

executes the required actions on the file accordingly. In the current implementation, the

metadata file is stored as a hidden file in the same directory as the file it is associated

with, and has a special extension (named in the style of .filename.meta), so that it can be

easily looked up.

For example, resuming a VMware VM requires reading the entire memory state file

(typically in hundreds of MBytes or more). Transferring the entire contents of this file

over a DFS is time-consuming; however, with application-specific knowledge, it can be

pre-processed to generate a metadata file specifying which blocks in the memory state

are all zeros. Then, when the memory state file is requested, the proxy client, through

processing of the metadata, can service requests to zero-filled blocks locally, ask for only

non-zero blocks from the server, reconstruct the entire memory state, and present it to

the VM monitor. Normally the memory state contains many zero-filled blocks that can be

filtered out by this technique [83], and the traffic on the wire can be greatly reduced while

instantiating a VM. For instance, when resuming a 512MB-RAM Red Hat 7.3 VM which

was suspended after boot-up, the client issued 65,750 NFS reads, whereas by using this

metadata handling technique 92% of the requests could be filtered out without being sent

to the server.

Another example of GVFS’ metadata handling capability is to help the transfer of

large files and enable file-based disk caching. Inherited from the underlying NFS protocol,

data transfer in GVFS is on-demand and block-by-block based (typically 4KB to 64KB

per block), which allows for partial transfer of files. Many applications can benefit from

this property, especially when the working set sizes of the accessed files are considerably

smaller than the original sizes of the files. For example, accesses to the VM disk state are

typically restricted to a working set that is much smaller (<10%) than the large disk state

files. But when large files are indeed completely required by an application (e.g., when a
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remotely stored memory state file is requested by VMware to resume a VM), block-based

data transfer may become inefficient.

However, if grid middleware can speculate in advance which files will be entirely

required based on its knowledge of the application, it can generate metadata for GVFS

proxy to expedite the data transfer. The actions described in the metadata can be

“compress”, “remotely copy”, “uncompress”, and “read locally”, which means when the

referred file is accessed by the client, instead of fetching the file block by block from the

server, the proxy will: 1) compress the file on the server (e.g., using GZIP); 2) remotely

copy the compressed file to the client (e.g., using GSI-enabled SCP [105]) ; 3) uncompress

it to the file cache (e.g., using GUNZIP); and 4) generate result for the request from the

locally cached file. Once the file is cached all the following requests to the file will also be

satisfied locally (Figure 5-2).

Hence, the proxy effectively establishes an on-demand fast file-based data channel,

which can also be secure by employing SSH tunneling for data transfer, in addition to the

traditional block-based NFS data channel, and a file-based cache which complements the

block-based cache in GVFS to form a heterogeneous disk cache. The key to the success

of this technique is the proper speculation of an application’s behavior. Grid middleware

should be able to accumulate knowledge about applications from their past behaviors

and make intelligent decisions based on this knowledge. For instance, since for VMware

the entire memory state file is always required from the state server before a VM can

be resumed on the compute server, and since it is often highly compressible, the above

technique can be applied very efficiently to expedite its transfer.

5.3 Integration with VM-Based Grid Computing

The VMs can be deployed in a grid in two different kinds of scenarios, which pose

different requirements of data management to the GVFS data sessions created for VM

instantiations. In the first scenario, a grid user is allocated a dedicated VM which has a

persistent virtual disk on the state server. It is suspended at the current state when the
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user leaves and resumed when the user comes back. Nonetheless, the user may or may not

start computing sessions from the same server. The VM should be efficiently instantiated

on the compute server when the session starts, and the modifications to the VM state

from the application execution during the session should also be efficiently reflected on the

state server.

The GVFS along with its application-tailored enhancements can well support this

scenario in that: 1) the use of metadata handling can quickly restore the VM from its

checkpointed state; 2) the on-demand block-based access to the virtual disk can avoid

the large overhead incurred from downloading and uploading the entire virtual disk;

3) proxy disk caches can exploit locality of references to the virtual disk and provide

high-bandwidth, low-latency accesses to cached file blocks; 4) write-back caching can

effectively hide the latencies of write operations perceived by the user/application, which

are typically very large in a wide-area environment, and submit the modifications when

the user is offline or the session is idle.

In the other scenario, the state server stores a number of template VMs for the

purpose of “cloning”. These generic VMs have application-tailored hardware and software

configurations, and when a VM is requested from a compute server, the state server is

searched against the requirements of the desired VM. The best match is returned as the

“golden” VM, which is then “cloned” at the compute server [106]. The cloning process

entails copying the “golden” VM, restoring it from checkpointed state, and setting up the

clone with customized configurations. But instead of copying the entire virtual disk, only

symbolic links are made to the disk state files. The golden VM’s disk state is read-only

shared by all of its clones. After a new clone “comes to life”, computing can start in the

VM and modifications to the original disk state are stored in the form of redo logs (also

known as copy-on-write files). So data management in this scenario requires efficient

transfer of the VM state from the state server to the compute server, as well as efficient

writes to the redo logs for checkpointing.
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Similar to the first scenario, GVFS can quickly instantiate a VM clone by using

metadata handling for the memory state file and on-demand block-based access to the disk

state files. After the computing starts, the proxy disk cache can help speed up access to

the shared virtual disk files, and write-back can help save user time for writes to the redo

logs. However, a key difference in this scenario is that a small set of golden VMs can be

used to instantiate many clones, e.g., for parallel execution of a high-throughput task. The

proxy disk caches can exploit temporal locality among cloned instances and accelerate the

cloning process. On the compute server, the cached data of memory and disk state files

from previous clones can greatly expedite new clonings from the same golden VMs. In

addition, a second-level proxy disk cache can be setup on a LAN server, as explained in

Section 4.2.1.3, to further exploit the locality and provide high speed access to the state of

golden VMs for clonings to the same LAN.

In both of the above scenarios, middleware-driven cache consistency discussed in

Section 4.2.1.2 can be employed. Under a VM management system, such as VMPlant [106]

and VMware VirtualCenter [107]: a VM with persistent state can be dedicated to a single

user, where aggressive read and write caching with write delay can be used; a VM with

non-persistent state can be read-shared among users but each user can have independent

redo logs, where read caching for state files and write-back caching for redo logs can be

employed. In both cases, the management middleware can control GVFS to write back

VM state modifications at the end of the data sessions.

5.4 Evaluation

5.4.1 Setup

This section uses a group of typical benchmarks to evaluate the efficiency of using

GVFS to support VM instantiations and executions across network. Experiments were

conducted in both local-area and wide-area environments. The LAN setup studies the

overhead of using GVFS, whereas the WAN setup investigates its performance in the

target grid environments.
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The LAN state server is a dual-processor 1.3GHz Pentium-III cluster node with

1GB of RAM and 18GB of disk storage. The WAN state server is a dual-processor

1GHz Pentium-III cluster node with 1GB RAM and 45GB disk. In Section 5.4.2, the

compute server is a 1.1GHz Pentium-III cluster node with 1GB of RAM and 18GB

of SCSI disk; in Section 5.4.3, the compute servers are cluster nodes which have two

2.4GHz hyper-threaded Xeon processors with 1.5GB RAM and 18GB disk per node. All

of the compute servers run VMware GSX server 2.5 to support x86-based VMs. The

compute servers are connected with the LAN state server in a 100Mbit/s Ethernet at the

University of Florida, and connected with the WAN state server through Abilene between

Northwestern University and University of Florida. The RTT from the computer servers to

the LAN state server is around 0.17ms, whereas to the WAN state server is around 32ms

as measured by RTTometer [97].

In the experiments on GVFS with disk caching, the cache was configured with

8GByte capacity, 512 file banks, and 16-way associativity. The GVFS prototype used here

is based on NFSv2, which limits the maximum size of an on-the-wire read or write RPC to

8KB. However, in the experiments on native NFS, NFSv3 with 32KB block size was used

to provide the best achievable results for comparison. Furthermore, all the experiments

were initially setup with cold caches (both kernel buffer cache and possibly enabled proxy

disk cache) by unmounting the remote file system and flushing the proxy cache if it was

used. Private file system channels were always employed in GVFS during the experiments.

5.4.2 Performance of Application Executions within VMs

Three benchmarks that represent different typical usage of VMs were used to evaluate

the performance of applications executing on GVFS-mounted VM environments:

SPECseis: a benchmark from the SPEC high-performance group. It consists of four

phases, where the first phase generates a large trace file on disk and the last phase involves

intensive seismic processing computations. The benchmark was tested in sequential mode

with the small data set. It models a scientific application that is both I/O-intensive and
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compute-intensive. SPECseis is used to study the performance of an application that

exhibits a mix of compute-intensive and I/O-intensive phases.

LaTeX: a benchmark designed to model an interactive document processing session.

It is based on the generation of a PDF (Portable Document File) version of a 190-page

document edited by LaTeX. It runs the “latex”, “bibtex”, and “dvipdf” programs in

sequence and iterates 20 times, where each time a different version of one of the LaTeX

input files is used. This benchmark is used to study a scenario where users interact with

a VM to customize an execution environment for an application that can then be cloned

by other users for execution [106]. In this environment, it is important that interactive

sessions for VM setup show good response times to the grid users.

Kernel compilation: a benchmark that represents file system usage in a software

development environment, similar to the Andrew benchmark [25]. The kernel is a Linux

2.4.18 with the default configurations in a Red Hat 7.3 Workstation deployment, and the

compilation consists of four major steps, “make dep”, “make bzImage”, “make modules”,

and “make modules install”, which involve substantial reads and writes on a large number

of files.

The execution times of the above benchmarks within a VM, which has 512MB RAM

and 2GB disk (in VMware plain disk mode [108]), runs Linux Red Hat 7.3, and stores the

benchmark applications and their data sets, were measured in the following four different

scenarios:

Local: The VM state was accessed from a local-disk file system.

LAN/G: The VM state was accessed from the LAN state server via GVFS without

disk caching.

WAN/G: The VM state was accessed from the WAN state server via GVFS without

disk caching.

WAN/GC: The VM state was accessed from the WAN state server via GVFS with

disk caching.
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Figure 5-3. The SPECseis benchmark execution time in VM. The results show the
runtimes of various SPECseis phases with the VM state accessed from a
local-disk file system (Local), the LAN state server via GVFS without disk
caching (LAN/G), the WAN state server via GVFS without disk caching
(WAN/G), and the WAN state server via GVFS with disk caching
(WAN/GC ).

Figure 5-3 shows the execution times of the four SPECseis phases. The performance

of the compute-intensive part (phase 4) is within a 10% range across all scenarios. The

results of the I/O-intensive part (phase 1), however, shows a large difference between the

WAN/G and WAN/GC scenarios — the latter is faster by a factor of 2.1. The benefit of

a write-back policy is evident in the phase 1, where a large file that is used as an input

to the following phases is created. The use of disk caching in GVFS also brings down the

total execution time by 33 percent in the wide-area environment.

The LaTeX benchmark results in Figure 5-4 show that in WAN interactive users

would experience a startup latency of 225.67 seconds (WAN/G) or 217.33 seconds

(WAN/GC ). This overhead is substantial when compared to Local and LAN, which

execute the first iteration in about 12 seconds. Nonetheless, the start-up overhead in these

scenarios is much smaller than what one would experience if the entire VM state has to

be downloaded from the state server for data access (2818 seconds). During subsequent
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Figure 5-4. The LaTeX benchmark execution time in VM. The results show the runtime of
the first run, the average runtime of the following 19 runs, and the total
runtime, with the VM state accessed from a local-disk file system (Local), the
LAN state server via GVFS without disk caching (LAN/G), the WAN state
server via GVFS without disk caching (WAN/G), and the WAN state server
via GVFS with disk caching (WAN/GC ).

iterations, the kernel buffer can help to reduce the average response time for WAN/G to

about 20 seconds. The use of GVFS disk caching can further improve it for WAN/GC

to very close to Local (8% slower) and LAN/G (6% slower), which are 54% faster than

WAN/G. The time needed to submit cached state modifications is around 160 seconds,

which is also much shorter than the uploading time (4633 seconds) of the entire VM state

in the download-upload data access model.

Experimental results from the kernel compilation benchmark are illustrated in Figure

5-5. The first run of the benchmark in the WAN/GC scenario which begins with “cold”

caches shows an 84% overhead compared to that of the Local scenario. However, for the

second run, the “warm” caches help to bring the overhead down to 9%, and compared

to the second run of the LAN scenario, it is less than 4% slower. The availability of

disk caching allows WAN/GC to outperform WAN/G by more than 30 percent. As
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Figure 5-5. Kernel compilation benchmark execution time in VM. The results show the
runtime for four different phases in two consecutive runs of the benchmark,
with the VM state accessed from a local-disk file system (Local), the LAN
state server via GVFS without disk caching (LAN/G), the WAN state server
via GVFS without disk caching (WAN/G), and the WAN state server via
GVFS with disk caching (WAN/GC ).

in the LaTeX case, the data show that the overhead experienced in an environment

where program binaries and/or data sets are partially reused across iterations (e.g., in

application development environments), the response times of WAN-mounted GVFS

sessions are acceptable.

5.4.3 Performance of VM Cloning

Another benchmark is designed to investigate the performance of VM cloning under

GVFS. The cloning scheme is as discussed in Section 5.3, which includes copying the

configuration file, copying the memory state file, building symbolic links to the disk state

files, configuring the clone, and at last resuming the new VM. The execution time of the

benchmark was also measured in five different scenarios:

Local: The VM was cloned for eight times sequentially from a local-disk file system.
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Figure 5-6. Performance of a sequence of VM clonings (from 1 to 8). Each cloned VM has
320MB of virtual memory and 1.6GB of virtual disk. The results show the VM
cloning time in the different scenarios.

WAN-S1: The VM was cloned for eight times sequentially from the WAN state

server via GVFS. The clonings were supported by GVFS with private file system channel,

proxy disk caching, and metadata handling. It is designed to evaluate the performance

when there is temporal locality among clonings.

WAN-S2: The setup is the same as WAN-S1 except that eight different VMs were

each cloned once to the computer server sequentially. It is designed to evaluate the

performance when there is no locality among clonings.

WAN-S3: The setup is the same as WAN-S2 except that a LAN server was used to

provide a second-level proxy disk cache to the compute server. Eight different VMs were

cloned, which were new to the compute server, but were pre-cached on the LAN server

due to previous clones to other computer servers in the same LAN. This setup is designed

to model a scenario where there is temporal locality among the VMs cloned to the same

LAN.
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Table 5-1. Total times of cloning eight VMs in WAN-S1 and WAN-P when the caches
(kernel buffer cache, proxy block-based cache, and proxy file-based cache) are
cold and warm.

Total time when caches are cold Total time when caches are warm
WAN-S1 1056 seconds 200 seconds
WAN-P 150.3 seconds 32 seconds

WAN-P: Eight VMs were cloned in parallel from the WAN state server to eight

compute servers via GVFS.

Figure 5-6 shows the cloning time for a sequence of VMs which have 320MB of virtual

memory and 1.6GB of virtual disk. In comparison with the range of GVFS-based cloning

times shown in the figure, if the VM is cloned using Secure Copy for full-file copying, it

takes approximately twenty minutes to transfer the entire state. If the VM state is not

copied but is read from a native NFS-mounted directory, the cloning takes more than

half an hour because the block-based transfer of memory state file is slow. However, the

enhanced GVFS with proxy disk caches and metadata support to compress (using GZIP)

and transfer (using SCP) the VM’s memory state can greatly speed up the cloning process

to within 160 seconds. Furthermore, if there is temporal locality of accesses to the memory

and disk state files among the clones, GVFS even allows the cloning to be performed

within 25 seconds if data are cached on local disks or within 80 seconds if data are cached

on a LAN server.

Table 5-1 compares the performance of sequential cloning with parallel cloning via

GVFS. In the experiment of WAN-P, the eight compute servers shared a single state

server and GVFS proxy server. But when the eight clonings started in parallel, each

proxy client spawned a file-based data channel to fetch the memory state file on demand.

The speedup from parallel cloning versus sequential cloning is more than 700% when

the caches are cold and more than 600% when the caches are warm. Compared with the

average time to clone a single VM in the sequential case (WAN-S1 ), the total time for

cloning eight VMs in parallel is only 14% longer with cold caches and 24% longer with
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warm caches, which implies GVFS’ support for VM cloning can scale to parallel cloning

of a large number of VMs very well. In both scenarios, the support from GVFS is on

demand and transparent to user and VM monitor. In addition, as demonstrated in Section

5.4.2, following a VM’s instantiation via cloning, GVFS can also improve its run-time

performance substantially.
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CHAPTER 6
SERVICE-ORIENTED AUTONOMIC DATA MANAGEMENT

The data management system proposed in this dissertation is built upon two levels

of software. The first level is based on the GVFS approach described in the previous

chapters, which addresses the problem of providing transparent and application-tailored

data access in grid-style environments. Based on GVFS, data sessions can be created

on demand for applications upon the shared physical resources as illustrated in Figure

3-1. These sessions can be independently customized to provide the desired data access

according to their application needs, e.g., to serve the diverse applications described in

Section 4.1.

The second level of the proposed data management system addresses the problem

of managing data provisioning in a large, dynamic system, i.e., how to manage many

dynamic and diverse GVFS data sessions in a large-scale system. It is desirable that

data management can leverage the knowledge of applications (characteristics, usage

scenarios, service quality requirements) to optimize the data provisioning, and that it can

be done automatically according to high-level objectives (e.g., Quality of Service). This

chapter describes service-oriented middleware designed towards these goals. Service-based

management hides the complexity of data provisioning from clients — users or other

middleware, and transparently prepares data for their applications through interoperable

interfaces. Intelligence can be further embedded into the services to automatically

optimize data access according to the QoS goals specified by clients.

6.1 Service-Based Data Management

6.1.1 Architecture

Figure 6-1 illustrates the overall architecture of the proposed service-oriented data

management. It supports dynamic management of grid-scale data provisioning by means

of service-based management middleware (the control flow, dashed lines), and GVFS-based

137



Figure 6-1. Example of GVFS sessions established by the data management services on
compute servers (C1, C2 ) and file servers (F1, F2 ). In step 1, the job
scheduler requests the DSS (Data Scheduler Service) to start a session between
C1 and F1 ; step 2, the DSS queries the DRS (Data Replication Service) for
replica information; it then requests in step 3 the FSS (File System Service) on
F1 to start the proxy server (step 4). The DSS also requests the FSS on C1 to
start the proxy client and mount the file system (steps 5, 6). The job scheduler
can then start a task in C1 (step 7), which can access the data on server F1
through session I. Sessions II, III and IV are isolated from session I.

data sessions1 (the data flow, shaded regions). The figure shows examples of data sessions

established by the data management services. Sessions are independently configured and

isolated from each other through the services and proxies. Several sessions can also share

the same data set by connecting to the same proxy server (e.g., Session II and III in

Figure 6-1).

1 The service also supports file-based data transfers for the data flow, as described in Section 6.1.3.1.
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Fundamentally, the goal of this architecture is to enable flexible, secure resource

sharing. This involves the establishment of relationships between providers and users that

are complex (and often conflicting) in distributed environments. From a user’s standpoint,

resources should ideally be customizable to their needs, regardless of their location. From

a provider’s standpoint, resources should ideally be configured in a single, consistent way.

Otherwise, sharing is hindered by a provider’s inability to accommodate individual user

needs (and associated security risks) and by the user’s inability to effectively use systems

over which they have limited control.

To this end, the proposed service-oriented approach builds upon two key aspects

of the Web Service Resource Framework (WSRF): interoperability in the definition,

publishing, discovery, and interactions of services [109][68][110], and state management for

controlling data access sessions that persist throughout the execution of an application.

It also builds upon a virtualized data access layer that supports user-level customization.

As a result, the services are deployed once by the provider, and can then be accessed by

authorized users to create and customize independent data access sessions.

These data management services are intended for use by both end-users and

middleware brokers (e.g., job schedulers) acting on their behalf. In either case, it is

assumed that the user or middleware client can authenticate to the service host, directly

or indirectly through delegation, leveraging authentication support at the WSRF layer,

and obtain access to a local user identity on the host (e.g., via GSI-based grid-to-local

account mappings, or via middleware-allocated, “logical” user accounts [111][112]). (See

Section 6.1.4 for more details about the security architecture.)

The remaining of this chapter is organized as follows. Section 6.1.2 presents the

details of the proposed data management services. Section 6.1.3 describes how they are

employed to manage application-tailored data sessions. Section 6.1.5 discusses several

usage examples.
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6.1.2 The WSRF-Based Data Management Services

6.1.2.1 File system service

The File System Service (FSS) runs on every compute and file server and controls

the local GVFS proxies. It implements the establishment and customization of file system

sessions through the management of the proxies. The proxy processes are the stateful

resources to the service, and the service provides the interface to start, configure, monitor,

and terminate them. Their state (e.g., proxy configurations) is stored in files on local disk.

A proxy client is associated with a single session; a proxy server, however, can be involved

in more than one session to support the data sharing among multiple applications (e.g.,

session II and III in Figure 6-1).

The service customizes a proxy via configurations defined in a file and can signal it

to dynamically reconfigure itself by reloading the file (Figure 4-6). The configuration file

holds information including disk cache parameters, cache consistency protocol, security

configuration, and data replica location. They are represented as WS-Resource Property

and can be viewed and modified with standard WSRF operations (getResourceProperty

and setResourceProperty). When the FSS receives a request for a session’s status, it

signals the proxy to report the accumulated statistics (number of RPC calls, resource

usage etc.) and to issue an NFS NULL call to the server to check whether the connection

is still alive.

6.1.2.2 Data scheduler service

The Data Scheduler Service (DSS) is in charge of creation and management of GVFS

sessions. These sessions are associated to the service as its stateful resources and their

state (e.g., session configurations) is maintained in a database. The service supports the

operations of creating, configuring, monitoring, and tearing down of a session.

A request to create a session needs to specify the two endpoint locations (client’s

IP address and mount point, server’s IP address and file system export path) and the

desired configurations of the session in the aspects of caching, multithreading, consistency,

140



security, and reliability. The DSS first checks its information about other sessions to

resolve sharing conflicts. For example, if the same data set is accessed by another session

with write-back caching enabled, the service can interact with the corresponding FSS

to force the session to submit the cached data modifications and disable write-back

afterwards.

When there is no conflict, the DSS can proceed to start the session (Figure 6-1).

It asks the server-side FSS to start the proxy server and the client-side FSS to start

the proxy client and then establishes the connection. Before sending a request to the

client-side FSS, the DSS also queries the DRS (a service described below). If there are

replicas for the data set, their locations are also sent along with the request, so that in

case of failure the session can be redirected to a backup server.

Note that a session is set up for a particular job submitted by a user or service. If

there is an irresolvable data sharing conflict when scheduling a session (e.g., the data set is

currently under exclusive access by another session), the DSS cannot establish the session

and it returns an error to the service client.

The DSS can also dynamically reconfigure a session’s configurations and monitor its

status as needed, via the configuring and monitoring operations on the session’s proxies

through the corresponding FSSs. It associates the resource ID of the session with the

resource IDs of the session’s proxies, so that it can reference the concerned proxies during

its interactions with the FSS.

6.1.2.3 Data replication service

The Data Replication Service (DRS) is responsible for managing data replication,

and its stateful resources are the data replicas. The service exposes interfaces for creating,

destroying, and querying a given data set’s replicas. The state of the replicas is stored

in a relational database, which facilitates the query and manipulation of information

about replicas. The service can be queried with the location (IP address of the server and
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path to the data on the server) of a data set (primary or backup one), and it returns the

locations of all the replicas.

A request to create a replica needs to specify the locations of the source data and

the desired replica. If a replica does not already exist at the requested location, the DRS

then interacts with the DSS to schedule a session between the source and destination

and have the data replicated. Such a data session can employ efficient bulk-data transfer

mechanisms described below (Section 6.1.3.1) to achieve high-throughput replication,

especially for wide-area data replication. A replica can also be destroyed as needed

through the DRS, which contacts the DSS to schedule the replica removal from the

specified location, after it becomes unused by existing sessions. Whenever a replica is

created or destroyed, the DRS updates the database accordingly.

The prototype of the above described data management services has been built using

WSRF::Lite [71], a Perl-based WSRF implementation of WSRF. The database needed to

store the resource state for DSS and DRS has been implemented using MySQL.

6.1.3 Application-Tailored Data Sessions

The data management services are capable of creating and managing dynamic

GVFS sessions. Unlike traditional distributed file systems which are statically set up for

general-purpose data access, each GVFS session is established for a particular task. Hence

the services can apply application-tailored customizations on these sessions to enhance

data access in the aspects of performance, consistency, security, and fault tolerance.

Figure 6-2 illustrates the use of several such enhancements on a session to improve data

access performance and reliability. The following three subsections describe the choices

that can currently be made on a per-application basis.

6.1.3.1 Grid data access and file transfer

The FTP-based tools can often achieve high throughput for large-size file movements

[6], but the application’s data access pattern needs to be well defined to employ such

utilities. For applications which have complex data access patterns and for those
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Figure 6-2. Application-tailored enhancements for a GVFS session. Read requests are
satisfied from the remote server or the proxy cache. Writes are forwarded to
the loopback ROW server and stored in shadow files. When a request to the
remote server fails it is redirected to the backup server.

that operate on sparse data sets, the generic file system interface and partial-data

transfer supported by GVFS are advantageous. Both models are supported by the

data management services.

The FSS can configure data access sessions based on file system proxies. According

to the information about the job accounts and file accounts provided by the DSS, the FSS

dynamically sets up cross-domain identity mappings (e.g., remote-to-local user/group IDs)

on a per-session basis. The FSS can configure the GVFS session with application-tailored

caching, security, and reliability configurations as discussed later. It is also capable of

dynamically reconfiguring a GVFS session based on changed data access requirements, for

example, when a session’s data set becomes shared by multiple sessions.

The services can also employ high-throughput data transfer mechanisms (e.g.,

GridFTP [6], SFTP/GSI-OpenSSH [105]) if it is known in advance that applications

use whole-file transfers. This scenario can be dealt with in two different ways. In the

conventional way, a user or service authenticates through the DSS, which requests the

FSS to transfer files on behalf of the user: downloading the required inputs and presenting
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them to the application before the execution; uploading the specified outputs to the server

after the execution.

The FTP-style data transfer can also be exploited by GVFS while maintaining the

generic file system interface. The proxy client uses this functionality to fetch the entirely

needed large files to a local cache, but the application still operates on the files through

the kernel NFS client and proxy client in a block-based fashion. In this way, the selection

of data transfer mechanism becomes transparent to applications and can be leveraged

by unmodified applications. Such an application-selective data transfer session has been

shown to improve the performance of instantiating grid virtual machines (VMs) [20] in

Section 5.2, and it can be applied to support other applications as well through the data

management services.

Block-based or file-based disk caching can be employed by data sessions to support

the above different data transfer mechanisms, leveraging locality to improve remote data

access performance (6-2). Each session’s cache can be independently customized in terms

of both parameters (size, associativity) and policies (read-only, write-through, write-back),

according to its application’s characteristics and requirements.

6.1.3.2 Cache consistency

Applications can also benefit from the availability of different cache consistency

models. The DFS and FSS services enable applications to select well-suited strong or

weak consistency models by dynamically customizing GVFS sessions. Different cache

consistency protocols are overlaid upon the native NFS client-polling mechanism by the

user-level proxies as discussed in Section 4.3.

Typical NFS clients use per-file and per-directory timers to determine when to poll

a server. This can lead to unnecessary traffic if files do not change often and timers are

set to too small a value on one hand, and long delays in updates if timers have large

values on the other hand. Across wide-area networks, revalidation calls contribute to
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long application-perceived latencies. In contrast, the overlaid models customize the use of

consistency checks on a per GVFS session basis.

Because the data management services dynamically establish sessions that can be

independently configured, the overlaid consistency protocol can be selected to improve

performance when it is applicable. Two examples where overlaid consistency protocols can

improve performance are described below:

Single-client sessions: when a task is known to the scheduler to be independent

(e.g., in high-throughput task farm jobs), aggressive client-side caching can be enabled for

both read and write data and completely satisfy consistency checks locally to achieve the

best possible performance. As writes are delayed on the client, the data may become

inconsistent with the server. But from the session’s point of view, its data can be

guaranteed to be consistent by the DSS. Consistency actions that apply to a session

are initiated through the DSS in two occasions: 1) when the task finishes and the session

is to be terminated, the cached data modifications are automatically submitted to the

server; 2) when the data are to be shared with other sessions, the DSS reconfigures the

session by forcing it to write back cached modifications and disable write-back henceforth.

In either case, the DSS waits for the write-back to complete before it starts another

session on the same data.

Multiple-client sessions: For GVFS sessions where exclusive write access to data is

not necessary or not possible, the scheduler can apply relaxed cache consistency protocols

on these sessions to improve performance, e.g., the invalidation-polling based consistency

discussed in Section 4.3.2. For applications that cannot tolerate any inconsistency, strong

consistency protocols can be employed by their sessions, such as the delegation-callback

based consistency introduced in Section 4.3.3.

6.1.3.3 Fault tolerance

Reliable execution is crucial for many applications, especially long-running computing

and simulation tasks. The data management services currently provide two techniques for
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improved fault tolerance: client-side ROW-assisted checkpointing, and server replication

and session redirection (Figure 6-2).

Redirect-on-Write (ROW) file system [113]: The services can enable ROW on

a GVFS session, so all file system modifications produced by the client are transparently

buffered in local stable storage. In such a session, the proxy client splits the data requests

across two servers: reads go to the remote main server, and writes are redirected to a

local ROW server2 . This approach relies on the opaque nature of NFS file handles to

allow for virtual handles that are always returned to the client, but mapped to different

physical file handles at the main and ROW servers. Files whose contents are modified by

the client have “shadow” files created by the ROW server in a sparse file, and block-based

modifications are inserted in-place in the shadow file.

When an application is checkpointed, the FSS can request the checkpointing of

all buffered modifications in the shadow file system. Then, when the recovery from a

client-side failure is needed, as the application is rolled back to the previous saved state,

the FSS also rolls back the application’s data modifications to the corresponding state.

Without the ROW mechanism, when the application rolls back the modifications on

the files since the last checkpointing are already reflected on the server, in which case

the data state becomes inconsistent with the application state and the recovery cannot

proceed correctly. For instance, files already deleted on the server may be needed by the

application again after it is rolled back, which will cause the application to fail. A number

of checkpointing techniques can be employed in this approach, including [114][115]. One

particular case is the checkpointing of an entire VM which includes both the application

instance and the ROW file system. This is demonstrated in the following experiment.

2 Reads of files that have been modified by the client are routed to the ROW server, instead of the
main server.
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This experiment models a scenario where a VM running an arbitrary application is

checkpointed, continues to execute, and later fails. Before failing, the application changes

the state of the file server irreversibly — e.g., by deleting some temporary files. This case

was tested with the Gaussian computational chemistry application running on a compute

VM and using data mounted from a data VM. The experiment shows that, in native NFS,

when the compute VM was resumed to its previous checkpointed state, the temporary

files needed by the application were already gone on the data VM, so NFS reported a

stale file handle error and the application aborted. In contrast, with GVFS and the ROW

enhancement, the data state was stored along with the application state as part of the

VM’s checkpoint, and the file deletions were buffered locally and did not take place on the

data VM. So when the compute VM was resumed from the checkpoint, the application

was recovered successfully, because the data modifications happened after the checkpoint

were discarded from the ROW and the data on the data VM were still in a consistent

state with the application.

Server replication and session redirection: Replication is a common practice

for fault tolerance, and it is employed in GVFS to improve the reliability of data sessions

as discussed in Section 4.5. The data management services support the use of server

replication and session redirection to tolerate server-side failures, including server crashes

and network partitions, as follows. To prepare a GVFS session with replicated data sets,

the DSS checks the DRS for information about the data set’s existing replicas (the IP

address of a replica server and the path to the replica on the server). If the data set does

not have enough number of replicas to support the application-needed replication degree

(the number of replicas for the data set), the services can be asked to create the replicas

on the desired file servers.

The DSS then requests the FSS on each replica server to start a proxy server for

this session. It also passes on the replica information to the FSS on the client, so that

the proxy client can be started with connections to all the proxy servers. During such
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a session, the proxy client virtualizes the data set across the replicas and transparently

detect a failure as well as recover from it based on the fault-tolerance protocols described

in Section 4.5. The choice of replication degree, replica placement, and consistency scheme

for a GVFS session can all be customized by the services according to the application’s

requirements.

The data management services can also customize the security configurations of

GVFS data sessions in terms of the security policies and mechanisms discussed in Section

4.4. However, a complete security architecture is needed to provide security to not only

the data sessions but also the management services, and these two levels of security need

to be consistent with each other and be compatible with other security middleware. The

following subsection presents such a security architecture designed to achieve these goals.

6.1.4 Security Architecture

This dissertation proposes a two-level security architecture for GVFS-based grid data

management (Figure 6-3). It leverages transport-level security to protect the file system

traffic of GVFS and employs message-level security to secure the interactions with the

management services. Both levels utilize widely-accepted security tokens (X.509 [43]/GSI

certificates [51]) to support grid user authentication and file access control. The design

and implementation of the file system level security are already discussed in Section

4.4.2. Therefore, the rest of this subsection focuses on the service-level security and its

interaction with the file system level security.

To create a GVFS session through the services, a grid user or a service that acts

on behalf of the user needs to authenticate with DSS using the user’s certificate.

Authorization is performed by checking the certificate against an access control list

(ACL), or consulting a dedicated authorization service. An authorized user can then

proceed to delegate the management services the right to create a GVFS session on behalf

the user: the DSS uses the user’s certificate to interact with the client- and server-side
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Figure 6-3. Security architecture of GVFS-based data management system.
Transport-level security is leveraged to protect the data access on GVFS, while
message-level security is employed to secure the interactions with the
management services. Grid user certificates and ACLs are used for
authentication and access control.

FSSs, which in turn configure the proxies to use this certificate to establish a secure file

system session.

Security for service interactions is enabled at the message level (Figure 6-3). Despite

the performance inefficiency, message-level security offers great functionality at the service

level, which is necessary for the management services to use and interact with other

high-level services. These services are not in the critical path of grid data access; they

are only involved infrequently when control is needed on a GVFS session, specifically,

when creating, configuring, and destroying a session. Therefore, the use of more expensive

security mechanisms does not hurt a GVFS session’s I/O performance and has negligible

overhead compared to a session’s lifecycle.

The data management services are implemented using WSRF::Lite [71], a Perl-based

implementation of WSRF (Web Services Resource Framework [68]). This tool supports

signing and verifying of SOAP messages using X.509 certificates according to the

WS-Security standard [56], which is utilized to enable grid security at the service level.
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The resulting data management services can securely communicate with each other, use

the grid user and server certificates to perform authentication and authorization, and then

control the GVFS proxies to use these certificates for the file system level security.

As mentioned earlier, the management services are responsible for creating and

customizing GVFS-based data sessions on behalf of grid users or services. These

operations are provided through Web service interfaces, which conform to the WSRF

standard; meanwhile, the security of the service-level interactions also follows Web

service security standards and it is compatible to GSI. Such compatibility is important

to providing interoperability with other grid services, e.g., to serve a job scheduler which

needs to prepare data access for the jobs submitted to a grid resource.

The management services support flexible grid file access control for GVFS sessions

using the mechanisms discussed in Section 4.4.2.2. Per file system ACLs are stored in

the DSS database and are used to automatically generate the sessions’ gridmap files.

For fine-grained access control, the services also provide an interface to manage the

per-file/directory ACLs stored along with the exported files and directories. However, in

a large grid system, the access control to grid resources is often dedicated to the virtual

organization’s security service (e.g., a Community Authorization Service [116]). The

GVFS services can consult such a special security service for file access control decisions at

the granularity of individual grid users or groups of users.

6.1.5 Usage Examples

This subsection describes two examples of using the management services discussed

above to manage GVFS data sessions for two important applications.

6.1.5.1 Virtual machine based grid computing

As discussed in Chapter 5, GVFS has been applied to support VM based grid

computing. VMs have been demonstrated as an effective way to provide secure and

flexible application execution environments in grids [17]. The dynamic instantiation of

VMs requires efficient data management: both VM state and user/application data need
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Figure 6-4. The VM-based grid computing system supported by the data management
services. To instantiate a compute VM, the VMPlant service requests the DSS
to schedule a GVFS session between the VM state server and the VM host.
After the VM is started, the job scheduler service can then request the DSS to
schedule another session between the compute VM and the data VM, to
provide tailored access to application/user data for the job submitted to the
compute VM. The DRS also allows for replication of data VMs for improved
reliability.

to be provisioned across the network. Previous work has described a VMPlant grid service

to support the selection, cloning, and instantiation of VMs [106]. The data management

services provide functionality that complements VMPlant to support VM-based grid

systems, as depicted in Figure 6-4.

In such a system, the VMPlant service is in charge of managing VMs, including the

ones used for computing (execution of applications) and data (storage of application and

user data). To instantiate a compute VM for job submission, the VMPlant service requests

the DSS to schedule a GVFS session between the VM state server and the VM host, where

the VM state transfer can be optimized in the way discussed in Chapter 5. After the

VM is started, the job scheduler service can then request the DSS to schedule another
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session between the compute VM and the data VM, which provides tailored access to

application/user data for the job submitted to the compute VM.

The DRS allows for replication of data VMs for improved reliability. The VM

replication can be conveniently done by copying its state files via DSS-scheduled data

sessions that use high-throughput transfer mechanisms. The replicated VMs can be

distributed across different physical servers and sites to provide tolerance of server

and network failures. When a failure happens, the services transparently redirect the

application’s remote data access to a backup VM and regenerate the lost data VM. To

tolerate client-side failures, the services can checkpoint and resume VM instances using the

techniques available in existing VM monitors (e.g., VMware suspend/resume, scrapbook

UML [117], Xen suspend/resume). With ROW enabled in the GVFS session, buffered data

modifications induced by the application execution are also checkpointed as part of the

VM’s saved state. So, upon failure of the compute VM, the application along with its data

changes can be consistently resumed from the last checkpoint.

6.1.5.2 Workflow execution

A workflow typically consists of a series of phases, where in each phase a job is

executed using inputs that may be dependent on the outputs of the previous phases.

Workflow data requirements can be managed by the DSS with GVFS sessions created on

a per-phase basis, and each session can be tailored to suit the corresponding job’s needs

through the service. In particular, the control over enabling and disabling the consistency

protocols and synchronizing client/server data copies is available via the service interface.

Hence scheduling middleware can select and steer consistency models throughout the

execution of the workflow.

For instance, a typical workflow in Monte-Carlo simulations consists of running

large numbers of independent jobs. Their outputs are then post-processed to provide

summary results. This two-phase workflow’s execution can be supported by the data

management services with a data flow (Figure 6-5) such that (1) a session is created
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Figure 6-5. A Monte-Carlo workflow and the corresponding data flow supported by the
data management services. To support this two-phase workflow’s execution, a
session is created for each independent simulation job with an individual cache
for read/write data; each session is forced to write back and then disable write
delay as the simulation jobs complete; and a new session with
invalidation-polling consistency is created for running the post-processing jobs
that consume the produced data.

for each independent simulation job with an individual cache for read/write data, (2)

each session is forced to write back and then disable write delay as the simulation jobs

complete, and (3) a new session with the invalidation-polling consistency protocol is

created for running the post-processing jobs that consume the data produced in step (1).

Such a workflow can be supported by the In-VIGO system [2][3], where a configuration

file is provided by the installer to specify the data requirement and preferred consistency

model for each phase. When it is requested by a user via the In-VIGO portal, the virtual

application manager interacts with the resource manager to allocate the necessary

resources, interacts with the data management services to prepare the required GVFS

sessions, and then submits and monitors the execution, for each phase of the workflow.
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6.2 Autonomic Data Management

The service-oriented data provisioning and management framework described in the

previous sections can serve end-users or job scheduling middleware (e.g., the In-VIGO

virtual application manager [2]) to prepare data sessions for application executions. A

key challenge faced by such middleware in a grid-style environment is the complexity

of managing the performance of many on-demand application instances in the presence

of dynamic resource availability. An autonomic application management service [118] is

proposed to automatically recover jobs from performance faults based on monitoring and

predictions using application execution history and dynamic resource information. The

data management services discussed in this dissertation are key to supporting transparent

resubmission of jobs, providing fast and on-demand data session establishment to the

application management service. On the other hand, the idea of autonomic management

can also be applied to the data management in order to reduce its complexity in a

grid-style environment.

The use of user-level virtualization to create dynamic, per-application GVFS sessions

and the use of service-oriented middleware to control the lifetimes and configurations of

the sessions provides the basis for supporting tailored data provisioning to applications

in large-scale grid systems. However, the management of GVFS-based data sessions

in such an environment is still challenging because of its complexity: large numbers

of data sessions need to be created, customized, and terminated on demand based

on the applications’ lifecycles and requirements; their configurations also need to be

timely adapted according to the changes to application workloads and usage of shared

processor, network, and storage resources. It is desirable that the data sessions can

manage themselves to achieve user or job scheduler expected performance and reliability

automatically, so that the management can be simple and the system can be agile.

This section describes the approach to realizing this goal by evolving the data

management services into autonomic elements to provide goal-driven self-management of
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Figure 6-6. Autonomic data management system consists of autonomic data scheduler
service, replication service, and client- and server-side file system services.
They function as self-managing autonomic elements, which control the client,
server, and session of a GVFS data session according to the high-level
objectives, and interact with each other to automatically achieve the desired
data provisioning behaviors.

the data provisioning (Figure 6-6). The resulting autonomic data management services

are capable of automatically monitoring, analyzing, and optimizing the different entities

of grid-wide data sessions, as well as cooperatively working together to achieve the desired

data provisioning goals. The rest of this section will present the details of these autonomic

services as well as an experimental evaluation.

6.2.1 Autonomic Data Scheduler Service

As described in Section 6.1, Data Scheduler Service (DSS) schedules data sessions

for application executions. It interacts with Data Replication Service (DRS) to request

data replication and interacts with client-side and server-side File System Services

(FSSs) to create, configure, and terminate sessions. It is responsible for customizing and

isolating different sessions with different configurations. One of the most important session
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parameters that can be customized is the size of the client-side disk cache employed by

GVFS.

Kernel NFS clients typically buffer data and metadata in memory, but the use

of disk caching is rare. In wide-area, long-latency environments, the aggressive use

of disk caching can be beneficial to many applications. Therefore, GVFS implements

client-side per-session disk caches, which can leverage the large capacity and great

persistence of disks to further exploit data locality (Section 4.2.1). However, as the data

set size of modern scientific and commercial applications grows rapidly, the DSS needs to

carefully manage the storage use for caching, which can have an important impact on the

performance of GVFS data sessions.

An application’s remote I/O time is estimated by,

T = N ∗ rmem ∗ tmem + N ∗ rdisk ∗ tdisk + N ∗ (1− rmem − rdisk) ∗ tnetwork

where N is the total number of remote data requests issued by the application; rmem is

the memory buffer hit rate and rdisk is the disk cache hit rate; tmem, tdisk, and tnetwork

are the average service times of a request from memory, local disks, and network storage,

respectively.

A data intensive grid application typically has rdisk >> rmem and tnetwork >> tdisk >>

tmem, so the hit rate of the disk cache is crucial to delivering good application data access

performance. A larger cache results in better hit rate, because capacity misses and conflict

misses generally decrease as the cache size grows [92]. However, the relationship between a

cache’s size and hit rate is a complex one, depending on the locality of data references and

the associativity of cache. Therefore, the DSS by default takes a conservative approach in

which a session’s disk cache is configured with a size larger than its application’s data set.

There are also important scenarios where the DSS needs to configure sessions with

smaller disk caches. For example, when a node is more powerful or closer to the data

server than the other nodes, it is chosen to execute the application because it can provide

156



better performance even if its storage cannot hold the entire data set. In another common

case, multiple applications need to execute on the same node and the available disk space

is not enough for their data sets. The DSS can schedule their sessions to run sequentially

with full-size disk caches. However, it may be necessary or more beneficial to configure

each one with a smaller disk cache and run them concurrently, e.g., in order to meet the

deadline requirements or achieve shorter total runtime.

If an application’s data access pattern is known from the knowledge base, the DSS

can use existing methods [119] to estimate the session’s miss rate given the configured

cache size, and then estimate its remote I/O performance using the above equation.

(tnetwork is monitored online3 ; N is known from history and is offset by the number

of already transferred requests, which is also monitored online.) This information can

facilitate DSS to allocate the available storage among multiple sessions that are scheduled

to the same node.

A session i’s utility Ui represents the value of providing a given level of service to the

application. It can be calculated by considering the deliverable session performance and

the application priority,

Ui = Performancei ∗ Priorityi

where shorter runtime and higher priority generate greater utility value. Since a session’s

remote I/O time is affected by its disk cache size, given the available storage space as

the constraint, the optimal allocation is achieved when the total utility from the different

sessions on the node is maximized. The complexity of this optimization computation

is bounded by the limited number of concurrent sessions and possible cache sizes. To

perform the above analysis, the DSS must monitor the storage usage and the data server

3 Besides of data requests kernel NFS also issues a considerable number of metadata requests for con-
sistency checks. Most of these requests can be satisfied by GVFS disk caches with its consistency
protocols discussed in Section 4.3.
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response time on the client. This is realized by interacting with the client-side FSS, which

operates an effective monitoring daemon.

Due to the dynamic and non-dedicated nature of grid resources, environment changes

may trigger the DSS to reconfigure the session parameters. For example, when the disk

usage is reaching the limit because of other local activities, the DSS will detect it and

reduce the total space occupied by the caches to avoid overflowing the storage. On the

other hand, when more space becomes available for grid use, the DSS can expand caches

as necessary.

Note that the changing resource availability may falsify the prediction which has

motivated the end-user or application manager to submit a job on this resource. Or, even

worse, the client node may crash and fail the job execution. An autonomic application

manager should subscribe to these changes and act accordingly by recovering or restarting

the job with the assistance from DSS. On the other hand, the server-side fault-tolerance is

provided by the autonomic DRS.

6.2.2 Autonomic Data Replication Service

6.2.2.1 Data replication degree and placement

Data replication has long been recognized as the key to achieving high availability.

In grid environments replication not only needs to be performed across servers in order

to provide failover on server failures, but also should be distributed to different sites to

protect against network partitions. However, the limited bandwidth and high delay of

WAN make wide-area replication very expensive. Although the DRS uses high-throughput

transfer mechanisms (e.g., GridFTP [6]) to replicate data, the overhead is still considerable

for large data sets. Because an application’s session cannot start until the necessary

replicas are ready, this overhead needs to be considered into the cost associated with the

session.

The choice of the replication degree, i.e., the number of replicas for a given data

set, is a decision that needs to be made based on a benefit-cost analysis. Typically at
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least two replicas are required for each data set, so that an application can continue its

execution in presence of infrequent failures. As the failure rate goes higher, more replicas

are required to sustain good reliability, but the cost from replica creation (and teardown)

is also increased. Although it is generally difficult to predict a particular data server’s

failure rate or MTTF (Mean-Time-To-Failure), it can be estimated based on observation

and analysis. Initially every server has a hypothetical failure rate stored in the knowledge

base, and it is adjusted and updated by the DRS as failures happen over time. Gradually

the value becomes representative of the server’s actual reliability.

The available storage capacity for replica placement is shared among the existing

sessions. The replicas prepared for a past application execution may also occupy disk

space because a lazy style of cleanup is used, where a replica is not removed immediately

after its session finishes, in anticipation of future uses of the same data set. Therefore, the

storage management takes into account the values of different data sets, in which higher

priority applications’ data sets have greater values, and live sessions’ data sets always

value more than those that are not currently in use.

Based on the above considerations, another utility function is also used to solve the

replication degree and placement problem. The utility U i
d of having the ith replica for data

set d is computed by the product of the data set’s value Vd and the reliability Ri
d provided

by the its replicas (Ri
d = 1 −

i∏
j=1

rj
d, where rj

d is the failure probability of the data set d’s

jth replica, decided by the failure rate of the data server where this replica is stored). On

the other hand, the cost of creating these replicas is Ci
d =

i∑
j=1

cj
d, where cj

d is the overhead

from copying the data set to the jth replica’s data sever from the nearest existing replica.

Therefore, when considering adding a replica for a data set, its utility as well as the

cost and reliability constraints are used to decide whether to add it and where to place it,
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as follows:

Ud = Vd ∗Ri
d

Ri
d ≥ Rmin

Ci
d ≤ Cmax

where Rmin is the desired minimum level of reliability for the data set, and Cmax is the

maximum tolerable replica creation overhead. This algorithm tends to place a replica on

more reliable servers when the reliability is more important, and put it on closer servers if

the cost is more concerned. When multiple allocations are available, the DRS chooses the

server that has the best fit available space. If replacement is necessary due to the lack of

storage, the replica with the lowest utility is chosen and evicted.

6.2.2.2 Data replica regeneration

Autonomic replica regeneration is also supported by the DRS. When a data

server failure occurs, the running sessions’ replicas on that server need to be promptly

regenerated in order to minimize the time windows in which the necessary replication

degrees are not satisfied for the data sets. In this process, human-intervention should be

avoided because it tends to be slow and costly. Furthermore, the impact of failures on

applications should also be reduced to the minimum; it is desirable that applications can

continue their executions without interruptions. This is realized by the autonomic FSS

and will be discussed shortly.

The DRS achieves autonomic replica regeneration by means of automatic failure

detection and replica reconfiguration. A failure is usually notified by the DSS which

monitors the session through the client-side FSS. However, a failure reported by the

client-side FSS can be caused by network partitioning between the client and server.

This is confirmed by the DRS if it can still connect to that server, and then only the

data sets that are used by this particular client need to be regenerated. Once a failure

is determined, the DRS immediately allocates storage space using the aforementioned

algorithm and regenerates the lost replicas for the running sessions on the newly selected
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data servers. The information about these new replicas is also informed to the DSS, so

that it can reconfigure the concerned sessions to use them in need of failover.

6.2.3 Autonomic File System Service

6.2.3.1 Client-side file system service

Client-side FSS facilitates the task of autonomic DSS by monitoring storage usage

and server response time, and executing the session configurations decided by the DSS.

As discussed in Section 6.2.1, a FSS controls the proxy to shrink or expand a session’s

disk cache as instructed by DSS. A disk cache is structured as file banks that contain data

blocks hashed according to their file handles and offsets. Sophisticated algorithms can be

conceived to reduce a cache’s size by evicting the least recently used blocks and rehashing

the other ones, which often incurs substantial overhead. Instead, the proxy removes

the least-used and most-clean file banks from the cache until the required shrinkage is

achieved. This needs only a simple re-mapping of file banks but not any rehashing of data

blocks, and the new cache size can immediately take effect.

Client-side FSS is also the key to realizing application-transparent failover in presence

of server-side failures, including data server failure, network partitioning between the client

and server, and server or network overloading. As discussed in Section 4.5.3, these are

detected when a major timeout (e.g., 100 times of the average response time) occurs to a

data request. In order to recover from a fault, the proxy immediately redirects the session

to the backup data server. The FSS also reports a detected fault to the DSS so that it can

ask the DRS to take actions on replica regeneration.

To achieve failover without any interruption to the application, a session uses an

active-style model, as presented in Section 4.5.2, to maintain data consistency among

the replicas. Every data modification request issued by the application is multicast from

the proxy client to the session’s every proxy server in a reliable manner. Consequently,

each replica has the exact same copy of the data set during the entire session, and if any
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of them crashes, it has no impact upon the application since the remaining replicas can

continue to service as usual.

Although it is necessary to write-all, a session can choose to use read-all or read-one.

In the former case read operations are also performed on all the replicas. This model is

employed to further improve reliability against not only server crashes, but also Byzantine

failures, in which the proxy client collects and compares all the replies from the proxy

servers and then decides on the correct one. However, the disadvantage of this model is

that it limits the performance of the session to the slowest replica server all the time.

On the other hand, it is often safe to assume that a successful data operation is correct

because there are other mechanisms from hardware to software that are in place and can

promise that an error would not happen without being noticed. Read operations are the

most common ones for typical applications, and thus the most valuable to optimize to

achieve speedup according to Amdahl’s Law [92]. Therefore, GVFS sessions typically

employ this “read-one, write-all” replication model.

This model relies on client-side FSS’ autonomic functions to choose the best replica

server to perform read operations throughout a session. The chosen server is called the

primary server for the session. It is decided from the session’s replica servers based on

the performance that can be delivered for the application’s remote I/O operations. The

primary server can change over time as network conditions and server loads vary. So

the FSS monitors the performance of the replica servers periodically using a monitoring

daemon.

It is important to design an accurate and low overhead mechanism to measure the

performance. From a session client’s point of view, the response time of a remote data

request is determined by the network delay as well as the data server’s CPU processing

delay and disk access delay. Simple network probing mechanisms, e.g., ping, can give

information about the network’s performance, but not the server’s. Using NULL RPC

requests to the server incurs little overhead and can measure both the first and second
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delays, but it cannot reveal the server’s I/O load and disk performance. Instead, the

monitoring daemon issues very small writes on the GVFS partition and uses the response

times to estimate the performance.

Writes are used in the measurement because it is difficult to prevent the effect of

server-side caching (processor caching and memory buffering) with read operations. The

FSS monitoring daemon periodically performs a one-byte write at a different block of

a hidden remote file, and it requests the server to commit the write so as to avoid the

effect of server-side write delay. Even though the hidden file’s size may reach a large

value for a long session, it does not necessarily occupy much space on disk because the

server’s file system typically uses holes on sparse files. To further reduce this overhead, the

monitoring daemon automatically truncates this file and starts over from beginning after a

few hundreds of probes.

Because this monitoring mechanism has very low overhead and it is done outside

of the proxy that is responsible for processing application’s data requests, the session’s

performance is almost intact. The FSS can use well-known time series analysis algorithms

to predict a replica server’s future performance based on the observed response times,

and then to make decisions on the primary server selection. Complex algorithms are not

suitable because they would intensively compete for CPU with the running applications

and not necessarily give the best predictions. On the other hand, simpler algorithms have

been proven effective in many cases [120]. In this prototype the exponential smoothing

algorithm [121] is used. Once the primary server is planed to change, the FSS controls the

proxy to switch it transparently to the application.

6.2.3.2 Server-side file system service

An autonomic server-side FSS monitors the server’s storage usage, which helps the

autonomic DRS to decide replica placement. It also monitors the response times of RPC

requests forwarded by a proxy server to the kernel server. The server is not necessarily

on the proxy’s localhost, but can be a virtualized server that consolidates network
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attached devices [122]. There are well-studied algorithms [123] to provide load balancing

in this scenario which can be leveraged by the FSS and hence it is not discussed in this

dissertation.

6.2.4 Evaluation

6.2.4.1 Setup

A prototype for the proposed autonomic data management system has been

implemented and its autonomic features are evaluated in this section. VMware-based

virtual machines were used to setup the file system clients and servers, which were hosted

on two physical cluster nodes. Each physical node has dual 2.4GHz hyper-threaded

Xeon processors and 1.5GB memory. Each VM was configured with 64MB memory and

was installed with SUSE LINUX 9.2. The emphasis of the experiments is in wide-area

environments, which were emulated using NIST Net [95]. Unless otherwise noted, every

link was configured with a typical wide-area RTT of 40ms.

The experiments were conducted by using a typical file system benchmark, IOzone

[88], to represent the I/O part of grid applications. It was executed on the clients with

input accessed from the servers via GVFS. The GVFS sessions were virtualized upon

NFSv3, using 32KB data block transfer, and the data servers exported the file system

without write delay and with synchronous access. Every experiment was started with cold

kernel buffer and GVFS disk caches by unmounting the file system and flushing the disk

cache.

6.2.4.2 Autonomic session redirection

In a grid environment network latency and throughput are often affected by the

existence of parallel TCP transfers [124], for example, the popular use of GridFTP [6].

Figure 6-7 shows the latency between two nodes under such influence in a real wide-area

setup. Each node was located in a different 100Mbps LAN and there were parallel TCP

transfers (from the use of Iperf [89]) between another pair of nodes from these two LANs.
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Figure 6-7. Network round-trip time (RTT) between two WAN nodes impacted by
third-party parallel TCP transfers. The aggregate bandwidth (BW) consumed
by the interfering parallel TCP transfers is also shown in the figure.

The data demonstrate that the latency grows rapidly as the number of parallel TCP

streams used by the third-party transfer increases.

Such a scenario was emulated in the experiment and used to study the effectiveness

of autonomic session redirection in the presence of network performance fluctuations. The

data set was replicated across two servers, and the client was connected to servers (server

1 and 2) via two independently emulated WAN links, where each link’s latency was varied

randomly with the values shown in Figure 6-7 in existence of 0, 2, 4 and 8 parallel TCP

streams, and with decreasing probabilities for these values.

The IOzone benchmark was executed on the client node, which reads and rereads a

256MB file accessed through GVFS with different data server configurations: using server

1 statically; using server 2 statically; and using autonomic session redirection between

these servers dynamically. The average server response times were collected every 10s

throughout the execution of the benchmark, as shown in Figure 6-8(a). The results show
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Figure 6-8. Average response times during the execution of IOzone (read/reread mode)
with a 256MB input accessed through GVFS with different data server
configurations: using server 1 statically; using server 2 statically; and using
autonomic session redirection between these servers dynamically. The
benchmark was executed under dynamic network load fluctuations in (a) and
dynamic server load variations in (b).

that with autonomic redirection the GVFS session can almost always choose the better

link for data access, and consequently the runtime of the benchmark is about 13% better

than using server 1 statically and 16% better than using server 2 statically.

The second scenario considers the effect of dynamic server load variations on the

performance of a session. The I/O-intensive jobs (executions of IOzone with read/reread of

different 256MB input files) were loaded to the server following a Poisson process, and the

intensity was varied by randomly choosing the number of concurrent jobs between 0 and

6. Then the benchmark was executed with the same configurations as above. The average

server response times were collected every 60s throughout the execution and are plotted

in Figure 6-8(b). The results also show that autonomic redirection can achieve the best
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Figure 6-9. (a) Runtimes of two executions of IOzone (job 1 and 2) which randomly read a
different 256MB file through GVFS; (b) their total runtime, and (c) total
number of requests received by the server. Different cache configurations are
used for the sessions: A, starts the first one with full-size cache and the second
one without caching, concurrently; B, starts them sequentially with full-size
caches; Auto, starts them concurrently and divides the available storage
autonomically between their caches.

response time, and helps the benchmark to run 16% faster than using server 1 statically,

and 29% faster than using server 2 statically.

6.2.4.3 Autonomic cache configuration

The second experiment studies the use of autonomic cache configuration by the DSS

while scheduling different data sessions. In this setup, two tasks need to be run on the

same client node, where each task executes IOzone with random reading of a different

256MB file accessed from the data server via GVFS. The DSS is required to prepare two

data sessions for these tasks but the available storage on the client can only hold 256MB

of disk caches. So three different configurations are possible for these sessions: A, starts

the first session with full-size cache and the second one without caching, concurrently; B,

starts them sequentially with full-size caches; and Auto, starts the sessions concurrently

and splits up the available storage autonomically between the sessions’ caches based

on their utilities (in this setup each session gets half of the disk space because they are

assumed to be equally important).
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Figure 6-9 shows the runtimes of the jobs as well as their total runtime and total

number of requests received by the server during their executions. (For concurrent

sessions, the total runtime is the maximum one among the individual runtimes.)

Compared to A, the autonomic configuration provides better fairness between the jobs

and it also greatly reduces the server load (the amount of server-received requests is down

by 18%); compared to B, the autonomic configuration’s total runtime is much shorter

(reduced by 40%).

6.2.4.4 Autonomic data replication

The last experiment investigates the autonomic data replication in presence of

server-side node or network failures. A sequence of tasks were launched on the client

node sequentially, where each one ran IOzone in random reading mode with 512MB input

accessed from the data servers through GVFS. The data servers failed randomly, where

the failures were modeled as a Poisson process with an average inter-arrival time of half

an hour. The experiment used a replication degree of 2 for the data sets, and failures were

injected on the servers by randomly choosing one of them to stop its network connection.

Two different situations were considered for the tasks: independent, each task had an

independent data set (the input file) and was scheduled with a different data session;

dependent, the tasks had the same data set and shared the same data session.

Figure 6-10 shows the timeline of events as they happened during the experiment.

In the independent tasks case, a total of four server-side failures happened. Each failure

caused a new replica to be generated by copying the data from the remaining server to a

new server. Two of the failures occurred at the primary data server and also triggered the

client to redirect the session’s data access to the backup server. These all caused delays in

the benchmark’s executions, e.g., the second run took the longest time to finish because

two failures occurred during that run. Nonetheless, every run successfully completed

regardless of the failures. In the dependent tasks case, the disk cache was warmed up

after the first run, which not only substantially reduced the times of the following runs,
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Figure 6-10. Timeline of events happened during a sequence of executions of IOzone. Each
run randomly read a 512MB input accessed from the data servers through
GVFS. The data servers failed randomly, and replica regenerations were
triggered accordingly. In (a), the executions were independent and were
supported by different GVFS sessions; in (b), the executions used the same
data set and shared the same session.

but also made the client completely unaware of the server-side failures and delays. This

experiment demonstrates that by using the autonomic services to select and combine

application-tailored enhancements, such as caching and replication, the performance and

reliability of grid-wide data sessions can be substantially improved in an automatic and

transparent manner.
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CHAPTER 7
CONCLUSION

7.1 Summary

This dissertation focuses on data management in a grid-style environment, where

applications and data are distributed on resources across administrative boundaries

and wide-area networks. Such an environment is becoming increasingly typical as the

scale of today’s large distributed computing systems, such as scientific grids, enterprise

data centers, and “cloud” computing systems, grows. The dissertation has designed

and implemented a novel system for data management in these environments, and it

advocates the three key elements of this solution: user-level distributed file system

(DFS) virtualization, application-tailored data provisioning, and autonomic service-based

management.

Several types of grid data management approaches are available to provide cross-domain

data access to applications. Fundamentally, they differ in the level where remote data

access is introduced in the system and in the degree of transparency provided to the

system. Application-level approaches explicitly involve data management middleware

in staging files for applications, and thus they are strongly tied to specific applications.

Such approaches are not application transparent, which makes it difficult to enable a

wide variety of applications to harness the power of a large distributed computing system.

Operating system (O/S) level approaches achieve application transparency by implicitly

service an application’s I/O requests with remote data access. But these approaches are

not O/S transparent: they require O/S-specific modifications which are difficult to deploy

on the typically heterogeneous and non-dedicated resources in a grid-style environment.

User-level approaches can provide transparency to both applications and O/Ss,

and one of such approaches is based on intercepting an application’s library calls or

system calls and mapping them to remote data access. However, this approach is

only applicable to applications that can be relinked or O/Ss that have system call
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tracing capability. Another user-level approach, which is taken by this dissertation,

is through the interception and handling of DFS calls, in essence, virtualizing an

O/S-level DFS and providing grid-wide virtual file systems (GVFSs). It preserves the

generic file system interface to provide complete application transparency and leverages

widely-available DFSs (e.g., NFS) to achieve great O/S transparency. Moreover, based on

this virtualization, enhancements to grid-wide data access can be also realized without

changing applications and O/Ss, and the management of data provisioning can be

decoupled from the underlying physical resources and optimized independently.

A unique contribution made by this dissertation is on application-tailored data

provisioning. None of the existing solutions, including the closely related DFS-based ones,

can address the diverse needs of applications. Nonetheless, the inefficiency, insecurity,

and unreliability of grid-style environments require application-tailored optimizations

on different aspects of remote data access. This dissertation addresses this need by

proposing user-level enhancements for GVFS on performance, consistency, security, and

fault-tolerance. GVFS-based data sessions are created on demand on a per-application

basis, and they can independently select, customize these enhancements according to its

application’s characteristics and requirements.

This dissertation is also the first to realize the importance of applying autonomic

techniques to data management in grid-style environments, and addressing the complexity

of managing large numbers of on-demand data sessions with changing application

workloads and resource availability. It has developed a novel autonomic data management

system based on GVFS virtualization and service-oriented management. A set of services

are developed to provide flexible control of the lifecycles and configurations of GVFS data

sessions, and to support interoperable interactions with other middleware services based

on the Web Service Resource Framework (WSRF). Intelligence can then be built into

these services to enable automatic configuration, optimization, healing, and protection of

the data provisioning in accordance with high-level objectives.
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Every aspect of the proposed system has been thoroughly evaluated with experiments

based on typical file system benchmarks and real applications. A key insight from the

results is that the overhead from virtualization is not significant, but it can enable

important improvement and functionality which are not available or possible in the

underlying physical system. On the other hand, the virtualized systems can leverage

these enhancements to further reduce the overhead and even outperform the physical

system. Specifically, GVFS virtualization enables dynamic data provisioning and flexible

application-tailored enhancements to address the limitations of traditional DFSs (e.g.,

NFS) in grid-style environments. In addition to providing strong consistency, security,

and reliability to grid-wide data access, the enhanced GVFS is able to not only hide the

overhead from user-level proxy based virtualization, but also deliver significant speedup

compared to NFS in WAN.

These experiments also demonstrate the effectiveness of using the proposed data

management services to create and terminate GVFS sessions on demand as well as to

customize and apply the various enhancements on the sessions as needed. These services

also allow the interactions with other WSRF-based middleware, e.g., services built with

Globus Toolkit [69], and support its data management requirements. The autonomic data

management architecture described in this dissertation enables autonomic functions to

be developed for self-management on different aspects of data provisioning. Experimental

evaluation on the provided several autonomic features show that they can automatically

allocate resources to GVFS sessions based on policies, improve data access performance

under network and server load fluctuations, as well as protect applications and regenerate

data replicas in the presence of dynamic server failures.

This GVFS-based approach has been applied to support the use of virtual machines

(VMs) as execution environments in grid computing, in which on-demand access to

both user data and VM state is transparently provided to the applications and VMs

dynamically instantiated across grids. Results from experiments with VMware-based
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VMs show that this GVFS solution supports fast VM instantiations via cloning and

efficient executions of applications in VMs. It substantially reduces the overhead of

provisioning VMs across WAN, compared to the approaches based on native NFS or

full-file download/upload.

An implementation of this dissertation’s approach has also been deployed in

the production In-VIGO system [2][3], a grid system for scientific applications and

the prototype of nanoHUB [125]. It has supported applications from many different

disciplines, such as the spectroscopy study for biomedical scientists [91] and storm

surge modeling for costal researchers [102]. The GVFS solution provides transparent,

on-demand data access to not only these applications enabled by In-VIGO, but also

the other middleware components of the In-VIGO system, such as the user interface

manager, virtual application manager, and VM manager. In the past a few years, tens or

even hundreds of GVFS sessions have been dynamically created everyday to support the

application executions on grid resources and the smooth functioning of In-VIGO.

7.2 Future Work

The fundamental goal of my research is to design and develop DFS virtualization

and services for flexible and scalable data management in grid-style environments. This

dissertation has made substantial progress towards this goal, and it has also laid a solid

foundation for future research. Further improvement of the proposed data management

system can be considered along the following three directions.

7.2.1 Performance

Distributed file system based data provisioning is important to supporting application

transparency, and block-based data transfer is very efficient for interactive applications as

well as large sparse file access. However, for large bulk data transfer, the proposed data

management system has to rely on additional high-throughput data transfer mechanisms

such as GridFtp [6]. This inefficiency of block-based DFS access can be attributed to

two factors: conservative prefetching policies and low-throughput network data transport
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mechanisms. Future research can be conducted to improve GVFS for bulk data transfer by

specifically addressing these two problems.

Traditional DFS clients use only conservative prefetching policies, e.g., the adaptive

read-ahead algorithm in Linux kernel uses a relatively small value for the read-ahead

window size. These policies are designed under the assumptions for LAN environments,

where the penalty of misprediction on prefetching often outweighs the benefit from

aggressive prefetching, because the network round-trip time (RTT) is relatively small and

clients use limited memory for caching. In a grid-style environment, these assumptions do

not hold any more. Wide-area networks have high latency as well as large bandwidth-delay

product (BDP — the product of the link capacity and the RTT of a packet). With the

emergence and spread of new WAN technologies, network bandwidths are getting higher,

but the latencies are still bounded by the speed of light, which result to even larger

network BDP. If the network bandwidth is underutilized, there is little difference in the

cost of fetching a larger block of data than a smaller one, but there would be a significant

gain in performance if the extra data are indeed useful to the client. Therefore, it would

be beneficial to use aggressive prefetching to fill the “pipe” up and take advantage of the

available bandwidth.

If a client-side cache’s capacity is limited, premature prefetching could push other

useful data out of the cache, increase cache misses, and cause performance degradation.

This is also part of the reason why traditional memory-caching only DFSs restrict the

amount of prefetching. The GVFS approach employs disk caches, which have much

larger capacity (in the order of gigabytes or even terabytes) than physical memories (in

the order of megabytes), and thus have much less concern on the caches being flooded.

Moreover, disk caching is persistent in face of client crashes/reboots, which means that

prefetched data can be useful for the client over a long period of time. Based on these

reasons, aggressive prefetching with GVFS disk caching has the potential to improve the

performance of remote data access substantially.
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The GVFS approach leverages NFS remote procedure calls (RPC) for remote

data access, which can be transferred over either UDP or TCP. Traditional NFS

implementations use UDP because they are designed for use in the relatively reliable

LAN environments. To cope with packet loss, NFS clients have to retransmit the requests

that have timed out, which, however, can significantly impact the throughput on WAN. If

the timeout is too short, the retransmissions may aggravate the problem such as network

congestion or server overloading. If the timeout value is too large, the client may be

unnecessarily idle waiting for a lost packet and cause additional latency for the data

request. The NFS implementations based on TCP perform better over a long-latency

or unreliable network because TCP provides more efficient reliable data transfer at the

transport layer. Nonetheless, it is still difficult to achieve high-throughput in WAN with

TCP, due to its inefficiencies in networks that have high BDP [126], including the slow

congestion-control algorithm, the bandwidth underutilization in face of errors that are not

caused by congestion, and the bias against TCP flows with higher RTTs.

To address the above limitations of native UDP and TCP protocols, future research

can study high-throughput data transport to serve both remote data access and data

prefetching. In addition to improving performance, it is important that such transport can

be transparently deployed on resources in grid-style environments. It should not require

any modifications to existing network infrastructures (e.g., O/S networking stack), and it

should be convenient to install without local administration involvement on the systems.

Therefore, an application-level and user-level transport enhancement on GVFS is more

desirable.

7.2.2 Intelligence

In order to deal with the data management complexity and provide optimal data

service, an autonomic grid data management system is proposed in this dissertation based

on GVFS and its management services. It supports policy-driven self-management of

GVFS sessions in several aspects, including cache configuration, data replication, and
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session redirection. Working towards a more advanced autonomic grid data management

system, more self-optimization features can be developed and integrated into this system.

In particular, cache replacement and prefetching decisions can have significant

impact on data access performance. Current GVFS implementation employs a simple

priority-based cache replacement policy, in which dirty cache blocks have higher priority

than clean blocks, and within the same priority class a block is randomly chosen to evict.

Results from the experimental evaluation show that this simple scheme can deliver good

performance by taking advantage of data locality. As a first-step enhancement to this

simple scheme, traditionally successful cache replacement algorithms (e.g., LRU, MRU)

can be employed. However, it can be further improved by adopting more intelligent

policies based on the prediction of application data access patterns.

While studying these patterns, it is important to maintain application-transparency,

which has always been the top design goal of the proposed data management system.

Therefore, approaches that rely on explicit hints produced by applications (e.g., [127]) are

not appealing to this research. Section 5.2 has described the use of metadata handling

to capture application-specific knowledge and optimize data transfer, which is employed

to support efficient VM state transfer. Such an application-transparent approach can be

extended to a more comprehensive framework, in which the knowledge about application

data access characteristics and requirements is automatically learned and leveraged by the

autonomic data management system. Future research can investigate how to achieve this

goal based on techniques such as trace tracking and analysis, offline and online learning, as

well as phase and patten classification.

7.2.3 Integration

By the virtue of transparency, the proposed data management approach is able to

not only support the heterogeneous systems in grid-style environments, but also exploit

the strengths of the diverse storage assets deployed in the systems, such as storage area

network (SAN), parallel file system, and RAID systems. Therefore, in future research, a
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scalable data management middleware system can be built based on extending GVFS and

its management services, and bridging existing, special-purposed file and storage systems.

The GVFS will be the backbone in the data management, connecting heterogeneous

resources in different domains, and providing application-tailored, transparent data

access across WAN. Specifically, it can be extended to support parallel file access for

high-throughput, by bridging a parallel file system, and support storage networking for

high-performance, by bridging a SAN file system. The management services will be the

brain to control GVFS as well as the bridged systems and to optimize the end-to-end

data provisioning. They can be extended to support more high-level functionalities (e.g.,

global snapshots, live migration), and to provide scalable management in a cooperative,

peer-to-peer manner.

Based on this approach, the grid VM data management proposed in this dissertation

can be also extended to support an even larger-scale high-performance and high-throughput

computing system built upon virtualized resources across data centers, enterprises, and

grids. In this envisioned system, the VM data management can enable fast cloning and

versioning on VM state servers to provide time- and space-efficient VM creation and

customization, and employ smart prefetching, caching, and checkpointing on the VM hosts

to achieve efficient and reliable VM instantiations and executions.
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