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Abstract—Dynamic data-driven brain-machine interfaces 
(DDDBMI) have great potential to advance the understanding 
of neural systems and improve the design of brain-inspired 
rehabilitative systems. This paper presents a novel 
cyberinfrastructure that couples in vivo neurophysiology 
experimentation with massive computational resources to 
provide seamless and efficient support of DDDBMI research. 
Closed-loop experiments can be conducted with in vivo data 
acquisition, reliable network transfer, parallel model 
computation, and real-time robot control. Behavioral 
experiments with live animals are supported with real-time 
guarantees. Offline studies can be performed with various 
configurations for extensive analysis and training. A Web-based 
portal is also provided to allow users to conveniently interact 
with the cyberinfrastructure, conducting both experimentation 
and analysis. New motor control models are developed based on 
this approach, which include recursive least square based (RLS) 
and reinforcement learning based (RLBMI) algorithms. The 
results from an online RLBMI experiment shows that the 
cyberinfrastructure can successfully support DDDBMI 
experiments and meet the desired real-time requirements. 

I. INTRODUCTION 
rain-machine interfaces (BMIs) are key to helping 
paralyzed patients and others with motor disabilities 

regain autonomy by using brain signals to directly control 
prosthetic limbs. To realize this vision, computer systems are 
fundamental in understanding brain function and designing 
motor control through modeling. In a particularly important 
paradigm, many different BMI models can be executed 
concurrently based on dynamic brain signals and sensorial 
feedback, where their results are selected to adaptively 
control the motor in the optimal way  [3]. This dynamic 
data-driven BMI (DDDBMI) computing system has great 
potential to advance the state of art of research on BMIs. 

There are several critical challenges to building such a 
DDDBMI system. First, the concurrent execution of many 
BMI models requires a tremendous amount of computing 
power and storage capacity. Thus the system needs to 
efficiently aggregate resources for model computation and 

integrate with onsite signal sampling and robotic movement. 
Second, effective brain-inspired motor control has stringent 
timing requirement because of the need for low latency 
between brain signaling and sensory feedback. Hence, it is 
important for the system to provide the necessary guarantee 
for the timing from signal acquisition, modeling, to motor 
control. Last but not least, a successful DDDBMI system 
needs to provide seamless support for its users, the scientists 
from domains such as signal processing and neurophysiology. 
It is desirable that the system be able to hide its complexity 
and present easy-to-use interfaces for users to deploy their 
algorithms and conduct research. 
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This paper presents a novel cyberinfrastructure, named 
BMI Cyberworkstation, to address the above challenges and 
support advanced DDDBMI research. It consolidates the 
distributed computing, data, communication, and instrument 
resources, and allows BMI experiments to be conducted in a 
closed-loop manner, including data acquisition, model 
computation, and robot control. Computing resources are 
managed through virtualization by using virtual machines  [5] 
to dynamically allocate resources and satisfy both resource 
demand and timing constraints. Virtual machines also allow 
for flexible customization of execution environments, which 
facilitates transparent deployment of BMI models. In 
addition, a Web-based portal is provided to help users interact 
with the cyberworkstation, through which they can 
conveniently control and monitor the experiments, as well as 
visualize and analyze the results. 

New BMI models are developed and tested based on this 
cyberworkstation, including both supervised learning based 
(RLS  [2]) and reinforcement learning based (RLBMI  [1]) 
algorithms. The cyberworkstation allows for these studies in 
two broad scenarios: in the online scenario, real-time 
computation and control are provided for in vivo 
experiments; in the offline scenario, data from past 
experiments can be replayed with various configurations to 
analyze and train models. An online RLBMI experiment is 
also reported in this paper to demonstrate the effectiveness of 
the proposed cyberworkstation. 

The rest of this paper is organized as follows: Section II 
presents the architecture of the cyberworkstation; Section III 
describes two BMI models supported by this approach; 
Section IV discusses an experimental evaluation and Section 
V concludes the paper. 
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II. ARCHITECTURE 
The BMI cyberworkstation consolidates the software and 

hardware resources across two collaborating labs 
(Neuroprosthetics Research Group, NRG and Advanced 
Computing and Information Systems Lab, ACIS) at the 
University of Florida (Fig. 1). The novel aspect of this system 
is its middleware which manages data, resources, and jobs to 
support DDDBMI experiments. During an online experiment, 
in vivo brain signals are acquired at NRG and sent across a 
campus network for model computation at ACIS; the results 
are fed back over network to control the robotic arm at NRG. 
Offline study takes the data acquired and stored during 
previous online experiments and conducts more extensive 
and time-consuming training and analysis for the models. The 
rest of this section describes how each phase of this closed 
loop is supported by the cyberworkstation in detail. 

A. Data Acquisition 
    During an online experiment, brain signals are sampled 

from a live animal through a multi-channel digital signal 
processing (DSP) device. It is directly connected to a 
computer server where the middleware polls for data from the 
DSP and sends them for model computation. The latency of 
acquiring data from multiple channels can be considerably 
high and may violate the timing constraint if the channels are 
polled sequentially from the DSP. In order to support 
real-time experiments, parallel polling is employed in which 
the multi-channel data are prepared in a buffer in the DSP and 
polled by the server with a single operation. In addition, the 
server is tuned to minimize interference with the data 
acquisition by removing unnecessary services and processes 
and giving the polling process the highest scheduling priority. 

B. Network Transfer 
Data are transferred from NRG to ACIS over a campus 

network. Because of its unreliable and shared nature, data 
loss and unexpected delay can happen at any time during the 
communication. Reliable data transfer must be provided to 
overcome these problems and support reliable and real-time 
experiments. Using TCP protocol to transfer data can achieve 
reliability via transport-layer timeout and retransmission, but 
it is difficult to control these mechanisms with the desired 
recovery policies and timing constraints. Therefore, the 
cyberworkstation builds reliable data transfer upon the 
unreliable UDP protocol and delivers reliability at 
application-layer through the middleware. 

The middleware on the data acquisition server monitors the 
elapsed time after sending out the data. A timeout happens 
when it detects that it is unlikely to get the computation 
results back in time to meet the deadline. It then stores this 
failed data sample in a circular first-in-first-out (FIFO) 
buffer, and starts a new closed-loop cycle by polling for the 
next sample. During the new cycle, it queues the newly 
acquired sample in the buffer and retries the transmission of 
the previously failed sample. The transmission can be retried 
in the following cycles in a similar way until it is successful or 

the failed sample is evicted from the buffer because of its 
limited size. A delay between neural activity and robot action 
will occur because of this buffering. However, the extent of 
this delay is decided by the size of the buffer, which is 
adjustable based on model requirement and user preference. 

C. Model Computation 
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Fig. 1.  (a) The architecture of the cyberworkstation which supports 
closed-loop online and offline experiments and provides a Web portal 
for experiment management. (b) A photo showing that a rat was 
controlling the movement of a robotic arm using its brain signals through 
the cyberworkstation. (c) A snapshot of the Web portal where results 
from an experiment were visualized and analyzed. 

In DDDBMI, brain signal data are used to drive different 
motor control models, each seeking the best control action 
independently, where their results are aggregated to find the 
optimal robotic movement. The cyberworkstation supports 
this paradigm by computing these models in parallel using the 
message passing interface (MPI). 

This parallel computation is conducted upon resources 
provided through virtualization to provide efficient utilization 
of resources and seamless support of BMI models. 
Virtualization allows many virtual machines to be created 
upon a single physical machine and transparently share its 
computing and storage resources. Each virtual machine can 
be customized with the necessary execution environment, 
including operating system and libraries, to support seamless 
deployment of a BMI model. Multiple models can run 
concurrently with their dedicated virtual machines, where 
resources are dynamically provisioned to them according to 
their demands and timing requirements. 

For offline BMI study, virtual machines allow the model 
computation to share resources with other jobs in an isolated 
manner. These jobs are managed via a cluster management 
system  [6] that provides queuing and scheduling of job 
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executions on the virtual machines. On the other hand, an 
online experiment has strict timing requirement for the model 
computation. Thus, a set of physical resources is reserved in 
advance to prepare a cluster of virtual machines for the online 
computation. The existing jobs on these reserved resources 
can be transparently suspended or relocated to other 
resources by suspending or migrating their VMs  [4]. 

D. Robot Control 
The results from the parallel model computation are sent 

back from ACIS to NRG across the network, again through 
the aforementioned reliable data transfer mechanism, to move 
the robotic arm in real-time. The robotic arm is also directly 
connected to the data acquisition server and controlled by the 
middleware. Two types of control are supported to meet 
different model needs. Incremental control moves the arm 
one step at a time, where each movement has to finish within 
the closed-loop cycle. With point-to-point control, the arm 
continuously travels a relatively long distance, which may 
take several cycles to complete. 

The former is needed for dynamically adjusting the 
movement, whereas the latter can be used to directly reach the 
destination when certain condition holds. To support 
point-to-point movement without violating timing 
constraints, its control is implemented in a separate thread 
which runs concurrently with the main closed-loop thread. In 
this way, the main thread does not have to wait for a 
point-to-point movement but can still manage it through 
event-based coordination with the control thread. Both types 
of robot control are employed to support various models in 
the cyberworkstation as further explained in Section III. 

E. Web Portal 
The complexity of the above introduced techniques for 

supporting the closed loop is mostly hidden from the users by 
the cyberworkstation, whereas only the needed 
functionalities are exposed through an easy-to-use 
Web-based portal  [8]. The portal facilitates the integration of 
data and resources to enable and catalyze collaborative 
research on DDDBMI. Users can access the portal from 
anywhere with an Internet connection, conveniently 
conducting research and collaborating with colleagues. The 
functionalities of the portal are provided through 
AJAX-based portlets  [7], which allows for flexible 
customization of portal interfaces and responsive, 
asynchronous update of portal contents. 

The experiment management portlet enables users to 
dynamically configure and control online experimentation as 
well as offline study. It cooperates with the other components 
of the cyberworkstation to realize the management of the 
entire closed loop. The monitoring portlet provides the static 
and dynamic information of computing resources as well as 
BMI jobs. The visualization portlet allows users to 
dynamically visualize and analyze data using the tools they 
are familiar with (e.g., MATLAB). Other portlets such as 
message boards, instant messaging tools, and wiki are also 

provided to foster collaboration upon the cyberworkstation. 

III. BMI MODELS 
The cyberworkstation supports BMI models with distinct 

paradigms, including supervised learning and reinforcement 
learning, which demonstrates its feasibility and flexibility of 
facilitating DDDBMI research. (More details about the 
algorithms can be found in  [1] and  [2].) 

A. Recursive Least Square based Model (RLS)  
RLS  [2] uses the recursive least square method to model 

the brain function based on available data and can update the 
model on a sample-by-sample basis online. The algorithm is 
specifically optimized to satisfy the real-time experiment’s 
need. Recursive model update is employed to reduce the 
amount of computation for generating the model during each 
closed-loop cycle. A sliding training window is used to 
further reduce the computation intensity and improve the 
online training time. It uses multidimensional inputs and 
outputs and separated modules for auto- and cross-correlation 
recursion, so that the same signal can be used to train different 
models at low cost. Based on the learned model, the robot 
control action is computed according to the acquired brain 
signals. Point-to-point robot movement is then utilized to 
reach the goal as decided by the computation. 

B. Reinforcement Learning based Model (RLBMI)  
 A fundamental limitation of the supervised learning based 

input-output modeling approach, such as RLS, is that 
paralyzed patients are unable to train their own models 
because they cannot move their limbs. To overcome this 
limitation, a semi-supervised approach (RLBMI  [1]) based on 
reinforcement learning is designed to control the robot’s 
movement. Using co-adaptation a computer agent finds the 
mapping between neural activity and behavior by maximizing 
the reward of completing a goal directed task. In this 
paradigm, one has access to not only the real animal brain but 
also the spatio-temporal activation of brain states (indirectly 
related to the environment) as the animal seeks a goal or 
reward. Incremental robot control is used to continuously 
exploit and explore the space. 

IV. EVALUATION 

A. Setup  
 This section uses an online RLBMI experiment to evaluate 
the cyberworkstation’s effectiveness in supporting DDDBMI 
research and its ability of meeting the desired timing 
requirements.  A 100ms deadline was imposed on each cycle 
of the closed loop consisting of the aforementioned four 
phases: data acquisition, network transfer, parallel model 
computation, and robot control. A total of 32 channels of 
brain signals were sampled through a DSP device. The 
robotic arm has 5 degrees of freedom. The data 
acquisition/robot control server has dual 2.4HGz Xeon 
processors and runs Windows Server 2003. The computation 
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was conducted on a cluster of VMware ESX server 3.0  [5] 
based virtual machines. They are hosted on several dual 
3.2GHz Xeon servers.  Each virtual machine has 1GB RAM 
and runs Ubuntu Linux 7.04. The experiment was submitted, 
controlled, and monitored through the Web portal. 

B. Results 
Fig. 2 shows the histogram of the closed-loop cycle time 

obtained from a 15-minute-long online RLBMI experiment 
with 8,151 iterations. This result clearly demonstrates that the 
cyberworkstation can provide a high-performance computing 
environment for researchers to run their real-time 
experiments as there is no missed deadline. Table 1 reports on 
the timing results in more detail, including the statistics of the 
entire cycle time as well as each individual phase’s latency. 

C. Discussion 
The cyberworkstation is built upon best-effort software 

and hardware resources in that they cannot provide any hard 
timing guarantee for the computation and I/O operations. The 
real-time closed-loop needed by DDDBMI experiments is 
supported through the middleware-level techniques 
explained in Section II. Nonetheless, as shown in Table I, a 
certain level of variances exists for the latencies due to the 
best-effort nature of the underlying resources. 

Specifically, the operating systems deployed on the data 
acquisition/robot control server and the virtual machines are 
designed for general-purpose usage. Hence, even though the 
cyberworkstation has taken all the possible techniques to 
improve the timing for the experiment, relatively high 
variances are observed from the latencies of data acquisition, 
model computation, and robot control. To address this, our 
ongoing research is investigating special-purpose operating 
systems for stronger real-time support. 

Another factor that also contributes to the variance of 
computation time is that the amount of computation varies 
across different iterations of the experiment. In particular, 
only the iterations during an active trial require intensive 
computation, whereas the others involve negligible amount of 
processing. Consequently, the active-trial iterations have 
much higher computation time than the others. 

The variance of network transfer time is strongly related to 
the particular network setup of the experiment. For security 
reasons, the virtual machines are deployed in an isolated 
private network and the access to them are forwarded through 
a gateway server at ACIS. This setup increases the network 
latency as well as its variance since the gateway server is also 
responsible for forwarding other unrelated network traffic. 
Our future investigation will consider improving the network 
transfer latency by reserving resources on the gateway server 
for forwarding the BMI-specific network traffic. 

V. CONCLUSION 
This paper has presented an application-centric and 

user-oriented cyberinfrastructure for DDDBMI research. 
Online and offline BMI experiments can be performed on it in 

a closed-loop manner that includes in vivo data acquisition, 
reliable network transfer, parallel model computation, and 
real-time robot control. Scientists can conveniently deploy 
their algorithms on the cyberinfrastructure and conduct 
research through its Web portal. Two interesting models 
based on recursive least square (RLS  [2]) and reinforcement 
learning (RLBMI  [1]) are successfully developed and tested 
using this approach. Our future work will further improving 
this cyberinfrastructure to support DDDBMI with automatic 
model integration, complex experiment workflow, and 
Quality of Service driven resource management. 
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Fig. 2.  The histogram of the closed-loop cycle time from an online 
RLBMI experiment with 8,151 iterations. 

TABLE I 
TIMING STATISTICS OF AN ONLINE RLBMI EXPERIMENT 

Latency Min (ms) Max 
(ms) 

Average 
(ms) 

Stdev 
(ms) 

Entire closed loop 1.071 64.265 1.943 2.830 
Data acquisition 0.913 61.746 8.090 10.184 

Network transfer 0.940 49.212 1.426 1.104 

Model computation 0.145 17.756 0.310 0.222 

Robot control 0.037 63.439 2.541 6.582 
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