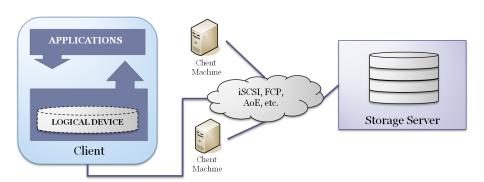
Solid State Drive Based Energy Efficient Cloud Storage

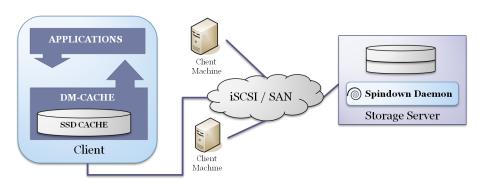
Jesus Ramos Alexis Jefferson Tiffany Da Silva Salma Rodriguez Jorge Cabrera

> Florida International University VISA Research Lab CIS 4911 - Senior Project Project Mentor: Dr. Ming Zhao


> > December 4, 2012

1 / 17

Outline


- Background
- Proposed Approach
- Implementation
- Web Interface
- Evaluation

Current System

Proposed Approach

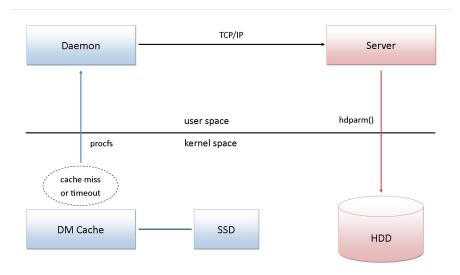
Feasibility Study

Disk-State	Inc. from Inactive	Disk-State	Inc. from Inactive
HDD-Inactive:	+0	SSD-Inactive:	+0
HDD-Idle:	+4	SSD-Idle:	+0.7
HDD-Active (Read):	+7.2	SSD-Active (Read):	+3.5
HDD-Active (Write):	+7.6	SSD-Active (Write):	+5.1

Cache Management Policy

LRU (Least Recently Used)

Assumes that pages that aren't used for a long time will not be used in the near future


LFU (Least Frequently Used)

Pages that are used less frequently should be evicted first

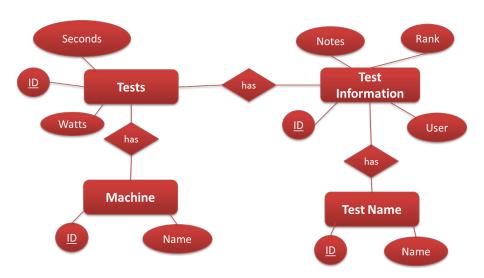
Changes to accommodate policies:

- Replace hash table with a radix tree ordered by sectors
- Use linked list to manage LRU and LFU schemes

Dynamic Spin-down Daemon

Measuring Power

Watts Up? Pro

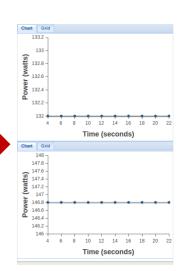

Web Application

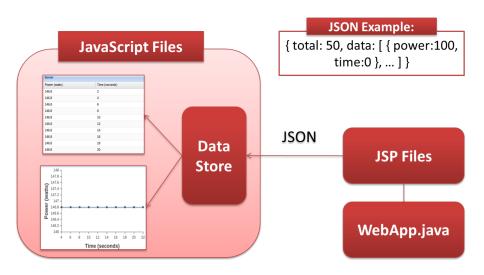
Purpose: display data from measurements Important Features:

- View current power
- View past power tests

View Past Power

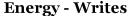
View Past Power

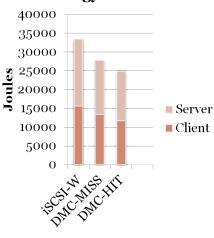

Load Test					
Test Name	Start Time	End Time	Notes	Rank	
dmc-pagecache-8g-warm-read	2012-10-26 12:57:29.0	2012-10-26 12:58:38.0	B/W: 165833 IOPS: 41458.25	1	
iscsi-pagecache-8gb-read	2012-10-26 18:04:59.0	2012-10-26 18:06:39.0	B/W: 104040 IOPS: 26010	1	


View Current Power

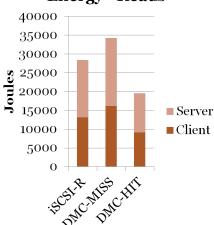
```
orge@visa:~$ cd portal
                                     jorge@visa:~/portal$ ./temporary
jorge@visa:~/portal$ ./temporary 146.8
132.0
                                     146.8
132.0
                                     146.8
32.0
                                     146.8
132.0
                                    146.8
132.0
                                     146.8
132.0
                                     146.8
132.0
                                     146.8
132.0
                                    146.8
132.0
                                     146.8
132.0
                                     146.8
132.0
                                     146.8
132.0
                                     146.8
                                     146.8
132.0
                                     146.8
132.0
                                     146.8
132.0
                                     146.8
132.0
                                     146.8
132.0
                                     146.8
132.0
                                     146.8
132.0
                                     146.8
132.0
                                    146.8
```


View Current Power

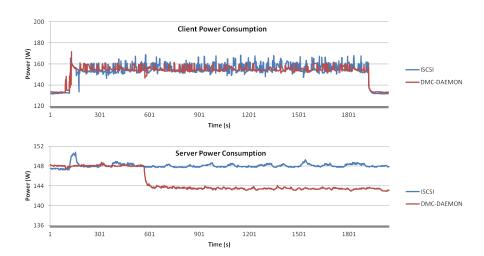



Evaluation Setup

- Collected power consumption measurements from a client and server node
- Three configurations:
 - Baseline
 - DM-Cache
 - DM-Cache with daemon modifications
- Two types of benchmarks
 - Simple file operations
 - Workload emulation



IOZone: Micro Benchmarks



Energy - Reads

Filebench: Synthetic Workload

Conclusion

- Leveraged existing client-side caching and added new cache eviction policies
- Implemented disk spin-down daemon to exploit idle disk periods
- Developed a web application to display power consumption graphs
- Presented experiments showing the benefits of client-side SSD caching