
On the Use of Virtualization and Service Technologies
to Enable Grid-Computing

Andréa Matsunaga, Maurício Tsugawa, Ming Zhao, Liping Zhu, Vivekananthan
Sanjeepan, Sumalatha Adabala, Renato Figueiredo, Herman Lam,

and José A. B. Fortes

Advanced Computing and Information Systems Laboratory (ACIS)
Dep. of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611

Email: fortes@ufl.edu

Abstract. The In-VIGO approach to Grid-computing relies on the dynamic
establishment of virtual grids on which application services are instantiated. In-
VIGO was conceived to enable computational science to take place In Virtual
Information Grid Organizations. Having its first version deployed on July of
2003, In-VIGO middleware is currently used by scientists from various
disciplines, a noteworthy example being the computational nanoelectronics
research community (http://www.nanohub.org). All components of an In-
VIGO-generated virtual grid – machines, networks, applications and data – are
themselves virtual and services are provided for their dynamic creation. This
article reviews the In-VIGO approach to Grid-computing and overviews the
associated middleware techniques and architectures for virtualizing Grid
components, using services for creation of virtual grids and automatically Grid-
enabling unmodified applications. The In-VIGO approach to the
implementation of virtual networks and virtual application services are
discussed as examples of Grid-motivated approaches to resource virtualization
and Web-service creation.

1 Introduction

The future envisioned by the concept of Grid-computing is one where users will be
able to securely and dependably access, use, “publish” and compose applications as
services anywhere and anytime. Transparently to users, Grids will have to aggregate
resources, possibly across different institutions, to provide application services. In
addition, Grid middleware will have to create in the aggregated resources the
execution environments where services and users can securely run or create
applications of interest and access needed data. Unless properly designed, individual
solutions for each of these requirements can conflict with each other, as shared
resources cannot be easily reconfigured to simultaneously provide multiple execution
environments securely and on-demand for different users and applications. This
article argues that resource virtualization and service technologies provide ideal
mechanisms to address these and other key requirements of Grid-computing, and

2 Andréa Matsunaga, Maurício Tsugawa, Ming Zhao, Liping Zhu, Vivekananthan
Sanjeepan, Sumalatha Adabala, Renato Figueiredo, Herman Lam,
and José A. B. Fortes

describes components of In-VIGO, an evolving deployed system that successfully
uses this approach [1], [2].

The remainder of this paper is organized as follows. The In-VIGO approach is
briefly reviewed in Section 2. Virtual machines and the corresponding services for
their creation and management are reviewed in Section 3. Virtual file systems and
associated services are overviewed in Section 4. Virtual networking techniques are
presented in Section 5. Virtual applications and virtual application services are
discussed in Section 6. Section 7 describes how the different In-VIGO components
are securely integrated. Conclusions and the current status of In-VIGO middleware
and research are presented in Section 8.

2 The In-VIGO Approach

In-VIGO is unique in that it decouples user environments from physical resources by
using technologies that virtualize all resources needed for Grid-computing, including

machines, networks, applications and data (see Figure 1). Users will typically interact
with In-VIGO through a portal where they can invoke applications of interest. In-
VIGO delivers these applications through Web-enabled user interfaces that interact
with virtual application (VA) services. VA services interact with other application
services as well as other Grid-computing middleware services. VA services decouple
application interfaces from application implementations thus hiding the kinds of
codes and machines used to provide services. Transparently to users, VA services
engage with virtualization services to create the virtual machines, file systems,
networks and possibly other applications needed to generate a virtual grid with the
necessary execution environment for the application delivered by the VA service.

Fig. 1. High-level view of the In-VIGO approach

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 3

Virtualization services decouple users and execution environments needed by
applications from the physical machines that provide them, thus allowing different
instances of an application service to transparently run on different physical hardware.

Ultimately, Grids will be useful only if they can provide application services for
users. In-VIGO provides each user with a persistent private virtual workspace that
enables him/her to both launch and develop applications, use and manage private
data, and carry out conventional operating system tasks through, for example, a Unix-
like shell. It is also very important that, in addition to the use of services, the process
of deploying applications as services be as simple as possible. Service creation should
not require application developers to know details of how Grid middleware works,
and should not require the involvement of administrators. In-VIGO provides
automated procedures to create application services that only require developers to
provide a description of how a tool works. This description is comparable in nature
and complexity to the “man pages” of an operating system command. It includes the
command-line grammar and some additional information on software dependencies
and other requirements of the application’s execution environment.

3 Virtual Machines and Virtual Machine Services

In-VIGO supports dynamic allocation of execution environments per user and per
distinct application by using virtual machine technologies (including language-based
Java VMs, as well as O/S-based VMs, such as VMware, User-mode Linux) and/or
“shadow” accounts. For efficiency and scalability purposes, mechanisms are provided
for multiplexing virtual machines and accounts among users and applications without
compromising security and customizability. Virtual machines can either be created
and destroyed for every In-VIGO session or be made persistent across sessions.
Virtual machines used to run applications can also be shared across several
applications by using “shadow accounts” [3], which are pre-created accounts on
machines that In-VIGO can use on behalf of arbitrary users.

In-VIGO manages virtual machines through a set of Grid service-based
middleware components – VMShop and VMPlant [4]. The key differentiators of this
approach from related work reflect the design decisions of: (1) supporting different
VM technologies, such as VMware, User-Mode Linux; (2) allowing flexible,
application-centric VM environment configurations using direct acyclic graph (DAG)
representations; and (3) supporting dynamic “cloning” of previously-built VM
images. Virtual machines managed using this middleware are highly customizable by
the client, on a per-application basis. In contrast, dynamic virtual environments [5]
enable the creation of VMs from a master disk (e.g. a Linux distribution with pre-
installed Globus software) but do not provide mechanisms for the client to specify the
desired machine’s configuration.

“Classic” VMs present the image of a dedicated operating system while enabling
multiple O/S configurations – completely isolated from each other – to share a single
machine. This is an effective mechanism for resource consolidation, and a key reason
for the renewed interest and popularity of VMs. They also provide a flexible,
powerful execution environment for Grid computing, offering isolation and security

4 Andréa Matsunaga, Maurício Tsugawa, Ming Zhao, Liping Zhu, Vivekananthan
Sanjeepan, Sumalatha Adabala, Renato Figueiredo, Herman Lam,
and José A. B. Fortes

mechanisms complementary to operating systems, customization and encapsulation of
entire application environments, and support for legacy applications [6], addressing a
fundamental goal of Grid computing – flexible resource sharing.

VMShop provides a single logical point of contact for clients to request three core
services: create a VM instance, query information about an active VM instance, and
destroy (collect) an active VM instance. Requests for virtual machine creation
received by VMShop contain specifications of hardware, network and software
configurations. VMShop is then is responsible for selecting a VMPlant for the
creation of a virtual machine. This process is implemented through a communication
API and a binding protocol that allows VMShop to request and collect bids containing
estimated VM creation costs from VMPlants.

The VMPlant implements the process of VM instantiation, using the VM’s DAG
specification provided by a client through VMShop as its input. In addition to
supporting flexibility of VM configuration, the DAG aids the implementation of an
efficient VM creation process by supporting partial matches of cached VM images to
find a suitable match – a “golden” machine. Once a golden machine has been found,
VMPlant clones the machine, and then parses the DAG to perform a series of
configuration actions on the new machine. Once a machine is cloned, the
configuration process returns a descriptor of the machine, which can be used by the
client to make future references to the VM instance when issuing requests to
VMShop.

4 Virtual File Systems and Virtual File System Services

In-VIGO uses a Grid Virtual File System (GVFS [7]) to support efficient and
transparent Grid-wide data provisioning [1], [8]. GVFS presents a generic file system
interface to applications by building a virtualization layer upon the de-facto NFS [9]
distributed file system, and does so without changing the existing O/S clients/servers.
It achieves on-demand cross-domain data transfers via the use of middleware-
managed interchangeable logical user accounts [3] and file system proxy-based data
access authentication, forwarding and user-identity mapping [10]. The design
supports deployment of one or more proxies between a native NFS client and server.
A multi-proxy setup is important to implement extensions to GVFS, provide
additional functionality and improve performance.

A unique aspect of In-VIGO is how it integrates virtual machine and file system
techniques to provide flexible execution environments and on-demand, transparent
data access for unmodified applications. Data management has a key role in realizing
the benefits of VM-based Grid computing [6] because a VM computing session
typically involves data distributed across three different logical entities: the “state
server”, which stores VM state; the “compute server”, which provides the capability
of instantiating VMs; and the “data server”, which stores user data. Without a virtual
file system, instantiating a VM requires the explicit movement of state files to a
compute server, and the explicit movement of user data to the VM once it is
instantiated. In contrast, through GVFS, In-VIGO middleware creates dynamic GVFS

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 5

sessions between the state and compute servers to support access of VM states for
VM instantiation, and between the VM and data servers to support access to user data
for application execution within the VM [7].

GVFS supports secure Grid-wide data provisioning for both VM states and user
files by way of two mechanisms: private file system channels and session-key based
inter-proxy authentication. Privacy and integrity are guaranteed by the SSH
connection, and user authentication is independently carried out by each private file
system channel. Through the use of the virtualization layer, the session key handling
is completely transparent to kernel clients and servers, and it only applies to inter-
proxy authentication between tunnel end-points.

Caching is especially important to exploit data locality and hide network latency in
Grid environments. In each GVFS session, the client-side proxy can dynamically
establish and manage a file system disk cache to complement the kernel memory
buffer with much greater capacity. The cache operates at the granularity of NFS RPC
calls and satisfies requests with cached file attributes and data blocks. For write
requests, it can employ write-back to hide write latencies and avoid transfers of
temporary data. Furthermore, GVFS caches can be customized in many aspects
(including size, associativity, write policy and consistency semantics) and thus be
tailored to the needs of different applications. GVFS’ inherent on-demand block-
based data access manner allows for partial transfer of files and can benefit many
applications, especially VM monitors, which typically access only a very small part of
often Gigabyte-size VM disk state. As an application, the middleware can schedule
GVFS sessions with VMM-specific coherence to allow for high-performance VM
instantiations. For example, a VM with non-persistent state can be read-only shared
among multiple users while each user has a “clone” of the VM and independent redo
logs, so that aggressive read caching for state files and write-back caching for redo
logs can be employed [7].

The data management middleware mentioned above has been implemented as
WSRF-compliant services to provide interoperable service interfaces and flexible
state management [11]. These services include: 1) file system service, which runs on
every server and controls the local file system proxies to establish and configure
specific GVFS sessions; 2) data scheduler service, which provides central scheduling
and customization of GVFS sessions and interacts with individual file system services
to start the sessions; 3) data replication service, which creates and manages data
replicas for the purpose of fault tolerance and load balancing. To initiate a VM-based
computing session in In-VIGO, the VMPlant service requests the data scheduler
service to prepare a GVFS session between the VM state server and the VM host to
instantiate a compute VM. Afterwards, the VAS service can request the scheduling of
another session between the VM and the data server, so the application can be started
inside the VM and access the user files via GVFS.

5 Virtual Networking

Network connectivity is an obvious necessity in Grid-computing, as it makes remote
job execution/submission possible and also allows communication between processes

6 Andréa Matsunaga, Maurício Tsugawa, Ming Zhao, Liping Zhu, Vivekananthan
Sanjeepan, Sumalatha Adabala, Renato Figueiredo, Herman Lam,
and José A. B. Fortes

for parallel and/or distributed applications. However, due to firewalls and NAT
devices, symmetric connectivity is often absent when resources are distributed across
wide-area networks and different administrative domains.

Hosts behind firewalls or NATs can only initiate communication, i.e., they cannot
receive communication initiation requests. This limits the hosts’ ability to receive
remote job execution requests and participate in distributed computations. Existing
solutions to the asymmetric connectivity problem still face one or more of the
following issues: (1) changes in firewalls or NAT configuration are required (e.g., to
allow traffic in some ports or to forward ports), possibly violating security policies;
(2) knowledge of network usage (e.g., transport port number) is necessary; (3) high
administration overheads are implicit, since actions are required every time a new
resource is added or removed from the Grid; and (4) application-transparency is not
preserved. Solutions based on address/port translation require either the applications
to be aware of resource discovery protocols (e.g., SOCKS [12], DPF and GCB [13])
or changes to be done in OS kernel network stack and/or in the Internet infrastructure
(e.g., IPNL [14] and AVES [15]). When networking complexity is abstracted and a
new API is exposed, application-transparency is lost (e.g., peer-to-peer networks and
the Ibis programming environment [16]). Tunneling-based approaches have
difficulties with firewalls and high administrative overhead (e.g., VPN, VNET [17],
VIOLIN [18] and X-Bone [19]).

ViNe, the In-VIGO component responsible for network virtualization, has been
designed to address all the above issues. It also has additional features such as support
for on-demand creation, deployment and removal of isolated virtual networks that
specifically connect the necessary machines for execution of a Grid application. The
architecture of ViNe is based on IP-overlay on top of the Internet and resembles a
site-to-site VPN setup. In each participating network, a ViNe router (VR) is placed in
order to handle all ViNe traffic. VRs are responsible for intercepting IP packets
destined to ViNe private address space, encapsulate them with ViNe header and
forward them to the VR that can deliver the original IP packet. VRs make routing
decisions (i.e., to where a packet needs to be forwarded) based on a set of routing
tables, which can be updated by secure VR-to-VR communication. The secure update
of the tables is the key for the on-demand definition of new virtual networks.

When a VR is placed in a network environment behind a firewall or NAT device, it
is called a limited VR. Limited VRs cannot receive communication initiated by peer
VRs, so a VR without limitations needs to be allocated as an intermediate node,
which is called queue VR. Routing tables of all VRs are updated to forward to the
queue VR the packets that are destined to the limited VR subnet. Since a limited VR
can initiate communication, it is its responsibility to contact the queue VR and
retrieve packets.

ViNe uses the private IP address space which is not routable in the Internet. Since
ViNe nodes cannot be reached directly from the Internet, network security can be
discussed with respect to external traffic and internal traffic. External traffic includes
VR-to-VR communication, including encapsulated IP packets and control messages.
Internal traffic includes the actual communication between hosts in ViNe space. VR-
to-VR communication is secured by cryptographically authenticating all messages,

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 7

and also by encrypting critical information exchange such as control messages.
Internal traffic security is achieved by either implementing all security policies of an
organization in the VR or delegating that function to the firewall that may be already
present in the site. The latter is possible because ViNe does not modify IP packets,
and the firewall can still inspect and filter ViNe internal traffic following original
rules.

The first prototype of VR has been implemented in Java, with low level
networking handled by C code. Hosts do not need the installation of additional
software in order to join ViNe, requiring only the operating systems be able to bind
additional IP addresses to a network interface and to define static routes. Those
features are present in most modern operating systems, making ViNe platform
independent. Experiments showed that ViNe can offer performance that is close to the
physical network, both in round-trip latency and throughput.

ViNe enables machines, even if they are connected to private networks, to easily
join the Grid, and also can minimize the reluctance of system administrators to share
resources by not requiring changes in security policies in the existing networks (a
minimal change may be necessary, i.e. allowing ViNe traffic through the shared
resources; however, the ViNe traffic will undergo the same packet inspection/filtering
as the regular network traffic).

6 Virtual Application Services

The In-VIGO Virtual Application (VA) framework enables developers to
automatically and transparently enable unmodified legacy applications “for the Grid”
and users to transparently access deployed applications using virtualized resources
“on the Grid”. This requires the creation of VA services capable of orchestrating the
use of previously discussed virtualization and other core Grid-middleware
components. GridLab’s Grid Application Toolkit (GAT) [20], Application Web
Services (AWS) [21] and GridPort [22] are examples of other frameworks that
aggregate core Grid-middleware to facilitate execution of applications and
construction of Web-portals, but that do not consider exposing each application as a
Web/Grid-service.

A virtual application consists of a physical application (unmodified application
binaries and necessary execution environment) and additional software that (1)
customizes the interface of the physical application to appear as multiple different
applications with different capabilities for different users, and (2) interacts with other
middleware in order to enable multiple simultaneous non-conflicting application
instances on Grid resources. In particular, the virtual application makes use of the
resource virtualization techniques and services described in the previous sections
(virtual machines, virtual file system and virtual networks) to create the execution
environment required by the application.

A virtual application service is a virtual application whose interfaces comply with
WSRF specifications. Grid-enabling is the process of turning command-line
applications interfaces into services that can be integrated into Grid-portals and
delivered through Web-based interfaces. Unless automated, Grid-enabling demands

8 Andréa Matsunaga, Maurício Tsugawa, Ming Zhao, Liping Zhu, Vivekananthan
Sanjeepan, Sumalatha Adabala, Renato Figueiredo, Herman Lam,
and José A. B. Fortes

considerable time and programmer effort, especially for legacy applications which do
not use programming technologies and practices that are well suited for Grid-
computing and are not interoperable with other applications. To overcome this issue,
the VA approach provides automatic Grid-enabling of legacy applications for which
the following information needs to be provided: command-line syntax, description of
the command line in natural language, application resource requirements, and
execution environment settings.

Generated virtual application services are: (1) Consumable: the VAS can be
discovered by, and made available to, other organizations in a technology-neutral
manner that hides heterogeneity and allows interoperability and composition; (2)
Isolated: simultaneous conflict-free execution of multiple unmodified applications is
possible; (3) Customizable: VAS functionality can be customized to be the same as
the original application, or it can be restricted, augmented, or composed with other
applications, per user or per user-group; (4) Scalable to create and deploy: application
virtualization is a one-time automated process that greatly reduces the overhead of
creation and deployment of multiple application services; (5) Dynamically enabled:
VAS deployment can be done in a “plug-and-play” fashion without having to bring
down any part of the Grid infrastructure.

A distinct contribution of the VA approach is the VA language that allows the
description of command-line applications interface with potentially complex set of
parameters. The specifiable information about the command-line format includes the
following: parameter types, default values, number of occurrences of a parameter,
groupings of parameters, dependencies among parameters, multiple group choices,
and parameter sweeping information. This language allows an application enabler, a
special user who has knowledge of the application, but not necessarily of the
underlying Grid infrastructure, to describe the application in a more comprehensive
manner than solutions proposed by SoapLab [23] and Generic Application Factory
Service (GAFS) [24]; thus, allowing strong parameter-type validation.

The VA architecture supports three processes: virtual application enabling, virtual
application service customization and generation, and virtual application service
utilization. It is divided into three tiers: the Web-portal tier which automatically
generates web interfaces of the Grid-services, the virtual application tier discussed in
this section and the virtual-Grid tier composed of virtualization services described in
the previous sections (Fig. 2). Two solutions for the virtual application service
customization and generation process were implemented in In-VIGO: (1) Generic
Application Service (GAP) [25] in which a generic Grid-service dynamically
configures itself according to the application information, making the interface of the
specific application available to the service client using a description language
developed in the In-VIGO project, and (2) Virtual Application Service (VAS) which
generates one specific Grid-service for each application so that the application
interface is fully described using the standard Web Services Description Language
(WSDL). The VAS framework transforms the application information into
XMLSchemas fully using the expressiveness of it, including it as part of the service
description (WSDL), and then it generates, compiles and deploys the service
implementation. The solution makes use of third party tools like XMLBeans to

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 9

generate complex binding types expressed in XMLSchemas, a modified WSDL2Java
to generate the service implementation, AdminClient to deploy the service, Apache
Ant to coordinate this automated process, and Apache Axis and Tomcat as containers
of the generated services.

Fig. 2. VA Architecture. Components are separated into portal, virtual application and virtual
Grid tiers. From right to left, the diagram depicts paths for: (1) enabling an application by an
enabler, (2) customizing and generating the virtual application services VA 1, VA 2 and VA 3
by an administrator and (3) utilizing the virtual Grid (virtual machines, virtual file system, and
virtual networks) to deliver the VA 3 service to a user

7 Building Virtual Grids: In-VIGO at Work

In order to enable sharing of geographically distributed computational and data
resources with different usage policies, In-VIGO middleware shares with other Grid
middleware, the requirement of interfacing with heterogeneous resource access and
authentication schemes. Using resources managed by cluster or other Grid
middleware, such as Globus or Condor-G, entails delegation of jobs to these
middleware components using the appropriate job management syntax, and
authentication and authorization scheme. This section describes the approaches used
in current In-VIGO deployments to interface with multi-institutional resources for
managing tasks associated with In-VIGO middleware and users.

10 Andréa Matsunaga, Maurício Tsugawa, Ming Zhao, Liping Zhu, Vivekananthan
Sanjeepan, Sumalatha Adabala, Renato Figueiredo, Herman Lam,
and José A. B. Fortes

In-VIGO users do not have direct access to, and are completely decoupled from,
user accounts on Grid resources where jobs are effectively run. In-VIGO middleware
has full control of all resources and is responsible for starting jobs as well as
maintaining them, with complete freedom on how to dynamically map Grid users to
local users, and possibly recycle local user accounts among Grid users. The approach
brings advantages for both Grid users and resource providers: Grid users are freed
from the need to manage several credentials; resource administrators are freed from
the task of reconfiguring the access control of resources every time a user joins or
leaves the Grid.

In-VIGO users authenticate themselves by presenting their username and password
to the Grid portal. After login, user actions resulting in access to a Grid resource are
handled by the In-VIGO middleware through the use of Role-Based Access Control
(RBAC) mechanisms, offering Single Sign-On (SSO) for users. Users are grouped
into roles (e.g., regular, Matlab licensed, administrator), while resources are
configured by their providers with a set of permission groups which define operations
(e.g., a simulator in demo, full and configuration modes). Appropriate mappings
between user roles and permission groups are defined, and In-VIGO middleware
enforces the mappings when accessing resources on behalf of users. For example,
only users in the “Matlab licensed” role would be able to run a Matlab-based
simulator in its full operation mode.

Resources, especially local user accounts, need to be isolated from each other
because they are recycled among Grid users. To address this need, local accounts are
either pre-created by resource providers, or created on-demand for a particular user in
VMs where In-VIGO middleware has administrative privileges. In the first case, In-
VIGO middleware makes sure that, at any point in time, only one user is mapped to a
given local user account, and also that the account is cleaned when the job finishes. In
the latter case, accounts are created and destroyed for one Grid user, without the need
for recycling. Since a local account does not run processes for two different users
simultaneously, user isolation at process level is guaranteed. However, local user
accounts also need to have their data access privileges limited to the current assigned
Grid user, as isolation is compromised if the local accounts have access to data of all
Grid users. GVFS provides the necessary data isolation between Grid users. GVFS
controls access at the granularity of directories so that In-VIGO middleware is able to
limit the shadow account’s access of data to the home directory of the Grid user
allocated to it. Further data isolation, among jobs running for the same Grid user, can
be achieved by limiting the access of the local user accounts running the jobs to the
job working directory, which are subdirectories under the Grid user’s home directory.

As the In-VIGO middleware has all the necessary credentials to access accounts
(i.e., to remotely submit a job, independently of the mechanism – Condor, GSI, PBS,
SSH, etc) to run jobs on behalf of the user, providing SSO access to Grid resources is
trivial. More complex SSO solutions are however required when providing users
access to interactive applications that require application level authentication from the
user. Examples of such applications currently supported by In-VIGO include VNC
sessions and a web-based file-manager. In the case of VNC, In-VIGO remotely starts
its server process with a random password in a shadow account. When the user

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 11

requests access to the VNC desktop, In-VIGO embeds the necessary credential into
the VNC client applet and transmits it securely (through SSL) to the user. When the
VNC client is run by the user, it authenticates automatically (on behalf of the user) to
the server. Adding RBAC to the above process, enables In-VIGO to allow sharing of
workspaces among users, i.e., it enables a group of users (belonging to a single user
role) to access a given VNC session without the need for users to share credentials
and/or passwords.

In-VIGO selects resources for running In-VIGO user or middleware related tasks
based on the job requirements specified by the In-VIGO application enabler, and
resource availability and usage policies. This resource matching is performed by In-
VIGO in the case of resources directly managed by it, or may be delegated to the
cluster or Grid software, such as Condor-G or PBS, managing the resources. In the
latter case, In-VIGO job requirements need to be mapped to job requirements in the
specification syntax of the cluster or Grid software. Allowing for direct specification
of job requirements based on the specification syntax of specific cluster/Grid software
requires that the application enabler be aware of the types of resources that the
application can use. This problem is typically overcome by introducing a uniform
specification syntax that subsumes the specification syntax of the varied cluster/Grid
software. Since existing cluster/Grid specification syntax used to describe
resource/request properties are based on symmetric flat attributes [26], the uniform
specification syntax inherits their shortcoming, namely the need for tight coordination
between resource providers and consumers to agree upon attribute names and values.
To allow for a flexible and extensible approach to resource matching in In-VIGO
semantic matching of resource descriptions is used [27]. The In-VIGO job
specifications and resource descriptions and usage policies are described using RDF
[28] based ontologies, along with semantic entailments for matchmaking. Handlers
specific to the type Cluster/Grid software are then used to map job specification and
job management information to the software-specific syntax. The asymmetric
description of resource and request enables VA descriptions that are decoupled from
the supported resources and implementation of resource matching in In-VIGO.

Conclusions and In-VIGO Status

Many challenges faced in early versions of Grid middleware were due to the need to
support different applications and distinct users on heterogeneous resources under
separate administrative control. The use of virtualization effectively minimizes the
impact of hardware and system software dependencies on Grid middleware by
generating on-demand the execution environments needed for each application and
user. The use of services enables customization of applications for each user while
hiding implementation details, thus removing the need for multiple variants of Grid
middleware. This “dual rail” decoupling greatly facilitates the management of Grid
resources without interfering with other users, and the creation and provision of
services without conflicts with other service implementations.

The In-VIGO research reported in this paper confirms the potential benefits of
virtualization and services by devising and deploying efficient services for the

12 Andréa Matsunaga, Maurício Tsugawa, Ming Zhao, Liping Zhu, Vivekananthan
Sanjeepan, Sumalatha Adabala, Renato Figueiredo, Herman Lam,
and José A. B. Fortes

creation of virtual resources and virtual grids, and providing techniques for the
automatic Grid-enabling of applications as services and their on-demand instantiation.
The first version of In-VIGO has been online since July of 2003; this and newer
versions of In-VIGO have been the subject of research and development since August
of 2001. The concepts discussed in this paper have been implemented in at least one
of these versions. Extensive prototyping and experimental evaluation of these
concepts have demonstrated that the overheads of using virtualization and services are
either minimal or acceptable for most Grid-computing applications. In-VIGO
middleware is currently being used to deliver Grid-based computational services to
users in several domains of science and engineering, which include computational
nanoelectronics, coastal and ocean modeling, materials science, computer architecture
and parallel processing.

Acknowledgements

The In-VIGO project is supported in part by the National Science Foundation under
Grants No. EIA-9975275, EIA-0224442, ACI-0219925, EEC-0228390; NSF
Middleware Initiative (NMI) collaborative grants ANI-0301108/ANI-0222828, SCI-
0438246; and by the Army Research Office Defense University Research Initiative in
Nanotechnology. The authors also acknowledge two SUR grants from IBM and a gift
from VMware Corporation. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation, Army Research
Office, IBM, or VMware.

References

1. Adabala, S., Chadha, V., Chawla, P., Figueiredo, R.J., Fortes, J.A.B., Krsul, I., Matsunaga,
A., Tsugawa, M., Zhang, J., Zhao, M., Zhu, L., Zhu, X.: From Virtualized Resources to
Virtual Computing Grids: The In-VIGO System. Future Generation Computing Systems,
special issue on Complex Problem-Solving Environments for Grid Computing, Vol 21/6,
2005, 896–909.

2. Fortes, J.A.B., Figueiredo, R.J., Lundstrom, M.S.: Virtual Computing Infrastructures for
Nanoelectronics Simulation. IEEE Proceedings: Special Issue on Blue Sky Technologies (in
press), 2005.

3. Kapadia, N., Figueiredo, R.J., Fortes, J.A.B.: Enhancing the Scalability and Usability of
Computational Grids via Logical User Accounts and Virtual File Systems. In Proceedings
of Heterogeneous Computing Workshop at the International Parallel and Distributed
Processing Symposium, April 2001.

4. Krsul, I., Ganguly, A., Zhang, J., Fortes, J., Figueiredo, R.: VMPlants: Providing and
Managing Virtual Machine Execution Environments for Grid Computing. In Proceedings of
Supercomputing 2004.

On the Use of Virtualization and Service Technologies to Enable Grid-Computing 13

5. Keahey, K., Doering, K., Foster, I.: From Sandbox to Playground: Dynamic Virtual
Environments in the Grid. In Proceedings of Fifth IEEE/ACM International Workshop on
Grid Computing (GRID'04).

6. Figueiredo, R.J., Dinda, P.A., Fortes, J.A.B.: A Case for Grid Computing on Virtual
Machines. In Proceedings of International Conference on Distributed Computing Systems,
May 2003.

7. Zhao, M., Figueiredo, R.J.: Distributed File System Support for Virtual Machines in Grid
Computing. In Proceedings of 13th IEEE International Symposium on High Performance
Distributed Computing, June 2004.

8. Figueiredo, R.J., Kapadia, N., Fortes, J.A.B.: The PUNCH Virtual File System: Seamless
Access to Decentralized Storage Services in a Computational Grid. In Proceedings of IEEE
International Symposium on High Performance Distributed Computing, August 2001.

9. Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D., Hitz, D.: NFS Version 3
Design and Implementation. In Proceedings of USENIX Summer Technical Conference,
1994.

10. Figueiredo, R.J., Kapadia, N., Fortes, J.A.B.: Seamless Access to Decentralized Storage
Services in Computational Grids via a Virtual File System. In Cluster Computing, 2004.

11. Zhao, M., Chadha, V., Figueiredo, R.J.: Supporting Application-Tailored Grid File System
Sessions with WSRF-Based Services. In Proceedings of the 14th IEEE International
Symposium on High Performance Distributed Computing, July 2005, 202–211.

12. Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., Jones, L.: SOCKS protocol version 5.
RFC1928, March 1996.

13. Son, S., Livny, M.: Recovering Internet Symmetry in Distributed Computing. In
Proceedings of the 3rd International Symposium on Cluster Computing and the Grid, May
2003.

14. Francis, P., Gummadi, R.: IPNL: A NAT-Extended Internet Architecture. In Proceedings of
the ACM SIGCOMM 2001, August 2001.

15. Eugene Ng, T.S., Stroica, I., Zhang, H.: A Waypoint Service Approach to Connect
Heterogeneous Internet Address Spaces. In Proceedings of USENIX 2001, June 2001, 319–
332.

16. Denis, A., Aumage, O., Hofman, R., Verstoep, K., Kielmann, T., Bal, H.: Wide-Area
Communication for Grids: An Integrated Solution to Connectivity, Performance and
Security Problems. In Proceedings of 13th IEEE International Symposium on High
Performance Distributed Computing, June 2004.

17. Sundararaj, A., Dinda, P.: Towards Virtual Networks for Virtual Machine Grid Computing.
In Proceedings of the 3rd USENIX Virtual Machine Research and Technology Symposium,
May 2004.

18. Jiang, X., Xu, D.: VIOLIN: Virtual Internetworking on Overlay Infrastructure. In
Proceedings of Parallel and Distributed Processing and Applications: Second International
Symposium, ISPA 2004, Hong Kong, China, December 13-15, 2004.

19. Touch, J., Hotz, S.: The X-Bone. Proc. of Global Internet Mini-Conference at Globecom,
November 1998.

20. Allen, G., Davis, K., Goodale, T., Hutanu, A., Kaiser, H., Kielmann, T., Merzky, A., van
Nieuwpoort, R., Reinefeld, A., Schintke, F., Schott, T., Seidel, E., Ullmer, B.: The grid
application toolkit: toward generic and easy application programming interfaces for the
grid. In Proceedings of the IEEE, Vol.93, Iss.3, March 2005, 534–550.

21. Pierce, M., Fox, G., Youn, C., Mock, S., Mueller, K., Balsoy, O.: Interoperable Web
services for computational portals. In Proceedings of the 2002 ACM/IEEE conference on
Supercomputing (Baltimore, MD, 2002), IEEE Computer Society Press, 2002, 1–12.

22. Thomas, M., Boisseau, J.: Building Grid Computing Portals: The NPACI Grid Portal
Toolkit. Grid Computing: Making the Global Infrastructure a Reality, Ch 28. F. Berman, G.
Fox and T. Hey, eds. John Wiley and Sons, Ltd, Chichester (2003).

14 Andréa Matsunaga, Maurício Tsugawa, Ming Zhao, Liping Zhu, Vivekananthan
Sanjeepan, Sumalatha Adabala, Renato Figueiredo, Herman Lam,
and José A. B. Fortes

23. Senger, M., Rice, P., Oinn, T.: Soaplab - a unified Sesame door to analysis tools. In
Proceedings of UK e-Science All Hands Meeting September 2003, 509–513.

24. Gannon, D., Alameda, J., Chipara, O., Christie, M., Dukle, V., Fang, L., Farrellee, M.,
Kandaswamy, G., Kodeboyina, D., Krishnan, S., Moad, C., Pierce, M., Plale, B., Rossi, A.,
Simmhan, Y., Sarangi, A., Slominski, A., Shirasuna, S., Thomas, T.: Building grid portal
applications from a web service component architecture. In Proceedings of the IEEE,
Vol.93, Iss.3, March 2005, 551–563.

25. Sanjeepan, V., Matsunaga, A., Zhu, L., Lam, H., Fortes, J.A.B.: A Service-Oriented,
Scalable Approach to Grid-Enabling of Legacy Scientific Applications. In Proceeding of
International Conference on Web Services (ICWS), Industry Track, July 2005.

26. Solomon, M., Raman, R. and Livny, M.: Matchmaking distributed resource management
for high throughput computing. In Proceedings of the Seventh IEEE International
Symposium on High Performance Distributed Computing, Chicago, IL, July 1998.

27. Tangmunarunkit, H., Decker, S. and Kesselman, C.: Ontology-Based Resource Matching in
the Grid - The Grid Meets the Semantic Web. The Semantic Web - ISWC 2003, Second
International Semantic Web Conference, Sanibel Island, FL, USA, October 20-23, 2003,
Proceedings. Lecture Notes in Computer Science 2870 Springer 2003, ISBN 3-540-20362-1

28. Lassila, O., and Swick, R.R.: Resource description framework (rdf) model and syntax
specification. In W3C Recommendation, World Wide Web Consortium. February 1999.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

