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Abstract. The In-VIGO approach to Grid-computing relies on the dynamic 
establishment of virtual grids on which application services are instantiated. In-
VIGO was conceived to enable computational science to take place In Virtual 
Information Grid Organizations. Having its first version deployed on July of 
2003, In-VIGO middleware is currently used by scientists from various 
disciplines, a noteworthy example being the computational nanoelectronics 
research community (http://www.nanohub.org). All components of an In-
VIGO-generated virtual grid – machines, networks, applications and data – are 
themselves virtual and services are provided for their dynamic creation. This 
article reviews the In-VIGO approach to Grid-computing and overviews the 
associated middleware techniques and architectures for virtualizing Grid 
components, using services for creation of virtual grids and automatically Grid-
enabling unmodified applications. The In-VIGO approach to the 
implementation of virtual networks and virtual application services are 
discussed as examples of Grid-motivated approaches to resource virtualization 
and Web-service creation.  

1 Introduction 

The future envisioned by the concept of Grid-computing is one where users will be 
able to securely and dependably access, use, “publish” and compose applications as 
services anywhere and anytime. Transparently to users, Grids will have to aggregate 
resources, possibly across different institutions, to provide application services. In 
addition, Grid middleware will have to create in the aggregated resources the 
execution environments where services and users can securely run or create 
applications of interest and access needed data. Unless properly designed, individual 
solutions for each of these requirements can conflict with each other, as shared 
resources cannot be easily reconfigured to simultaneously provide multiple execution 
environments securely and on-demand for different users and applications. This 
article argues that resource virtualization and service technologies provide ideal 
mechanisms to address these and other key requirements of Grid-computing, and 
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describes components of In-VIGO, an evolving deployed system that successfully 
uses this approach [1], [2].    

The remainder of this paper is organized as follows. The In-VIGO approach is 
briefly reviewed in Section 2. Virtual machines and the corresponding services for 
their creation and management are reviewed in Section 3. Virtual file systems and 
associated services are overviewed in Section 4. Virtual networking techniques are 
presented in Section 5. Virtual applications and virtual application services are 
discussed in Section 6. Section 7 describes how the different In-VIGO components 
are securely integrated. Conclusions and the current status of In-VIGO middleware 
and research are presented in Section 8. 

2 The In-VIGO Approach 

In-VIGO is unique in that it decouples user environments from physical resources by 
using technologies that virtualize all resources needed for Grid-computing, including 

machines, networks, applications and data (see Figure 1). Users will typically interact 
with In-VIGO through a portal where they can invoke applications of interest. In-
VIGO delivers these applications through Web-enabled user interfaces that interact 
with virtual application (VA) services. VA services interact with other application 
services as well as other Grid-computing middleware services. VA services decouple 
application interfaces from application implementations thus hiding the kinds of 
codes and machines used to provide services. Transparently to users, VA services 
engage with virtualization services to create the virtual machines, file systems, 
networks and possibly other applications needed to generate a virtual grid with the 
necessary execution environment for the application delivered by the VA service. 

Fig. 1. High-level view of the In-VIGO approach 
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Virtualization services decouple users and execution environments needed by 
applications from the physical machines that provide them, thus allowing different 
instances of an application service to transparently run on different physical hardware.  

Ultimately, Grids will be useful only if they can provide application services for 
users. In-VIGO provides each user with a persistent private virtual workspace that 
enables him/her to both launch and develop applications, use and manage private 
data, and carry out conventional operating system tasks through, for example, a Unix-
like shell. It is also very important that, in addition to the use of services, the process 
of deploying applications as services be as simple as possible. Service creation should 
not require application developers to know details of how Grid middleware works, 
and should not require the involvement of administrators. In-VIGO provides 
automated procedures to create application services that only require developers to 
provide a description of how a tool works. This description is comparable in nature 
and complexity to the “man pages” of an operating system command. It includes the 
command-line grammar and some additional information on software dependencies 
and other requirements of the application’s execution environment.  

3 Virtual Machines and Virtual Machine Services 

In-VIGO supports dynamic allocation of execution environments per user and per 
distinct application by using virtual machine technologies (including language-based 
Java VMs, as well as O/S-based VMs, such as VMware, User-mode Linux) and/or 
“shadow” accounts. For efficiency and scalability purposes, mechanisms are provided 
for multiplexing virtual machines and accounts among users and applications without 
compromising security and customizability. Virtual machines can either be created 
and destroyed for every In-VIGO session or be made persistent across sessions. 
Virtual machines used to run applications can also be shared across several 
applications by using “shadow accounts” [3], which are pre-created accounts on 
machines that In-VIGO can use on behalf of arbitrary users. 

In-VIGO manages virtual machines through a set of Grid service-based 
middleware components – VMShop and VMPlant [4]. The key differentiators of this 
approach from related work reflect the design decisions of: (1) supporting different 
VM technologies, such as VMware, User-Mode Linux; (2) allowing flexible, 
application-centric VM environment configurations using direct acyclic graph (DAG) 
representations; and (3) supporting dynamic “cloning” of previously-built VM 
images. Virtual machines managed using this middleware are highly customizable by 
the client, on a per-application basis. In contrast, dynamic virtual environments [5] 
enable the creation of VMs from a master disk (e.g. a Linux distribution with pre-
installed Globus software) but do not provide mechanisms for the client to specify the 
desired machine’s configuration. 

“Classic” VMs present the image of a dedicated operating system while enabling 
multiple O/S configurations – completely isolated from each other – to share a single 
machine. This is an effective mechanism for resource consolidation, and a key reason 
for the renewed interest and popularity of VMs. They also provide a flexible, 
powerful execution environment for Grid computing, offering isolation and security 
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mechanisms complementary to operating systems, customization and encapsulation of 
entire application environments, and support for legacy applications [6], addressing a 
fundamental goal of Grid computing – flexible resource sharing.  

VMShop provides a single logical point of contact for clients to request three core 
services: create a VM instance, query information about an active VM instance, and 
destroy (collect) an active VM instance. Requests for virtual machine creation 
received by VMShop contain specifications of hardware, network and software 
configurations. VMShop is then is responsible for selecting a VMPlant for the 
creation of a virtual machine. This process is implemented through a communication 
API and a binding protocol that allows VMShop to request and collect bids containing 
estimated VM creation costs from VMPlants. 

The VMPlant implements the process of VM instantiation, using the VM’s DAG 
specification provided by a client through VMShop as its input. In addition to 
supporting flexibility of VM configuration, the DAG aids the implementation of an 
efficient VM creation process by supporting partial matches of cached VM images to 
find a suitable match – a “golden” machine. Once a golden machine has been found, 
VMPlant clones the machine, and then parses the DAG to perform a series of 
configuration actions on the new machine. Once a machine is cloned, the 
configuration process returns a descriptor of the machine, which can be used by the 
client to make future references to the VM instance when issuing requests to 
VMShop. 

4 Virtual File Systems and Virtual File System Services 

In-VIGO uses a Grid Virtual File System (GVFS [7]) to support efficient and 
transparent Grid-wide data provisioning [1], [8]. GVFS presents a generic file system 
interface to applications by building a virtualization layer upon the de-facto NFS [9] 
distributed file system, and does so without changing the existing O/S clients/servers. 
It achieves on-demand cross-domain data transfers via the use of middleware-
managed interchangeable logical user accounts [3] and file system proxy-based data 
access authentication, forwarding and user-identity mapping [10]. The design 
supports deployment of one or more proxies between a native NFS client and server. 
A multi-proxy setup is important to implement extensions to GVFS, provide 
additional functionality and improve performance. 

A unique aspect of In-VIGO is how it integrates virtual machine and file system 
techniques to provide flexible execution environments and on-demand, transparent 
data access for unmodified applications. Data management has a key role in realizing 
the benefits of VM-based Grid computing [6] because a VM computing session 
typically involves data distributed across three different logical entities: the “state 
server”, which stores VM state; the “compute server”, which provides the capability 
of instantiating VMs; and the “data server”, which stores user data. Without a virtual 
file system, instantiating a VM requires the explicit movement of state files to a 
compute server, and the explicit movement of user data to the VM once it is 
instantiated. In contrast, through GVFS, In-VIGO middleware creates dynamic GVFS 
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sessions between the state and compute servers to support access of VM states for 
VM instantiation, and between the VM and data servers to support access to user data 
for application execution within the VM [7].  

GVFS supports secure Grid-wide data provisioning for both VM states and user 
files by way of two mechanisms: private file system channels and session-key based 
inter-proxy authentication. Privacy and integrity are guaranteed by the SSH 
connection, and user authentication is independently carried out by each private file 
system channel. Through the use of the virtualization layer, the session key handling 
is completely transparent to kernel clients and servers, and it only applies to inter-
proxy authentication between tunnel end-points. 

Caching is especially important to exploit data locality and hide network latency in 
Grid environments. In each GVFS session, the client-side proxy can dynamically 
establish and manage a file system disk cache to complement the kernel memory 
buffer with much greater capacity. The cache operates at the granularity of NFS RPC 
calls and satisfies requests with cached file attributes and data blocks. For write 
requests, it can employ write-back to hide write latencies and avoid transfers of 
temporary data. Furthermore, GVFS caches can be customized in many aspects 
(including size, associativity, write policy and consistency semantics) and thus be 
tailored to the needs of different applications. GVFS’ inherent on-demand block-
based data access manner allows for partial transfer of files and can benefit many 
applications, especially VM monitors, which typically access only a very small part of 
often Gigabyte-size VM disk state. As an application, the middleware can schedule 
GVFS sessions with VMM-specific coherence to allow for high-performance VM 
instantiations. For example, a VM with non-persistent state can be read-only shared 
among multiple users while each user has a “clone” of the VM and independent redo 
logs, so that aggressive read caching for state files and write-back caching for redo 
logs can be employed [7]. 

The data management middleware mentioned above has been implemented as 
WSRF-compliant services to provide interoperable service interfaces and flexible 
state management [11]. These services include: 1) file system service, which runs on 
every server and controls the local file system proxies to establish and configure 
specific GVFS sessions; 2) data scheduler service, which provides central scheduling 
and customization of GVFS sessions and interacts with individual file system services 
to start the sessions; 3) data replication service, which creates and manages data 
replicas for the purpose of fault tolerance and load balancing. To initiate a VM-based 
computing session in In-VIGO, the VMPlant service requests the data scheduler 
service to prepare a GVFS session between the VM state server and the VM host to 
instantiate a compute VM. Afterwards, the VAS service can request the scheduling of 
another session between the VM and the data server, so the application can be started 
inside the VM and access the user files via GVFS. 

5 Virtual Networking 

Network connectivity is an obvious necessity in Grid-computing, as it makes remote 
job execution/submission possible and also allows communication between processes 
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for parallel and/or distributed applications. However, due to firewalls and NAT 
devices, symmetric connectivity is often absent when resources are distributed across 
wide-area networks and different administrative domains. 

Hosts behind firewalls or NATs can only initiate communication, i.e., they cannot 
receive communication initiation requests. This limits the hosts’ ability to receive 
remote job execution requests and participate in distributed computations. Existing 
solutions to the asymmetric connectivity problem still face one or more of the 
following issues: (1) changes in firewalls or NAT configuration are required (e.g., to 
allow traffic in some ports or to forward ports), possibly violating security policies; 
(2) knowledge of network usage (e.g., transport port number) is necessary; (3) high 
administration overheads are implicit, since actions are required every time a new 
resource is added or removed from the Grid; and (4) application-transparency is not 
preserved. Solutions based on address/port translation require either the applications 
to be aware of resource discovery protocols (e.g., SOCKS [12], DPF and GCB [13]) 
or changes to be done in OS kernel network stack and/or in the Internet infrastructure 
(e.g., IPNL [14] and AVES [15]). When networking complexity is abstracted and a 
new API is exposed, application-transparency is lost (e.g., peer-to-peer networks and 
the Ibis programming environment [16]). Tunneling-based approaches have 
difficulties with firewalls and high administrative overhead (e.g., VPN, VNET [17], 
VIOLIN [18] and X-Bone [19]). 

ViNe, the In-VIGO component responsible for network virtualization, has been 
designed to address all the above issues. It also has additional features such as support 
for on-demand creation, deployment and removal of isolated virtual networks that 
specifically connect the necessary machines for execution of a Grid application. The 
architecture of ViNe is based on IP-overlay on top of the Internet and resembles a 
site-to-site VPN setup. In each participating network, a ViNe router (VR) is placed in 
order to handle all ViNe traffic. VRs are responsible for intercepting IP packets 
destined to ViNe private address space, encapsulate them with ViNe header and 
forward them to the VR that can deliver the original IP packet. VRs make routing 
decisions (i.e., to where a packet needs to be forwarded) based on a set of routing 
tables, which can be updated by secure VR-to-VR communication. The secure update 
of the tables is the key for the on-demand definition of new virtual networks. 

When a VR is placed in a network environment behind a firewall or NAT device, it 
is called a limited VR. Limited VRs cannot receive communication initiated by peer 
VRs, so a VR without limitations needs to be allocated as an intermediate node, 
which is called queue VR. Routing tables of all VRs are updated to forward to the 
queue VR the packets that are destined to the limited VR subnet. Since a limited VR 
can initiate communication, it is its responsibility to contact the queue VR and 
retrieve packets. 

ViNe uses the private IP address space which is not routable in the Internet. Since 
ViNe nodes cannot be reached directly from the Internet, network security can be 
discussed with respect to external traffic and internal traffic. External traffic includes 
VR-to-VR communication, including encapsulated IP packets and control messages. 
Internal traffic includes the actual communication between hosts in ViNe space. VR-
to-VR communication is secured by cryptographically authenticating all messages, 
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and also by encrypting critical information exchange such as control messages. 
Internal traffic security is achieved by either implementing all security policies of an 
organization in the VR or delegating that function to the firewall that may be already 
present in the site. The latter is possible because ViNe does not modify IP packets, 
and the firewall can still inspect and filter ViNe internal traffic following original 
rules. 

The first prototype of VR has been implemented in Java, with low level 
networking handled by C code. Hosts do not need the installation of additional 
software in order to join ViNe, requiring only the operating systems be able to bind 
additional IP addresses to a network interface and to define static routes. Those 
features are present in most modern operating systems, making ViNe platform 
independent. Experiments showed that ViNe can offer performance that is close to the 
physical network, both in round-trip latency and throughput. 

ViNe enables machines, even if they are connected to private networks, to easily 
join the Grid, and also can minimize the reluctance of system administrators to share 
resources by not requiring changes in security policies in the existing networks (a 
minimal change may be necessary, i.e. allowing ViNe traffic through the shared 
resources; however, the ViNe traffic will undergo the same packet inspection/filtering 
as the regular network traffic). 

6 Virtual Application Services 

The In-VIGO Virtual Application (VA) framework enables developers to 
automatically and transparently enable unmodified legacy applications “for the Grid” 
and users to transparently access deployed applications using virtualized resources 
“on the Grid”. This requires the creation of VA services capable of orchestrating the 
use of previously discussed virtualization and other core Grid-middleware 
components. GridLab’s Grid Application Toolkit (GAT) [20], Application Web 
Services (AWS) [21] and GridPort [22] are examples of other frameworks that 
aggregate core Grid-middleware to facilitate execution of applications and 
construction of Web-portals, but that do not consider exposing each application as a 
Web/Grid-service. 

A virtual application consists of a physical application (unmodified application 
binaries and necessary execution environment) and additional software that (1) 
customizes the interface of the physical application to appear as multiple different 
applications with different capabilities for different users, and (2) interacts with other 
middleware in order to enable multiple simultaneous non-conflicting application 
instances on Grid resources. In particular, the virtual application makes use of the 
resource virtualization techniques and services described in the previous sections 
(virtual machines, virtual file system and virtual networks) to create the execution 
environment required by the application. 

A virtual application service is a virtual application whose interfaces comply with 
WSRF specifications. Grid-enabling is the process of turning command-line 
applications interfaces into services that can be integrated into Grid-portals and 
delivered through Web-based interfaces. Unless automated, Grid-enabling demands 
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considerable time and programmer effort, especially for legacy applications which do 
not use programming technologies and practices that are well suited for Grid-
computing and are not interoperable with other applications. To overcome this issue, 
the VA approach provides automatic Grid-enabling of legacy applications for which 
the following information needs to be provided: command-line syntax, description of 
the command line in natural language, application resource requirements, and 
execution environment settings. 

Generated virtual application services are: (1) Consumable: the VAS can be 
discovered by, and made available to, other organizations in a technology-neutral 
manner that hides heterogeneity and allows interoperability and composition; (2) 
Isolated: simultaneous conflict-free execution of multiple unmodified applications is 
possible; (3) Customizable: VAS functionality can be customized to be the same as 
the original application, or it can be restricted, augmented, or composed with other 
applications, per user or per user-group; (4) Scalable to create and deploy: application 
virtualization is a one-time automated process that greatly reduces the overhead of 
creation and deployment of multiple application services; (5) Dynamically enabled: 
VAS deployment can be done in a “plug-and-play” fashion without having to bring 
down any part of the Grid infrastructure. 

A distinct contribution of the VA approach is the VA language that allows the 
description of command-line applications interface with potentially complex set of 
parameters. The specifiable information about the command-line format includes the 
following: parameter types, default values, number of occurrences of a parameter, 
groupings of parameters, dependencies among parameters, multiple group choices, 
and parameter sweeping information. This language allows an application enabler, a 
special user who has knowledge of the application, but not necessarily of the 
underlying Grid infrastructure, to describe the application in a more comprehensive 
manner than solutions proposed by SoapLab [23] and Generic Application Factory 
Service (GAFS) [24]; thus, allowing strong parameter-type validation. 

The VA architecture supports three processes: virtual application enabling, virtual 
application service customization and generation, and virtual application service 
utilization. It is divided into three tiers: the Web-portal tier which automatically 
generates web interfaces of the Grid-services, the virtual application tier discussed in 
this section and the virtual-Grid tier composed of virtualization services described in 
the previous sections (Fig. 2). Two solutions for the virtual application service 
customization and generation process were implemented in In-VIGO: (1) Generic 
Application Service (GAP) [25] in which a generic Grid-service dynamically 
configures itself according to the application information, making the interface of the 
specific application available to the service client using a description language 
developed in the In-VIGO project, and (2) Virtual Application Service (VAS) which 
generates one specific Grid-service for each application so that the application 
interface is fully described using the standard Web Services Description Language 
(WSDL). The VAS framework transforms the application information into 
XMLSchemas fully using the expressiveness of it, including it as part of the service 
description (WSDL), and then it generates, compiles and deploys the service 
implementation. The solution makes use of third party tools like XMLBeans to 
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generate complex binding types expressed in XMLSchemas, a modified WSDL2Java 
to generate the service implementation, AdminClient to deploy the service, Apache 
Ant to coordinate this automated process, and Apache Axis and Tomcat as containers 
of the generated services. 
 

 

Fig. 2. VA Architecture. Components are separated into portal, virtual application and virtual 
Grid tiers. From right to left, the diagram depicts paths for: (1) enabling an application by an 
enabler, (2) customizing and generating the virtual application services VA 1, VA 2 and VA 3 
by an administrator and (3) utilizing the virtual Grid (virtual machines, virtual file system, and 
virtual networks) to deliver the VA 3 service to a user 

7 Building Virtual Grids: In-VIGO at Work 

In order to enable sharing of geographically distributed computational and data 
resources with different usage policies, In-VIGO middleware shares with other Grid 
middleware, the requirement of interfacing with heterogeneous resource access and 
authentication schemes. Using resources managed by cluster or other Grid 
middleware, such as Globus or Condor-G, entails delegation of jobs to these 
middleware components using the appropriate job management syntax, and 
authentication and authorization scheme. This section describes the approaches used 
in current In-VIGO deployments to interface with multi-institutional resources for 
managing tasks associated with In-VIGO middleware and users. 
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In-VIGO users do not have direct access to, and are completely decoupled from, 
user accounts on Grid resources where jobs are effectively run. In-VIGO middleware 
has full control of all resources and is responsible for starting jobs as well as 
maintaining them, with complete freedom on how to dynamically map Grid users to 
local users, and possibly recycle local user accounts among Grid users. The approach 
brings advantages for both Grid users and resource providers: Grid users are freed 
from the need to manage several credentials; resource administrators are freed from 
the task of reconfiguring the access control of resources every time a user joins or 
leaves the Grid. 

In-VIGO users authenticate themselves by presenting their username and password 
to the Grid portal. After login, user actions resulting in access to a Grid resource are 
handled by the In-VIGO middleware through the use of Role-Based Access Control 
(RBAC) mechanisms, offering Single Sign-On (SSO) for users. Users are grouped 
into roles (e.g., regular, Matlab licensed, administrator), while resources are 
configured by their providers with a set of permission groups which define operations 
(e.g., a simulator in demo, full and configuration modes). Appropriate mappings 
between user roles and permission groups are defined, and In-VIGO middleware 
enforces the mappings when accessing resources on behalf of users. For example, 
only users in the “Matlab licensed” role would be able to run a Matlab-based 
simulator in its full operation mode. 

Resources, especially local user accounts, need to be isolated from each other 
because they are recycled among Grid users. To address this need, local accounts are 
either pre-created by resource providers, or created on-demand for a particular user in 
VMs where In-VIGO middleware has administrative privileges. In the first case, In-
VIGO middleware makes sure that, at any point in time, only one user is mapped to a 
given local user account, and also that the account is cleaned when the job finishes. In 
the latter case, accounts are created and destroyed for one Grid user, without the need 
for recycling. Since a local account does not run processes for two different users 
simultaneously, user isolation at process level is guaranteed. However, local user 
accounts also need to have their data access privileges limited to the current assigned 
Grid user, as isolation is compromised if the local accounts have access to data of all 
Grid users. GVFS provides the necessary data isolation between Grid users. GVFS 
controls access at the granularity of directories so that In-VIGO middleware is able to 
limit the shadow account’s access of data to the home directory of the Grid user 
allocated to it. Further data isolation, among jobs running for the same Grid user, can 
be achieved by limiting the access of the local user accounts running the jobs to the 
job working directory, which are subdirectories under the Grid user’s home directory. 

As the In-VIGO middleware has all the necessary credentials to access accounts   
(i.e., to remotely submit a job, independently of the mechanism – Condor, GSI, PBS, 
SSH, etc) to run jobs on behalf of the user, providing SSO access to Grid resources is 
trivial. More complex SSO solutions are however required when providing users 
access to interactive applications that require application level authentication from the 
user. Examples of such applications currently supported by In-VIGO include VNC 
sessions and a web-based file-manager. In the case of VNC, In-VIGO remotely starts 
its server process with a random password in a shadow account. When the user 
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requests access to the VNC desktop, In-VIGO embeds the necessary credential into 
the VNC client applet and transmits it securely (through SSL) to the user. When the 
VNC client is run by the user, it authenticates automatically (on behalf of the user) to 
the server. Adding RBAC to the above process, enables In-VIGO to allow sharing of 
workspaces among users, i.e., it enables a group of users (belonging to a single user 
role) to access a given VNC session without the need for users to share credentials 
and/or passwords. 

In-VIGO selects resources for running In-VIGO user or middleware related tasks 
based on the job requirements specified by the In-VIGO application enabler, and 
resource availability and usage policies. This resource matching is performed by In-
VIGO in the case of resources directly managed by it, or may be delegated to the 
cluster or Grid software, such as Condor-G or PBS, managing the resources. In the 
latter case, In-VIGO job requirements need to be mapped to job requirements in the 
specification syntax of the cluster or Grid software. Allowing for direct specification 
of job requirements based on the specification syntax of specific cluster/Grid software 
requires that the application enabler be aware of the types of resources that the 
application can use. This problem is typically overcome by introducing a uniform 
specification syntax that subsumes the specification syntax of the varied cluster/Grid 
software. Since existing cluster/Grid specification syntax used to describe 
resource/request properties are based on symmetric flat attributes [26], the uniform 
specification syntax inherits their shortcoming, namely the need for tight coordination 
between resource providers and consumers to agree upon attribute names and values. 
To allow for a flexible and extensible approach to resource matching in In-VIGO 
semantic matching of resource descriptions is used [27]. The In-VIGO job 
specifications and resource descriptions and usage policies are described using RDF 
[28] based ontologies, along with semantic entailments for matchmaking. Handlers 
specific to the type Cluster/Grid software are then used to map job specification and 
job management information to the software-specific syntax. The asymmetric 
description of resource and request enables VA descriptions that are decoupled from 
the supported resources and implementation of resource matching in In-VIGO.  

Conclusions and In-VIGO Status 

Many challenges faced in early versions of Grid middleware were due to the need to 
support different applications and distinct users on heterogeneous resources under 
separate administrative control. The use of virtualization effectively minimizes the 
impact of hardware and system software dependencies on Grid middleware by 
generating on-demand the execution environments needed for each application and 
user. The use of services enables customization of applications for each user while 
hiding implementation details, thus removing the need for multiple variants of Grid 
middleware. This “dual rail” decoupling greatly facilitates the management of Grid 
resources without interfering with other users, and the creation and provision of 
services without conflicts with other service implementations.   

The In-VIGO research reported in this paper confirms the potential benefits of 
virtualization and services by devising and deploying efficient services for the 
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creation of virtual resources and virtual grids, and providing techniques for the 
automatic Grid-enabling of applications as services and their on-demand instantiation. 
The first version of In-VIGO has been online since July of 2003; this and newer 
versions of In-VIGO have been the subject of research and development since August 
of 2001. The concepts discussed in this paper have been implemented in at least one 
of these versions.  Extensive prototyping and experimental evaluation of these 
concepts have demonstrated that the overheads of using virtualization and services are 
either minimal or acceptable for most Grid-computing applications. In-VIGO 
middleware is currently being used to deliver Grid-based computational services to 
users in several domains of science and engineering, which include computational 
nanoelectronics, coastal and ocean modeling, materials science, computer architecture 
and parallel processing.  
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