
This paper is included in the Proceedings of the
13th USENIX Conference on

File and Storage Technologies (FAST ’15).
February 16–19, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-201

Open access to the Proceedings of the
13th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

How Much Can Data Compressibility Help
to Improve NAND Flash Memory Lifetime?
Jiangpeng Li, Kai Zhao, and Xuebin Zhang, Rensselaer Polytechnic Institute;

Jun Ma, Shanghai Jiao Tong University; Ming Zhao, Florida International University;
Tong Zhang, Rensselaer Polytechnic Institute

https://www.usenix.org/conference/fast15/technical-sessions/presentation/li

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 227

How Much Can Data Compressibility Help to Improve NAND Flash
Memory Lifetime?

Jiangpeng Li∗, Kai Zhao∗, Xuebin Zhang∗, Jun Ma†, Ming Zhao‡and Tong Zhang∗
∗ECSE department, Rensselaer Polytechnic Institute, USA

†Shanghai Jiao Tong University, China
‡School of Computing and Information Sciences, Florida International University, USA

{lijiangpeng1984@gmail.com, tzhang@ecse.rpi.edu}

Abstract

Although data compression can benefit flash memory
lifetime, little work has been done to rigorously study
the full potential of exploiting data compressibility to
improve memory lifetime. This work attempts to fill
this missing link. Motivated by the fact that memory
cell damage strongly depends on the data content be-
ing stored, we first propose an implicit data compres-
sion approach (i.e., compress each data sector but do not
increase the number of sectors per flash memory page)
as a complement to conventional explicit data compres-
sion that aims to increase the number of sectors per flash
memory page. Due to the runtime variation of data com-
pressibility, each flash memory page almost always con-
tains some unused storage space left by compressed data
sectors. We develop a set of design strategies for ex-
ploiting such unused storage space to reduce the overall
memory physical damage. We derive a set of mathemat-
ical formulations that can quantitatively estimate flash
memory physical damage reduction gained by the pro-
posed design strategies for both explicit and implicit data
compression. Using 20nm MLC NAND flash memory
chips, we carry out extensive experiments to quantify the
content dependency of memory cell damage, based upon
which we empirically evaluate and compare the effec-
tiveness of the proposed design strategies under a wide
spectrum of data compressibility characteristics.

1 Introduction

NAND flash memory cells gradually wear out with pro-
gram/erase (P/E) cycling due to physical device damage
caused by each P/E cycle, and cycling endurance drasti-
cally degrades with the technology scaling down. Hence,
how to maximize memory lifetime has been widely stud-
ied from different aspects, e.g., signal processing and er-
ror correction coding (ECC) [1–3], flash translation layer
(FTL) [4–10], and system software stack [11–13].

Nevertheless, to our best knowledge, no prior work
has thoroughly studied how data compressibility can be
leveraged to improve flash memory lifetime. It is actually
not surprising, since this question appears to be trivial at
first glance: In conventional practice, the sole objective
of data compression is to improve storage efficiency (i.e.,
explicitly increase the number of data sectors that can be
stored in one flash memory page). This is referred to
as explicit data compression in this work. Due to the
runtime variation of data compressibility, explicit data
compression results in heterogeneity among flash mem-
ory pages in terms of the number of sectors per page,
which can complicate FTL and/or file system design. As
a result, it is not uncommon that commercial flash-based
storage devices do not use data compression at all. If so-
phisticated FTL and/or file systems, which can employ
explicit compression to improve storage efficiency, are
indeed available, one may simply expect that storing data
with an average compression ratio1 of α can directly im-
prove the flash memory lifetime by 1/α . Therefore, one
may easily draw the following conclusion: If we do not
want to complicate the FTL and/or file system, we should
simply leave the user data uncompressed, for which the
data compressibility is totally irrelevant to flash memory
lifetime; If we use complicated FTL and/or file systems
to support explicit data compression, the flash memory
lifetime improvement solely depends on the average data
compression ratio.

This work contends that the above intuitive conclusion
is far from revealing the complete potential of how data
compressibility can help to improve flash memory life-
time. In essence, it overlooks two factors. First, flash
memory experiences content-dependent memory dam-
age, i.e., the damage suffered by each memory cell de-
pends on its content (e.g., ‘11’, ‘10’, ‘00’, and ‘01’
in MLC flash memory) being stored. Once data com-
pression leaves some unused storage space within flash

1Let So and Sc denote the size of the original and compressed data,
then we define compression ratio as Sc/So, which falls into (0,1].

1

228 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

memory pages, we can manipulate their data content
in a damage-friendly manner to reduce physical dam-
age. Hence, conventional explicit data compression is
not necessarily the only option of exploiting data com-
pressibility to improve memory lifetime. We propose
implicit data compression as an alternative to comple-
ment with explicit data compression. With implicit data
compression, we compress each data sector but do not in-
crease the number of data sectors per flash memory page.
Therefore, implicit compression has no impact on FTL
and/or file system but meanwhile does not improve stor-
age efficiency either. Second, for multi-bit per cell (e.g.,
MLC and TLC) flash memory, physical damage depends
on a variety of factors (e.g., distribution characteristics of
compressed data size, relative placement or layout of dif-
ferent pages on the same memory wordline), which have
not been considered in prior work.

This paper presents a thorough study on exploit-
ing data compressibility to reduce physical damage and
hence improve flash memory lifetime. Since random
read latency is one of the most important metrics of
flash-based storage devices, this work assumes that each
compressed data sector must reside entirely in one flash
memory page. As a result, each flash memory page al-
most always contains some unused storage space left by
compressed data sectors. Motivated by the content de-
pendency of flash memory cell damage, we present a set
of design strategies that can exploit the unused storage
space within a flash memory page to reduce the overall
memory damage, for both explicit and implicit data com-
pression. Then we derive a set of mathematical formu-
lations for quantitatively estimating flash memory dam-
age reduction gained by the proposed design strategies.
These rigorous mathematical formulations build a frame-
work that directly links flash memory lifetime with data
compressibility characteristics (e.g., mean and deviation
of data compression ratio) and memory cell damage con-
tent dependency. Using 20nm MLC NAND flash mem-
ory chips, we carried out experiments to quantitatively
measure the content-dependent memory cell damage fac-
tors, based upon which we empirically evaluated and
compared the effectiveness of the proposed design strate-
gies with either explicit or implicit compression. In sum-
mary, the main contributions of this work include:

1. We propose an implicit data compression strategy as
a viable complement to conventional explicit data
compression for exploiting data compressibility to
improve flash memory lifetime;

2. A set of design strategies are developed to leverage
the unused storage space left by data compression
within flash memory pages to reduce the memory
cell physical damage;

3. We derive a set of mathematical formulations to ac-
curately estimate the flash memory damage based
upon the characteristics of data compressibility and
content-dependent memory cell damage;

4. We quantitatively compare explicit data compres-
sion and implicit data compression under a wide
spectrum of runtime data compressibility character-
istics and show that it is important to fully under-
stand the data compressibility characteristics in or-
der to choose the appropriate design strategy.

Finally, we note that, although this work focuses on flash
memory, the developed design strategies and mathemat-
ical formulations are readily applicable to other emerg-
ing memory technologies, e.g., PCM and ReRAM, that
experience similar content dependency of memory cell
physical damage.

2 Design Strategies

This section presents a set of design strategies that can
exploit data compressibility to reduce memory cell dam-
age. We first discuss the content dependency of cycling-
induced memory damage that motivates us to propose
implicit compression (i.e., compress the data without in-
creasing the number of sectors per flash memory page)
in addition to the conventional explicit compression (i.e.,
compress the data and increase the number of sectors per
page as much as possible). We further present differ-
ent strategies on laying out the compressed data within
flash memory pages that aim to leverage the content-
dependent memory damage phenomenon for improving
flash memory lifetime. We note that this work only fo-
cuses on MLC memory, and the discussions could be
readily extended to the more complicated TLC case.

2.1 Content-Dependent Damage

NAND flash memory handles data programming and
read in page units with a typical size of 4kB or 8kB.
For high-density MLC and TLC memory, different bits
within each MLC/TLC memory cell belong to different
pages. This can be illustrated in Fig. 1 for MLC flash
memory, where the two bits within each memory cell be-
long to lower and upper pages, respectively.

NAND flash memory cells wear out with P/E cycling
due to the oxide damage caused by the electrons that pass
through the gate oxide during each P/E cycle. Although
current practice estimates the memory cell damage solely
dependent upon the number of P/E cycles endured by
memory cells, actual physical damage further depends
on the data content being programmed to memory cells.

2

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 229

EraseProgram

control gate

Drain
floating gate
Source

substrate

State
Lower page
Upper page

‘Erase’
1
1

‘P1’‘P2’‘P3’
1 0 0
0 0 1

Vth

Figure 1: Illustration of MLC NAND flash memory cell.

Fl
as

h
bl

oc
k

RAND RAND RAND RAND RAND RAND

RAND RAND RAND RAND RAND RAND

RAND RAND RAND RAND RAND RAND

RAND RAND RAND RAND RAND RAND

RAND RAND RAND

RAND RANDRAND RAND

RANDCUTCUT

CUTCUT

Written with DtestCUT Written with random dataRAND

Figure 2: Illustration of method for accurately quantify-
ing the flash memory cell damage caused by each distinct
data content.

This can be intuitively explained using Fig. 1: differ-
ent data content (e.g., ‘11’, ‘10’, ‘00’, and ‘01’) corre-
spond to different number of electrons that pass through
the gate oxide, and hence different amount of physical
damage [14, 15].

To further demonstrate such content dependency, we
carried out experiments using 20nm MLC NAND flash
memory chips. To evaluate the effect of writing the con-
tent Dtest ∈{‘11’,‘10’,‘00’,‘01’}, we program each flash
memory block with the pattern as shown in Fig. 2, i.e., to
examine the cell content Dtest , each memory cell written
with Dtest is surrounded by memory cells written with
random data. This can incorporate the effect of cell-to-
cell interference and program disturb in practice. The
memory cells written with Dtest are called cells under
test (CUT). Different memory blocks are used for test-
ing different Dtest , and the locations of all the CUTs are
fixed throughout the entire cycling. We capture the raw
bit error rate (BER) of all the CUTs every few hundreds
cycles by writing random data to all the memory cells.
The measurement results are shown in Fig. 3.

2.2 Data Storage Schemes
Since each compressed sector resides entirely in one
memory page, each page will have a certain amount of
unused storage space. This subsection first discusses
how we should determine the content of the unused stor-
age space to minimize the overall damage, then dis-
cusses different options of laying out the compressed
data within flash memory pages.

0 0.5 1 1.5 2 2.5 3
x 104

10−4

10−3

10−2

10−1

100

P/E cycles

R
aw

 B
ER

Pattern content ʼ11ʼ
Pattern content ʼ10ʼ
Pattern content ʼ00ʼ
Pattern content ʼ01ʼ
Random pattern content

Figure 3: Measured memory raw bit error rate (BER)
vs. cycling with different data content.

2.2.1 Content of Unused Storage Space

For MLC NAND flash memory, each pair of lower and
upper pages together determine the memory cell content
and hence the flash memory damage. To minimize the
flash memory damage, we should appropriately deter-
mine the data content in the unused storage space left
by data compression. Let S(l) and S(u) denote the unused
storage space in lower and upper page, and bl and bu de-
note the two bits in the same memory cell and belong to
lower and upper page, respectively. Recall that the mem-
ory cell damage caused by the content ‘11’, ‘10’, ‘00’,
and ‘01’ monotonically increase (where the left bit and
right bit resides in lower and upper page, respectively),
as illustrated in Fig. 3. Therefore, for each memory cell,
we should apply the following rules to minimize flash
memory damage:

• If bl ∈ S(l) and bu ∈ S(u) (i.e., we can freely set the
values of both bits), we set bl = bu = 1 hence the
least harmful content ‘11’ is written to the cell;

• If bl ∈ S(l) and bu /∈ S(u) (i.e., we can only freely set
the value of bl), we always set bl as ‘1’ regardless
to the value of bu;

• If bl /∈ S(l) and bu ∈ S(u) (i.e., we can only freely set
the value of bu), we always set bu = bl .

2.2.2 Compressed Data Layout

Since the memory cells covered by S(l) or S(u) experi-
ence less damage than the other memory cells, we should
keep shifting the location of S(l) and S(u) within flash
memory pages in order to equalize the damage among
all the memory cells. We define a parameter lhead to rep-
resent the location from where the compressed data are
continuously stored in the lower and upper pages. We
should keep changing lhead in order to equalize the mem-
ory cell damage. Since the storage device FTL module

3

230 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association





 



 











Figure 4: Two different data layout strategies.

always keeps track of the P/E cycles of each memory
block, we can fix a relationship between lhead and P/E
cycle number, e.g., let L denote the memory page size
and NP/E denote the P/E cycle number, we can calculate
lhead =

⌊
�t ·NP/E�mod L

⌋
, where t is a fixed constant in-

teger. As a result, the storage device controller does not
need to record the value of lhead for each memory block.
In addition, as decompression is a process that is done
serially, the length of the compressed data need not be
kept in the FTL. For each compressed memory page, the
decompression process can be terminated once the de-
compressed data length reaches the page length. There-
fore, in order to support the proposed design strategy, the
only overhead at the FTL layer is to calculate the lhead
for each memory page.

For MLC NAND flash memory, there are two differ-
ent options for laying out the compressed data in lower
and upper pages. As illustrated in Fig. 4, the first op-
tion is to lay out the compressed data towards the same
direction from lhead in both the lower and upper pages,
that we refer is referred to as unidirectional data layout.
The other option is to lay out the compressed data to-
wards opposite directions in the lower and upper pages,
that we refer to as bidirectional data layout. As shown in
Fig. 4, all the memory cells can be categorized into three
types: (1) In each type-I memory cell, both bits belong
to the compressed data; (2) In each type-II memory cell,
one bit belongs to the compressed data while the other
bit belongs to the unused storage space; (3) In each type-
III memory cell, both bits belong to the unused storage
space. Apparently, the physical damage experienced by
type-I, type-II, and type-III memory cells monotonically
reduces. Compared with unidirectional data layout, bidi-
rectional data layout leads to more type-II memory cells
and less type-I and type-III memory cells.

2.2.3 Conditional Data Exchange

According to the discussion in Section 2.2.1, the content
of each type-II memory cell can only belong to {‘11’,
‘10’} or {‘11’, ‘00’} if the lower or upper page bit be-
longs to unused storage space. As shown in Fig. 3, ‘10’
causes less damage than ‘00’. Hence, the memory dam-

age tends to be less if the lower page has more unused
storage space (i.e., data being stored in the lower page
have better compressibility). This observation directly
motivates us to propose conditional data exchange: Let
D(l) and D(u) denote the compressed data that have been
originally arranged by the storage device FTL to store
in one pair of lower and upper pages. If the length of
D(l) is not larger than that of D(u) (i.e., |D(l)| ≤ |D(u)|),
we directly store D(l) and D(u) to the lower and upper
pages, respectively; otherwise we switch their page lo-
cation, i.e., store D(l) to the upper page and D(u) to the
lower page.

Although this design scheme can reduce flash mem-
ory damage, it could complicate the FTL design. If the
FTL uses the page-level address mapping, we need to
update the mapping table once the data exchange oper-
ation occurs. This will not introduce any mapping table
storage overhead. If the FTL uses block-level or hybrid
page/block-level address mapping, we must keep a 1-bit
flag for each memory wordline, leading to extra mapping
table storage overhead.

3 Mathematical Formulations

This section presents the mathematical formulations that
can accurately estimate flash memory physical damage
reduction when using the design strategies presented in
Section 2, for both explicit and implicit data compres-
sion. It is evident that different types of data can have
different compressibility characteristics. With the popu-
lar LZ77 [16] compression algorithm and sector size of
4kB, Fig. 5 shows the per-sector compression ratio dis-
tribution for some common types of data. The results
show that the compression ratio tends to approximately
follows a Gaussian distribution. We carried out further
experiments to verify the accuracy of such distribution
approximation. Fig. 5 shows the absolute difference (de-
noted as “Appr. error” in the figure) between the exact
distribution and the approximate distribution for differ-
ent types of data. The corresponding mean square errors
(MSE) for these types of data are all at the magnitude of
10−5. Therefore, we can conclude that such a Gaussian-
based approximation is reasonable with almost negligi-
ble inaccuracy. Therefore, to facilitate the mathematical
derivation, we set that per-sector data compression ratio
follows a Gaussian distribution in this work.

3.1 Content-dependent Damage Factor
We first introduce a parameter, called normalized
content-dependent damage factor, to quantify the impact
of different content on memory cell damage. Let BERmax
denote the maximum memory raw BER that can be tol-
erated by the storage device error correction mechanism.

4

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 231

0 0.2 0.4 0.6 0.8 10

0.05

0.1

0.15

0.2

Compression Ratio

Pr
ob

ab
ilit

y
DLL
TXT
EXE
LOG
XML
HTML
ENWIK8
Appr. error

Figure 5: Measured distribution of compression ratio for
different types of data.

For l-bit/cell NAND flash memory, let Ψ(i)(η) denote the
raw BER after we keep programming memory cells with
the same content i ∈ [0,2l −1] for η cycles. Let Ψ(r)(η)
denote the raw BER after we have programmed memory
cells with random content for η cycles. Let η(i)

max and
η(r)

maxdenote the P/E cycle number under which the raw
BER Ψ(i)(η) and Ψ(r)(η) equal to BERmax, respectively.
Hence, we can estimate that the physical memory cell
damage caused by each programming operation with the
content i is proportional to 1/η(i)

max. In addition, on av-
erage the physical memory cell damage caused by pro-
gramming random content is proportional to 1/η(r)

max. In
this work, we define the content-dependent damage fac-
tor ρi for each content i by normalizing with the average
damage caused by random content, i.e.,

ρi =
η(r)

max

η(i)
max

, where i ∈ [0,2l −1], (1)

and hence the damage factor ρr for random content is
1. Using the measurement results shown in Fig. 3 as an
example, assume the BERmax is 5× 10−3, we calculate
the four damage factors as ρ11 = 0.33, ρ10 = 0.69, ρ00 =
1.01, and ρ01 = 1.58.

3.2 Effect of Compression
We first derive the mathematical formulations for esti-
mating the distribution characteristics of the compressed
data and unused storage space size in each page. Let Cs
denote the size of each uncompressed data sector (e.g.,
4kB), ms denote the number of uncompressed sectors
in each page, and Cp = ms ·Cs denote the size of each
flash memory page (e.g., 8kB). As pointed out above,
the per-sector compression ratio x approximately follows
a Gaussian distribution N(µ,σ2). Let m(e)

s denote the

number of compressed sectors per page when using ex-
plicit compression, and C(e)

s denote the length of the
compressed data within one page. Due to the variation
of the compression ratio x, both m(e)

s and C(e)
s are ran-

dom variables. Since x ·m(e)
s ·Cs denotes the length of

the compressed data within one page when m(e)
s is deter-

mined, C(e)
s can be expressed as

C(e)
s =

∞

∑
m(e)

s =ms

x ·m(e)
s ·Cs ·P

(
m(e)

s

)
, (2)

where P
(

m(e)
s

)
is the probability that m(e)

s compressed

sectors can fit into one page. We can express P
(

m(e)
s

)
as

P
(

m(e)
s

)
= P

{
x ·m(e)

s ≤ ms < x ·
(

m(e)
s +1

)}
=

P
{

x ·m(e)
s ≤ ms

}
·
(

1−P
{

x ·
(

m(e)
s +1

)
≤ ms

})
.

Since x ∼ N(µ,σ2), we have that x · m(e)
s and

x ·
(

m(e)
s +1

)
follow N

(
µm(e)

s ,(σm(e)
s)2

)
and

N
(

µ(m(e)
s +1),(σ(m(e)

s +1))2
)

, respectively. Hence,

P
{

x ·m(e)
s ≤ ms

}
and P

{
x ·

(
m(e)

s +1
)
≤ ms

}
is the

CDF (cumulative distribution function) for the random
variant x ·m(e)

s and x ·
(

m(e)
s +1

)
. Accordingly, we have

that

P
(

m(e)
s

)
=

[
1+ er f

(
ms−m(e)

s µ
σm(e)

s
√

2

)]
·

[
1− er f

(
ms−(m(e)

s +1)µ
σ(m(e)

s +1)
√

2

)]
/4

, (3)

where er f (z) is the error function for Gaussian distribu-
tion, i.e., er f (z) = 1√

π
∫ z
−z e−t2

dt. For each given m(e)
s ,

we can calculate the value of P
(

m(e)
s

)
based upon (3).

Hence, each item in (2), i.e., x ·m(e)
s ·Cs ·P

(
m(e)

s

)
, is a

random variable following a Gaussian distribution. As a

result, we have that C(e)
s ∼ N

(
µ

c(e)s
,σ2

c(e)s

)
, where




µ
c(e)s

= µCs · ∑
m(e)

s

m(e)
s P

(
m(e)

s

)
,

σ2
c(e)s

= (σCs)
2 · ∑

m(e)
s

(
m(e)

s P
(

m(e)
s

))2
.

(4)

When using implicit compression, the number of com-
pressed sectors per flash memory page always remains
as ms and the length of compressed data per page is
C(i)

s = x · ms ·Cs. Therefore, we have that the random
variable C(i)

s ∼ N
(
µmsCs,σ2m2

sC2
s
)
.

5

232 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

3.3 Memory Damage Estimation

We further derive the mathematical formulations for cal-
culating average memory cell damage per P/E cycle.
Based upon the above discussions, we should consider
four different design scenarios: (1) UD: unidirectional
data layout without conditional data exchange, (2) BD:
bidirectional data layout without conditional data ex-
change, (3) UDC: unidirectional data layout with con-
ditional data exchange, (4) BDC: bidirectional data lay-
out with conditional data exchange. Since the mathemat-
ical formulations can be derived with the same princi-
ple for all the scenarios, we first show the mathematical
derivation in detail for UD (i.e., unidirectional data lay-
out without conditional data exchange) and then present
the results for the others without detailed derivations.

3.3.1 Derivation for the UD Design Scenario

We first define two parameters xl and xu as the ratios be-
tween the compressed data size and flash memory page
size for lower and upper pages, respectively. Recall that
both C(e)

s and C(i)
s (i.e., compressed data size within each

flash memory page when using explicit and implicit com-
pression, respectively) follow Gaussian distributions as
derived in Section 3.2. Hence, xl and xu also follow
the Gaussian distribution N(µ̃, σ̃2), where µ̃ = µ

c(e)s
/Cp

and σ̃2 = σ2
c(e)s

/C2
p for explicit compression, and µ̃ =

µmsCs/Cp and σ̃2 = σ2m2
sC2

s /C2
p for implicit compres-

sion. Define zl = min(xl ,xu) and zu = max(xl ,xu) and re-
call that {ρ11,ρ10,ρ00,ρ01} represent the memory dam-
age factors for the four different memory cell content and
the damage factor ρr for random content is 1. In addi-
tion, let m(c)

s denote the average number of sectors per
flash memory page and recall that ms denote the number
of sectors per flash memory page without using compres-

sion, and define r = m(c)
s

ms
. Therefore, we can calculate the

average memory cell damage per P/E cycle for the UD
design scenario, which is normalized against the case of
without using compression, as

ρUD =
1
r

(
zl + |xl − xu|

ρ00 +2ρ11 +ρ10

4
+(1− zu)ρ11

)

=
1
r

(
1− ρ00 +2ρ11 +ρ10

4

)
zl

+
1
r

(
ρ00 +ρ10 −2ρ11

4

)
zu +

ρ11

r

=
λ l

UD
r

· zl +
λ u

UD
r

· zu +
ρ11

r
,

(5)

where

λ l
UD = 1− ρ00 +2ρ11 +ρ10

4
, λ u

UD =
ρ00 +ρ10 −2ρ11

4
.

In order to obtain the distribution of ρUD, we must de-
rive the distributions of zu and zl . The CDF of zu can be
written as

Fzu(z) = P(xl ≤ z,xu ≤ z) = P(xl ≤ z) ·P(xu ≤ z)

= Fxl (z) ·Fxu(z),

where Fxl and Fxu denote the CDF of xu and xl . Since xu
and xl follow the same Gaussian distribution (denoted as
fN), we have that Fxl = Fxu . By taking the derivative of
the CDF, we can obtain the PDF of zu as

fzu(z) = F
′
zu(z) = fN (z) ·

(
1+ er f

(
z− µ̃√

2σ̃

))

≈ fN (z) ·
(

1+
z− µ̃√

2σ̃

)
. (6)

Hence, fzu can be approximately expressed as the prod-
uct of the PDF of a Gaussian distribution and a straight
line with the slope of

√
2σ̃ . Since z ∈ (0,1], we

could further approximate fzu to a PDF of a Gaus-
sian distribution, i.e., zu ∼ N

(
µzu ,σ2

zu

)
and fzu(z) =

1
σzu

√
2π

exp
(
− (z−µzu)

2

2σ2
zu

)
. The value of µzu and σzu can

be obtained by solving



d(fzu (z))
dz

∣∣∣
z=µzu

≈
d
(

fN(z)·
(

1+ z−µ̃√
2σ̃

))

dz

∣∣∣∣∣
z=µzu

= 0,

fzu(z)|z=µzu
≈ fN (z) ·

(
1+ z−µ̃√

2σ̃

)∣∣∣
z=µzu

.

(7)

Accordingly, we have that



µzu = µ̃ +
√

6−
√

2
2 · σ̃ ,

σzu = 2
√

2√
6+

√
2
· σ̃ · exp

(
(
√

6−
√

2)
2

8

)
.

(8)

We can obtain the PDF of zl in similar manner. First,
we can express the CDF of zl as

Fzl (z) = 1−P(xl > z,xu > z)

= 1− (1−P(xl ≤ z)) · (1−P(xu ≤ z))

= 1− (1−FN (z))2.

By taking the derivative of Fzl , we obtain the PDF of zl
as

fzl (z) = 2(1−FN (z)) · fN (z) . (9)

Similar to the above derivations for the case of zu, we
can approximate the PDF fzl as a Gaussian distribution
N
(
µzl ,σ

2
zl

)
, where




µzl = µ̃ −
√

6−
√

2
2 · σ̃ ,

σzl = 2
√

2√
6+

√
2
· σ̃ · exp

(
(
√

6−
√

2)
2

8

)
.

(10)

6

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 233

0 0.2 0.4 0.6 0.8 10

0.05

0.10

0.15

0.20

0.25

Length ratio of compressed data

Pr
ob

ab
ilit

y
D

en
si

ty
Exact PDF of zu
Approximate PDF of zu

Exact PDF of zl
Approximate PDF of zl

Figure 6: Comparison between the exact PDF of zl , zu
and their Gaussian approximations with different sets of
µ̃ and σ̃ .

To justify the Gaussian approximation of fzu(z) and
fzl (z) (i.e., the PDF of zu and zl) in the above deriva-
tions, Fig. 6 compares the Gaussian approximation and
the exact PDF, where we considered three different sets
of {µ̃, σ̃} (i.e., {0.2,0.05}, {0.5,0.1}, and {0.8,0.02},
respectively) to cover a wide range of the compressed
data length ratio and deviations. As clearly shown in
Fig. 6, the Gaussian approximation of fzu(z) and fzl (z)
incurs almost negligible inaccuracy.

Since zl ∼ N
(
µzl ,σ

2
zl

)
and zu ∼ N

(
µzu ,σ2

zu

)
, accord-

ing to (5), the average cell damage ρUD also follows a
Gaussian distribution, i.e., ρUD ∼ N

(
µUD,σ2

UD
)
, where

{
µUD = 1

r

(
λ l

UD ·µzl +λ u
UD ·µzu +ρ11

)
,

σUD = 1
r

√(
λ l

UD ·σzl

)2
+
(
λ u

UD ·σzu

)2
.

(11)

Given the same data compressibility, the use of im-
plicit and explicit compression leads to different distri-
bution of xu and xl , and different r, leading to different
memory cell damage.

3.3.2 More Formulation Results

Using the same principle, we can derive the mathemat-
ical formulations that can calculate the normalized av-
erage memory cell damage per P/E cycle for the other
three design scenarios. Due to the page limit, we will di-
rectly present the final mathematical formulations with-
out showing the derivation details.

For the BD design scenario that uses bidirectional data
layout without conditional data exchange, its average
memory cell damage is ρ(BD) ∼ N

(
µ(BD),σ2

(BD)

)
:




µ(BD) = 1
r

((
λ l
(BD) +λ u

(BD)

)
· µ̃ +C(BD)

)
,

σ(BD) = 1
r

√
(λ l

(BD)
)2 +(λ u

(BD)
)2 · σ̃ .

where
{

λ l
(BD) = 1− ρ11+ρ10

2 , λ u
(BD) = 1− ρ11+ρ00

2 ,

C(BD) = 2ρ11+ρ10+ρ00
2 −1.

For the UDC design scenario that uses unidirectional
data layout with conditional data exchange, its average
memory cell damage is ρ(UDC) ∼ N

(
µ(UDC),σ2

(UDC)

)
:





µ(UDC) = 1
r

(
λ l
(UDC) ·µzl +λ u

(UDC) ·µzu +ρ11

)
,

σ(UDC) = 1
r

√
(λ l

(UDC)
·σzl)

2 +(λ u
(UDC)

·σzu)
2.

where

λ l
(UDC) = 1− ρ11 +ρ10

2
, λ u

(UDC) =
ρ11 +ρ10

2
−ρ11.

For the BDC design scenario that uses bidirectional
data layout with conditional data exchange, its average
memory cell damage is ρ(BDC) ∼ N

(
µ(BDC),σ2

(BDC)

)
:




µ(BDC) = 1
r

(
λ l
(BD) ·µzl +λ u

(BD) ·µzu +C(BD)

)
,

σ(BDC) = 1
r

√
(λ l

(BD)
·σzl)

2 +(λ u
(BD)

·σzu)
2.

3.4 Estimation of Memory Lifetime
This subsection discusses how we estimate the flash
memory lifetime improvement based upon the average
memory cell damage derived in the above section. In
this work, we assume ideal wear-leveling, i.e., all the
memory blocks always experience the same number
of P/E cycles, and quantitatively define memory life-
time as the P/E cycle number that one memory block
can survive before reaching the maximum allowable
BER. Since it is common practice to use capacity over-
provisioning in flash-based storage devices, we define
an over-provisioning factor τ ≥ 1, i.e., the total physi-
cal storage capacity inside the storage device is τ× larger
than the storage capacity visible to the host. Let η denote
the memory block P/E cycling endurance of the baseline
scenario without using any data compression. Straight-
forwardly, the overall memory lifetime of the baseline
scenario is τ ·η cycles.

Once data compression is used, the average memory
cell damage becomes a random variable with a Gaussian
distribution due to the Gaussian-like distribution of run-
time data compression ratio. As a result, the cycling en-
durance of each memory block and hence overall mem-
ory lifetime also become random variables. Let P(t)

b de-
note the probability that one memory block can survive
(i.e., can ensure the storage integrity even for incom-
pressible data) after t P/E cycles, referred to as memory
block survival probability. As the granularity of data era-
sure is in memory block units in NAND Flash memory,

7

234 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

8000 8500 90000.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

ExplicitImplicit

(a)

8000 9000 10000 110000.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(b)

8000 9000 10000 110000.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(c)

1 2 3
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(d)

0.8 1 1.2 1.4 1.6 1.8
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(e)

1 1.5 2 2.5 3
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(f)

Figure 7: Storage device survival probability when storing (a) DLL, (b) Text, (c) Exe, (d) Log, (e) XML, and (f)
HTML data in flash memory. Both explicit compression and implicit compression are considered.

the number of P/E cycles is independent among memory
blocks. Hence, the survival of memory blocks is inde-
pendent. Let N denote the number of memory blocks
visible to the host, then the storage device contains τ ·N
memory blocks in total. Therefore, once P(t)

b is known,
based on the law of total probability, we can calculate the
probability that the storage device can survive t cycles as

SP(t) =
(τ−1)N

∑
k=0

((
Nτ
k

)
·
(

P(t)
b

)Nτ−k
·
(

1−P(t)
b

)k
)
,

(12)
which is called storage device survival probability. Sup-
pose each memory block contains M wordlines and let
P(t)

wl denote the survival probability of one wordline, we

have that P(t)
b =

(
P(t)

wl

)M
, i.e., one memory block sur-

vives only when all the wordlines inside this block sur-
vive. In the following, we will discuss how we can esti-
mate the memory wordline survival probability P(t)

wl .
For the baseline scenario without using data compres-

sion, the storage device fails to survive once the accu-
mulated average damage of each memory cell reaches
η ·ρr (recall that ρr = 1 is the normalized memory cell
damage factor when storing random data). When using
data compression, let ρw denote the memory cell damage
per cycle, where ρw could be ρ(UD), ρ(BD), ρ(UDC), or
ρ(BDC) dependent upon the design strategies being used.
By setting η ·ρr as the maximum tolerable accumulated

memory cell damage, we can express the P/E cycling en-
durance of each wordline as

T = max(t) , t ·ρw ≤ η ·ρr −ρr. (13)

Since ρw follows Gaussian distribution, t · ρw also fol-
lows Gaussian distribution with mean of t ·µρw and vari-
ance of t2 ·σ2

ρw . Therefore, we can calculate the wordline

survival probability P(t)
wl at t cycles as

P(t)
wl =

1
2

(
1+ er f

(
τ ·η −1− t ·µρw

tσρw

))
, (14)

where µρw and σρw can be obtained using the formula-
tions presented above for the four different design sce-
narios.

4 Quantitative Studies

With the formulations derived in Section 3, we studied
the effectiveness of the design strategies presented in
Section 2 for both explicit and implicit data compression.
Based upon our measurement results with 20nm MLC
NAND flash memory chips, we set the damage factors
ρ11 = 0.33, ρ10 = 0.69, ρ00 = 1.01, and ρ01 = 1.58, as
discussed in Section 3.1. As shown in (12), the storage
device survival probability SP(t) depends on the over-
provisioning factor τ and the total number of memory
blocks N visible to the host. Assume the storage capac-
ity of 512GB visible to the host and a block size of 4MB,

8

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 235

we have N equals 128k. Each flash memory page has a
size of 8kB, and we set the data sector size as 4kB. We
further set the over-provisioning factor τ as 1.2. Based
upon the memory chip measurement results and the over-
provisioning factor of 1.2, we set the cycling endurance
of the baseline scenario (i.e., without using data com-
pression) as 8000.

4.1 Lifetime with Different Data Types

Using the measured compression ratio distribution of dif-
ferent data types as shown in Fig. 5, we evaluated the ef-
fectiveness of the developed design strategies on improv-
ing memory lifetime over the baseline scenario. Fig. 7
shows the results when using the four different design
scenarios. Recall that the design scenario UD uses unidi-
rectional data layout without conditional data exchange,
BD uses bidirectional data layout without conditional
data exchange, UDC uses unidirectional data layout with
conditional data exchange, BDC uses bidirectional data
layout with conditional data exchange. For the baseline
scenario, the storage device lifetime remains 8000 re-
gardless to the data types. When using data compres-
sion with different design strategies, the storage device
lifetime becomes a random variable, whose CDF (i.e., its
survival probability) is calculated according to the for-
mulations derived in Section 3.

As shown in Fig. 7, explicit compression always out-
performs implicit compression, which can be intuitively
justified because explicit compression always tries to fit
as many sectors as possible into each flash page. By com-
paring the data compressibility shown in Fig. 5 and the
results shown in Fig. 7, we can clearly see that the dif-
ference between explicit compression and implicit com-
pression strongly relies on the data compressibility. The
higher data compressibility is, the larger difference be-
tween explicit compression and implicit compression is.
In addition, the BDC design scenario always performs
the best under both explicit and implicit data compres-
sion.

When explicit compression is being used, the differ-
ence among different design strategies tends to dimin-
ish for data with better compressibility (e.g., LOG and
HTML). This can be explained as follows. With highly
compressible data, explicit compression can fit more
compressed data and hence leave less unused storage
space within each flash memory page. As a result, there
is a smaller room for these different design strategies to
exploit the unused storage space, leading to almost the
same storage device lifetime. On the other hand, when
implicit compression is being used, unidirectional data
layout and bidirectional data layout tend to have notice-
able different effect, especially for data with better com-
pressibility. As pointed out in Section 2.2.2, compared

with bidirectional data layout, unidirectional data layout
leads to more cells with random data content and ‘11’.
Although ‘11’ causes the least memory cell damage, ran-
dom data tend to cause relatively large damage, as shown
in Fig. 3. Based upon the content-dependent damage fac-
tors measured from our 20nm MLC flash memory chips,
the penalty of having more random data can noticeably
off-set the gain of having more ‘11’. As a result, unidi-
rectional data layout tends to be inferior to bidirectional
data layout. In the case of implicit compression, for data
with worse compressibility (e.g., DLL and EXE), most
memory cells would store random data content in both
unidirectional and bidirectional data layout. As a result,
bidirectional data layout will be inferior to unidirectional
data layout in this scenario, which is shown in Fig. 7(a)
and (c). Meanwhile, as shown in the results, the bene-
fit of using conditional data exchange is not significant.
Conditional data exchange aims to convert memory cell
content from ‘00’ to ‘10’, since ‘10’ causes less damage
than ‘00’. Nevertheless, as shown in Fig. 3, the dam-
age difference between ‘00’ and ‘10’ is not significant,
which explains the low effectiveness of conditional data
exchange observed in our study.

4.2 Sensitivity to Data Compressibility

The above results are based upon the measured com-
pressibility characteristics of several different types of
data. To more thoroughly elaborate on the impact of
data compressibility, we carried out further evaluations
by considering a much wider range of data compress-
ibility in terms of compression ratio mean and standard
deviation.

We first fix the data compression ratio standard devi-
ation as 0.01, and Fig. 8 shows the corresponding stor-
age device survival probability vs. lifetime for a wide
range of compression ratio mean from 0.1 to 0.9. Data
with better compressibility (i.e., smaller compression ra-
tio mean) lead to larger lifetime improvement in both
explicit compression and implicit compression. In ad-
dition, the advantage of explicit compression over im-
plicit compression increases as the data have better com-
pressibility. At the compression ratio mean of 0.1 (i.e.,
the data can be compressed by 10:1 on average), ex-
plicit and implicit compression can improve the storage
device lifetime by 9.6 and 4.8 times, respectively. As
shown in Fig. 8, for less compressible data (e.g., with the
compression ratio mean of 0.7 and higher), explicit and
implicit compression have almost the same effect. This
is because, with low data compressibility, explicit com-
pression can hardly increase the number of compressed
data sectors per page. The results more clearly reveal the
observations discussed above in Section 4.1: Under ex-
plicit compression, the difference between different de-

9

236 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

7800 8000 8200 8400 86000.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

(a)

8000 8500 9000 9500 100000.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

(b)

0.8 0.9 1 1.1 1.2
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(c)

0.8 1 1.2 1.4 1.6 1.8
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(d)

1 1.5 2 2.5
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(e)

2 4 6 8
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(f)

Figure 8: Storage device survival probability when data compression ratio standard deviation is 0.01 and mean is (a)
0.9, (b) 0.7, (c) 0.6, (d) 0.4, (e) 0.3, and (f) 0.1.

0.8 1 1.2 1.4
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(a)

0.8 1 1.2 1.4
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(b)

0.8 1 1.2 1.4
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

ExplicitImplicit

(c)

0.8 1 1.2 1.4
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(d)

0.8 1 1.2 1.4
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

Implicit Explicit

(e)

0.8 1 1.2 1.4
x 104

0.96

0.97

0.98

0.99

1

P/E cycles

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Baseline
UD
BD
UDC
BDC

ExplicitImplicit

(f)

Figure 10: Storage device lifetime survival probability when compression ratio mean is 0.5 and standard deviation is
(a) 0.01, (b) 0.03, (c) 0.05, (d) 0.09, (e) 0.1, and (f) 0.14.

10

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 237

0

2

4

6

8

10

0.1 0.3 0.4 0.6 0.7 0.9

Li
fe

tim
e

ga
in

Compression ratio mean

exp+UD exp+BD exp+UDC exp+BDC
imp+UD imp+BD imp+UDC imp+BDC

Figure 9: Lifetime gain under different data compression
ratio mean.

sign strategies quickly shrinks as we reduce the com-
pression ratio mean; Under implicit compression, bidi-
rectional data layout is always noticeably more benefi-
cial than unidirectional data layout. By setting the stor-
age device lifetime as the P/E cycles corresponding to
99.9% of storage device survival probability, Fig. 9 fur-
ther plots the storage device lifetime gain over the base-
line scenario without using compression under different
compression ratio mean.

Next, we examined the impact of data compression ra-
tio standard deviation. With the compression ratio mean
of 0.5, Fig. 10 shows the storage device survival prob-
ability vs. P/E cycles when the compression ratio stan-
dard deviation varies from 0.01 to 0.14. As the data
compression ratio standard deviation increases, advan-
tage of explicit compression over implicit compression
becomes more significant, and the storage device lifetime
improvement generally reduces. In addition, the differ-
ence among the four different design scenarios reduces
as the compression ratio standard deviation increases, for
both explicit and implicit compression. Again, the de-
sign scenario of BDC is the most effective for both ex-
plicit and implicit compression.

By setting the storage device lifetime as the P/E cycles
corresponding to 99.9% of storage device survival prob-
ability, Fig. 11 further shows the storage device lifetime
gain over the baseline scenario under different compres-
sion ratio standard deviation. It shows that the lifetime
gain monotonically reduces as we increase the data com-
pression ratio standard deviation for implicit data com-
pression. Nevertheless, for explicit data compression,
the storage device lifetime gain first reduces and then
saturates and even slightly increases as we increase the
compression ratio standard deviation. The figure more
clearly reveals the dependency of comparison between
explicit and implicit compression on compression ratio
standard deviation.

0

0.5

1

1.5

2

0.01 0.03 0.05 0.09 0.1 0.14

Li
fe

tim
e

ga
in

Compression ratio standard deviation

exp+UD exp+BD exp+UDC exp+BDC
imp+UD imp+BD imp+UDC imp+BDC

Figure 11: Lifetime gain for different data compression
ratio standard deviation.

4.3 Discussions

The above quantitative studies show that the proposed
implicit data compression is a viable complement to the
conventional explicit data compression. Although ex-
plicit data compression may noticeably complicate the
design of FTL and/or OS, it always outperforms implicit
data compression from the storage device lifetime per-
spective. Nevertheless, the advantage of explicit com-
pression over implicit compression strongly depends on
the data compressibility. As shown in the above evalua-
tion results, the advantage of explicit compression over
implicit compression reduces as the data compressibility
drops, and becomes very small as the data compression
ratio mean becomes sufficiently large (e.g., over 0.6∼0.7
in this study), particularly when the data compression ra-
tio has a small standard deviation.

Our studies show that the bidirectional data layout out-
performs the unidirectional data layout, especially when
using the implicit data compression. Nevertheless, we
should emphasize that this conclusion may not be al-
ways true. As pointed out above, compared with bidi-
rectional data layout, unidirectional data layout result
in more memory cells with random data content and
‘11’. Hence, which data layout option is better is fun-
damentally dependent on the exact values of the content-
dependent damage factors. In this work, we extracted
the content-dependent damage factors based upon mea-
surements with 20nm MLC flash memory chips. How-
ever, for further scaled technology nodes such as 16nm or
the emerging 3D flash memory, content-dependent dam-
age factors and their relative comparison may (largely)
change. This could essentially change the conclusion on
the comparison between unidirectional data layout and
bidirectional data layout. In addition, the above results
suggest that the design strategy of conditional data ex-
change is not very effective, which is again also essen-
tially due to the content-dependent damage factors being

11

238 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

used in this work. For MLC NAND flash memory, the
conditional data exchange will become more effective if
the damage factors of ‘10’ and ’00’ have a larger differ-
ence in future memory technology nodes.

Therefore, when applying the developed design frame-
work in practice, one should carry out sufficient measure-
ments and experiments to fully understand the content
dependency of NAND flash memory damage and run-
time data compressibility characteristics, in order to de-
termine the most appropriate design strategy for leverag-
ing data compressibility to improve device lifetime.

5 Related Work

Prior work [17–19] has studied the practical implementa-
tion of data compression in flash-based data storage sys-
tems, aiming to improve the storage system I/O speed
performance and flash memory lifetime. In [17], a block-
level compression engine is devised to support on-line
compression for SSD-based cache, which is transpar-
ent to the file system. The authors of [18] develop a
compression-aware FTL that can support compression-
aware address mapping and garbage collection. The au-
thors of [19] implement a caching system with commod-
ity SSD by integrating data compression and data dedu-
plication. All the prior work aimed to explicitly improve
the storage efficiency, like the explicit data compression
scenario being considered in this work. Besides data
compression, prior work [20, 21] also investigated the
practical implementation of data deduplication in flash-
based storage systems.

FTL plays an important role in determining the life-
time of flash-based data storage devices, hence it has
been well studied. The wear-leveling function in FTL
aims to equalize the physical damage among all the flash
memory block by appropriately allocating the memory
blocks for erase and programming. A variety of tech-
niques have been proposed to optimize the design of the
wear-leveling function (e.g., see [10, 22, 23]). Aiming to
reduce the write amplification and hence improve flash
memory lifetime, the garbage collection function in FTL
has been well studied (e.g., see [24]). The log-structured
approach to managing flash memory have been consid-
ered through direct management of raw flash memory
chips [11] or by facilitating the operation of the FTL in-
side SSDs [13]. Such log-structured file system level
management of memory chips lead to improved flash
memory lifetime and storage system performance.

The strength of fault tolerance, in particular ECC, also
largely affect the storage device lifetime. Although clas-
sical BCH codes are still widely used in commercial
flash-based storage devices [25, 26], the more powerful
LDPC codes are receiving significant attention from the
industry (e.g., see several industrial presentations at re-

cent Flash Summit [2, 3, 27, 28]). A variety of tech-
niques [29–32] have been developed to optimize the im-
plementation of LDPC codes in future flash-based data
storage devices.

6 Conclusion

This paper presents a thorough study on exploiting data
compressibility to reduce cycling-induced flash mem-
ory cell physical damage and hence improve storage de-
vice lifetime. This work is essentially motivated by the
content dependency of flash memory cell damage. We
first present an unconventional implicit data compression
strategy as a viable complement to explicit data com-
pression being used in current practice, both of which
represent different trade-offs between flash memory life-
time improvement and impact on FTL and system design
complexity. In addition, their effectiveness and compar-
ison largely vary with the runtime data compressibility
characteristics. We further develop a set of design strate-
gies that can exploit the unused storage space left by
data compression within flash memory pages in order to
minimize the overall memory physical damage. Further-
more, we derive a set of mathematical formulations that
can quantitatively estimate the effectiveness of the pro-
posed design strategies. Using 20nm MLC NAND flash
memory chips, we carried out experiments to empiri-
cally evaluate the content dependency of flash memory
cell damage. Employing these quantized experimental
results, we compare the effectiveness of the proposed de-
sign strategies when using either explicit or implicit com-
pression. Although this work focuses on flash memory,
the proposed design strategies and developed mathemat-
ical formulations are readily applicable to other emerg-
ing memory technologies, e.g., PCM and ReRAM, that
experience similar content dependency of memory cell
damage.

Acknowledgements

We would like to thank our shepherd Sam H. Noh and
the anonymous reviewers for their insight and sugges-
tions for improvement. This work was supported by the
National Science Foundation under Grants No. 1162152
and 1406154, National Science Foundation CAREER
award CNS-125394, and the Department of Defense
award W911NF-13-1-0157.

References

[1] G. Dong, N. Xie, and T. Zhang, “On the use
of soft-decision error-correction codes in NAND
Flash memory,” IEEE Transactions on Circuits and

12

USENIX Association 13th USENIX Conference on File and Storage Technologies (FAST ’15) 239

Systems I: Regular Papers, vol. 58, no. 2, pp. 429–
439, 2011.

[2] E. Yeo, “An LDPC-enabled flash controller in
40nm CMOS,” in Proceedings of Flash Memory
Summit, 2012.

[3] X. Hu, “LDPC codes for Flash channel,” in Pro-
ceedings of Flash Memory Summit, 2012.

[4] J. Kim, J. Kim, S. Noh, S. Min, and Y. Cho, “A
space-efficient flash translation layer for compact
flash systems,” IEEE Transactions on Consumer
Electronics, vol. 48, no. 2, pp. 366–375, 2002.

[5] K. Yim, H. Bahn, and K. Koh, “A flash compres-
sion layer for smart media card systems,” IEEE
Transactions on Consumer Electronics, vol. 50, no.
1, pp. 192–197, 2004.

[6] E. Gal and S. Toledo, “Algorithms and data struc-
tures for flash memories,” ACM Computing Sur-
veys, vol. 37, no. 2, pp. 138–163, 2005.

[7] J. Kang, H. Jo, J. Kim, and J. Lee, “A superblock-
based flash translation layer for NAND Flash mem-
ory,” in Proceedings of the 6th ACM & IEEE In-
ternational conference on Embedded software, pp.
161–170, 2006.

[8] T. Park and J. Kim, “Compression support for flash
translation layer,” in Proceedings of the Interna-
tional Workshop on Software Support for Portable
Storage, pp. 19–24, 2010.

[9] S. Lee, J. Park, K. Fleming, and J. Kim, “Improving
performance and lifetime of solid-state drives using
hardware-accelerated compression,” IEEE Trans-
actions on Consumer Electronics, vol. 57, no. 4, pp.
1732–1739, 2011.

[10] Y. Pan, G. Dong, and T. Zhang, “Error rate-based
wear-leveling for NAND Flash memory at highly
scaled technology nodes,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol.
21, no. 7, pp. 1350–1354, 2013.

[11] C. Manning, “Introducing yaffs, the first NAND-
specific flash file system,” http://linuxdevices.com,
2002.

[12] A. Schierl, G. Schellhorn, D. Haneberg, and
W. Reif, “Abstract specification of the UBIFS file
system for flash memory,” in FM 2009: Formal
Methods, pp. 190–206. Springer, 2009.

[13] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A
New File System for Flash Storage,” in Proceed-
ings of the 13th USENIX File and Storage Tech-
nologies (FAST), 2015.

[14] Y. Cai, E.F. Haratsch, O. Mutlu, and K. Mai, “Error
patterns in MLC NAND flash memory: Measure-
ment characterization and analysis,” in Proceedings
of Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pp. 521–526, 2012.

[15] N. Mielke, T. Marquart, N. Wu, J. Kessenich,
H. Belgal, S. Eric, F. Trivedi, E. Goodness, and
L.R. Nevill, “Bit error rate in NAND Flash mem-
ories,” in Proceedings of IEEE International Relia-
bility Physics Symposium, pp. 9–19, 2008.

[16] J. Ziv and A. Lempel, “A universal algorithm for
sequential data compression,” IEEE Transactions
on Information Theory, vol. IT-23, pp. 337–343,
1977.

[17] T. Makatos, Y. Klonatos, M. Marazakis, M. Flouris,
and A. Bilas, “Using transparent compression to
improve SSD-based i/o caches,” in Proceedings
of the European Conference on Computer Systems
(EuroSys), pp. 1–14, 2010.

[18] S. Lee, J. Park, K. Fleming, Arvind, and J. Kim,
“Improving performance and lifetime of solid-state
drives using hardware-accelerated compression,”
IEEE Transactions on Consumer Electronics, vol.
57, no. 4, pp. 1732–1739, 2011.

[19] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone,
and G. Wallace, “Nitro: A capacity-optimized
SSD cache for primary storage,” in Proceedings
of USENIX Annual Technical Conference (ATC),
pp. 501–512, 2014.

[20] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Siva-
subramaniam, “Leveraging value locality in opti-
mizing NAND Flash-based SSDs,” in Proceedings
of the 9th USENIX File and Storage Technologies
(FAST), 2011.

[21] F. Chen, T. Luo, and X. Zhang, “CAFTL: A
content-aware flash translation layer enhancing the
lifespan of Flash memory based solid state drives,”
in Proceedings of the 9th USENIX File and Storage
Technologies (FAST), 2011.

[22] Y. Lu, J. Shu, and W. Zheng, “Extending the life-
time of flash-based storage through reducing write
amplification from file systems,” in Proceedings of
the 11th USENIX File and Storage Technologies
(FAST), pp. 257–270, 2013.

[23] X. Jimenez, D. Novo, and P. Ienne, “Wear unlevel-
ing: improving NAND Flash lifetime by balanc-
ing page endurance,” in Proceedings of the 12th
USENIX File and Storage Technologies (FAST),
47–59, pp. 2014.

13

240 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

[24] L. Chang, T. Kuo, and S. Lo, “Real-time garbage
collection for flash-memory storage systems of
real-time embedded systems,” ACM Transactions
on Embedded Computing Systems, vol. 3, no. 4,
pp. 837–863, 2004.

[25] Y. Lee, H. Yoo, I. Yoo, and I. Park, “6.4
gb/s multi-threaded BCH encoder and decoder for
multi-channel SSD controllers,” in Proceedings of
IEEE International Solid-State Circuits Conference
(ISSCC), pp. 426–428, 2012.

[26] H. Tsai, C. Yang, and H. Chang, “An efficient
BCH decoder with 124-bit correctability for multi-
channel SSD applications,” in Proceedings of IEEE
Asian Solid State Circuits Conference (A-SSCC),
pp. 61–64, 2012.

[27] J. Yang, “The efficient LDPC DSP system for
SSD,” in Proceedings of Flash Memory Summit,
2013.

[28] L. Dolecek, “Non binary LDPC codes: The next
frontier in ECC for flash,” in Proceedings of Flash
Memory Summit, 2014.

[29] J. Wang, T. Courtade, H. Shankar, and R. We-
sel, “Soft information for LDPC decoding in flash:
mutual-information optimized quantization,” in
Proceedings of IEEE Global Telecommunications
Conference (GLOBECOM), 2011.

[30] S. Tanakamaru, Y. Yanagihara, and K. Takeuchi,
“Over-10-extended-lifetime 76%-reduced-error
solid-state drives (SSDs) with error-prediction
LDPC architecture and error-recovery scheme,”
in Proceedings of IEEE International Solid-State
Circuits Conference (ISSCC), 424–426, pp. 2012.

[31] J. Li, K. Zhao, J. Ma, and T. Zhang, “Realizing
unequal error correction for NAND flash memory
at minimal read latency overhead,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs,
vol. 61, no. 5, pp. 354–358, 2014.

[32] J. Wang, K. Vakilinia, T. Chen, T. Courtade,
G. Dong, T. Zhang, H. Shankar, and R. Wesel, “En-
hanced precision through multiple reads for LDPC
decoding in flash memories,” IEEE Journal on Se-
lected Areas in Communications, vol. 32, no. 5, pp.
880–891, 2014.

14

