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Abstract

This paper describes the architecture of the first implementation of the In-VIGO grid-computing system. The architecture
is designed to support computational tools for engineering and science research In Virtual Information Grid Organizations (as
opposed to in vivo or in vitro experimental research). A novel aspect of In-VIGO is the extensive use of virtualization technol-
ogy, emerging standards for grid-computing and other Internet middleware. In the context of In-VIGO, virtualization denotes
the ability of resources to support multiplexing, manifolding and polymorphism (i.e. to simultaneously appear as multiple
resources with possibly different functionalities). Virtualization technologies are available or emerging for all the resources
needed to construct virtual grids which would ideally inherit the above mentioned properties. In particular, these technolo-
gies enable the creation of dynamic pools of virtual resources that can be aggregated on-demand for application-specific
user-specific grid-computing. This change in paradigm from building grids out of physical resources to constructing virtual
grids has many advantages but also requires new thinking on how to architect, manage and optimize the necessary middleware.
This paper reviews the motivation for In-VIGO approach, discusses the technologies used, describes an early architecture for
In-VIGO that represents a first step towards the end goal of building virtual information grids, and reports on first experiences
with the In-VIGO software under development.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Information “grids” promise to revolutionize sci-
entific computing and information processing by en-
abling access to unprecedented computing power and
functionality of diverse interconnected computers,
geographically distributed software applications and
other network-accessible resources. Fundamentally,
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the goal of a grid infrastructure is to provide “flexible,
secure, coordinated resource sharing among dynamic
collections of individuals, institutions, and resources”
[1]. Traditional approaches to grid-computing have
focused on middleware-driven management of com-
puters, storage, networks and other resources through
sharing mechanisms that have evolved from centrally
administered domains—multi-user operating systems,
user accounts and file systems[2]. The middleware
of these approaches interact with physical resources
at the same level as local users and applications do.

0167-739X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2003.12.021



2 S. Adabala et al. / Future Generation Computer Systems xxx (2004) xxx–xxx

Therefore, such approaches must deal with the com-
plexity of decoupling local administration policies
and configuration idiosyncrasies of distributed re-
sources from the quality of service expected from end
users with respect to security, flexibility and perfor-
mance. This complex decoupling can be simplified, or
even eliminated, by fundamentally changing the way
grid-computing is performed. The change advocated
by this paper and the In-VIGO approach consists
of raising the level of abstraction at which the mid-
dleware enables resource sharing from physical to
virtualized resources.

Virtualization technologies encompass a variety
of mechanisms and techniques used to decouple the
architecture and user-perceived behavior of hardware
and software resources from their physical implemen-
tation. The decoupling provided by virtualization en-
ables functions and capabilities that are desired from
computer systems, including consolidation of physical
resources, security and isolation, flexibility and ease
of management. These and other characteristics have
motivated the use of virtualization technologies in
different areas of computer system design. Examples
include:

• Virtual memory[3], which allows multiple virtual
address spaces to share a single physical memory,
and provides to software the view of a memory
larger than its physical implementation.

• Classical virtual machines[4] (e.g. VMware, IBM
z800), which enable the sharing of a single physical
computer (CPU, memory, I/O devices) by multiple
virtual computers, each independently configured
with their own operating system and applications.

• Application virtual machines and associated lan-
guages (e.g. Java and C#), which allow virtual ma-
chines to execute programs in physical machines
with different instruction set architectures.

• Virtual private networks[5], which provide secure
private networks over a shared public network.

Virtualization is the basis of the In-VIGO architec-
ture. As a distributed computing system that includes
processing nodes, storage devices, networks, software
applications, and user interfaces, In-VIGO uses virtu-
alization technologies in different forms, which have
three fundamental capabilities in common. These
capabilities are: polymorphism, manifolding and mul-
tiplexing. They allow resources to simultaneously

Virtual Machine V2 
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Virtual  
Machine V1 
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Fig. 1. A virtual machine monitor allows a server P to be shared
by three distinct virtual machines.

(via multiplexing) appear as multiple resources (via
manifolding) with possibly different functionalities
(via polymorphism). These properties are illustrated
in Fig. 1, where processor virtualization technology
is used to enable a single physical computer to si-
multaneously appear as three separate machines with
different operating systems and applications.

This paper is organized as follows.Sections 2
and 3introduce the In-VIGO approach and core tech-
niques to support virtualized grid resources, data, and
interfaces. A detailed description of the In-VIGO ar-
chitecture appears inSection 4. Section 5discusses
the current implementation of In-VIGO. Conclusions
from the design, development and initial experiences
with In-VIGO appear inSection 6.

2. The In-VIGO concept

In-VIGO provides a distributed environment where
multiple application instances can coexist in virtual
or physical resources, such that clients are unaware
of the complexities inherent to grid-computing. The
In-VIGO project leverages experience with early sys-
tems and standards for grid-computing[1,6,7], and
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Fig. 2. The In-VIGO approach.

makes extensive use of virtualization technology for
the creation of dynamic pools of virtual resources that
can be aggregated on-demand.

The In-VIGO approach, as depicted inFig. 2, adds
three layers of virtualization to the traditional grid-
computing model. The first virtualization layer creates
pools of virtual resources that are the “primitive” com-
ponents of a virtual computing grid, namely virtual
machines, virtual data, virtual applications and virtual
networks. This layer decouples the process of allocat-
ing applications to resources from that of managing
jobs across administrative domains, physical machines
and local software configurations. In other words, jobs
are mapped to virtual resources (e.g. RedHat Linux 7.0
x86 virtual machines), and only virtual resources get
managed across domains and physical environments
(e.g. WinXP and Win2000 physical systems at differ-
ent locations).

In the second layer, grid applications are instanti-
ated as services which can be connected as needed to
create virtual information grids. This layer decouples
the process of using and composing services from that
of managing the execution of the underlying grid ap-
plications. Different grid-computing mechanisms (e.g.
Globus, Condor-G, .NET and JXTA) can be used to
run applications but their implementation details are
largely hidden once the grid-enabled applications are
encapsulated and composed as services[8] (e.g. using
OGSI, OGSI.NET and Jini).

In the third layer, aggregated services (possibly pre-
sented to users via portals) export interfaces that are
virtualized in order to enable displaying by differ-
ent access devices. This layer decouples the process
of generating interfaces of services (e.g. XML and
UIML) from the process of rendering them on specific
devices (e.g. HTML for laptop, WHML for a palmtop
and WAP WML for a cell phone).

The currently deployed In-VIGO system1 imple-
ments the first layer of virtualization (with exception
of virtual networks)—users can develop applications
or use one of several grid-enabled tools with interac-
tive as well as batch-oriented interfaces. The authors
are currently developing research prototypes for the
other virtualization layers. The focus of this paper is
on the virtual computing grid layer (i.e. the first virtu-
alization layer discussed above) as it is implemented
in the current In-VIGO implementation.

3. Virtualization in In-VIGO

The In-VIGO architecture is built upon components
that allow for the virtualization of grid resources and
user interfaces. A distributed virtual file system fa-
cilitates data transfer across grid resources; virtual
machines provide isolation, resource integrity, legacy
software support, environment encapsulation and cus-
tomization; virtual applications allow modification and
extension of individual tool behavior as well as the use
of a collection of tools as a single unified application;
virtual networks allow the configuration of a network
that meets the requirements of a specific grid applica-
tion or user; and virtual interfaces allow applications
to conform to changing environments, allowing uni-
versal access to a long-lived application session.

3.1. Virtual data and the virtual file system

Virtualization techniques can be applied to facili-
tate the transfer of data across grid resources. The grid
distributed virtual file system forms the basic frame-
work for the transfer of data necessary to In-VIGO
applications. It relies on a virtualization layer built
on existing Network File System (NFS) components,

1 Accessible athttp://invigo.acis.ufl.edu. Courtesy accounts are
available.

http://invigo.acis.ufl.edu
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and is implemented at the level of Remote Procedure
Calls (RPC) by means of middleware-controlled file
system proxies[9]. A virtual file system proxy in-
tercepts RPC calls from an NFS client and forwards
them to an NFS server, possibly modifying arguments
and returning values in the process. Through the use
of proxies, the virtual file system currently supports
multiplexing, manifolding and polymorphism by (1)
sharing of a single file account across multiple users,
(2) allowing multiple per-user virtual file system
sessions in a single server, and (3) mapping of user
and group identities to allow for cross-domain NFS
authentication[10]. Proxy-level transformations can
also be used to support data virtualization, enabling
polymorphism and manifolding of file contents; al-
though this capability is not currently exploited in
In-VIGO, it is the subject of ongoing research. Po-
tential applications of data content virtualization
include translation of file formats, language transla-
tion, summarization and reduction of data, or other
data transformations invoked at data-access time
(Fig. 3).

3.2. Virtual machines

A “classic” virtual machine (VM) is an efficient,
isolated duplicate of the underlying physical ma-
chine [4]. Unlike virtual machines associated with
a particular programming language (e.g. the Java
VM), the layer of indirection in which “classic”
VMs operate is that of the instruction set architecture
(ISA) of the physical machine. A virtual machine
monitor (VMM) is responsible for providing the per-

Fig. 3. Proxy transformations can be used to support data virtualization, enabling polymorphism and manifolding of file contents.

ception of multiple, isolated machines that share a
single physical resource by intercepting and emu-
lating the behavior of privileged ISA instructions.
Classic VMs support manifolding (multiple VMs
per physical resource), multiplexing (time-sharing
of CPU, space-sharing of memory and disk among
several VMs), and polymorphism (with respect to
virtual hardware configuration, operating systems and
applications).

The virtualization properties of classic VMs are at-
tractive in a grid-computing environment for several
reasons, including user isolation, resource integrity,
legacy software support, environment encapsulation
and customization[11]. The classic virtual machine
monitors implemented by VMware[12] and IBM
zVM are currently used in In-VIGO.

3.3. Virtual applications

A virtual application can appear differently from
the actual application or applications being used, and
can be replicated so that multiple executions can be
run simultaneously over the same physical appli-
cation. The implementation of virtual applications
shares analogies with the approaches used to imple-
ment both virtual data and virtual machines. Like vir-
tual data, virtual applications use a virtual file system
to support manifolding and multiplexing of applica-
tion codes. Like virtual machines, virtual applications
use a monitor to modify the semantics and capabil-
ities presented to application users, thus supporting
polymorphism. In addition, virtual applications can
consist of multiple applications, either as multiple
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instances of the same application or as compositions
of distinct applications. Since different applications
encapsulated in a virtual application may require
distinct hardware and software resources, the virtual
application monitor must interact with grid middle-
ware in order to locate, reserve, allocate and aggregate
all those resources. In the context of In-VIGO, virtual
applications are exposed to the users; the term “tools”
is used to refer to the actual applications on which
virtual applications are based.

3.4. Virtual networks

In the context of In-VIGO, virtual networks are log-
ical networks that are decoupled from physical (and
other virtual) networks, per user and per application.
The goal is to enable multiple virtual applications to
share a physical network, each having the percep-
tion that it uses a private, dedicated network whose
functionality and quality of service match the appli-
cation needs and user access rights. Partial implemen-
tations of these virtual networks are already possible
in the form of virtual private networks[5] and tun-
neling [13]. Extensive ongoing research on overlay
networks[14–16] is developing technologies that of-
fer promise of enabling not only private and secure
communication but also necessary quality of service
and customized functionality. Quoting[14], an overlay
network is “a configuration within which a base net-
work is used to support some second network, layered
upon the underlying infrastructure”. According to the
same reference, each virtual overlay network has a
global unique identifier, some set of access points and
a set of strong guarantees. Overlay networks can pro-
vide a basis for multiplexing, manifolding and poly-
morphism as required by virtual networks. However,
further research is needed to understand what kinds of
functionality to support, and how to efficiently build
dynamic instances of such overlay networks. There are
other published definitions of virtual networks that are
not being considered for implementation in In-VIGO
but are worth mentioning. They include networks built
upon a physical network and partitioned for use by
individuals; logically and/or physically allocated sub-
sets of network resources; collections of logical sub-
sets of physical network resources; and simulations of
one or more networks on top of a physical network
[17–19].

3.5. Virtual user interfaces

The notion of virtual user interfaces is a particu-
lar case of data virtualization. It leverages ongoing
efforts to universalize user interfaces[20–22] where
applications use an abstract representation of an in-
terface to communicate with a device-independent
server that renders the user interface to conform to the
abilities of the device. However, unlike HTML, XML
or UIML, virtualization of a user interface also allows
the appearance of the application to differ according
to the context on which an application is deployed
(polymorphism) and the access to the application us-
ing a variety of devices and device types in a single
session (manifolding and multiplexing). An example
is an application session where a user starts the ap-
plication on a workstation, later queries the state of
the application using a PDA or a cellular phone and
finally retrieves the application results using a laptop
or a public Internet machine.

4. The architecture of In-VIGO

Given that the objective of In-VIGO is to sup-
port computational tools for engineering and science
research, the component that is most evident is the
Virtual Application (VAP). The In-VIGO VAP is an
aggregation of actual tools into a logical application
session that allows users to perform session operations
such as setting up execution parameters, importing
data files, executing tools and retrieving experiment
results. As shown inFig. 4, users do not interact di-
rectly with the VAP, but rather by means of a separate
component called the User Interface Manager (UIM).
The UIM has two primary objectives: provide the vir-
tual application with mechanisms to interact with the
user, and provide the user with a virtual interface that
offers a disconnected session that can be accessed
using a variety of devices.

Virtual applications, and hence their designers, do
not concern themselves with the specifics of resource
management, reservation or allocation. A separate
resource management component provides the APIs
and services needed to allocate and access all the re-
sources needed to execute the desired tools with the
desired quality of service. Similarly, virtual applica-
tions and the UIM are not concerned with user infor-
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Fig. 4. High-level architecture of the In-VIGO system. The primary components shown in this figure are the virtual application, the virtual
file system, the resource manager, the user interface manager, the global Information System, and the user manager.

mation, privileges, authentication or session manage-
ment. These are managed by the User Management
System. Finally, the Resource Manager and User
Management System components use the facilities
of the Global Information System, which maintains
the necessary information in a relational Database
System.

Virtual applications access user data through a
grid-wide virtual file system that is set up and con-
trolled by the Resource Manager, on behalf of a user.
Through this mechanism, applications are presented
with the interface of a conventional NFS-based dis-
tributed file system—no application-level modifica-
tions are required to access user data.

4.1. The virtual application

The virtual application in In-VIGO interacts with
the User Interface Manager using a special discon-
nected secure XML-based protocol called Virtual
Application Control Protocol. Users do not interact
directly with the Virtual Application, but rather with

the User Interface Manager. The Virtual Application
is reactive in that it never attempts to contact the UIM
(and, hence, the user) unless it is contacted first. It
uses a sequence number and a shared password to
communicate with the UIM using a network connec-
tion that is closed and discarded once the message
is processed. Hence, a session in In-VIGO is discon-
nected, requiring that every action/reply be processed
using a different network connection. Disconnected
sessions have several desirable properties:

1. Sessions can be long-lived and, so long as the vir-
tual application does not crash, can survive network
or server outages. Sessions even survive a crash on
the User Interface Manager, since it stores the ses-
sion required state on permanent storage.

2. Virtual Application sessions are browser-indepen-
dent and hence it is possible for a user to interface
with a session from different devices. For exam-
ple, a user could initiate a transaction on a desktop
computer, monitor the transaction status on a PDA
or a cell phone, and finally recover the results using



S. Adabala et al. / Future Generation Computer Systems xxx (2004) xxx–xxx 7

Fig. 5. The architecture of the virtual application. Dotted red arrows represent actions performed at application installation time. Solid
arrows indicate actions performed by the system at run-time. The numbers represent the sequence of events from the installation of an
application, to the execution of a tool, to the retrieval of execution results.

a laptop or from a public computer of an Internet
Cafe.

There is a Virtual Application instance for every
tool, and for every tool session. As shown inFig. 5,
the actual behavior of the application is determined
at runtime by an application configuration file that
describes how the application interacts with the user,
and a set of Java classes that implement the actual
application behavior (e.g. resource allocation and
process execution). Hence, the installation of an ap-
plication in In-VIGO entails: (1) the installation of
a tool in grid-enabled resources, (2) the creation of
an XML application configuration file, and (3) the
creation of a series of Java classes to control the ap-
plication behavior. The latter are referred to as “rules”
in In-VIGO. The process of creating the configuration
file and Java-based rules can be automated, especially
for applications with a native graphical user interface
(which is presented to the user through a VNC-based

virtual display) as well as batch applications that
expect command-line arguments.

In-VIGO rules represent the control and resource
view of the virtual application in In-VIGO. That is,
they specify the resource requirements (operating
system, architecture), prerequisites of the execution
(directory structure, files) and the execution logic
corresponding to the user’s input. Using the Resource
Manager, rules find the proper resources for a job
request and execute it using grid protocols.

The Virtual File System, as discussed later, pro-
vides users, virtual applications and rules a unified and
grid-wide file system. Rules cannot execute on a file
system that can potentially change in the middle of a
tool execution, or the execution of a collection of tools
that are perceived as a single action by the user, and
hence the Resource Manager provides a running rule
with afile fork, a copy of the directory where the tools
will be run, and that is presented to the user once the
user-perceived action is finished.
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This model has been designed to support the seam-
less implementation of parameter sweeps in In-VIGO.
Virtual application executions that support parametric
ranges are referred to asranging applications. Sup-
port for ranging relies on the Virtual Application to
generate all the values in the range, unfold the val-
ues into the parameter and executes the rules as many
times as the number of values in the range. Hence,
multiple executions are performed over the same data
files but with different parameters, and grid-wide re-
sources can be exploited concurrently. Note that the
tools themselves are not aware that parameter sweeps
are being performed and hence it is possible to range
parallel executions for tools that traditionally could
only be run sequentially.

4.2. The virtual file system

A key challenge that must be addressed by grid mid-
dleware is the provisioning of data to applications, in
the absence of a centralized administrative domain. It
is desirable that such a data provisioning mechanism
be fast, secure, scalable and interoperable with pro-
tocols and application programming interfaces (APIs)
that are supported by typical grid nodes.

Data management in In-VIGO is provided by a
virtualization layer built on top of NFS. The resulting
grid virtual file system allows dynamic creation and
destruction of file system sessions on a per-user or
per-application basis. Such sessions allow on-demand
data transfers, and present to users and applications
the API of a widely used distributed network file
system across nodes of a computational grid. The
virtualization layer is implemented via proxies that
intercept, modify and forward NFS calls, without re-
quiring modifications to existing clients and servers
[9].

The dynamic setup of an In-VIGO virtual file
system (VFS) session involves the execution of a se-
quence of tasks under coordination of the Resource
Manager. A virtual file system session is established
for a logical user account that is dynamically allocated
on behalf of a user, allowing a client-side “shadow” ac-
count to access data from a server-side “file” account
through an NFS-mounted share[10]. The session setup
begins with the execution of server-side proxies for
the NFS and MOUNT protocol via a grid-aware job
submission mechanism (e.g. SSH or Globus). Once

a virtual file system proxy is running, the dynamic
session is established by a client-side mount opera-
tion, also initiated by the resource manager via a job
submission mechanism. Logically, the In-VIGO grid
middleware acts as a system administrator to manage
dynamic client–server data sessions on a per-user
basis.

4.3. The resource manager

Grid resources—CPUs, memory, disks, network,
computers, clusters, grids—which may be distributed
geographically and across administrative domains,
are managed by a wide variety of resource manage-
ment systems. Examples are: operating systems (e.g.
Linux with its process scheduler and file systems) for
single-CPU/SMP machines, batch/job/queue manage-
ment systems (e.g. PBS, Sun Grid Engine, Condor)
and distributed file systems (e.g. NFS, AFS, PVFS)
for clusters of machines, job management systems
for peer-to-peer clusters (e.g. Enfuzion) and grid
resource managers (e.g. Globus GRAM, Storage Re-
source Management for grid data). In-VIGO interacts
with these resource managers for two purposes: (a)
for running In-VIGO middleware jobs to create vir-
tual resources, and (b) for running In-VIGO user jobs
on physical and virtual resources. The core services
provided by these resource managers are very similar,
however their programming interfaces differ. The re-
source manager in In-VIGO provides a uniform and
simple API to access all these resources.

The resource management functionality in In-VIGO
is implemented by providing support for the following
phases of running a job:

1. Determine the resource specification for the job(s)
based on user/application authorization, applica-
tion requirements and explicit resource specifica-
tions.

2. Select/create/reserve a resource to run the job,
based on the current available resources.

3. Run the job, i.e. run any pre-job tasks (e.g. staging
in files); submit job; monitor progress of job; find
out that the job is done; run any post-job tasks (e.g.
staging out files); and release resources.

The resource specification and selection API is
based on the Globus RSL language, to specify job
requirements, and the Condor ClassAd language, to
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describe resources and their constraints. The current
implementation of this API supports few resource
types and very simple selection criteria (round-robin
selection of unused resources). The job management
APIs provided by different distributed resource man-
agers (e.g. Globus) are encapsulated to conform to an
abstract job submission and control API. This enables
uniform management of jobs using simple API call-
ing sequences, independent of the type of resource,
and the type of job, i.e. instantiated by the In-VIGO
user or the In-VIGO middleware.

4.4. The user interface manager

The front-end for In-VIGO, or User Interface Man-
ager, is a web layer that uses Java Servlets to process
requests and construct responses. The User Interface
Manager captures the actions of the end user and sends
appropriate requests to the Virtual Application Man-
ager using the VACP protocol. The UIM initiates a
request in response of a user action and the VAP re-
sponds with an appropriate reply in XML form. This
reply message is then parsed and converted into dif-
ferent markup representations depending upon the end
device. Presently we only support W3C HTML 4.01
compliant devices.

In-VIGO requires the User Interface Manager to
easily manage dynamic content. An In-VIGO session
requires the web layer to ensure the persistence of the
content of the pages to be passed between different
components. The MVC[23] (model–view–controller)
design pattern is used to provide flexibility for the
design. To provide a higher layer of abstraction for
managing a large number of concurrent requests the
content of the user screen is represented as compo-
nents: the user screen is logically divided into differ-
ent parts, which are represented as Java components
at the UIM layer. The various components persist the
view information for a specific client. This includes
the location of the component on the screen, its con-
tent and logic to change its view for different requests.
All the logical representations are handled by a sin-
gle dispatcher servlet which acts as the controller. The
actual content is generated at the VAP which acts as
the model. By dividing the functionality we decou-
ple the application logic, content presentation and user
interaction. This model facilitates the dynamic gener-
ation of content and provides flexibility in terms of

easy transcoding, caching of content and rendering
the view.

Fig. 6shows a sample In-VIGO screen rendered on
a Windows Internet Explorer workstation. The screen
shows a step of the execution of the Dinero applica-
tion, where execution parameters are being defined by
the user. The labels highlight the screen components,
each representing a different aspect of the application
execution.

4.5. The global information system

Similar to the Grid Information Service (GIS)[24],
the goal of the In-VIGO Information System is to
provide a uniform interface (framework) to allow
information flow between various In-VIGO compo-
nents, hiding the complexity of dealing with a variety
of information access interfaces. When a user inter-
acts with the In-VIGO web interface (e.g. starts a
job), a variety of events take place in the grid through
different layers/modules/services of In-VIGO. Each
of these components requires access to different sets
of information. The Information System in In-VIGO
maintains the information about entities that partic-
ipate in a computational grid: users, access control
lists, computational resources (e.g. hosts, shadow ac-
counts, file accounts, virtual machines) and services
(e.g. user sessions, VFS sessions, applications).

The current In-VIGO Information System is based
on the centralized relational database server MySQL
to store and manage the necessary information but it
can be extended to support other types of information
providers (e.g. Lightweight Directory Access Protocol
server, Condor ClassAd Catalog server), as shown in
Fig. 7. The relational data model approach is attrac-
tive to In-VIGO because the majority of the informa-
tion is updated on-demand or on-failure, and requires
ACID (atomicity, consistency, isolation, durability)
properties.

4.6. The user manager

The In-VIGO user management layer deals with
user authentication and access control. The infor-
mation to authenticate a user can be stored in many
ways: Unix system files (/etc/passwd etc.), an ex-
ternal LDAP database, an external SQL database or
other data storage. The API for each authentication
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Fig. 6. Sample In-VIGO screen showing the execution of the Dinero simulator and the screen components.

mechanism is different in each case, however the in-
formation needed is usually a user/password pair. The
User Management layer hides the variety of authen-
tication mechanisms, providing a uniform and simple
API to perform authentication for all In-VIGO compo-
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Fig. 7. The In-VIGO information system is based on a central-
ized MySQL database server but can be extended to support any
information provider.

nents. The access control is achieved by using a pow-
erful and flexible mechanism in which applications are
able to specify access constraints by assigning action
rules to different permission groups, while the user is
able to constraint his capability by using different user
classes.

If the services are provided through a stateless pro-
tocol such as the HTTP, the layer on the top is required
to be stateful to keep track of user actions. The meth-
ods for user session tracking commonly used when
working with HTTP are: basic authentication, cook-
ies, and URL rewriting. Although the User Manager
(UM) provides an interface that supports all of these
methods, the last one is used in In-VIGO to avoid
cookies or the transmission of the user password in
each interaction. Another desired feature of web ser-
vices provider is the capability of maintaining multi-
ple states for each user. In In-VIGO this is achieved by
decoupling the browser identification and the session
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identification, which is maintained in the Information
System.

5. Implementation

In-VIGO was implemented at the ACIS Laboratory
and is at the time of this writing in its first beta ver-
sion release. It was implemented using Java and Java
Servlets for the core of the system, Perl for operat-
ing system-specific operations and C for the Virtual
File System. In-VIGO leverages on existing standards
and open source technologies wherever possible, and
in particular uses XML for all configuration files and
protocols, Condor ClassAds for resource description,
Globus and SSH for resource invocation and SQL
servers as data repositories.

In-VIGO has been configured to run a variety of
scientific and test applications, including:

• Dinero (a cache simulator for memory reference
traces supporting multi-level caches and dissimilar
I and D caches).

• CNT-IV (an application that calculates theC–V and
I–V characteristics of ideal, ballistic carbon nan-
otube field-effect transistors).

• CoWord (a CoWord analysis tool), DLX View (an
interactive pipelined computer simulator using the
DLX instruction set).

• GAMESS (the General Atomic and Molecular Elec-
tronic Structure System—a general ab initio quan-
tum chemistry package).

• LSS (Light Scattering Spectroscopy—used to esti-
mate the diameter, diameter deviation and refractive
index of pixels in an image).

• MolCToy (a collection of simple theoretical mod-
els of the conduction through individual molecules
between two contacts).

• Nanomos (a self-consistent 2D-simulator for thin
body, fully depleted, double gated, n-MOSFETs).

• Simple Scalar (a set of fast, flexible and accurate
uni-processor simulators based on a close derivative
of the MIPS architecture).

• CACTI (an integrated cache access time, cycle time,
area, aspect ratio, and power model).

• Huckel-IV (a simple quantitative method which cal-
culates current–voltage characteristics and conduc-
tance spectrum of a molecule sandwiched between

two metallic contacts one of which could be a scan-
ning probe).

• XSpim (a software simulator that runs programs
written for MIPS R2000 and R3000 processors).

• XGobi (a package for plotting scatterplots of
multi-dimensional tabular data).

• Fract-O-Rama (a fractal generation program).
• GNU Chess application using the X-Board graph-

ical user interface.Fig. 6 shows a typical screen-
shot of In-VIGO executing the Dinero Cache
Simulator.

All users have a file system that is shared by all
applications and that can be accessed by using a file
manager or a Unix prompt on a virtual machine that
provides users with an isolated and secure virtual
operating environment. The Unix virtual machine is
called a Virtual Workspace and is accessible through
the toolbar on all applications. This Virtual Workspace
is a VMware virtual machine with a minimal config-
uration that mounts the user’s file system using the
Virtual File System.

In its current deployment version, In-VIGO SSH is
used for executing jobs that are latency sensitive and
Globus is used for long-running jobs, yet users are
unaware of the grid mechanisms used and their jobs
can execute on any machine available in the current
pool: a 40-node Linux cluster, a Z800 IBM server and
4 dual-processor Linux servers.

6. Conclusions

The In-VIGO grid-computing system described is
designed to support computational tools for engineer-
ing and science research In Virtual Information Grid
Organizations. A novel aspect of this system is the
extensive use of virtualization technology, emerging
standards for grid-computing and other Internet mid-
dleware to enable the creation of dynamic pools of
virtual resources that can be aggregated on-demand
for application-specific computational grids. Build-
ing grids out of physical resources to constructing
virtual grids has many advantages but also requires
new thinking on how to architect, manage and opti-
mize the necessary middleware. In-VIGO represents
a first step towards this goal and our experiences
have shown that grid-computing middleware is still
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lacking support for robust and fault tolerant dis-
tributed computing for interactive applications, and
that virtualization can compensate for many of these
limitations.
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