

Distributed File System Support for Virtual Machines in Grid Computing

Ming Zhao Jian Zhang Renato Figueiredo
Advanced Computing and Information Systems Laboratory (ACIS)

Electrical and Computer Engineering
University of Florida, Gainesville, Florida

{ming, jianzh, renato}@acis.ufl.edu

Abstract

This paper presents a data management solution which
allows fast Virtual Machine (VM) instantiation and
efficient run-time execution to support VMs as execution
environments in Grid computing. It is based on novel
distributed file system virtualization techniques and is
unique in that: 1) it provides on-demand access to VM
state for unmodified VM monitors; 2) it supports
user-level and write-back disk caches, per-application
caching policies and middleware-driven consistency
models; and 3) it supports the use of meta-data associated
with files to expedite data transfers. The paper reports on
its performance in a WAN setup using VMware-based
VMs. Results show that the solution delivers performance
over 30% better than native NFS and can bring
application-perceived overheads below 10% relatively to
a local disk setup. The solution also allows a VM with
1.6GB virtual disk and 320MB virtual memory to be
cloned within 160 seconds when it is first instantiated
(and within 25 seconds for subsequent clones).

1. Introduction

A fundamental goal of computational “Grids” is to
allow flexible, secure sharing of resources distributed
across different administrative domains [1]. To realize this
vision, a key challenge that must be addressed by Grid
middleware is the provisioning of execution environments
that have flexible, customizable configurations and allow
for secure execution of untrusted code from Grid users [2].
Such environments can be delivered by architectures that
combine “classic” virtual machines (VMs) [3] and
middleware for dynamic instantiation of VM instances on
a per-user basis [4]. Efficient instantiation of VMs across
distributed resources requires middleware support for
transfer of large VM state files (e.g. memory, disk) and
thus poses challenges to data management infrastructures.
This paper shows that a solution for efficient transfer of
VM state across domains can be implemented by means of

extensions to a proxy-based distributed Grid virtual file
system [5]. (In the context of the paper, VMs are referred
as “classic” instruction-set VMs as defined in [3])

The architecture leverages existing implementations of
a de-facto distributed file system standard for local-area
networks (NFS [6]) and extends it at the user level to
support 1) middleware-controlled encrypted file system
channels and cross-domain authentication, 2) network
latency hiding through client-side caching, and 3)
meta-data at the file system level to efficiently handle VM
memory state files. These mechanisms are implemented
without requiring modifications to existing NFS clients
and servers, and support the execution of unmodified
application binaries – including para-virtualized VMs and
user-mode VMs, which use file system to store machine
state (e.g. VMWare hosted I/O [7], UML [8],).

This paper also reports on the performance of
VMware-based VMs instantiated from state stored in
wide-area distributed file systems – both conventional and
proxy-enhanced NFS. Experimental results show that the
proxy-enhanced file system improves the execution time
of applications and experiences a relative small overhead
with respect to locally stored VM state. Finally, results
show that the use of on-demand transfers and meta-data
information allows instantiation of a
320MB-RAM/1.6GB-disk Linux VM clone in less than
160 seconds for the first clone (and about 25 seconds for
subsequent clones), considerably outperforming cloning
based on transfer of entire files (in excess of 1100
seconds).

The contribution of this paper is a novel solution that
extends user-level proxies to support on-demand,
high-performance transfers for Grid VMs. It builds on and
extends upon a distributed virtual file system
infrastructure that provides a basis for establishing
per-session, Grid-wide file system sessions. The solution
addresses performance limitations associated with typical
NFS setups in wide-area environments (such as buffer
caches with limited storage capacity and write-through
policies) by allowing for user-level (write-back) disk
caches. In addition, the solution supports
application-driven meta-data information to allow clients

to satisfy requests using on-demand block-based or
file-based transfers selectively. It does so in a manner that
is transparent to the kernel (and to applications). Hence, it
is not specific to a particular VM technology, and supports
existing hosted VMs that allow an NFS file system to
store machine state in regular files/filesystems. The paper
also analyzes the performance of this solution
quantitatively in a wide-area network environment, and
demonstrates that it can outperform unmodified NFS and
SCP-based file copying, in both VM instantiation through
cloning and run-time execution.

The rest of this paper is organized as follows. Section 2
introduces an architecture for grid computing on VMs and
discusses alternatives for handling transfer of VM state
under this model. Section 3 describes distributed virtual
file system techniques for supporting VMs, and Section 4
presents results and discussions on the performance of this
solution. Section 5 discusses related work, and Section 6
concludes the paper.

2. Grid Computing Using Virtual Machines

A Grid computing system that supports unmodified
applications (such as commercial applications for which
source code access is not available) faces the challenge of
preserving the integrity of resources in the presence of
untrusted users and/or applications. Considerations of
resource security, user isolation, legacy applications and
flexibility in the customization of execution environments
have led to architectures that employ “classic” VMs for
Grid computing [4] to support problem-solving
environments. A flexible, application-centric solution can
be built based on the fact that, once defined, a VM
execution environment can be encapsulated, archived by
middleware and then be made available to users. Upon
request, such a VM can be “cloned” and instantiated by
middleware to exploit the computing power of distributed

Grid resources. “Cloning” of a VM entails copying its
states from a “golden” VM, configuring it with user
specific information and then restoring it for the Grid user.

Mechanisms present in existing middleware can be
utilized to support this functionality by treating VM-based
computing sessions as processes to be scheduled (VM
monitors) and data to be transferred (VM state). Hence,
data management is the key: without middleware support
for transfer of VM state, computation is tied to the
end-resources that have a copy of a user’s VM image;
without support for transfer of application data,
computation is tied to the end-resources that have local
access to a user’s files. However, with appropriate data
management support (Figure 1), the components of a Grid
VM session can be distributed across three different
logical entities: the “image server”, which stores VM base
configuration images; the “compute server”, which
provides the capability of instantiating VMs; and the “data
server”, which stores user data.

Support for VMs that can be dynamically instantiated
across Grid resources poses challenges to the data
management infrastructure. For various VM technologies,
such as hosted I/O VMWare [7], User-Mode Linux [8],
and Xen [9], the image of a VM can be represented by
memory/disk state files or filesystems that are often large
(GBytes) and must be transferred efficiently from an
image server to a compute server (Figure 1). Two
approaches are conceivable: one is to transfer the entire
VM state before instantiation; another is to leverage host
O/S support for on-demand transfer of file system data to
allow the VM state transferred on demand as requested by
the VM monitor. Full-state transfers have the
disadvantages of large setup latencies, and transfer/storage
of unnecessary data on the compute server – typical VM
sessions only reference a small fraction of the disk state
during execution [10]. On-demand transfers are possible
at the granularity of file blocks in distributed file systems

Figure 1: Middleware
supported data
management for both
virtual machine
images and user file
systems allows for
application-tailored
VM instantiation
(VM1, VM2, VM3)
across Grid
resources (compute
servers C1/C2, image
servers I1/I2, data
servers D1/D2).

Network Image server I1
- (O/S A + app X)

Data server D2
- users V,W

Image server I2
- (O/S B + app Y)

Data server D1
- user U

Compute server C1

Compute
server C2

VM1: O/S A + app X
+ V’s data

VM2: O/S B + app Y
+ W’s data

VM3: O/S A + app X
+ U’s data

Middleware, VM image data
Middleware, user data
VM monitor, hosting

Network Image server I1
- (O/S A + app X)

Image server I1
- (O/S A + app X)

Data server D2
- users V,W

Data server D2
- users V,W

Image server I2
- (O/S B + app Y)

Data server D1
- user U

Compute server C1Compute server C1

Compute
server C2
Compute
server C2

VM1: O/S A + app X
+ V’s data

VM1: O/S A + app X
+ V’s data

VM2: O/S B + app Y
+ W’s data

VM2: O/S B + app Y
+ W’s data

VM3: O/S A + app X
+ U’s data

VM3: O/S A + app X
+ U’s data

Middleware, VM image data
Middleware, user data
VM monitor, hosting

Middleware, VM image data
Middleware, user data
VM monitor, hosting

such as NFS, but the network latency of accessing a server
can lead to poor performance for writes, and if capacity
misses occur frequently in memory file system buffers.
The techniques presented in Section 3 describe a data
management infrastructure that supports efficient
on-demand transfer of data associated with a VM’s image.

In combination with complementary middleware for
resource and user management, and for user interfaces, the
availability of Grid VMs enables the design of
problem-solving systems that are highly flexible. For
example, the In-VIGO1 [11] system allows on-demand
creation of a per-user “virtual workspace” that provides a
Web browser-capable interactive graphical interface to a
Linux-based VM clone, as well as an upload/download
facility through a file manager that runs within the VM.
The workspace is dynamically built by the middleware in
a user-transparent manner by cloning a suspended VM
image and configuring the clone with user-specific
information, and by mounting the user’s Grid virtual file
system inside the VM clone.

3. Grid Virtual File System for Virtual
Machines

3.1. Background

Current Grid data management solutions typically
employ file-staging techniques to transfer files between
user accounts in the absence of a common file system. File
staging approaches require the user to explicitly specify
the files that need to be transferred (e.g. GridFTP [12]), or
transfer entire files at the time they are opened (e.g. GASS
[13]), which may lead to unnecessary data transfers (e.g.
of an entire VM image, even when only a fraction of it is
required for computation). Data management solutions
supporting on-demand transfer for Grids have also been
investigated in related work, as discussed in Section 5.
However, these solutions require customized application
libraries and/or file servers.

Previous work has shown that a data management
model supporting on-demand data transfers without
requiring dynamically-linked libraries or changes to native
O/S file system clients and servers can be achieved by
way of two mechanisms – logical user accounts [14] and a
distributed virtual file system [5]. Such a distributed
virtual file system can be built through the use of
virtualization layer on top of NFS, a de-facto distributed
file system standard, allowing data to be transferred
on-demand between Grid storage and compute servers for
the duration of a computing session. This functionality is
realized via extensions to existing NFS implementations
that are at user-level, requiring neither modification of

1 The In-VIGO prototype can be accessed from http://invigo.acis.ufl.edu;

courtesy accounts are available.

O/S clients and servers, nor of applications. The resulting
Grid virtual file system (GVFS) utilizes user level proxies
to dynamically map between short-lived user identities
allocated by middleware on behalf of a user [15]
Furthermore, data transfer in GVFS is on demand and
transparent to the user.

By supporting unmodified applications, GVFS can
inherently support implementations of different flavors of
VM technologies, including commercial and open-source
designs such as VMware, UML and Xen. However,
because VM state data are often large in size and remote
accesses often have high latencies, extensions to the Grid
virtual file system are necessary to improve its
performance in this environment. The extensions proposed
in this paper are illustrated in Figure 2 and described in
the remaining of this section. The extensions are oriented
towards file system sessions established for VM transfers,
but are generally applicable and not tied to any particular
VM implementation.

3.2. Extensions to support VM transfer

3.2.1. Disk-based file system caches.
Caching is a classic, successful technique to improve

the performance of computer systems by exploiting
temporal and spatial locality of references and providing
high-bandwidth, low-latency access to cached data. The
NFS protocol allows the results of various NFS requests
to be cached by the NFS client [16]. However, although
memory caching is generally implemented by NFS clients,
disk caching is not typical. Disk caching is especially
important in the context of a distributed file system,
because the overhead of a network transaction is high
compared to that of a local I/O access. The large storage
capacity of disks implies great reduction on capacity and
conflict misses [17]. Complementing the memory cache
with a disk cache can form an effective cache hierarchy.
There are implementations of distributed file systems that
exploit these advantages, for example, AFS transfers and
caches entire files in the client disk, and CacheFS supports
disk-based caching of NFS blocks. However, these
designs require kernel support, and are not able to employ
per-user or per-application caching policies.

In contrast, GVFS is extended to employ client-side
proxy managed disk cache in a unique way, through
user-level proxies that can be customized on a per-user or
per-application basis. For instance, cache size and write
policy can be optimized according to the knowledge of a
Grid application. A more concrete example is enabling
file-based disk caching by meta-data handling and
application-tailored knowledge to support heterogeneous
disk caching (Section 3.2.2). The proxy cache can be
deployed in systems which do not have native kernel
support for disk caching, e.g. Linux. Because the proxy
behaves both as a server (receiving RPC calls) and a client

(issuing RPC calls), it is possible to establish a virtual file
system by forwarding along a chain of multiple proxies.
Thus in addition to the server-side proxy (responsible for
authenticating requests and mapping identities), another
proxy can be started at the client-side to establish and
manage disk caches, as illustrated in Figure 2.
Furthermore, a series of proxies, with independent caches
of different sizes, can be cascaded between client and
server, supporting scalability to a multi-level cache
hierarchy.

Disk caching in GVFS is implemented by the file
system proxy and operates at the granularity of NFS RPC
calls [18]. The cache is structured in a way similar to
traditional block-based hardware designs; the disk cache
contains file banks that hold frames in which data blocks
and cache tags can be stored. Cache banks are created on
the local disk by the proxy on demand. The indexing of
banks and frames is based on a hash of the requested NFS
file-handle and offset and allows for associative lookups.
The hashing function is designed to exploit spatial locality
by mapping consecutive blocks of a file into consecutive
sets of a cache bank. Caches of different proxies can be
independently managed; they may be configured with
different sizes, associativities, as well as data block sizes
(up to the NFS protocol limit of 32KB). The design also
allows for different proxies to share disk caches for
read-only data.

The GVFS proxy disk cache also supports the
write-back policy for write operations, an important
feature in wide-area environments to hide long write
latencies. Write-back caching can be applied to VMs in
Grid computing in different ways. It supports write-back
of persistent virtual disks that transparently complements
kernel-level buffering and application-level write-back
schemes with high-capacity storage. It can also support

write-back of redo logs for non-persistent disks of VMs
that may be migrated across Grid resources.

Typically, kernel-level NFS clients are geared towards
a local-area environment and implement a write policy
with support for staging writes for a limited time in kernel
memory buffers. Kernel extensions to support more
aggressive solutions, such as long-term, high-capacity
write-back buffers are unlikely to be undertaken; NFS
clients are not aware of the existence of other potential
sharing clients, thus maintaining consistency in this
scenario is difficult. The write-back proxy cache described
in this paper leverages middleware support to implement a
session-based consistency model from a higher abstraction
layer: it supports O/S signals for middleware-controlled
writing back and flushing of cache contents. This model
of middleware-driven consistency is assumed in this paper;
it is sufficient to support many Grid applications, e.g.
when tasks are known to be independent by a scheduler
for high-throughput computing (e.g. as in Condor [19]).

3.2.2. Meta-data handling

Another extension made to GVFS is the handling of
meta-data information. The main motivation is to use
middleware information to generate meta-data for certain
categories of files according to the knowledge of Grid
applications. Then, a GVFS proxy can take advantage of
the meta-data to improve data transfer. When the proxy
receives a NFS request to a file which has meta-data
associated with, it processes the meta-data and takes the
described actions on the file accordingly. In the current
implementation, the meta-data file is stored in the same
directory as the file it is associated with, and has a special
filename so that it can be easily looked up. The meta-data
contain the data characteristics of the file it is associated
with, and define a sequence of actions which should be
taken on the file when it is accessed.

Figure 2: Proxy extensions for VM image transfers. At the compute server, the VM monitor issues
system calls that are processed by the NFS client. Requests may hit in the memory file systems
buffer (1); those that miss are processed by the user-level proxy (2). At the proxy, requests that
hit in the block-based disk cache (3), or in the file-based disk cache if matching stored meta-data
(4), are satisfied locally; proxy misses are forwarded as SSH-tunneled RPC calls to a remote
proxy (5), then to the kernel server (6), and finally satisfied from data on the server (7).

kernel NFS
server

buffer

proxyproxy

Image server

WAN Firewall
file

cache
Computer server

*.vmdk
*.vmss

1

3

2 5 6

7

4

cache
banks

kernel NFS
server

buffer

proxyproxy

Image server

WAN Firewall
file

cache
Computer server

*.vmdk
*.vmss

1

3

2 5 6

7

4

cache
banks

For example, resuming a VMware VM requires
reading the entire memory state file (typically in hundreds
of MBytes). Transferring the entire contents of this file is
time-consuming; however, with application-tailored
knowledge, the memory state file can be pre-processed to
generate a meta-data file specifying which blocks in the
memory state are all zeros. Then, when the memory state
file is requested, the client-side proxy, through processing
of the meta-data, can service requests to zero-filled blocks
locally, request only non-zero blocks from the server, then
reconstruct the whole memory state and present it to the
VM monitor. Normally the memory state contains many
zero-filled blocks [9] that can be filtered by this technique,
and the traffic on the wire can be greatly reduced while
instantiating a VM. For instance, when resuming a
512MB-RAM RedHat 7.3 VM which is suspended in the
post-boot state, the client issues 65,750 NFS reads while
60452 of them can be filtered out by the above technique.

Another example of GVFS’ meta-data handling
capability is to help the transfer of large files and enable
file-based disk caching. Inherited from the underlying
NFS protocol, data transfer in GVFS is on-demand and
block-by-block based (typically 4K to 32Kbytes in size),
which allows for partial transfer of files. Many
applications can benefit from this property, especially
when the working set of the accessed files are
considerably smaller than the original sizes of the files.
For example, accesses to the virtual disk of a “classic”
VM are typically restricted to a working set that is much
smaller (<10%) than the large virtual disk file [20][9]. But
when large files are indeed completely required by client
application (e.g. when a remotely stored memory state file
is requested by VMware to resume a VM), block based
data transfer becomes inefficient.

However, if Grid middleware can speculate in advance
which files will be entirely required based on its
knowledge of the application, it can generate meta-data
for GVFS proxy to expedite the data transfer. The actions
described in the meta-data can be “compress”, “remote
copy”, “uncompress”, and “read locally”, which means
when the referred file is accessed by the client, instead of
fetching the file block by block from server, the proxy will:
1) compress the file on the server (e.g. using GZIP); 2)
remote copy the compressed file to the client (e.g. using
GSI-enabled SCP) ; 3) uncompress it to the file cache (e.g.
using GUNZIP); and 4) generate results for the request
from the locally cached file. Once the file is cached all the
following requests to the file will also be satisfied locally
(Figure 2). The file cache can also support write-back,
which includes similar steps of compressing, uploading
and uncompressing.

Hence, the proxy effectively establishes an on-demand
fast file-based data channel, which can also be secure by
employing SSH tunneling for data transfer, in addition to
the traditional block-based NFS data channel, and a
file-based cache which complements the block-based

cache in GVFS to form a heterogeneous disk caching
scheme. The key to the success of this technique is the
proper speculation of an application’s behavior. Grid
middleware should be able to accumulate knowledge for
applications from their past behaviors and make intelligent
decisions based on the knowledge. For instance, since for
VMWare the entire memory state file is always required
from the image server before a VM can be resumed on the
compute server, and since it is often highly compressible,
the above technique can be applied very efficiently to
expedite the transfer of the memory state file.

3.2.3. Support for persistent and non-persistent Grid
VMs

VMs can be deployed in a Grid in two different kinds
of scenarios, which pose different requirements of data
management to the distributed virtual file system. In the
first scenario, the Grid user is allocated a dedicated VM
which has a persistent virtual disk on the image server. It
is suspended at the current state when the user leaves and
resumed when the user comes again, while the user may
or may not start computing sessions from the same server.
When the session starts, the VM should be efficiently
instantiated on the compute server, and after the session
finishes, the modifications to the VM state from the user’s
executions should also be efficiently reflected on the
image server. The extended GVFS can well support this
scenario in that: 1) the use of meta-data handling can
quickly restore the VM from its checkpointed state; 2) the
on-demand block-based access pattern to the virtual disk
can avoid the large overhead incurred from downloading
and uploading the entire virtual disk; 3) proxy disk cache
can exploit locality of references to the virtual disk and
provide high-bandwidth, low-latency access to cached file
blocks; and 4) write-back caching can effectively hide the
latencies of write operations perceived by the user, which
are typically very large in a wide-area environment, and
submit the modifications when the user is off-line or the
session is idle.

In the other scenario, the image server stores a number
of non-persistent VMs for the purpose of “cloning”. These
generic images have application-tailored hardware and
software configurations, and when a VM is requested
from a compute server, the image server is searched
against the requirements of the desired VM. The best
match is returned as the “golden” image, which is then
“cloned” to the compute server. The cloning process
entails copying the state from the “golden” image,
restoring it from checkpointed state, and setting up the
clone with customized configurations. After the new clone
“comes to life”, computing can start in the VM and
modifications to the original state are stored in the form of
redo logs. So data management in this scenario requires
efficient transfer of VM state from image server to
compute server, and also efficient writes to redo logs for
checkpointing.

Similar to the first scenario, the extended GVFS can
quickly instantiate a cloned VM by meta-data handling for
memory state file and on-demand block-based access to
virtual disk files. Instead of copying the entire virtual disk,
only symbolic links are made to the virtual disk files on
compute server. After a computation starts, the proxy disk
cache can help speedup access to the virtual disk after the
cache becomes “warm”, and write-back can help save user
time for writes to the redo logs. However, a differentiation
in this scenario is that a small set of golden images can be
used to instantiate many clones, e.g. for concurrent
execution of a high-throughput task. The proxy disk cache
can exploit temporal locality among cloned instances and
accelerate the cloning process. On the compute server, the
cached data of memory state and virtual disk from
previous clones can greatly expedite new clonings from
the same “golden” images. And a second-level proxy
cache can be setup on a LAN server, as explained in
Section 3.2.1, to further exploit the locality and provide
high speed access to the state of golden images for
clonings to compute servers in the same local network.

4. Performance

4.1. Experimental setup

A prototype of the approach discussed in this paper has
been built upon the implementation of
middleware-controlled user-level file system proxies [21].
The core proxy code has been extended to support private
data channels [22], client-side disk caching and meta-data
handling. This section evaluates the performance for
supporting VM in the Grids by analyzing the data from
experiments of a group of benchmarks.

Experiments are conducted in both local-area and
wide-area environments. The LAN image server is a
dual-processor 1.8GHz Pentium III cluster node with 1GB
of RAM and 576GB of disk storage. The WAN image
server is a dual-processor 1GHz Pentium-III cluster node
with 1GB RAM and 45GB disk. In the experiments on
application execution (Section 4.2), the compute server is
a 1.1GHz Pentium-III cluster node with 1GB of main
memory and 18GB of SCSI disk; in the experiments on
VM cloning (Section 4.3), the compute servers are cluster
nodes which have four 2.4GHz Xeon processors with 1GB
RAM and 18GB disk each. The compute servers are
installed VMware GSX server 2.5 to support x86-based
VMs. They are connected with the LAN image server in a
100Mbit/s Ethernet at the University of Florida, and
connected with the WAN image server through Abilene
between Northwestern University and University of
Florida. The proxy cache is configured with 512 file banks
which are 16-way associative, and has a capacity of
8GBytes, but typically only 1~3GBtyes of cache has been
actually used in the experiments.

4.2. Experiments on application execution

4.2.1. Benchmarks and scenarios

Three benchmarks are selected to evaluate the
performance of run-time execution of typical applications:

SPECseis96 is taken from the SPEC high-performance
group benchmarks. It consists of four phases, where the
first phase generates a large trace file on disk, and the last
phase involves intensive seismic processing computations.
The benchmark is tested in sequential mode with the small
dataset. It models a scientific application that is both I/O
intensive and compute intensive.

LaTex benchmark is designed to model an interactive
document processing session. It is based on the generation
of a PDF (Portable Document File) version of a 190-page
document edited by LaTeX. It runs the “latex”, “bibtex”
and “dvipdf” programs in sequence and iterates 20 times,
where each time a different version of one of the LaTeX
input files is generated by the “patch” command.

It is worth to be emphasized that a VM-based Grid
execution environment allows users to customize an
execution environment for an application, encapsulate its
virtual state and replicate it across distributed resources by
means of dynamic instantiation of VM copies. Users of a
VM-based Grid can be provided with an interactive
environment to customize their VMs, and the middleware
is capable of archiving, replicating and instantiating such
environments on any available physical resource capable
of supporting VMs. In this environment, it is important
that interactive sessions for VM setup show good response
times to the Grid user. Thus, the Latex benchmark is
chosen to study this scenario.

Kernel compilation represents file system usage in a
software development environment, similar to the Andrew
benchmark [23]. The kernel is a Red Hat Linux 2.4.18,
and the compilation consists of four major steps, “make
dep”, “make bzImage”, “make modules” and “make
modules_install”, which involve substantial reads and
writes on a large number of files.

The execution times of the above benchmarks within a
VM, which has 512MB RAM and 2GB virtual disk (in
VMWare plain disk mode), installed with Linux Red Hat
7.3, the benchmark applications and their data sets, are
measured in the following four scenarios:

Local: The VM state is stored in a local disk file
system.

LAN: The VM state is stored in a directory
NFS-mounted from the LAN image server. Data access is
forwarded by GVFS proxies via SSH tunnels.

WAN: The VM state is stored in a directory
NFS-mounted from the WAN image server. Data access is
forwarded by GVFS proxies via SSH tunnels.

WAN+C: The setup is the same as the WAN scenario
except that client-side proxy disk caching is enabled.

4.2.2. Results and analysis
The experiments are initially setup with “cold” caches

(both kernel buffer cache and proxy disk cache) by
un-mounting and mounting the virtual file system, and
flushing the proxy caches before an execution. Figure 3
shows the execution times for the four phases of the
SPECseis. The performance of the compute-intensive part
(phase 4) is within a 10% range across all scenarios. The
results of the I/O intensive part (phase 1), however, shows
a large difference between then WAN and WAN+C
scenarios – the latter is faster by a factor of 2.1. The
benefit of a write-back policy is evident in the phase 1,
where a large file that is used as an input to the following
phases is created. The proxy cache also brings the total
execution time down 33 percent in the wide-area
environment.

The LaTeX benchmark results in Figure 4 show that in
wide-area environment interactive users would experience
a startup latency of 225.67 seconds (WAN), or 217.33
seconds (WAN+C). This overhead is substantial when
compared to Local and LAN, which execute the first
iteration in about 12 seconds. Nonetheless, the start-up
overhead in these scenarios is much smaller than what one
would experience if the entire VM state would have to be
downloaded from the image server at the beginning of a
session (2818 seconds). During subsequent iterations, the
kernel buffer can help to reduce the average response time
for WAN scenario to about 20 seconds. The proxy disk
cache can further improve the average response time for
WAN+C scenario to very close to that of Local (8%
slower) and LAN (6% slower) scenarios, but 54% faster
than that of non-cached WAN scenario. The time needed
to flush cached dirty blocks if write-back is enabled is
about 160 seconds, which is also much shorter than the
uploading time (4633 seconds) of the entire state.

Experimental results from the kernel compilation
benchmark are illustrated in Figure 5. The first run of the
benchmark in WAN+C scenario which begins with “cold”

caches shows an 84% overhead compared to that of Local
scenario. However, for the second run, the “warm” caches
help to bring the overhead down to 9%. And compared to
the second run of LAN scenario, it is less than 4% slower.
The availability of the proxy cache allows WAN+C to
outperform WAN more than 30 percent. As in the LaTeX
case, the data show that the overhead experienced in an
environment where program binaries and/or datasets are
partially re-used across iterations (e.g. in application
development environments), the response times of the
WAN-mounted virtual file system are acceptable.

4.3. Experiments on virtual machine cloning

4.3.1. Benchmark and scenarios
Another benchmark is designed to investigate the

performance of GVFS’ support for cloning VMs. The
cloning scheme is as discussed in Section 3.2.3, which
includes copying the VM configuration file, copying the
VM memory state file, building symbolic links to the
virtual disk files, configuring the cloned VM, and at last
resume the new VM. The execution time of the
benchmark is also measured in five different scenarios:

Local: The VM images are stored in a local disk file
system.

WAN-S1: The VM images are stored in a directory
NFS-mounted from the WAN image server. During the
experiment, a single VM image is cloned eight times to
the compute server sequentially. The clonings are
supported by GVFS with all extensions, including private
data channels, proxy disk caching and meta-data handling.
It is designed to evaluate the performance when there is
temporal locality among clonings.

WAN-S2: The setup is the same as WAN-S1 except
that eight different images are each cloned to the computer
server once sequentially. It is designed to evaluate the
performance when there is no locality among clonings.

Figure 3: SPECseis benchmark execution
times (minutes:seconds). The results show
times for each execution phase.

00:00

03:00

06:00

09:00

12:00

15:00

18:00

Local LAN WAN WAN+C

Phase 1 Phase 2 Phase 3 Phase 4

Figure 4: LaTeX benchmark execution times
(seconds). The execution times of the first iteration,
the average execution times of the following 19
iterations, and the total execution times are listed.

11.51 12.54
19.53

13.37
0

100

200

300

400

500

600

Local LAN WAN WAN+C

First iteration Mean of 2-20 iterations Total

WAN-S3: The setup is the same as WAN-S2 except
that a LAN server provides second-level proxy disk cache
to the compute server. Eight different images are cloned,
which are new to the compute server, but are pre-cached
on the LAN server due to previous clones for other
computer servers in the same LAN. This setup is designed
to model a scenario where there is temporal locality
among the VMs cloned to compute servers in the same
LAN.

WAN-P: The VM images are stored in a directory
NFS-mounted from the WAN image server to eight
computer servers, which are eight nodes of a cluster.
During the experiment, eight VM images are cloned to the
compute servers in parallel. The clonings are supported by
GVFS with all extensions.

4.3.2. Results and analysis

Figure 6 shows the cloning times for a sequence of VM
images which have 320MB of memory and 1.6GB of
virtual disk. In comparison with the range of GVFS-based
cloning times shown in these figures, if the VM is cloned
using SCP for full file copying, it takes approximately
twenty minutes to transfer the entire image. If the VM
state is not copied but read from a pure NFS-mounted
directory, the cloning takes more than half an hour
because the block-based transfer of the memory state file
is very slow. However, the enhanced GVFS with proxy
disk caches and meta-data support to compress (using
GZIP) and transfer (using SCP) the VM’s memory state
can greatly speed up the cloning process to within 160
seconds. Furthermore, if there is temporal locality of
access to memory state and virtual disk files among the

clones, the proposed solution even allows cloning to be
performed within 25 seconds if data are cached on local
disks or within 80 seconds if data are cached on a LAN
server.

Table 1 compares sequential cloning with parallel
cloning. In the experiment on WAN-P scenario, the eight
compute servers share a single image server and
server-side GVFS proxy. But when the eight clonings start
in parallel, each client-side GVFS proxy on every
compute server spawns a file-based data channel to fetch
the memory state file on demand. The speedup from
parallel cloning versus sequential cloning is more than
700% when the caches are cold and more than 600%
when the caches are warm. In either scenarios, the support
from GVFS is on-demand, and transparent to user and
VM monitor. And, as demonstrated in Section 4.2,
following a machine’s instantiation via cloning, GVFS
can also improve the VM’s run-time performance
substantially.

 Total time when
caches are cold

Total time when
caches are warm

WAN-S1 1056 seconds 200 seconds

WAN-P 150.3 seconds 32 seconds

Figure 5: Kernel compilation benchmark
execution times (hours:minutes). The results
show times for four different phases. Results
have been colleted for two consecutive runs of
the benchmark; in the first run, buffer and
proxy cache are “cold”, while in the second
run they are “warm”.

0:00

0:20

0:40

1:00

1:20

1:40

make dep make bzImage
make modules make modules_install

First run Second run

Local LAN WAN WAN+C Local LAN WAN WAN+C

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8

Local WAN-S1 WAN-S2 WAN-S3

Figure 6: VM cloning times (seconds) for a
sequence of images (from 1 to 8) with 320MB
of memory and 1.6GB of virtual disk. It takes
1127 seconds if copying an image entirely by
SCP. If only copying the memory state and
accessing the virtual disk from a directory
mounted from the image server without GVFS’
support, it takes 2060 seconds to clone a VM.

Table 1: Total time of cloning eight VM images in
WAN-S1 and WAN-P when the caches (kernel
buffer cache, proxy block-based cache and
proxy file-based cache) are cold and warm.

5. Related Work

Data management solutions such as GridFTP [12] and
GASS [13] provide APIs upon which applications can be
programmed to access data on the Grid. Legion [24]
employs a modified NFS server to provide access to a
remote file system. The Condor system and Kangaroo
utilize remote I/O mechanisms implemented via bypass
mechanisms that rely on system call trapping by dynamic
library linking to allow applications to access files [19]
[25]; a library-based approach to the movement of VM
images is also taken in [9]. However, library-based
approaches would not work with statically linked software.
NeST [26] is a software Grid storage appliance that
supports the NFS protocol, among others; however only a
restricted subset of the protocol and anonymous accesses
are supported, and the solution does not integrate with
unmodified O/S NFS clients. In contrast, the solution of
this paper allows unmodified applications to access Grid
data using conventional operating system clients/servers.

The self-certifying file system (SFS [27]) is another
example of a file system that uses proxies that forward
NFS protocol calls and implement cross-domain
authentication and encryption. The approach of this paper
differs from SFS in several ways. A key difference is that
the approach of this paper employs dynamically-created
per-user file system proxies, allowing for
middleware-controlled caching policies (e.g. write-back vs.
write-through) on a per-user basis, and the setup of
multiple levels of proxy caching. In contrast, SFS employs
a single proxy server for multiple users.

The NFS V4 [28] protocol includes provisions for
aggressive caching. However, V4 implementations have
not been deployed in Grid setups; implementations of
versions 2 and 3 of the protocol are available for a wide
variety of platforms.

A related project has investigated solutions that
improve the performance of the migration of classic VMs
[10]. Their work focuses on mechanisms to transfer
images of virtual desktops, possibly across low-bandwidth
links. Common between their approach and this paper are
mechanisms for on-demand block transfers, and
optimizations based on the observation that zero-filled
blocks are common in suspended VM memory images. A
key difference lies in fact that the techniques of this paper
are independent from applications and are implemented
through the interception of NFS/RPC calls and reusing
O/S clients and servers available in typical Grid resources,
while their approach uses modified libraries as a means of
intercepting VMM accesses to files and employs a
customized protocol.

6. Conclusions and future work

Grid computing with classic virtual machines promises
the capability of provisioning a secure and highly flexible

computing environment for its users. To achieve this goal,
it is important that Grid middleware provides efficient
data management service for VMs – for both VM state
and user data. This paper shows that user-level techniques
that build on top of de-facto distributed file system
implementations can provide an efficient framework for
this purpose. These techniques can be applied to VMs of
different kinds, so long as the monitor allows for state to
be stored in file systems that can be mounted via NFS.

Results show that user-level proxy caches improve
upon the performance of conventional NFS over a
wide-area network. Results also show that, with “warm”
caches, the enhanced file system leverages native O/S
support for buffer caches and has small overhead when
compared to a local-disk file system. Finally, results show
that the use of on-demand transfers and meta-data
information allows instantiation of a
320MB-RAM/1.6GB-disk Linux VM clone in less than
160 seconds for the first clone (and less than 25 seconds
for subsequent clones), considerably outperforming
cloning based on transfer of entire files, and on
non-enhanced NFS.

Directions for future work include distributed virtual
file system support for efficient checkpointing and
migration of VM instances for load-balancing and
fault-tolerant execution, and dynamic profiling of
application data access behavior to support pre-fetching
and high-bandwidth transfers of large data blocks in a
selective manner, using protocols such as GridFTP for
inter-proxy transfers.

Acknowledgements

Effort sponsored by the National Science Foundation

under grants EIA-0224442, EEC-0228390, ACI-0219925
and NSF Middleware Initiative (NMI) collaborative grant
ANI-0301108. The authors also acknowledge a gift from
VMware Corporation and a SUR grant from IBM. Any
opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of NSF, IBM, or VMware.
The authors would like to thank Peter Dinda at
Northwestern University for providing access to
resources.

References

[1] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the

Grid: Enabling Scalable Virtual Organizations”.
International J. Supercomputer Applications, 15(3), 2001.

[2] A. Butt, S. Adabala, N. Kapadia, R. Figueiredo, J. Fortes,
“Grid-computing Portals and Security Issues”, Journal of
Parallel and Distributed Computing (JPDC), 63(10), pp.
1006-1014, 2003.

[3] Robert, P. Goldberg. “Survey of virtual machine research”.
IEEE Computer Magazine, 7(6):34-45, 1974.

[4] R. Figueiredo, P. A. Dinda, J. A. B. Fortes, “A Case for
Grid Computing on Virtual Machines”, Proc. International
Conference on Distributed Computing Systems (ICDCS),
May 2003.

[5] R. Figueiredo, N. Kapadia and J. A. B. Fortes. "The
PUNCH Virtual File System: Seamless Access to
Decentralized Storage Services in a Computational Grid",
Proc. IEEE International Symposium on High Performance
Distributed Computing (HPDC), August 2001.

[6] B. Pawlowski, C Juszczak, P. Staubach, C. Smith, D. Lebel
and D. Hitz, “NFS Version 3 Design and Implementation”,
Proc. USENIX Summer Technical Conference, 1994.

[7] J. Sugerman, G. Venkitachalan and B-H. Lim, “Virtualizing
I/O Devices on VMware Workstation's Hosted Virtual
Machine Monitor”, Proceedings of the USENIX Annual
Technical Conference, June 2001.

[8] J. Dike, “A User-mode Port of the Linux Kernel”, Proc. 4th
Annual Linux Showcase and Conference, USENIX
Association, Atlanta, GA, October 2000.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt and A. Warfield, “Xen and the
Art of Virtualization”, Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), October 2003.

[10] C. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam and
M. Rosenblum, “Optimizing the Migration of Virtual
Computers”, Proceedings of the 5th Symposium on
Operating Systems Design and Implementation, 2002.

[11] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes,
I. Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L.
Zhu, and X. Zhu. “From Virtualized Resources to Virtual
Computing Grids: The In-VIGO System”, to appear, Future
Generation Computing Systems, special issue, Complex
Problem-Solving Environments for Grid Computing, David
Walker and Elias Houstis, Editors.

[12] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, S.
Tuecke. “Secure, Efficient Data Transport and Replica
Management for High-Performance Data-Intensive
Computing”, IEEE Mass Storage Conference, 2001.

[13] J. Bester, I. Foster, C. Kesselman, J. Tedesco and S. Tuecke,
“GASS: A Data Movement and Access Service for Wide
Area Computing Systems”, Proc. 6th Workshop on I/O in
Parallel and Distributed Systems, May 1999.

[14] N. Kapadia, R. Figueiredo and J. A. B. Fortes, “Enhancing
the Scalability and Usability of Computational Grids via
Logical User Accounts and Virtual File Systems”,
Proceedings of the Heterogeneous Computing Workshop
(HCW) at the International Parallel and Distributed
Processing Symposium (IPDPS), April 2001.

[15] S. Adabala, A. Matsunaga, M. Tsugawa, R. Figueiredo and
J. Fortes, “Single Sign-On in In-VIGO: Role-based Access
via Delegation Mechanisms Using Short-lived User
Identities”, to appear, Proc. of the International Parallel and
Distributed Processing Symposium (IPDPS), April 2004.

[16] B. Callaghan, “NFS Illustrated”, Addison-Wesley (2000).
[17] J. Hennessy and D. Patterson, “Computer Architecture: a

Quantitative Approach”, 3rd edition, Morgan Kaufmann,
2002.

[18] M. Zhao, “Proxy Managed Disk Cache for Grid Virtual File
System”. In Technical Report TR-ACIS-04-001, ACIS
Laboratory, Department of Electrical and Computer
Engineering, University of Florida, 05/2004.

[19] M. Litzkow, M. Livny and M. W. Mutka, “Condor: a
Hunter of Idle Workstations”, Proc. 8th Int. Conf. on
Distributed Computing Systems, pp104-111, June 1988.

[20] E. Deelman et al., “GriPhyN and LIGO, Building a Virtual
Data Grid for Gravitational Wave Scientists”, Proceedings
of High Performance Distributed Computing (HPDC),
2003.

[21] N. Kapadia, J. Fortes, “PUNCH: An Architecture for
Web-Enabled Wide-Area Network-Computing”, Cluster
Computing: the Journal of Networks, Software Tools and
Applications, 2(2), 153-164 (Sept. 1999).

[22] R. Figueiredo, “VP/GFS: An Architecture for Virtual
Private Grid File Systems”. In Technical Report
TR-ACIS-03-001, ACIS Laboratory, Department of
Electrical and Computer Engineering, University of Florida,
05/2003.

[23] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M.
Satyanarayanan, R. N. Sidebotham, and M. J. West, “Scale
and Performance of a Distributed File System”, ACM
Transactions on Computer Systems, 6(1):51-81, February
1988.

[24] B. White, A. Grimshaw, and A. Nguyen-Tuong,
“Grid-based File Access: the Legion I/O Model”, in Proc.
9th IEEE Int. Symp. on High Performance Distributed
Computing (HPDC), pp165-173, Aug 2000.

[25] D. Thain, J. Basney, S-C. Son and M. Livny, “The
Kangaroo Approach to Data Movement on the Grid”, Proc.
10th IEEE Int. Symp. on High Performance Distributed
Computing (HPDC), pp325-333, Aug 2001.

[26] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A.
Arpaci-Dusseau, R. Arpaci-Dusseau, M. Livny, “Flexibility,
Manageability, and Performance in a Grid Storage
Appliance”, Proceedings of the Eleventh IEEE Symposium
on High Performance Distributed Computing, Edinburgh,
Scotland, July 2002.

[27] D. Mazieres, M. Kaminsky, M. Kaashoek, E. Witchel,
“Separating Key Management from File System Security”,
Proc. 17th ACM Symposium on Operating System
Principles (SOSP), Dec 1999.

[28] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M.
Eisler, D. Noveck, D. Robinson and R. Thurlow, “The NFS
Version 4 Protocol”, Proc. 2nd Intl. System Administration
and Networking (SANE) Conference, May 2000.

