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Previous studies of branching structures generally focused on arteries. Four cost models
minimizing total surface area, total volume, total drag and total power losses at a junction
point have been proposed to study branching structures. In this paper, we highlight the
branching structures of plants and examine which model "ts data of branching structures of
plants the best. Though the e!ect of light (e.g. phototropism) and other possible factors are not
included in these cost models, a simple cost model with physiological signi"cance, needs to be
veri"ed before further research on modeling of branching structures is conducted. Therefore,
data are analysed in this paper to determine the best cost model. Branching structures of plants
are studied by measuring branching angles and diameters of 234 junctions from four species of
plants. The sample includes small junctions, large junctions, two- and three-dimensional
junctions, junctions with three branches joining at a point and those with four branches
joining at a point. First, junction exponents (x) were determined. Second, log}log plots indicate
that model of volume minimization "ts data better than other models. Third, one-sided t-tests
were used to compare the "tness of four models. It is found that model of volume minimization
"ts data better than other cost models.

( 2001 Academic Press
1. Introduction

It is a popular notion that plants occurring in
nature have evolved branching structures which
perform their tasks in some optimal way. Branch
diameter is one important parameter of branch-
ing structures which is closely related to other
parameters. Da Vinci (1970) suggested that the
cross-sectional area of the parent branch is equal
to the sum of the cross-sectional areas of its
daughter branches. Barker et al. (1973) related
diameter to order of branching in apple and birch
trees giving linear plots when the logarithm of
diameter is plotted against order. He also
indicated that the number of buds or branches is
-Author to whom correspondence should be addressed.
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proportional to diameter. In 1955, Jessen found
that the number of fruits distal to a given point is
a function of the cross-sectional area of the
branch at that point (quoted by Barker et al.,
1973). Murray (1927) showed that the weight
of a branch distal to a given point is a power
function of the circumference at that point.
McMahon & Kronauer (1976) demonstrated the
existence of a high positive correlation coe$cient
between diameters and lengths from random
twigs to the trunk in a large white oak. All these
conclusions are extensions of the pipe model pro-
posed by Shinozaki et al. (1964). This model
regarded a branch as a pipe. Each unit pipe
supports a &&unit amount of photosynthetic
organs'', e.g. a constant number of leaves. Each
pipe connects a leaf to the tree's trunk, i.e. the
( 2001 Academic Press
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pipe starts at a corresponding leaf and goes down
the entire length of the tree to the base of its
trunk. Thus, a trunk can be seen as bundles of
pipes connecting leaves. It is plausible that the
diameter of a parent branch should have a rela-
tionship with that of a daughter branch.

Occurring often in nature, branching struc-
tures of arteries and rivers have been studied in
detail by many investigators (Murray, 1926a, b;
Leopold, 1971; Zamir et al., 1983; Zamir &
Bigelow, 1984; Roy & Woldenberg, 1982; Wol-
denberg & Hors"eld, 1983, 1986; and others cited
in these works). The essence of their research is to
compare the "tness of four models minimizing
a parameter called &&cost''. These four costs are
surface area, volume, drag (shear stress) and
power losses. Model of surface minimization
and model of volume minimization are &&#ow-
independent'' because these cost functions de-
pend on only diameter, not #ow rates. Model of
drag minimization and model of power minimiz-
ation are &&#ow-dependent'' because these cost
functions depend on both vessel diameter and
#ow rate.

Actually, there are many factors a!ecting the
branching structures of plants. Light, gravity and
other environmental factors may have an in#u-
ence on the branching structures. A hypothesis is
proposed that cost minimization also happens in
the branching structures of plants.

This paper is an attempt to "nd the best one
among these four cost models of "tting data of
branching structures of plants. Such veri"cation
will help us to examine whether cost minimiz-
ation happens in plants in the future. Our invest-
igation is also motivated by potential practical
applications such as computer simulation of
plant shape and so on.

Murray (1927) indicated that model of volume
minimization might be applied to botanical trees.
We furthered his research and found that model
of volume minimization is really better than
other models in "tting data of branching struc-
tures of plant. As far as we know, data of branch-
ing angles and diameters are not available in ad-
equate quantity. We "lled in this gap. In this
paper, data of two- and three-dimensional branch-
ing structure of four species of plants are presented.

This paper is organized as follows. In Sec-
tion 2, we introduce all de"nitions, theoretical
equations and four models of cost minimization.
In Section 3, the method of measuring branching
structures of plants is described. Junction expo-
nents are calculated. Data of measurements are
plotted on log}log plots. The t-tests are conduc-
ted to compare the error of each model. In Sec-
tion 4, plots and statistics of t-tests are analysed.
In Section 5, sources of error and variation are
discussed.

2. Theoretical Consideration

It is assumed that branches are perfect (non-
tapering) cylinders in this paper. Figure 1(a) illus-
trates a typical two-dimensional junction with
three branches. The &&cost'' per unit length (C)
may be surface area, volume, drag (shear stress)
and power losses depending on the model con-
sidered. Assuming that A(x

2
, y

2
), B(x

3
, y

3
),

C(x
1
, y

1
) and M(x, y), respectively, represent

coordinates of two ending points of daughter
branches, the starting point of the parent branch,
and the junction point, f (x, y) shown by eqn (1) is
the total cost of the junction from C to A and B.
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Subscripts 0, 1, and 2 refer to the parent, major
and minor daughter branches. The major and
minor branching angles are h

1
and h

2
(h

1
'h

2
).

The junction angle t is h
1
#h

2
. The radicals

represent the respective lengths of each branch:
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1
)2

#C
1
J(x!x

2
)2#(y!y

2
)2

#C
2
J(x!x

3
)2#(y!y

3
)2 . (1)

The minimum of total cost f (x, y) can be
achieved when x and y have certain values. To
explain in geometric terms, minimization may be
achieved by moving the junction point in the
X and > directions. By setting the derivatives
with respect to x and y to zero, eqns (2) and (3)
are obtained. Equation (2) is the condition for
minimization with >, which represents a rela-
tionship between parent branch and daughter
branches. Equation (3) is the condition for min-
imization with X, which represents a relationship
between two daughter branches. Equation (3) can
be used to explain a common observation pro-
posed by Da Vinci (1970) that for two sibling
branch segments the larger sibling deviates less
from the parent branch than its smaller sibling:

C
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0
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sin h
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2
sin h

2
. (3)

For a two-dimensional junction with four
branches [Fig. 1(b)], the equations can be ob-
tained in the same way. By taking derivatives, the
condition for minimization with > is changed to
eqn (4). The condition for minimization with X is
still eqn (3):

C
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cos h
1
#C

2
cos h

2
#C

3
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0
. (4)

For a three-dimensional junction with four
branches [Fig. 1(c)], the equations can also be
obtained in the same way. Suppose the direction
of the parent branch is > direction and an XZ
plane is perpendicular to the parent branch, by
taking derivatives the condition for minimization
with> is eqn (5). Given the complexity of angle, it
is hard to examine the condition of minimization
with X and the condition of minimization with>.
We have not studied two potential equations
similar to eqn (3):
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#C

3
cos h

3
"C

0
. (5)

A real plant usually has three types of branch-
ing structures*alternate, opposite and whorled.
Junctions with three branches originate from the
alternate pattern. Junctions with four branches
originate from the opposite pattern. Junctions
with more than four branches originate from the
whorled pattern. Therefore, in measurement
two other patterns of junctions were considered
[Fig. 1(b) and (c)]. One pattern is a two-dimen-
sional junction with four branches, the other is
a three-dimensional one with four branches. Sub-
script 3 refers to the third daughter branch; h

3
is

its branching angle.
Zamir (1976) has summarized four models of

cost minimization which have been proposed to
explain branching angles in arteries. These four
models*minimum surface, volume, drag and
power*fall into two categories. Model of surface
minimization and model of volume minimization
are &&#ow-independent''. Minimum surface prob-
ably implies a minimum volume of the tissue of
the vessel; the minimum volume criterion minim-
izes the volume of the #uid. Model of drag
minimization and model of power minimization
are &&#ow-dependent''. The drag criterion minim-
izes the drag on the walls of the vessel and the
power criterion minimizes the power losses incur-
red in moving the #uid. For branching structures
of plants the applications of these models are not
the same. Minimum surface implies a minimum
volume of the bark; the minimum volume cri-
terion minimizes the volume of the tissue of the
branchwood. Since the inner part of a plant
branch is not vacant and is "lled with tissues, the
application of the two &&#ow-dependent'' models
to plant junctions is questionable. Barker et al.
(1973) stated &&although #ow doesn't occur in
the same way as it does in tubular structures,
the transport of sap in a branch may neverthe-
less be a function of diameter''. Therefore, it is
necessary to test the "tness of both the two
&&#ow-dependent'' models and the two &&#ow-
independent'' models.



TABLE 1
Cost factors

Models
Total cost/length
(with constants)* Branch cost

Surface (2n)r r
Volume (n)r2 r2
Drag (8g)Qr~2"(8gkx)rx~2 rx~2
Power (8g)Q2r~4"(8gk2x)r2x~4 r2x~4

*g is the dynamic viscosity of the #uid and Q is the #ow.
k and x are constants in the equation Q"krx.
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The #ow can be estimated with the following
(Murray, 1926a):

Q"krx, (6)

where Q is the #ow, k is a constant, r is the radius
of an individual branch, and x is a positive expo-
nent de"ned as junction exponent. If the sinks of
water and minerals in the branch itself are not
considered, eqn (7) exists for a junction contain-
ing n branches, where i denotes individual
branches and Q

0
is the total #ow in the junction.

Let r
0

be the radius of the parent branch, then
from eqns (6) and (7), we get eqn (8).

The value of x at a junction can be determined
by iteration only when r

0
is larger than every r

i
or

smaller than every r
i
.

The cost factors for the four models are pre-
sented in Table 1 (Woldenberg & Hors"eld, 1983,
1986).

Q
0
"

n
+
i/1

Q
1
, (7)

1"
n
+
i/1
A

r
i

r
0
B
x
. (8)

When cost factors are inserted into eqns (2)
and (3), we have
Minimum surface:
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The following parameters are de"ned for the
cases of three branches at a junction. In order to
study the "tness of eqns (9), (11), (13) and (15) we
should de"ne some parameters to show the error
of each equation and do t-tests. According to
eqn (2), the theory predicts that C

1
cos h

1
#

C
2

cos h
2

equals C
0
. Hence, the theoretical ratio

of the left-hand side (l.h.s.) items and the right-
hand side (r.h.s.) items is 1. However, in our
measurements this is not the case. Therefore, we
de"ned the following parameters to facilitate the
statistical analysis. R

1
is de"ned as the ratio of

the l.h.s. items (e.g. C
1

cos h
1
#C

2
cos h

2
) and the

r.h.s. items (e.g. C
0
) of eqn (2). Since R

1
is prob-

ably not equal to 1, E
1

is de"ned as the error of
eqn (2)*the absolute value of the di!erence be-
tween 1 and R

1
. Likewise, in order to test the

"tness of eqns (10), (12), (14) and (16), R
2

is de-
"ned as the ratio of the l.h.s. items and the r.h.s.
items of eqn (3). Since the l.h.s. and the r.h.s. items
of eqn (3) can interchange, the ratio is calculated
by dividing the larger one by a smaller one. When
R

2
is not less than 1, E

1
is de"ned as the error

of eqn (3)*the value of R
2

minus 1. They are
de"ned by eqns (17)}(20).

In our study, t-tests are used to "nd out the
best one of these four models by comparing the
mean of E

1
and E

2
among the four models. ME

1
is de"ned as the mean of the individual error
E
1

of eqn (2). ME
2

is the mean of the individual
error E

2
of eqn (3). It is easy to use one-sided

t-tests to compare these four ME
1
and four ME

2
.

The best model must be the one whose ME
1

and
ME

2
are the least. ME

1
and ME

2
are given by

the following equations (n is sample size, i
denotes an individual junction):

Only the equation for calculating the error of
three branches at a junction is listed here. For the
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cases of four branches at a junction, similar equa-
tions including a C

3
item are used to calculate

R
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1
and ME

2
. For simplicity,

they are omitted here. But they are used to calcu-
late the statistics:
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3. Results

The measurements were taken from four spe-
cies of plants including two shrubs*Chinese
Redbud and Sweet Osmanthus, one form of
Hairyleaf Japanese Cherry*Prunus serrulata
Lindl. f. roseo. and Southern Magnolia. They are
easy to "nd in Wuhan University (Wuhan, P. R.
China). The size of each junction from the two
shrubs is small, whose diameters of the parent
TABL

Identi,cation of the specimens

Species Common name Type of juncti

Cercis chinensis Chinese Redbud Three branche
(two-dimensio

Osmanthus fragrans Sweet Osmanthus Three branche
(two-dimensio

Prunus serrulata One form of Hairyleaf Three branche
Lindl. f. roseo. Japanese Cherry (two-dimensio
Osmanthus fragrans Sweet Osmanthus Four branche

(two-dimensio
Magnolia grandi-ora Southern Magnolia Four branche

(three-dimensi

Note: d
0
"mean and range of diameter (mm) of the paren

t"mean and range of the observed junction angle (h
1
#h

2
);
branches range from 10.8 to 1.8 mm. The size of
each junction from Hairyleaf Japanese Cherry is
large, whose diameters of the parent branches
range from 172 to 24 mm. In previous research of
branching structures of plants, data of junctions
with four branches joining at a point and three-
dimensional junctions are not reported. They are
included in the samples in this paper.

Two hundred and thirty four junctions were
measured, 50 from Chinese Redbud, 104 from
Sweet Osmanthus, 50 from Hairyleaf Japanese
Cherry and 30 from Southern Magnolia. All
junctions from Chinese Redbud, 50 junctions of
Sweet Osmanthus and all junctions from
Hairyleaf Japanese Cherry each have three
branches joining at a point [Fig. 1(a)]. Fifty four
junctions from Sweet Osmanthus each have four
branches [Fig. 1(b)] with the middle daughter
branch lying along the pathway of parent branch.
Thirty three-dimensional junctions from South-
ern Magnolia each have four branches [Fig. 1(c)].
These "ve samples are identi"ed in Table 2.

Data of Zamir et al. (1983) demonstrated that
in arteries branches of a junction have a strong
tendency to lie in a plane. The same case is with
three branches joining at a point in plant accord-
ing to our observations. Among 150 junctions
with three branches from Chinese Redbud, Sweet
Osmanthus and Hairyleaf Japanese Cherry,
nearly all the branches joining at a junction lie
in a plane and most of them are straight. Prob-
ably, there are some other unknown principles
that cause their junction branches to lie in a
E 2
whose junctions are studied

ons No. d
0

(mm) X t

s at a junction 50 5.21 3.41 61.34
nal) (2.28}9.05) (2.30}4.90) (32}89)

s at a junction 47 5.08 2.57 58.14
nal) (3.53}7.00) (0.85}4.65) (34}77)

s at a junction 47 85.04 2.12 46.85
nal) (24.51}172.5) (1.62}4.19) (19}86)
s at a junction 51 6.17 3.11 *

nal) (3.40}10.80) (1.90}6.56) *

s at a junction 30 14.58 3.05 *

onal) (8.68}28.08) (1.88}4.90) *

t branch; X"mean and range of the junction exponents x;
*"data are not available.
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plane. They need to be determined in the future.
But it is not related to our study now. We merely
regard the phenomena as an assumption of our
model. Therefore, for junctions with three
branches all measurements were derived from
two-dimensional branching structures. It is also
observed that nearly all branch segments in our
measurements are cylinders. So it is valid to ap-
ply these four models.

Measurement of diameter (d) and branching
angle (h) is illustrated in Fig. 2. Each segment of
a branch is between two points of junction, or
between a junction and the "rst bud. For a small
junction, diameter was measured twice by caliper
with a vernier scale to the nearest 0.1 mm, across
the greatest diameter. One measurement
was taken at a point near the junction, the other
was taken at a point midway between the junc-
tion point and the ending point of the segment or
the "rst bud. Diameter is the average of two
measurements. Branching angles h

1
and h

2
are

measured, too. Where possible, the angle was
taken between the tangent of daughter branch
starting from the junction point and the axis of
parent branch, so avoiding the de#ection often
found in branch segments.

Junction exponents, x, were found by solving
eqn (8) for x with an iterative search routine.
Data were processed by a computer program
which was able to calculate the junction expo-
nent x for each junction.

Within the 234 junctions, three junctions
with three branches and three with four branches
from Sweet Osmanthus were unusable while
FIG. 2. Vertically stacked frequency distributions of junc-
tion exponents of 225 junctions. ( ) 30 junctions with four
branches from Southern Magnolia; ( ) 51 junctions with
four branches from Sweet Osmanthus; ( ) 47 junctions with
three branches from Hairyleaf Japanese Cherry; ( ) 47 junc-
tions with three branches from Sweet Osmanthus; ( ) 50
junctions with three branches from Chinese Redbud.
calculating the exponent x since the diameter of
the daughter branch is a little larger than that of
the parent branch. Measurement error and the
irregularity of the branch segment might cause it.
In our sample more than 97% junctions are use-
ful for calculating the exponent x. Hence, we do
not think that discarding these six junctions will
a!ect testing these four models. In addition, three
junctions from Hairyleaf Japanese Cherry are
discarded because one branching angle is 0 so
that R

2
cannot be calculated. It may also be

caused by the measurement error.
Our statistics comes from 225 usable junctions.

Average values of x for each type of junctions are
listed in Table 2. Data of diameter of the parent
branch d

0
, the junction angle and the junction

exponents are also listed in Table 2. Frequency
distribution of junction exponents of 225 junc-
tions is constructed in Fig. 2.

Expected values of C
0

were plotted against
the observed C

0
in the double-logarithmic plots,

Fig. 3(a), (b), (c) and (d), respectively, representing
model of surface, volume, drag and power. For
junctions with three branches expected values of
C

0
equals C

1
cos h

1
#C

2
cos h

2
. For two-dimen-

sional junctions with four branches expected
values of C

0
are equal to C

1
cos h

1
#C

2
cos h

2
#C

3
. For three-dimensional junctions with four

branches expected values of C
0

are equal to
C

1
cos h

1
#C

2
cos h

2
#C

3
cos h

3
. For each

model, the cost factor is chosen according to
Table 1. The radius r is half of the diameter d, so
calculating the cost factor listed in Table 1 with
d instead of r had no impact on the results of
testing these four models. The "tness of eqns (2),
(4) and (5) can be compared among four models
by observing whether these points fall on the
solid line y"x.
FIG. 3. Measurement of diameter between the junction
point and the "rst bud or the second junction point.
Measurement of branching angle between the tangent of
a daughter branch and the axis of the parent branch.



BRANCHING STRUCTURES OF PLANTS 389
MaxMC
1

sin h
1
, C

2
sin h

2
N were plotted against

minMC
1

sin h
1
, C

2
sin h

2
N in the double-logarith-

mic plots, where data of four models are shown in
four plots [Fig. 4(a), (b), (c) and (d)], respectively,
representing model of surface area, volume, drag
and power. The "tness of eqn (3) can be com-
pared for four models in the same way.

For the 30 three-dimensional junctions from
Southern Magnolia, branching angles were mea-
sured between the tangent of each daughter
branch and the axis of the parent branch
[Fig. 1(c)]. The relationship among C

1
sin h

1
,

C
2

sin h
2

and C
3

sin h
3

is very di$cult to
FIG. 4. Expected C
0

vs. C
0

for 225 junctions. The solid line
should locate on the solid line y"x according to the model. (a
C2

0
. (c) Expected Cx~2

2
vs. observed Cx~2

0
. (d) Expected C2x~4

0(three branches at a junction); ( ) 47 junctions from Sweet Osm
Hairyleaf Japanese Cherry (three branches at a junction); ( ) 51 j
( ) 30 junctions from Southern Magnolia (four branches at a j
determine compared to a two-dimensional junc-
tion so that we determined to merely test eqn (5).

For "ve samples of plant, ME
1

and ME
2

are
calculated according to every cost model. Sub-
scripts s, v, d, and p are used to denote the surface
model, the volume model, the drag model and the
power model. One-sided t-tests are conducted to
compare di!erent ME

1
or ME

2
from di!erent

models. Student's t-statistics with associated
p values are listed in Table 3 according to each
one-sided t-test.

Figure 4(a)}(d) shows the data from 225 junc-
tions of these four models. Figure 4(a) shows the
in each plot limits the location of points because all points
) Expected C

0
vs. observed C

0
. (b) Expected C2

0
vs. observed

vs. observed C2x~4
0

. ( ) 50 junctions from Chinese Redbud
anthus (three branches at a junction); ( ) 47 junctions from

unctions from Sweet Osmanthus (four branches at a junction);
unction).



TABLE 3
¸ist of statistics of t-tests

Minimum surface
model (s)

Minimum volume
model (v)

Minimum drag
model (d)

Minimum power
model (p)

Cercis chinensis ME
1

0.356 0.113 0.277 0.134
(Three branches at H

0
: ME

1s
"ME

1v
ME

1v
"0 ME

1d
"ME

1v
ME

1p
"ME

1v
a junction) H

1
: ME

1s
'ME

1v
ME

1v
'0 ME

1d
'ME

1v
ME

1p
'ME

1v
t 34.211 9.405 6.514 1.003
p (0.0001 (0.0001 (0.0001 0.160
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2
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H
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2v
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H
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2p
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1v
t !2.168 7.564 !0.667 2.868
p 0.018 (0.0001 0.254 0.003

Osmanthus fragrans ME
1

0.289 0.118 0.786 1.306
(Three branches at H

0
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ME
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"0 ME
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"ME

1v
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'ME
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t 7.89 11.619 5.59 3.35
p (0.0001 (0.0001 (0.0001 0.0008
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0.794 0.765 0.918 0.97
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"ME
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"0 ME

2d
"ME

2v
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H
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ME

2v
'0 ME

2d
'ME

1v
ME

2p
'ME

1v
t 0.579 6.861 1.677 1.778
p 0.283 (0.0001 0.050 0.041

Prunus serrulata ME
1

0.266 0.095 0.752 0.751
Lindl. f. roseo. H

0
: ME

1s
"ME

1v
ME

1v
"0 ME

1d
"ME

1v
ME

1p
"ME

1v
(Three branches at H

1
: ME

1s
'ME

1v
ME

1v
'0 ME

1d
'ME

1v
ME

1p
'ME

1v
a junction) t 8.303 9.066 17.455 12.285

p (0.0001 (0.0001 (0.0001 (0.0001
ME

2
2.044 1.682 2.861 2.728

H
0
: ME

2s
"ME

2v
ME

2v
"0 ME

2d
"ME

2v
ME

2p
"ME

2v
H

1
: ME

2s
'ME

1v
ME

2v
'0 ME

2d
'ME

1v
H

1
:ME

2p
'ME

1v
t 1.465 3.994 2.443 3.170
p 0.075 0.0001 0.0009 0.0013

Osmanthus fragrans ME
1

0.683 0.166 0.773 0.424
Four branches at H

0
: ME

1s
"ME

1v
ME

1v
"0 ME

1d
"ME

1v
ME

1p
"ME

1v
a junction H

1
: ME

1s
'ME

1v
ME

1v
'0 ME

1d
'ME

1v
ME

1p
'ME

1v
(two-dimensional) t 37.216 9.543 12.705 4.352

p (0.0001 (0.0001 (0.0001 (0.0001
ME

2
0.218 0.410 0.320 0.734

H
0
: ME

2s
"ME

2v
ME

2v
"0 ME

2d
"ME

2v
ME

2p
"ME

2v
H

1
: ME

2s
(ME

1v
ME

2v
'0 ME

2d
(ME

1v
ME

2p
'ME

1v
t !3.428 8.548 !1.24 1.700
p 0.0006 (0.0001 0.110 0.048

Magnolia grandi-ora ME
1

0.643 0.173 0.708 0.335
Four branches at H

0
: ME

1s
"ME

1v
ME

1v
"0 ME

1d
"ME

1v
ME

1p
"ME

1v
a junction H

1
: ME

1s
'ME

1v
ME

2v
'0 ME

1d
'ME

1v
ME

1p
'ME

1v
(three-dimensional) t 22.524 8.268 7.477 2.155

p (0.0001 (0.0001 (0.0001 0.020
ME

2
* * * *

Note: ME
1
"mean error of expected C

0
(refer to left-handed term in eqns (2), (4) and (5)) and observed C

0
; ME

2
"mean

error of C
1

sin h
1

and C
2

sin h
2
*data are not available. Subscripts s, v, d, and p represent these four models.
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result of testing equation (9) of model of surface
minimization. Expected C

0
against observed C

0
are plotted in the log}log plot. Almost all points
fall above the solid line.
Figure 4(b) shows the result of testing equation
(11) of model of volume minimization. Expected
C2

0
against observed C2

0
are plotted in the log}log

plot. Almost all points fall close to the solid line.
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Figure 4(c) shows the result of testing equa-
tion (13) of model of drag minimization. Expected
Cx~2

0
against observed Cx~2

0
are plotted in

the log}log plot. All points fall above the solid
line.

Figure 4(d) shows the result of testing equation
(15) of model of power minimization. Expected
C2x~4

0
against observed C2x~4

0
are plotted in the

log}log plot. Some points fall above the solid line,
others fall close to the line.

Figure 5(a), (b), (c) and (d)*respectively, shows
the data from 195 junctions (30 junctions of
Southern Magnolia are excluded) to test eqns (10),
FIG. 5. maxMC
1

sin h
1
, C

2
sin h

2
Nvs. minMC

1
sin h

1
, C

2
sin h

2
N

solid line in each graph limits the location of points because all
model. (a) maxMC

1
sin h

1
, C

2
sin h

2
N vs. minMC

1
sin h

1
, C

2
C2

2
sin h

2
N. (c) maxMCx~2

1
sin h

1
, Cx~2

2
sin h

2
N vs. minMCx~2

1
sin

minMC2x~4
1

sin h
1
, C2x~4

2
sin h

2
N. ( ) 50 junctions from Chinese

Sweet Osmanthus (three branches at a junction); ( ) 47 junc
a junction); ( ) 51 junctions from Sweet Osmanthus (four branc
(12), (14) and (16) for the four models. Plots indi-
cate that all of the four equations have a large
variation.

Figure 5(a) shows the result of testing equa-
tion (10) of model of surface minimization.
MaxMC

1
sin h

1
, C

2
sin h

2
N are plotted against

minMC
1

sin h
1
, C

2
sin h

2
N.

Figure 5(b) shows the result of testing equa-
tion (12) of model of volume minimization.
MaxMC2

1
sin h

1
, C2

2
sin h

2
N are plotted against

minMC2
1

sin h
1
, C2

2
sin h

2
N.

Figure 5(c) shows the result of testing
equation (12) of model of drag minimization.
for 195 junctions with three branches joining at a point. The
points should locate on the solid line y"x according to the
sin h

2
N. (b) maxMC2

1
sin h

1
, C2

2
sin h

2
N vs. minMC2

1
sin h

1
,

h
1
, Cx~2

2
sin h

2
N. (d) maxMC2x~4

1
sin h

1
, C2x~4

2
sin h

2
N vs.

Redbud (three branches at a junction); ( ) 47 junctions from
tions from Hairyleaf Japanese Cherry (three branches at
hes at a junction).
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MaxMCx~2
1

sin h
1
, Cx~2

2
sin h

2
N are plotted

against minMCx~2
1

sin h
1
, Cx~2

2
sin h

2
N.

Figure 5(d) shows the result of testing equa-
tion (12) of model of power minimization.
MaxMC2x~4

1
sin h

1
, C2x~4

2
sin h

2
N are plotted

against minMC2x~4
1

sin h
1
, C2x~4

2
sin h

2
N.

Comparing model of surface minimization
with model of volume minimization, in all the "ve
samples ME

1s
is highly signi"cant larger than

ME
1v

. Except that ME
2s

of junctions with four
branches from Sweet Osmanthus is less than
ME

2v
, ME

2s
of the other three samples are not

vastly di!erent from ME
2v

. Though ME
2s

of
junctions with four branches from Sweet Osman-
thus is less than ME

2v
, ME

1s
is highly signi"cant

larger than ME
1v

. Hence, we do not think that in
this sample model of surface minimization is bet-
ter than model of volume minimization.

In t-tests of comparing model of drag minimiz-
ation with model of volume minimization, in all
"ve samples ME

1d
is highly signi"cant larger

than ME
1v

. ME
2d

of four samples are not less
than ME

2v
.

In t-tests of comparing model of power minim-
ization with model of volume minimization, the
ME

1p
of Chinese Redbud has no signi"cant

di!erence from ME
1v

. In other four samples, the
ME

1p
is highly signi"cant larger than ME

1v
.

ME
2p

of all "ve samples are not less than ME
2v

.
Analysis of t-tests suggested that model of vol-

ume minimization "t the data better than other
models.

4. Discussion

First, it should be mentioned that the global
optimum for the total branch volume of a plant
is an iterative problem which still remains. It
is generally known that as the global optimum is
achieved the local optimum of a single junction is
often discarded. It will cause variance of cost
minimization. The development of branches
should be regarded as a dynamic process, i.e.
changes of branching angles and branch diameter
during growth and shedding of branches accord-
ing to the circumstances around. McMahon
(1976) stated that every tree is continually sensing
its own overall geometry, altering its proportions
in such a way as to keep that geometry stationary
during growth. Honda (1971) stated that t (i.e.
h
1
#h

2
) is concerned with the width or stretch of

the whole form of a plant. The value of h
1

or h
2

bears a relationship to the degree of &&axiality'', or
de#ection of t from the main axis of the parent
branch. Honda (1971) stated that the interaction
among branches; their leaves, seeking sunlight,
probably in#uence the branching greatly. When
light interception happens, the growth direction
of supporting branch may de#ect away from
the predetermined direction to obtain more e!ec-
tive leaf surface, with the local optimum de-
stroyed. Phototropism may contribute to make
the value of t, h

1
and h

2
scatter from the optimal

values in a local junction, which produces
variance.

Second, it is reasonable that power minimiz-
ation happens in branching structures of plants,
since stems have two critical functions of support
and transport in vascular land plants. When
x"3, the exponent in model of power minimiz-
ation 2x!4 is equal to 2. It is the same as the
exponent in model of volume minimization.
Hence, as x equals 3, both models will "t the data.
Murray (1926a) also showed that simultaneous
minimization of viscous power losses and intra-
vascular volume in a segment of artery is
achieved when junction exponent x"3. Since
much junction, exponents shown in Fig. 2 are
close to 3 it is easy to understand that many
points are close to y"x in the plot of testing
model of power minimization. Junction expo-
nents of large trees are di!erent from that of small
trees. It is found that in practice x is about 2.49
for large trees and about 3 for small trees (quoted
by Kruszewski & Whitesides, 1998). Our data
also agree with such a distinction between small
trees and large trees. In our data of x shown in
Table 2 and the plot of frequency distribution,
the values of x for small junctions are close to
3 and about 2 for large junctions from Hairyleaf
Japanese Cherry. It is found that in Fig. 3(d) most
points close to the solid line are data from small
junctions. Probably, power minimization
happens in small junctions rather than in large
junctions. The physiological signi"cance of mini-
mization of power losses is obvious, for it
would contribute to the &&e$ciency'' of the circu-
lation of sap. The discussion of the reason that
power minimization happens in small junction
rather than in large junctions is in the following.
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Every vascular plant has xylem and phloem to
conduct water and nutrients between leaves and
roots. Xylem is a conducting tissue made up of
cells stacked end to end like the sections of a pipe;
these dead cells transport water and minerals.
Phloem is a tissue specialized for carbohydrate
transport. The cells are stacked vertically end to
end to form a tube-like structure. Many pores
perforate the end cell walls.

As a non-herbaceous plant matures and grows
taller, its stem begins to grow laterally, increasing
its diameter. This thickening of the stem, or sec-
ondary growth, enables the plant to withstand
the added load of branches and leaves, as well as
wind, rain, gravity, and other environmental fac-
tors. Biology (Wessells & Hopson, 1988) stated
&&as a plant matures, individual cells of both
xylem and phloem cease to transport materials;
older xylem is often clogged with various sub-
stances and no longer transports water and nutri-
ents, phloem elements usually function for only
one year or two before dying''. New xylem and
phloem are produced on the outer side, increas-
ing branch diameter. It is reasonable to assume
that as the branch diameter increases the propor-
tion of xylem and phloem to total branch de-
creases because more dead tissues of them appear
in the center. This assumption can be used to
explain that model of power minimization that
happens in small junctions rather than in large
junctions.

Third, it is unlikely to "nd two identical pat-
terns on living organisms, even though they are
presumably genetically homogeneous. Environ-
mental and probabilistic factors should be in-
cluded in the sources of variation of model of
volume minimization. For instance, branches are
often curved on account of gravity or sunlight.
The gradual change of the direction of branches
during growth of the girth (cambial growth) may
also increase the measurement error of branching
angles. Given that branch segments are not per-
fect, measurement error of branch diameters will
occur.

Fourth, McMahon (1976) stated that there
exists a principle of mechanical design*mainten-
ance of elastic similarity. It is possible that
branching structures should obey some physical
rules limiting the shape of a branch loaded under
its weight. Till now we do not know whether the
model of volume minimization is the dominant
force of designing branching structures. Prob-
ably, there are some other principles governing
the design including mechanical design and even
complex molecular mechanisms. Therefore, even
the best cost model*model of volume minimiz-
ation cannot explain the branching structures of
plant very well.

The model represents a theoretical method of
determining the branching angles of plants and
trees given the diameter of every branch in a junc-
tion, which was ever used by (Kruszewski
& Whitesides, 1998). The large variance in
branching angles is indicated by the large vari-
ance in the junction exponents x. The actual
branching angle has a considerable scatter from
the optimal value. For instance, Fig. 2 shows
x(2 in 25 junctions from Hairyleaf Japanese
Cherry and 14 junctions with three branches
from Sweet Osmanthus. Woldenberg & Hors"eld
(1986) pointed out that these junctions optimal
junction angles cannot be calculated because the
values are negative. In eight junctions from
Chinese Redbud, one junction from Hairyleaf
Japanese Cherry and "ve junctions with three
branches from Sweet Osmanthus x'4, making
the optimal junction angles larger than 903.
But actually all observed values of t are less than
903. Even for those x between 2 and 4, a consider-
able scatter exists between the actual value and
the optimal value. These results indicate that
a little error of model of volume minimization
will result in a large variance of branching
angles. Previous workers have noted that experi-
mentally determined branching angles generally
exhibit considerable scatter around the theo-
retical optimum, regardless of which of the four
cost models is used for the analysis. However,
when actual angles deviate signi"cantly from
the predicted optimum, the total &&cost'' of a
junction does not increase by more than a few
percent (Zamir et al., 1983; Zamir & Bigelow,
1984).

In conclusion, it is possible to say that model of
volume minimization is better than other cost
minimization models in "tting data of branching
structures of plants. Without including factors
such as light and so on, it is not a perfect model to
predict the branching structures of plant. Though
it does not "t the data very well it provides
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us with a new angle to investigate the adaptive
functions of branching pattern. The approach
of testing the "tness of four models in this
paper can be applied to other branching struc-
tures such as arteries, neural networks and so on.
In addition, this paper will help us to "nd the
principle of designing the branching structures of
plants.
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APPENDIX A

List of Symbols

h1 , h2 , h3 branching angle
t junction angle, i.e. the sum of

h1#h2
C0 the cost per unit length of parent

branch
C1 , C2 , C3 the cost per unit length of daughter

branches
d0 diameter of parent branch
x junction exponent
g the dynamic viscosity of #uid
Q the #ow
r radius of a branch
R1 the ratio of the l.h.s. items and the

r.h.s. items of eqns (2), (4) and (5)
R2 the ratio of the l.h.s. items and the

r.h.s. items of eqn (3)
E1 error of expected C0 and actual C0
E2 error of C1 sin h1 and C2 sin h2
ME1 mean error of expected C0 and

actual C0
ME2 mean error of C1 sin h1 and C2

sin h2
t Student's t
p p value
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