
Cooperative Virtual Machine Scheduling on Multi-core
Multi-threading Systems — A Feasibility Study

Dulcardo Arteaga, Ming Zhao, Chen Liu, Pollawat Thanarungroj, Lichen Weng
School of Computing and Information Sciences

Department of Electrical and Computer Engineering
Florida International University

{darte003, mzhao, cliu, pthan001, lweng001}@fiu.edu

ABSTRACT

Virtual machines (VMs) and multi-core multi-threading micro-

processors (MMMP) are two emerging technologies in software

and hardware, respectively, and they are expected to become

pervasive on computer systems in the near future. However, the

nature of resource sharing on an MMMP introduces contention

among VMs which are scheduled onto the cores and the threads

that share the processor computation resources and caches. Such

contention can lead to performance degradation of individual

VMs as well as the overall system throughput, if not carefully

managed. This paper proposes to address this problem through

cooperative VM scheduling that takes processor input to schedule

VMs across processors and cores in a way that minimizes the

contention on processor resources and maximizes the total

throughput of the VMs. As a first step towards this goal, this

paper presents an experiment-based feasibility study for the

proposed approach and focuses on the effectiveness of process

contention aware VM scheduling. The results confirm that when

VMs are scheduled in a way that mitigates their contention on the

shared cache, the cache miss rates from the VMs are reduced

substantially, and so do the runtimes of the benchmarks.

1. INTRODUCTION

With the rapid growth of computational power on compute

servers and the fast maturing of x86 virtualization technologies,

Virtual Machines (VM) are becoming increasingly important in

supporting efficient and flexible application and resource

provisioning. Modern VM technologies (e.g. [1][2][3]) allow a

single physical server to be carved into multiple virtual resource

containers, each delivering a powerful, secure, and isolated

execution environment for applications. In addition to providing

access to resources, such environments can be customized to

encapsulate the entire software and hardware platform needed by

the applications and support their seamless deployments.

In the meantime, Multi-core Multi-threading MicroProcessors

(MMMPs) are recognized as the new paradigm for continuing the

rapid growth of processing power in computing systems. Instead

of solely increasing the clock frequency for better performance, it

is parallelism that finally enlightens the future of microprocessor

design. The emergence of MMMPs is enabling increasingly

powerful computer systems. Today multi-core multi-threading

systems are already pervasive, whereas the advent of many-core

many-threading systems is anticipated to happen in the near future.

However, the multi-core multi-threading architecture introduces

resource sharing at both the core-level and the thread-level in a

processor. The cores on the same processor commonly share the

last level cache (LLC), while the threads on the same core also

share computation resources and private caches. In the

Simultaneous Multithreading (SMT) architecture, the execution

resources in the same core are fully shared by the concurrently

executing threads. Nevertheless, resource distribution among

cores and threads determines not only the individual core/thread

performance, but also the overall system throughput [4]. Without

well-defined resource management scheme, monopoly on the

shared resources may happen in an MMMP and thus lead to

performance degradation [5].

Consequently, when considering the scheduling of multiple VMs

onto the different cores of a processor and the different threads of

each core, they may compete for the same processor resources

when they are of the similar behavior in phases of execution,

while other resources that are not mainly consumed by these VMs

are relatively idle. Nonetheless, this kind of idle resources may be

heavily demanded in other cores or other processors of the system.

As a result, the distributed resources are not fully utilized, and the

workload performance suffers from the scheduling policy, rather

than limited processor resources in the system.

This paper proposes to address this problem through cooperative

VM scheduling that allows software-level VM scheduler and

hardware-level thread scheduler to communicate and cooperate in

order to minimize the contention on processor resources among

concurrent VMs and maximizes the total throughput of the VMs.

Such cross-layer cooperation in VM scheduling is two-fold. On

one hand, the software VM scheduler can use the hardware-

provided information to model the behaviors of VMs on their use

of shared processor resources and schedule them in a way that

minimizes their contention. On the other hand, the software-level

scheduling information can be fed back into the hardware-level

scheduler in order to assist the latter’s thread scheduling decision

and to achieve global system optimization.

As a first step towards this goal, this paper presents an

experiment-based feasibility study for the proposed approach. It

focuses on validating the necessity of scheduling policy based on

VM processor resource demands for better utilization and less

competition. The results from an Intel Core 2 Quad processor

based platform confirm that when VMs are scheduled in a way

that mitigates their contention on shared cache, the cache miss

rates from the VMs are reduced substantially, and so do the

runtimes of the benchmarks. But the results from a hyperthreaded

Intel Core i7 Quad processor based platform do not show obvious

contention between VMs running on simultaneous threads, which

require further investigation.

The rest of this paper is organized as follows: Section 2 introduces

the background and related work; Section 3 presents the proposed

approach; Section 4 discusses the experimental study; and Section

5 concludes this paper.

mailto:renato%7d@acis.ufl.edu

2. BACKGROUND AND RELATED WORK

Virtual Machine (VM) is a powerful layer of abstraction for

application and resource provisioning [6]. The VMs considered in

this project are system-level VMs (e.g., [1][2][3]), which

virtualize an entire physical host’s resources, including CPU,

memory, and I/O devices and present virtual resources to the

guest OSes and applications. System virtualization is implemented

by the layer of software called virtual machine monitor (VMM,

a.k.a., hypervisor), which is responsible of multiplexing physical

resources among the VMs. Full-virtualized VMs [1][3] present the

same hardware interface to guest OSes as the physical machines

and support unmodified OSes. Paravirtualized VMs [2] present a

modified hardware interface optimized for reducing virtualization

overhead but require the guests OSes to be modified as well. In

addition, hardware support for virtualization is also emerging in

new processors [7][8], which can be used by VMMs to further

improve the efficiency of VMs.

Multi-core Multi-threading MicroProcessors (MMMPs) are

recognized as the new paradigm for continuing the rapid growth

of processing power in computing systems. Transistor count on a

chip increased rapidly in the past several decades, urged by the

famous Moore’s Law [9]. The pressure, however, now falls onto

the parallelism in a processor [10]. As a result, the multi-core

architecture was employed to explore the Job Level Parallelism.

Furthermore, the parallelism is well developed within multi-

threading architecture. Especially, in the SMT architecture, the

Horizontal waste and Vertical waste are minimized [11].

Motivated by these emerging VM and MMMP technologies in

computer systems, this paper studies the scheduling of VMs on

multi-core multi-threading platforms when they compete for

shared processor resources.

Application Processor Resource Demand Modeling is

important because applications have diverse needs of processor

resources depending on whether their execution time is spent on

processing or memory access [12]. Zhu et al. proposed to use

Cycle Per Instruction (CPI) portions to statistically measure

application resource demands, specifically in the format of CPIproc

and CPImem [13]. The application mainly consumes computation

resources when most of its average CPI is spent on processing

(CPIproc), or composed of small CPI values spent on memory

access (CPImem). On the contrary, the larger the CPImem is, the

more memory resources the application requests. Therefore, they

also argue that performance of applications with large CPImem

values are memory-bound, while those with small CPImem values

are computation-bound. The same categorizing result about SPEC

CPU2000 benchmarks [14] is also given by Cazorla et al. in [14],

using average Level 2 Cache Miss Rate. This paper follows this

approach to classify the processor resource demands of VMs

when they host different types of applications.

VM-level Resource Scheduling supports dynamic allocation of

shared physical machine resources, including CPU cycles,

memory capacity, and I/O bandwidth to concurrent VMs

according to their demands. Various methods have been studied in

the literature to model the resource usage behaviors of VMs in

order to support on demand resource scheduling. For example, Xu

et al. [25] studied fuzzy-logic based modeling for allocating CPU

cycles across VMs hosting CPU-intensive applications; The

CRAVE project employs simple regression analysis to predict the

performance impact of memory allocation to VMs [16]; The

VCONF project has studied using reinforcement learning to

automatically tune the CPU and memory configurations of a VM

in order to achieve good performance for its hosted application

[18]; Kund et al. employs artificial neural networks (ANN) to

build performance models that consider both CPU and memory

allocation to VMs and I/O contention between VMs [19]. This

paper tries to model the behaviors of VMs on the use of shared

processor cache resources and the impact of contention on such

resources.

Processor-level Resource Scheduling is important for a

multithreading processor to achieve the optimum resource

distribution among threads, which leads to desired performance

improvement. Raash et al. [20] studied various system resource

partitioning mechanisms on SMT processors and concluded that

the true power of SMT lies in its ability to issue and execute

instructions from different threads at every clock cycle. ICOUNT

policy [21] prioritizes the threads based on the number of

instructions in the front-end stages from each thread to decide

from which thread to fetch instructions. DCRA [22] was proposed

in an attempt to dynamically allocate the resources among threads

by dividing the execution of each thread into different phases,

using instruction and cache miss counts as indicators. Hill-

Climbing [23] dynamically allocates the resources based on the

current performance of each thread and feedback into the

resource-allocation engine. ARPA [24] is proposed as an adaptive

resource partitioning algorithm that dynamically assigns pipeline

resources to the threads according to thread behavior changes.

Processor Contention Aware Application/VM Scheduling:
Several related projects have studied the impact of contention on

shared processor resources, particularly shared caches, to the

performance of applications or VMs and the scheduling of

applications/VMs under such contention. Q-Clouds [27] showed

that the interference on the shared last level cache (LLC) has a

significant impact on a memory-bound VM and proposed a

feedback control based approach to tune resource allocation for

mitigating this impact. Koller et al. [26] proposed a generalized

effective reuse set size model to characterize an application’s

memory usage behaviors including the impact of cache

contention. Knauerhase et al. [28] suggested that the OS should be

able to dynamically migrate a thread onto a different core, so as to

achieve the ideal scheduling of pairing the cache-heavy and

cache-light threads on the same core. Weng et al. studied the use

of cycles per instruction spent on memory (CPImem) to express an

application needs and proposed mix-scheduling of threads with

different CPImem diversity on a multithreading processor in order

to reduce the cache miss rate [29]. This paper follows this

approach to study the mix-scheduling of VMs with different

processor usage behaviors in order to reduce the contention on

shared processor resources between concurrent VMs.

3. COOPERATIVE VM SCHEDULING ON

MMMP SYSTEMS

As discussed in the previous section, on an MMMP-based VM

system, there exist two levels of resource scheduling, the

software-level VM scheduler that allocates the processors and

cores across concurrent VMs, and the hardware-level thread

scheduler that allocates each core’s resources across VMs mapped

to the same core. However, these two levels of schedulers are

traditonally isolated: the software-level scheduler is unaware of

the contention occurred on the processor resources, while the

hardware-level scheduler is constrained by its optimizatio

capability. This section presents our proposed cooperative VM

scheduling architecture (Figure 1) designed to break this isolation

and enable cross-layer scheduling cooperation, in an effort to fully

utilize the distributed resources on an MMMP platform with

minimum competition and maximum throughput.

3.1 Processor Contention Aware VM Scheduling

Given the fact that processor resources are distributed among

cores in an MMMP, the scheduling of VMs on such a system

should overcome the resource isolation among different cores, so

that they can fully utilize the distributed processor resources. On

the other hand, because processor resources can be also shared by

different cores and different threads on the same core, the

scheduling should also map VMs to the cores in a way that

minimizes competition for the shared resources. Therefore,

following the approach presented in our prior work for application

scheduling [29], we propose the mix-scheduling policy to keep

VM diversity in terms of their demand of processor resources in

every set of cores and threads that share the resources.

Specifically, the shared processor resources that need to be

considered on a MMMP platform include both the shared LLC

between different cores on the same processor and the shared

private cache and computation resources (such as instruction

queue, reorder buffer, register files) between different threads on

the same core. To realize the proposed mix-scheduling policy, the

software-level VM scheduler needs to understand each VM’s

behaviors in using such shared processor resources. The

information necessary for understanding such behaviors has to be

provided by the processor, because these shared resources are

generally directly managed by hardware. To capture the behavior

of a VM on the shared private cache and LLC, the scheduler can

leverage the performance counters that most modern processors

support for collecting the cache miss statistics. To capture a VM’s

use of shared computation resources, additional support would be

necessary from processors.

Taking the miss rate on a shared LLC as an example, the mix-

scheduling policy would evenly mix VMs of various miss rate

across cores so that the variance of miss rates among the cores

and/or the threads that share the LLC are maximized. As the direct

result of the proposed policy, the difference of miss rates between

competing VMs is expected to be significant. Hence, the VMs

with smaller miss rates consume mainly the computation

resources, while the throughput of other VMs with larger miss

rates depends on memory resources. Consequently, VMs in the

resource sharing cores and/or threads require different resources,

rather than compete for the same resource severely. Moreover,

from the perspective of the entire system, it means to utilize more

resources globally if its VMs are able to access various resources

in the cores, and thus it results in better overall performance.

Another example considers VMs heavily involved with floating

point operations and others heavily involved with integer

operations. In such circumstance, it would be better for the VM

scheduler to also make a mix-scheduling decision, e.g., to pair one

floating point VM with one integer VM onto the same core in

order to maximize the utilization of the execution engine, reduce

the contention, and improve system throughput. This certainly

cannot be achieved without the hardware-level scheduler being

able to track the execution engine utilization for different VMs

and feed this information back to the software-level scheduler.

3.2 Software-assisted Thread Scheduling

In MMMP, the processor hardware-level resource scheduling has

a significant impact on overall system performance. It must decide

how the system resources on each core are divided among

multiple threads. For example, how many entries one thread can

occupy in Instruction Fetch Queue (IFQ), Instruction Issue Queue

(IIQ), ReOrder Buffer (ROB), and Renaming Register, separately.

How to divide the issue and commit bandwidth among multiple

threads is also a part of the scheme. If there is no control on the

resources that can be assigned to one thread in one core, this

would cause the uneven distribution of resources among threads

and uneven execution of the threads, which also translates into the

overall time to execute all threads being extended. However, the

optimization that a hardware-level scheduler can perform is

constrained by the given VMs mapped by the software-level

scheduler to the same core. Therefore, the scheduling optimization

made by the software-level VM scheduler should also indirectly

benefit the hardware-level thread scheduler in that it allows the

latter to better optimize its resource allocation and further improve

the performance for the VMs mapped to the same core.

A more direct way for software to assist the hardware-level

scheduling is to implement the intelligence necessary for the

hardware-level optimization in software. For example, one of the

most important topics in threading scheduling is to be able to

track the phase change of every thread based on their instruction

commit rate and cache miss rate, etc. However, to precisely catch

this phase change normally requires complex machine learning

algorithms, which is certainly not suitable for hardware

implementation. As such, it is conceivable to let the software layer

execute this kind of complex algorithms. If we could feed this

information back to the hardware-level scheduler, it would

certainly benefit its decision making process, especially in terms

of making decision from global optimum point of view, as

opposed to local optimum.

4. EXPERIMENTAL ANALYSIS

4.1 Setup

A series of experiments were conducted on two different multi-

core platforms to investigate the feasibility of the proposed mix-

scheduling of VMs. The first platform is a physical machine with

Intel Core 2 Quad CPU (Q9400, 2.66GHz) and 4GB RAM. This

quad-core processor has two pairs of cores where each pair shares

6MB of L2 cache. The second platform is a physical machine with

Intel Core i7 CPU (860, 2.80GHz) and 8GB RAM. This

hyperthreaded quad-core processor supports eight simultaneous

threads with 8MB of shared L3 cache. These machines are

Figure 1. The architecture of cooperative VM scheduling

MMMP (thread scheduler)

VMM (VM scheduler)

VM

Core CoreCore Core Core

VM VM VM VM VM

PHYSICAL MACHINE

SOFTWARE

HARDWARE

 Software-level VM
scheduling

 Hardware-level thread
scheduling

 Processor contention
information

 System optimization
information

installed with both the native Linux with 2.6.18 kernel and Xen-

based VM environment with paravirtualized 2.6.18 kernel.

For this study we used the benchmarks from the SPEC CPU2000

suite [14]. Each benchmark runs on a dedicated VM which is

configured with one virtual CPU and 1024MB of memory and

pinned to one dedicated physical or logical core during the

execution. To collect the cache miss rate, we used Xenoprof [30]

to monitor the VM’s cache misses online during its benchmark’s

execution. But the profiling was disabled when we were

measuring the benchmark’s runtime on the VM. All the results

reported in this section are the average values of at least three

runs. The standard deviation of all the results is very small and

thus not shown here.

4.2 Benchmark VM Classification

As discussed in Section 3.1, VMs can be modeled with respect to

their behaviors in using various shared processor resources and

classified into different categories accordingly. Such modeling

and classification can also be performed online in order to capture

the different behaviors of a VM’s various phases. However, to

make this feasibility study more focused, our experiments are

simplified in two aspects.

First, we assume that the benchmark VMs have only a single

phase and they are modeled offline by running them separately

without any contention. The profiling was focused on the VM’s

LLC miss rate. Second, the offline modeling and classification

consider only the VMs’ LLC miss rates. Some benchmark VMs

perform a lot of operations on a single data fetched from the

memory system, so that they have low cache miss rates and

mainly consume the computation resources. These benchmarks

are capable of providing more Instruction Level Parallelism (ILP)

and fall into the computation-bound category. On the contrary,

some other benchmark VMs deal with a large amount of data

during execution, but perform relatively less operations on a

single data, so they have high cache missrates. Hence, they belong

to the memory-bound category.

Figure 2 shows the LLC miss rates of the different SPEC

CPU2000 benchmarks when they run on VMs versus when they

run on the native Linux. When a benchmark runs on its Xen VM,

the measured cache misses include not only the cache misses

occurred during the execution of the benchmark on the dedicated

core but also those during the execution of the supporting guest

OS and Xen VMM services. But, as we can see from the figure,

the use of VM to run the benchmarks does not result in a

significant difference on the use of shared LLC compared to when

these benchmarks are run on the native Linux. This observation

infers that the conclusions and solutions developed for

application-level scheduling on MMMP systems in the literature

can be also applied to the VM-level scheduling. Second, the

results in Figure 2 confirm that these benchmark VMs indeed

have diverse behaviors in their LLC usage with their miss rates

varying from nearly zero, in the cases of eon, twolf, crafty, and

gzip, to around 20%, in the cases of lucas and fma3d. Based on

these results, it is reasonable to use the 2% cache miss rate as the

cutoff line and classify these benchmarks into the computation-

bound category (including eon, twolf, crafty, gzip, and gcc) and

the memory-bound (including parser, art, vortex, bzip, mesa,

equake, swim, vpr, mcf, wupwise, apsi, lucas, and fma3d)

category. This classification would not change even if we use the

benchmark cache miss rates from the native Linux.

4.3 Mix-Scheduling vs. Mono-Scheduling

According to the above classification, memory-bound category

demands memory resources while computation-bound category

demands computation resources. Therefore, following the mix-

scheduling policy, which VMs should be scheduled according to

their resource demands in order to maximize VM cache miss rate

variance in the same set of resource-sharing core(s). Hence, the

benchmark VMs belonging to different categories should be

scheduled onto the same set of core(s). Specifically, a memory-

bound VM should be mapped together with a computation-bound

VM onto the same set of core(s). In this way, the memory-bound

VM relies more on memory resource in the core(s), while the

computation-bound VM lives more on computation resource in

the core(s), which matches our goal to minimize competition and

optimize utilization. On the contrary, the mono-scheduling policy

schedules benchmark VMs from the same category onto the same

set of core(s), i.e., it schedules two memory-bound VMs or two

computation-bound VMs onto the same set of core(s).

The first group of experiments that compare mix-scheduling to

mono-scheduling was done on the Intel Core 2 Quad CPU based

platform. Because the four cores on this processor consist of two

LLC-sharing pairs, each pair of cores forms a resource-sharing

core set. In the experiments, two VMs were run on a pair of cores

with each VM pinned to a different core of the pair. Figure 3 plots

the miss rates of different benchmark VM pairs (VM1, VM2)

when running on a pair of LLC-sharing cores in such a way. The

data are grouped based on VM1 and within each group the bars are

arranged in an increasing order of the standalone miss rates of

VM2 reported in Figure 2. From the results where VM1 is a

computation-bound VM, we can see that when it runs along with a

memory-bound VM the combined LLC miss rates are still low, so

such mix-scheduling based pairs can effectively use the process

resources without much adverse performance impact. From the

results where VM1 is a memory-bound VM, we can see that when

it runs with another memory-bound VM, the combined cache miss

rates are substantially higher than when it runs with a

computation-bound VM. This also validates the effectiveness of

our proposed mix-scheduling policy because it can significantly

lower the contention on shared LLC compared to the mono-

scheduling. These observations can also be confirmed from the

difference in runtimes of VM1 in different (VM1, VM2) pairs

(Figure 4). Note that this figure has less VM pairs than Figure 3

because it includes only the pairs where VM1 finishes earlier than

VM2 and thus ensures that the execution of VM1 is completely

under the contention from VM2. For example, when benchmark

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Native Linux

Xen VM

Figure 2. The LLC miss rates of SPEC CPU benchmarks

when running on Native Linux vs. on Xen VM

art runs with eon, which has a lower cache miss rate, the runtime

is 44s, compared to art running with swim, which has a higher

miss rate, the resulting runtime is 126s.

The second group of experiments was designed similarly as the

first group but it was done on the Intel Core i7 based platform.

This processor has four cores each with two simultaneous threads.

Therefore, when a pair of VMs is executed on two logical cores

mapped to the same physical core, they should compete for the

shared caches and computation resources. Due the limitation of

Xenoprof, we were not able to collect the cache miss rates on Intel

Core i7, so only the runtimes of the VM1 in different (VM1, VM2)

pairs were measured (Figure 5). However, the data reveal a

surprising result that the runtime of VM1 in each pair is not

impacted much by the behavior of VM2 no matter whether in mix-

scheduling or mono-scheduling. We are still investigating the

reason behind this observation, but we believe that this may be

due to the fact that Intel hyperthreading statically partitions the

fetch queue between simultaneous threads to mitigate contention

as well as the availability of more cache resources in Core i7 as

compared to Core 2.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

VM1 VM2

0%

20%

40%

60%

80%
VM1 VM2

Figure 3. LLC miss rates of different VM pairs on an Intel Core 2 Quad core pair

0

20

40

60

80

100

120

140

160

tw
o

lf
-e

o
n

tw
o

lf
-v

pr

tw
o

lf
-lu

ca
s

cr
af

ty
-e

o
n

cr
af

ty
-t

w
o

lf

cr
af

ty
-s

w
im

cr
af

ty
-v

p
r

cr
af

ty
-m

cf

cr
af

ty
-l

uc
as

gz
ip

-t
w

o
lf

gz
ip

-b
zi

p

gz
ip

-e
q

u
ak

e

gz
ip

-s
w

im

gz
ip

-v
p

r

gz
ip

-m
cf

gz
ip

-l
uc

as

gc
c-

tw
o

lf

gc
c-

gz
ip

gc
c-

gz
ip

gc
c-

bz
ip

gc
c-

eq
ua

ke

gc
c-

sw
im

gc
c-

vp
r

gc
c-

m
cf

gc
c-

lu
ca

s

ar
t-

eo
n

ar
t-

tw
o

lf

ar
t-

cr
af

ty

ar
t-

sw
im

ar
t-

vp
r

ar
t-

m
cf

ar
t-

lu
ca

s

b
zi

p-
e

on

b
zi

p-
tw

ol
f

b
zi

p-
cr

af
ty

b
zi

p-
a

rt

b
zi

p-
e

qu
ak

e

b
zi

p-
sw

im

b
zi

p-
v

pr

b
zi

p-
m

cf

b
zi

p-
lu

ca
s

eq
u

ak
e-

e
on

eq
u

ak
e-

tw
ol

f

eq
u

ak
e-

cr
af

ty

eq
u

ak
e-

a
rt

eq
u

ak
e-

sw
im

eq
u

ak
e-

v
pr

eq
u

ak
e-

m
cf

eq
u

ak
e-

lu
ca

s

sw
im

-e
o

n

sw
im

-t
w

o
lf

sw
im

-v
pr

sw
im

-m
cf

sw
im

-lu
ca

s

m
cf

-e
on

m
cf

-t
w

ol
f

m
cf

-v
pr

m
cf

-l
u

ca
s

lu
ca

s-
eo

n

lu
ca

s-
vp

r

Ru
nt

im
e

(s
)

Figure 4. Runtimes of different VM pairs on an Intel Core 2 Quad core pair

0

50

100

150

200

250

300

350

400

tw
o

lf
-e

o
n

tw
o

lf
-v

pr
tw

o
lf

-lu
ca

s

cr
af

ty
-t

w
o

lf
cr

af
ty

-s
w

im
cr

af
ty

-v
p

r
cr

af
ty

-v
p

r
cr

af
ty

-l
uc

as

gz
ip

-e
o

n
gz

ip
-t

w
o

lf
gz

ip
-c

ra
ft

y
gz

ip
-a

rt
gz

ip
-b

zi
p

gz
ip

-e
q

u
ak

e
gz

ip
-s

w
im

gz
ip

-v
p

r
gz

ip
-m

cf
gz

ip
-l

uc
as

gc
c-

eo
n

gc
c-

tw
o

lf
gc

c-
cr

af
ty

gc
c-

gz
ip

gc
c-

gz
ip

gc
c-

ar
t

gc
c-

bz
ip

gc
c-

eq
ua

ke
gc

c-
sw

im
gc

c-
vp

r
gc

c-
m

cf
gc

c-
lu

ca
s

ar
t-

eo
n

ar
t-

tw
o

lf
ar

t-
cr

af
ty

ar
t-

eq
u

ak
e

ar
t-

sw
im

ar
t-

vp
r

ar
t-

lu
ca

s

b
zi

p-
e

on
b

zi
p-

tw
ol

f
b

zi
p-

cr
af

ty
b

zi
p-

a
rt

b
zi

p-
e

qu
ak

e
b

zi
p-

sw
im

b
zi

p-
v

pr
b

zi
p-

lu
ca

s

eq
u

ak
e-

e
on

eq
u

ak
e-

tw
ol

f
eq

u
ak

e-
cr

af
ty

eq
u

ak
e-

sw
im

eq
u

ak
e-

v
pr

eq
u

ak
e-

lu
ca

s

sw
im

-e
o

n
sw

im
-t

w
o

lf
sw

im
-v

pr
sw

im
-lu

ca
s

m
cf

-e
on

m
cf

-t
w

ol
f

m
cf

-c
ra

ft
y

m
cf

-a
rt

m
cf

-b
zi

p
m

cf
-e

qu
ak

e
m

cf
-s

w
im

m
cf

-v
pr

m
cf

-l
u

ca
s

lu
ca

s-
eo

n
lu

ca
s-

vp
r

R
u

n
ti

m
e

(s
)

Figure 5. Runtimes of different VM pairs on an Intel Core i7 hyperthreaded core

5. CONCLUSION

With the pervasive use of VMs and MMMPs in today’s computer

systems, it becomes important to understand the contention on

shared processor resources between concurrent VMs and mitigate

its impact on VM performance and system throughput. This paper

proposes a cooperative VM scheduling approach that allows

software-level VM scheduler and hardware-level thread scheduler

to cooperate and optimize the allocation of MMMP resources to

VMs. It presents an experiment-based feasibility study which

confirms the effectiveness of processor contention aware VM

scheduling. In our future work we will continue this investigation

and focus on the VM contention problem of not only shared

caches but also shared computation resources on multithreaded

processor cores.

REFERENCES

[1] VMware Inc., URL: http://www. vmware. Com.

[2] P. Barham, et al., “Xen and the Art of Virtualization”, ACM

Symposium on Operating Systems Principles , October 2003.

[3] Kernel Based Virtual Machine, URL: http://www.linux-

kvm.org/page/Main_Page.

[4] D.M. Tullsen, et al., “Exploiting Choice: Instruction Fetch

and Issue on an Implementable Simultaneous Multithreading

Processor”, 23rd Annual International Symposium on

Computer Architecture, pp. 191–202, 1996.

[5] C. Liu and J. Gaudiot, “The Impact of Resource Sharing

Control on The Design Of Multicore Processors”, 9th

International Conference on Algorithms and Architectures

for Parallel Processing, pp. 315–326, 2009.

[6] R. Figueiredo, P. Dinda, and J. Fortes, “Resource

Virtualization Renaissance”, IEEE Computer Magazine

38(5), Special Issue on Virtualization, pp. 28-31, May 2005.

[7] AMD Virtualization, URL:

http://www.amd.com/us/products/technologies/virtualization.

[8] Rich Uhlig, et al., “Intel Virtualization Technology”,

Computer, Volume: 38, Issue: 5, May, 2005.

[9] G.E. Moore, “Cramming More Components onto Integrated

Circuits”, Electronics, vol. 38, no. 8, pp. 114–117, 1965.

[10] K. Asanovic, et al., “The Landscape of Parallel Computing

Research: A View From Berkeley,” Technical Report,

University of California at Berkeley, 2006.

[11] D.M. Tullsen, S.J. Eggers, and H.M. Levy, “Simultaneous

Multithreading: Maximizing On-Chip Parallelism,” 22nd

International Symposium on Computer Architecture, 1995.

[12] A. Kagi, J.R. Goodmand, and D. Burger, “Memory

Bandwidth Limitations of Future Microprocessor”, 23rd

International Symposium on Computer Architecture, 1996.

[13] Z. Zhu and Z. Zhang, “A Performance Comparison of

DRAM Memory System Optimizations for SMT

Processors”, 11th International Symposium on High-

Performance Computer Architecture, pp. 213–224, 2005.

[14] J.L. Henning, “SPEC CPU 2000: Measuring CPU

Performance in the New Millennium”, Computer, vol. 33,

no. 7, pp. 28–35, 2000.

[15] F.J. Cazorla, et al., “Predictable Performance in SMT

Processors: Synergy between OS and SMTs,” IEEE

Transactions on Computer. vol. 55, no. 7, 2006.

[16] Jonathan Wildstrom, et al., “CARVE: A Cognitive Agent for

Resource Value Estimation”, 5th IEEE International

Conference on Autonomic Computing, 2008.

[17] T. Wood, et al., “Profiling and Modeling Resource Usage of

Virtualized Applications”, Proc. of the 9th International

Middleware Conference, December, 2008.

[18] Jia Rao et al., “VCONF: A Reinforcement Learning

Approach to Virtual Machines Auto-configuration”, 6th

International Conference on Autonomic Computing, 2009.

[19] Sajib Kundu et al., “Application Performance Modeling in a

Virtualized Environment”, 16th International Symposium on

High-Performance Computer Architecture, 2010.

[20] S. Raasch and S.Reinhardt, “The Impact of Resource

Partitioning on SMT Processors”, 12th International

Conference on Parallel Architectures and Compilation

Techniques, pp. 15–25, 2003.

[21] D. Tullsen, et al., “Exploiting Choice: Instruction Fetch and

Issue on an Implementable Simultaneous Multithreading

Processor”, 23rd Annual International Symposium on

Computer Architecture, p. 191, 1996.

[22] F.J. Cazorla, et al., “Dynamically Controlled Resource

Allocation In SMT Processors”, 37th annual IEEE/ACM

International Symposium on Microarchitecture, 2004.

[23] S. Choi and D. Yeung, “Learning-based SMT Processor

Resource Distribution Via Hillclimbing”, 33rd Annual

International Symposium on Computer Architecture, 2006.

[24] H. Wang, I. Koren, and C.M. Krishna, “An Adaptive

Resource Partitioning Algorithm For SMT Processors”, 17th

International Conference on Parallel Architectures and

Compilation Techniques, 2008.

[25] Jing Xu et al., “Autonomic Resource Management in

Virtualized Data Centers Using Fuzzy-logic-based Control”,

Cluster Computing, Vol. 11, No. 3, September 2008.

[26] Ricardo Kollera, Akshat Vermab, and Raju Rangaswami,

“Generalized ERSS Tree Model: Revisiting Working Sets”,

Performance Evaluation, Volume 67, Issue 11, Nov 2010.

[27] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah, “Q-

Clouds: Managing Performance Interference Effects for

QoS-Aware Clouds”, Eurosys 2010.

[28] R. Knauerhase, et al., “Using OS Observations to Improve

Performance in Multicore Systems”, IEEE Micro, 28(3), 54–

66, 2008.

[29] L. Weng and C. Liu, “On Better Performance from

Scheduling Threads According to Resource Demands in

MMMP”, 39th International Conference on Parallel

Processing Workshops, 2010.

[30] Aravind Menon, et al., “Diagnosing Performance Overheads

in the Xen Virtual Machine Environment”, 1st Conference

on Virtual Execution Environments (VEE'05), 2005.

