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ABSTRACT 

Virtual machines (VMs) and multi-core multi-threading micro-

processors (MMMP) are two emerging technologies in software 

and hardware, respectively, and they are expected to become 

pervasive on computer systems in the near future. However, the 

nature of resource sharing on an MMMP introduces contention 

among VMs which are scheduled onto the cores and the threads 

that share the processor computation resources and caches. Such 

contention can lead to performance degradation of individual 

VMs as well as the overall system throughput, if not carefully 

managed. This paper proposes to address this problem through 

cooperative VM scheduling that takes processor input to schedule 

VMs across processors and cores in a way that minimizes the 

contention on processor resources and maximizes the total 

throughput of the VMs. As a first step towards this goal, this 

paper presents an experiment-based feasibility study for the 

proposed approach and focuses on the effectiveness of process 

contention aware VM scheduling. The results confirm that when 

VMs are scheduled in a way that mitigates their contention on the 

shared cache, the cache miss rates from the VMs are reduced 

substantially, and so do the runtimes of the benchmarks. 

1. INTRODUCTION 

With the rapid growth of computational power on compute 

servers and the fast maturing of x86 virtualization technologies, 

Virtual Machines (VM) are becoming increasingly important in 

supporting efficient and flexible application and resource 

provisioning. Modern VM technologies (e.g. [1][2][3]) allow a 

single physical server to be carved into multiple virtual resource 

containers, each delivering a powerful, secure, and isolated 

execution environment for applications. In addition to providing 

access to resources, such environments can be customized to 

encapsulate the entire software and hardware platform needed by 

the applications and support their seamless deployments.  

In the meantime, Multi-core Multi-threading MicroProcessors 

(MMMPs) are recognized as the new paradigm for continuing the 

rapid growth of processing power in computing systems. Instead 

of solely increasing the clock frequency for better performance, it 

is parallelism that finally enlightens the future of microprocessor 

design. The emergence of MMMPs is enabling increasingly 

powerful computer systems. Today multi-core multi-threading 

systems are already pervasive, whereas the advent of many-core 

many-threading systems is anticipated to happen in the near future. 

However, the multi-core multi-threading architecture introduces 

resource sharing at both the core-level and the thread-level in a 

processor. The cores on the same processor commonly share the 

last level cache (LLC), while the threads on the same core also 

share computation resources and private caches. In the 

Simultaneous Multithreading (SMT) architecture, the execution 

resources in the same core are fully shared by the concurrently 

executing threads. Nevertheless, resource distribution among 

cores and threads determines not only the individual core/thread 

performance, but also the overall system throughput [4]. Without 

well-defined resource management scheme, monopoly on the 

shared resources may happen in an MMMP and thus lead to 

performance degradation [5].  

Consequently, when considering the scheduling of multiple VMs 

onto the different cores of a processor and the different threads of 

each core, they may compete for the same processor resources 

when they are of the similar behavior in phases of execution, 

while other resources that are not mainly consumed by these VMs 

are relatively idle. Nonetheless, this kind of idle resources may be 

heavily demanded in other cores or other processors of the system. 

As a result, the distributed resources are not fully utilized, and the 

workload performance suffers from the scheduling policy, rather 

than limited processor resources in the system. 

This paper proposes to address this problem through cooperative 

VM scheduling that allows software-level VM scheduler and 

hardware-level thread scheduler to communicate and cooperate in 

order to minimize the contention on processor resources among 

concurrent VMs and maximizes the total throughput of the VMs. 

Such cross-layer cooperation in VM scheduling is two-fold. On 

one hand, the software VM scheduler can use the hardware-

provided information to model the behaviors of VMs on their use 

of shared processor resources and schedule them in a way that 

minimizes their contention. On the other hand, the software-level 

scheduling information can be fed back into the hardware-level 

scheduler in order to assist the latter’s thread scheduling decision 

and to achieve global system optimization. 

As a first step towards this goal, this paper presents an 

experiment-based feasibility study for the proposed approach. It 

focuses on validating the necessity of scheduling policy based on 

VM processor resource demands for better utilization and less 

competition. The results from an Intel Core 2 Quad processor 

based platform confirm that when VMs are scheduled in a way 

that mitigates their contention on shared cache, the cache miss 

rates from the VMs are reduced substantially, and so do the 

runtimes of the benchmarks. But the results from a hyperthreaded 

Intel Core i7 Quad processor based platform do not show obvious 

contention between VMs running on simultaneous threads, which 

require further investigation. 

The rest of this paper is organized as follows: Section 2 introduces 

the background and related work; Section 3 presents the proposed 

approach; Section 4 discusses the experimental study; and Section 

5 concludes this paper. 
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2. BACKGROUND AND RELATED WORK 

Virtual Machine (VM) is a powerful layer of abstraction for 

application and resource provisioning [6]. The VMs considered in 

this project are system-level VMs (e.g., [1][2][3]), which 

virtualize an entire physical host’s resources, including CPU, 

memory, and I/O devices and present virtual resources to the 

guest OSes and applications. System virtualization is implemented 

by the layer of software called virtual machine monitor (VMM, 

a.k.a., hypervisor), which is responsible of multiplexing physical 

resources among the VMs. Full-virtualized VMs [1][3] present the 

same hardware interface to guest OSes as the physical machines 

and support unmodified OSes. Paravirtualized VMs [2] present a 

modified hardware interface optimized for reducing virtualization 

overhead but require the guests OSes to be modified as well. In 

addition, hardware support for virtualization is also emerging in 

new processors [7][8], which can be used by VMMs to further 

improve the efficiency of VMs. 

Multi-core Multi-threading MicroProcessors (MMMPs) are 

recognized as the new paradigm for continuing the rapid growth 

of processing power in computing systems. Transistor count on a 

chip increased rapidly in the past several decades, urged by the 

famous Moore’s Law [9]. The pressure, however, now falls onto 

the parallelism in a processor [10]. As a result, the multi-core 

architecture was employed to explore the Job Level Parallelism. 

Furthermore, the parallelism is well developed within multi-

threading architecture. Especially, in the SMT architecture, the 

Horizontal waste and Vertical waste are minimized [11]. 

Motivated by these emerging VM and MMMP technologies in 

computer systems, this paper studies the scheduling of VMs on 

multi-core multi-threading platforms when they compete for 

shared processor resources. 

Application Processor Resource Demand Modeling is 

important because applications have diverse needs of processor 

resources depending on whether their execution time is spent on 

processing or memory access [12]. Zhu et al. proposed to use 

Cycle Per Instruction (CPI) portions to statistically measure 

application resource demands, specifically in the format of CPIproc 

and CPImem [13]. The application mainly consumes computation 

resources when most of its average CPI is spent on processing 

(CPIproc), or composed of small CPI values spent on memory 

access (CPImem). On the contrary, the larger the CPImem is, the 

more memory resources the application requests. Therefore, they 

also argue that performance of applications with large CPImem 

values are memory-bound, while those with small CPImem values 

are computation-bound. The same categorizing result about SPEC 

CPU2000 benchmarks [14] is also given by Cazorla et al. in [14], 

using average Level 2 Cache Miss Rate. This paper follows this 

approach to classify the processor resource demands of VMs 

when they host different types of applications. 

VM-level Resource Scheduling supports dynamic allocation of 

shared physical machine resources, including CPU cycles, 

memory capacity, and I/O bandwidth to concurrent VMs 

according to their demands. Various methods have been studied in 

the literature to model the resource usage behaviors of VMs in 

order to support on demand resource scheduling. For example, Xu 

et al. [25] studied fuzzy-logic based modeling for allocating CPU 

cycles across VMs hosting CPU-intensive applications; The 

CRAVE project employs simple regression analysis to predict the 

performance impact of memory allocation to VMs [16]; The 

VCONF project has studied using reinforcement learning to 

automatically tune the CPU and memory configurations of a VM 

in order to achieve good performance for its hosted application 

[18]; Kund et al. employs artificial neural networks (ANN) to 

build performance models that consider both CPU and memory 

allocation to VMs and I/O contention between VMs [19]. This 

paper tries to model the behaviors of VMs on the use of shared 

processor cache resources and the impact of contention on such 

resources. 

Processor-level Resource Scheduling is important for a 

multithreading processor to achieve the optimum resource 

distribution among threads, which leads to desired performance 

improvement. Raash et al. [20] studied various system resource 

partitioning mechanisms on SMT processors and concluded that 

the true power of SMT lies in its ability to issue and execute 

instructions from different threads at every clock cycle. ICOUNT 

policy [21] prioritizes the threads based on the number of 

instructions in the front-end stages from each thread to decide 

from which thread to fetch instructions. DCRA [22] was proposed 

in an attempt to dynamically allocate the resources among threads 

by dividing the execution of each thread into different phases, 

using instruction and cache miss counts as indicators. Hill-

Climbing [23] dynamically allocates the resources based on the 

current performance of each thread and feedback into the 

resource-allocation engine. ARPA [24] is proposed as an adaptive 

resource partitioning algorithm that dynamically assigns pipeline 

resources to the threads according to thread behavior changes.  

Processor Contention Aware Application/VM Scheduling: 
Several related projects have studied the impact of contention on 

shared processor resources, particularly shared caches, to the 

performance of applications or VMs and the scheduling of 

applications/VMs under such contention. Q-Clouds [27] showed 

that the interference on the shared last level cache (LLC) has a 

significant impact on a memory-bound VM and proposed a 

feedback control based approach to tune resource allocation for 

mitigating this impact. Koller et al. [26] proposed a generalized 

effective reuse set size model to characterize an application’s 

memory usage behaviors including the impact of cache 

contention. Knauerhase et al. [28] suggested that the OS should be 

able to dynamically migrate a thread onto a different core, so as to 

achieve the ideal scheduling of pairing the cache-heavy and 

cache-light threads on the same core. Weng et al. studied the use 

of cycles per instruction spent on memory (CPImem) to express an 

application needs and proposed mix-scheduling of threads with 

different CPImem diversity on a multithreading processor in order 

to reduce the cache miss rate [29]. This paper follows this 

approach to study the mix-scheduling of VMs with different 

processor usage behaviors in order to reduce the contention on 

shared processor resources between concurrent VMs. 

3. COOPERATIVE VM SCHEDULING ON 

MMMP SYSTEMS 

As discussed in the previous section, on an MMMP-based VM 

system, there exist two levels of resource scheduling, the 

software-level VM scheduler that allocates the processors and 

cores across concurrent VMs, and the hardware-level thread 

scheduler that allocates each core’s resources across VMs mapped 

to the same core. However, these two levels of schedulers are 

traditonally isolated: the software-level scheduler is unaware of 

the contention occurred on the processor resources, while the 



hardware-level scheduler is constrained by its optimizatio 

capability. This section presents our proposed cooperative VM 

scheduling architecture (Figure 1) designed to break this isolation 

and enable cross-layer scheduling cooperation, in an effort to fully 

utilize the distributed resources on an MMMP platform with 

minimum competition and maximum throughput. 

3.1 Processor Contention Aware VM Scheduling 

Given the fact that processor resources are distributed among 

cores in an MMMP, the scheduling of VMs on such a system 

should overcome the resource isolation among different cores, so 

that they can fully utilize the distributed processor resources. On 

the other hand, because processor resources can be also shared by 

different cores and different threads on the same core, the 

scheduling should also map VMs to the cores in a way that 

minimizes competition for the shared resources. Therefore, 

following the approach presented in our prior work for application 

scheduling [29], we propose the mix-scheduling policy to keep 

VM diversity in terms of their demand of processor resources in 

every set of cores and threads that share the resources. 

Specifically, the shared processor resources that need to be 

considered on a MMMP platform include both the shared LLC 

between different cores on the same processor and the shared 

private cache and computation resources (such as instruction 

queue, reorder buffer, register files) between different threads on 

the same core. To realize the proposed mix-scheduling policy, the 

software-level VM scheduler needs to understand each VM’s 

behaviors in using such shared processor resources. The 

information necessary for understanding such behaviors has to be 

provided by the processor, because these shared resources are 

generally directly managed by hardware. To capture the behavior 

of a VM on the shared private cache and LLC, the scheduler can 

leverage the performance counters that most modern processors 

support for collecting the cache miss statistics. To capture a VM’s 

use of shared computation resources, additional support would be 

necessary from processors. 

Taking the miss rate on a shared LLC as an example, the mix-

scheduling policy would evenly mix VMs of various miss rate 

across cores so that the variance of miss rates among the cores 

and/or the threads that share the LLC are maximized. As the direct 

result of the proposed policy, the difference of miss rates between 

competing VMs is expected to be significant. Hence, the VMs 

with smaller miss rates consume mainly the computation 

resources, while the throughput of other VMs with larger miss 

rates depends on memory resources. Consequently, VMs in the 

resource sharing cores and/or threads require different resources, 

rather than compete for the same resource severely. Moreover, 

from the perspective of the entire system, it means to utilize more 

resources globally if its VMs are able to access various resources 

in the cores, and thus it results in better overall performance. 

Another example considers VMs heavily involved with floating 

point operations and others heavily involved with integer 

operations. In such circumstance, it would be better for the VM 

scheduler to also make a mix-scheduling decision, e.g., to pair one 

floating point VM with one integer VM onto the same core in 

order to maximize the utilization of the execution engine, reduce 

the contention, and improve system throughput. This certainly 

cannot be achieved without the hardware-level scheduler being 

able to track the execution engine utilization for different VMs 

and feed this information back to the software-level scheduler. 

3.2 Software-assisted Thread Scheduling 

In MMMP, the processor hardware-level resource scheduling has 

a significant impact on overall system performance. It must decide 

how the system resources on each core are divided among 

multiple threads. For example, how many entries one thread can 

occupy in Instruction Fetch Queue (IFQ), Instruction Issue Queue 

(IIQ), ReOrder Buffer (ROB), and Renaming Register, separately. 

How to divide the issue and commit bandwidth among multiple 

threads is also a part of the scheme. If there is no control on the 

resources that can be assigned to one thread in one core, this 

would cause the uneven distribution of resources among threads 

and uneven execution of the threads, which also translates into the 

overall time to execute all threads being extended.  However, the 

optimization that a hardware-level scheduler can perform is 

constrained by the given VMs mapped by the software-level 

scheduler to the same core. Therefore, the scheduling optimization 

made by the software-level VM scheduler should also indirectly 

benefit the hardware-level thread scheduler in that it allows the 

latter to better optimize its resource allocation and further improve 

the performance for the VMs mapped to the same core. 

A more direct way for software to assist the hardware-level 

scheduling is to implement the intelligence necessary for the 

hardware-level optimization in software. For example, one of the 

most important topics in threading scheduling is to be able to 

track the phase change of every thread based on their instruction 

commit rate and cache miss rate, etc. However, to precisely catch 

this phase change normally requires complex machine learning 

algorithms, which is certainly not suitable for hardware 

implementation. As such, it is conceivable to let the software layer 

execute this kind of complex algorithms. If we could feed this 

information back to the hardware-level scheduler, it would 

certainly benefit its decision making process, especially in terms 

of making decision from global optimum point of view, as 

opposed to local optimum.  

4. EXPERIMENTAL ANALYSIS 

4.1 Setup 

A series of experiments were conducted on two different multi-

core platforms to investigate the feasibility of the proposed mix-

scheduling of VMs. The first platform is a physical machine with 

Intel Core 2 Quad CPU (Q9400, 2.66GHz) and 4GB RAM. This 

quad-core processor has two pairs of cores where each pair shares 

6MB of L2 cache. The second platform is a physical machine with 

Intel Core i7 CPU (860, 2.80GHz) and 8GB RAM. This 

hyperthreaded quad-core processor supports eight simultaneous 

threads with 8MB of shared L3 cache. These machines are 

 
Figure 1. The architecture of cooperative VM scheduling 
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installed with both the native Linux with 2.6.18 kernel and Xen-

based VM environment with paravirtualized 2.6.18 kernel. 

For this study we used the benchmarks from the SPEC CPU2000 

suite  [14]. Each benchmark runs on a dedicated VM which is 

configured with one virtual CPU and 1024MB of memory and  

pinned to one dedicated physical or logical core during the 

execution. To collect the cache miss rate, we used Xenoprof [30] 

to monitor the VM’s cache misses online during its benchmark’s 

execution. But the profiling was disabled when we were 

measuring the benchmark’s runtime on the VM. All the results 

reported in this section are the average values of at least three 

runs. The standard deviation of all the results is very small and 

thus not shown here. 

4.2 Benchmark VM Classification 

As discussed in Section 3.1, VMs can be modeled with respect to 

their behaviors in using various shared processor resources and 

classified into different categories accordingly. Such modeling 

and classification can also be performed online in order to capture 

the different behaviors of a VM’s various phases. However, to 

make this feasibility study more focused, our experiments are 

simplified in two aspects.  

First, we assume that the benchmark VMs have only a single 

phase and they are modeled offline by running them separately 

without any contention. The profiling was focused on the VM’s 

LLC miss rate. Second, the offline modeling and classification 

consider only the VMs’ LLC miss rates. Some benchmark VMs 

perform a lot of operations on a single data fetched from the 

memory system, so that they have low cache miss rates and 

mainly consume the computation resources. These benchmarks 

are capable of providing more Instruction Level Parallelism (ILP) 

and fall into the computation-bound category. On the contrary, 

some other benchmark VMs deal with a large amount of data 

during execution, but perform relatively less operations on a 

single data, so they have high cache missrates. Hence, they belong 

to the memory-bound category.  

Figure 2 shows the LLC miss rates of the different SPEC 

CPU2000 benchmarks when they run on VMs versus when they 

run on the native Linux. When a benchmark runs on its Xen VM, 

the measured cache misses include not only the cache misses 

occurred during the execution of the benchmark on the dedicated 

core but also those during the execution of the supporting guest 

OS and Xen VMM services. But, as we can see from the figure, 

the use of VM to run the benchmarks does not result in a 

significant difference on the use of shared LLC compared to when 

these benchmarks are run on the native Linux. This observation 

infers that the conclusions and solutions developed for 

application-level scheduling on MMMP systems in the literature 

can be also applied to the VM-level scheduling. Second, the 

results in Figure 2 confirm that these benchmark VMs indeed 

have diverse behaviors in their LLC usage with their miss rates 

varying from nearly zero, in the cases of eon, twolf, crafty, and 

gzip, to around 20%, in the cases of lucas and fma3d. Based on 

these results, it is reasonable to use the 2% cache miss rate as the 

cutoff line and classify these benchmarks into the computation-

bound category (including eon, twolf, crafty, gzip, and gcc) and 

the memory-bound (including parser, art, vortex, bzip, mesa, 

equake, swim, vpr, mcf, wupwise, apsi, lucas, and fma3d) 

category. This classification would not change even if we use the 

benchmark cache miss rates from the native Linux.  

4.3 Mix-Scheduling vs. Mono-Scheduling 

According to the above classification, memory-bound category 

demands memory resources while computation-bound category 

demands computation resources. Therefore, following the mix-

scheduling policy, which VMs should be scheduled according to 

their resource demands in order to maximize VM cache miss rate 

variance in the same set of resource-sharing core(s). Hence, the 

benchmark VMs belonging to different categories should be 

scheduled onto the same set of core(s). Specifically, a memory-

bound VM should be mapped together with a computation-bound 

VM onto the same set of core(s). In this way, the memory-bound 

VM relies more on memory resource in the core(s), while the 

computation-bound VM lives more on computation resource in 

the core(s), which matches our goal to minimize competition and 

optimize utilization. On the contrary, the mono-scheduling policy 

schedules benchmark VMs from the same category onto the same 

set of core(s), i.e., it schedules two memory-bound VMs or two 

computation-bound VMs onto the same set of core(s). 

The first group of experiments that compare mix-scheduling to 

mono-scheduling was done on the Intel Core 2 Quad CPU based 

platform. Because the four cores on this processor consist of two 

LLC-sharing pairs, each pair of cores forms a resource-sharing 

core set. In the experiments, two VMs were run on a pair of cores 

with each VM pinned to a different core of the pair. Figure 3 plots 

the miss rates of different benchmark VM pairs (VM1, VM2) 

when running on a pair of LLC-sharing cores in such a way. The 

data are grouped based on VM1 and within each group the bars are 

arranged in an increasing order of the standalone miss rates of 

VM2 reported in Figure 2. From the results where VM1 is a 

computation-bound VM, we can see that when it runs along with a 

memory-bound VM the combined LLC miss rates are still low, so 

such mix-scheduling based pairs can effectively use the process 

resources without much adverse performance impact. From the 

results where VM1 is a memory-bound VM, we can see that when 

it runs with another memory-bound VM, the combined cache miss 

rates are substantially higher than when it runs with a 

computation-bound VM. This also validates the effectiveness of 

our proposed mix-scheduling policy because it can significantly 

lower the contention on shared LLC compared to the mono-

scheduling. These observations can also be confirmed from the 

difference in runtimes of VM1 in different (VM1, VM2) pairs 

(Figure 4). Note that this figure has less VM pairs than Figure 3 

because it includes only the pairs where VM1 finishes earlier than 

VM2 and thus ensures that the execution of VM1 is completely 

under the contention from VM2. For example, when benchmark 
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Figure 2. The LLC miss rates of SPEC CPU benchmarks 

when running on Native Linux vs. on Xen VM 



art runs with eon, which has a lower cache miss rate, the runtime 

is 44s, compared to art running with swim, which has a higher 

miss rate, the resulting runtime is 126s. 

The second group of experiments was designed similarly as the 

first group but it was done on the Intel Core i7 based platform. 

This processor has four cores each with two simultaneous threads. 

Therefore, when a pair of VMs is executed on two logical cores 

mapped to the same physical core, they should compete for the 

shared caches and computation resources. Due the limitation of 

Xenoprof, we were not able to collect the cache miss rates on Intel 

Core i7, so only the runtimes of the VM1 in different (VM1, VM2) 

pairs were measured (Figure 5). However, the data reveal a 

surprising result that the runtime of VM1 in each pair is not 

impacted much by the behavior of VM2 no matter whether in mix-

scheduling or mono-scheduling. We are still investigating the 

reason behind this observation, but we believe that this may be 

due to the fact that Intel hyperthreading statically partitions the 

fetch queue between simultaneous threads to mitigate contention 

as well as the availability of more cache resources in Core i7 as 

compared to Core 2. 
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Figure 3. LLC miss rates of different VM pairs on an Intel Core 2 Quad core pair 

0

20

40

60

80

100

120

140

160

tw
o

lf
-e

o
n

tw
o

lf
-v

pr

tw
o

lf
-lu

ca
s

cr
af

ty
-e

o
n

cr
af

ty
-t

w
o

lf

cr
af

ty
-s

w
im

cr
af

ty
-v

p
r

cr
af

ty
-m

cf

cr
af

ty
-l

uc
as

gz
ip

-t
w

o
lf

gz
ip

-b
zi

p

gz
ip

-e
q

u
ak

e

gz
ip

-s
w

im

gz
ip

-v
p

r

gz
ip

-m
cf

gz
ip

-l
uc

as

gc
c-

tw
o

lf

gc
c-

gz
ip

gc
c-

gz
ip

gc
c-

bz
ip

gc
c-

eq
ua

ke

gc
c-

sw
im

gc
c-

vp
r

gc
c-

m
cf

gc
c-

lu
ca

s

ar
t-

eo
n

ar
t-

tw
o

lf

ar
t-

cr
af

ty

ar
t-

sw
im

ar
t-

vp
r

ar
t-

m
cf

ar
t-

lu
ca

s

b
zi

p-
e

on

b
zi

p-
tw

ol
f

b
zi

p-
cr

af
ty

b
zi

p-
a

rt

b
zi

p-
e

qu
ak

e

b
zi

p-
sw

im

b
zi

p-
v

pr

b
zi

p-
m

cf

b
zi

p-
lu

ca
s

eq
u

ak
e-

e
on

eq
u

ak
e-

tw
ol

f

eq
u

ak
e-

cr
af

ty

eq
u

ak
e-

a
rt

eq
u

ak
e-

sw
im

eq
u

ak
e-

v
pr

eq
u

ak
e-

m
cf

eq
u

ak
e-

lu
ca

s

sw
im

-e
o

n

sw
im

-t
w

o
lf

sw
im

-v
pr

sw
im

-m
cf

sw
im

-lu
ca

s

m
cf

-e
on

m
cf

-t
w

ol
f

m
cf

-v
pr

m
cf

-l
u

ca
s

lu
ca

s-
eo

n

lu
ca

s-
vp

r

Ru
nt

im
e 

(s
)

Figure 4. Runtimes of different VM pairs on an Intel Core 2 Quad core pair 
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Figure 5. Runtimes of different VM pairs on an Intel Core i7 hyperthreaded core 

 



5. CONCLUSION 

With the pervasive use of VMs and MMMPs in today’s computer 

systems, it becomes important to understand the contention on 

shared processor resources between concurrent VMs and mitigate 

its impact on VM performance and system throughput. This paper 

proposes a cooperative VM scheduling approach that allows 

software-level VM scheduler and hardware-level thread scheduler 

to cooperate and optimize the allocation of MMMP resources to 

VMs. It presents an experiment-based feasibility study which 

confirms the effectiveness of processor contention aware VM 

scheduling. In our future work we will continue this investigation 

and focus on the VM contention problem of not only shared 

caches but also shared computation resources on multithreaded 

processor cores. 
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