IBIS: Interposed Big-data I/0O Scheduler

Yigi Xu

Adrian Suarez

Ming Zhao

Florida International University Florida International University Florida International University

11200 S.W. 8th Street
Miami, FL 33199
yxu006@cs.fiu.edu

ABSTRACT

Existing big-data systems (e.g., Hadoop/MapReduce) do
not expose management of shared storage I/O resources.
As such, application’s performance may degrade in unpre-
dictable ways under I/O contention, even with fair sharing
of computing resources. This paper proposes IBIS, a new
Interposed Big-data I/O Scheduler, to provide performance
differentiation for competing applications’ I/Os in a shared
MapReduce-type big-data system. IBIS is implemented in
Hadoop by interposing HDFS I/Os and use an SFQ-based
proportional-sharing algorithm. Experiments show that the
IBIS provides strong performance isolation for one applica-
tion against another highly I/O-intensive application. IBIS
also enforces good proportional sharing of the global band-
width among competing parallel applications, by coordinat-
ing distributed IBIS schedulers to deal with the uneven dis-
tribution of local services in big-data systems.

Categories and Subject Descriptors

C.1.4 [Parallel Architectures]: Distributed architectures;
D.4.3 [File System Management|: Distributed file sys-
tems

Keywords
Proportional Sharing, Distributed Storage

1. INTRODUCTION

Big-data applications need to process and analyze massive
amounts of data in parallel (e.g., MapReduce [2]) and often
have complex I/O phases is highly distributed across many
data nodes. Thus, storage systems that can provide high s-
calability and availability (e.g., Hadoop HDFS [3]) needs to
be SLA aware in the shared infrastructure. However, exist-
ing big-data systems do not expose management of shared
storage I/O resources. As a result, an application’s perfor-
mance may degrade in unpredictable ways when there is I/O
contention.

This paper proposes IBIS, a new Interposed Big-data I/O
Scheduler, to provide performance differentiation for com-
peting applications’ I/Os in a shared MapReduce-type big-
data system. This scheduler solves the problem of differenti-
ating the I/Os among competing applications on individual
data nodes and schedule them according to the applications’

Copyright is held by the author/owner(s).
HPDC’13, June 17-21, 2013, New York, NY, USA.
ACM 978-1-4503-1910-2/13/06.

11200 S.W. 8th Street
Miami, FL 33199
asuar054@fiu.edu

11200 S.W. 8th Street
Miami, FL 33199
ming@cs.fiu.edu

bandwidth demands. The proposed IBIS scheduler is able to
transparently intercept the I/Os from big-data applications
and schedule them on every data node via an I/O inter-
position layer. IBIS also coordinates I/O scheduling across
distributed data nodes to allocate the total storage service of
the entire big-data system to the parallel tasks of competing
applications.

The IBIS prototype is implemented in Hadoop by in-
terposing HDFS I/Os and scheduling them using an SFQ-
based proportional-sharing algorithm [4]. Experimental re-
sults show that with IBIS, an application’s performance can
be strongly isolated from the contention by a highly I/0O-
intensive application (TeraGen) (< 5% slowdown in total
runtime), even with uneven available bandwidth on differ-
ent nodes.

2. APPROACH

IBIS is designed to effectively differentiate 1/Os from com-
peting applications and allocate the shared storage bandwidth
on individual data nodes in a big-data system. IBIS is based
on virtualization principles (Figure 1), where an indirection
layer exposes the interfaces already in use by the big-data
system to access storage, allowing applications to time-share
the storage system without modifications, while enforcing
performance isolation and differentiation among them. Step
1-5 corresponds to map read, map output, reduce shuffle,
reduce merge and reduce write. We chose to introduce vir-
tualization at a DataNode layer of the storage hierarchy to
gain more control of I/O executions and utilization while
supporting more diverse applications. The DFSClient in-
terface between the tasks and DataNode is modified to al-
low application-specific information to be carried as part
of the request header of each block request issued by the
map/reduce task, transparent to the applications.

IBIS also efficiently coordinates the distributed I/0 sched-
ulers across data nodes in order to allocate the global storage
bandwidth for the parallel tasks of applications in a big data
system. The total service that an application gets across
the whole system is the sum of the services that it obtain-
s from every data node where its tasks run. The amount
of local service that it actually obtains from a data node
varies across nodes and over time and each local scheduler
needs a global view of aggregate I/O throughput to converge
to the I/O sharing ratio collectively on all data nodes. To
address the challenge of synchronization of global 1/O view
between data nodes, the IBIS schedulers exchange their local
I/0 service information and obtain global views of total I/O
services by piggybacking upon the existing RPCs between

Cmp Jfeducd -+~ (onap O feducd [map | - feducd

(0]) ®

‘ Interposed Storage|Scheduler }4— - leis?:rt\: -— -»{ Interposed Storage Scheduler ‘
GFS/HDFS GFS/HDFS

E @ Global I/0 @ I:

[Local File System | [Local File System]
DATANODE DATANODE
Figure 1: Architecture of IBIS

o 1000
= 800
£ 700
£ 600
& 500
‘g 400
o 300
3 200
S 100
s 0

Alone With With With With With With With With With

1/2 CPUs TeraGen TeraGen TeraGen TeraGen TeraGen TeraGen TeraGen TeraGen TeraGen

Interfere 1:16 1:8 1:4 1:2 1:1 2:1 (uneven) (coord)

1:16 1:16

Figure 2: Runtime of WordCount without/with

IBIS with varying I/O sharing ratios (WC:TG)

TaskTrackers and JobTrackers. The scalability of this glob-
al coordination scheme is made possible by the scalability of
the JobTrackers (in YARN [1] for large systems). Specifical-
ly, local scheduler adjusts the local I/O service ratios among
the tasks on its data node in order to achieve global fairness
of total I/O service among competing parallel applications,
by delaying those that are above their global fair shares and
promoting those below their global fair shares.

3. EVALUATION

Hadoop-based IBIS prototype was implemented and eval-
uated on a testbed consisting of eight nodes each with two
six-core 2.4GHz AMD Opteron CPUs, 32GB of RAM, and
two 500GB 7.2K RPM SAS disks, interconnected by a Gi-
gabit Ethernet switch. All the nodes run the Debian 4.3.5-4
Linux with the 3.2.20-amd64 kernel and use EXT3 as the
local file system. One node runs JobTracker, another as Na-
meNode, and the other six as TaskTrackers and DataNodes.
HDF'S is configured to use one of the two disks on each data
node, while the other is used for map intermediate outputs
and reduce inputs to reduce self-interference. Each node is
assigned 10 map slots and 2 reduce slots, with Hadoop fair
scheduler for equal share of slots between two applications
so the contention is purely from I/O side.

Figure 2 shows WordCount runtimes when running alone
(half CPUs) or against TeraGen (two evenly using all C-
PUs). TeraGen’s I/O contention caused more than 65% run-
time increase to WordCount from the 1¢(alone) bar to the
2"¢ bar although native Hadoop fair scheduler assigns the
same number of CPUs to both jobs. When applied SFQD
scheduler with a depth of 4 from the 37%(1:16) bar, gradually
increasing the share of TeraGen, and achieved within 105%
of original alone performance at the ratio of 2:1. The last
two bars shows with uneven available bandwidth on one of
the data nodes (introduced by another I/O intensive appli-
cation), uncoordinated (uneven) 1:16 target ratio cannot be
reached as when bandwidth is even (3" bar). By adjusting
unaffected nodes’ bandwidth share, coordinated case on the
rightmost bar(coord) can gain performance back.

Figure 3 collects per-second aggregate HDF'S system band-
width allocated to WordCount and TeraGen, without and

= TeraGen 1
WordCount ||

S E Ao e
S

Time (s)

- TeraGen

L — WordCount ||
L .

0 L f ale.A L
0 200 400 600 300

Time (s)

Figure 3: WordCount aggregate I/0O throughput un-
der TeraGen contention without and with IBIS (2:1)

with IBIS(2:1). TeraGen writes suppressing the WordCount
I/O without IBIS is on the top figure, while bottom fig-
ure shows the effectiveness of IBIS by: 1) allowing approxi-
mately 1/3 of the available bandwidth to TeraGen and 2/3
to WordCount; 2) allowing TeraGen to consume available
bandwidth when WordCount issues less I/O. As a result,
WordCount’s I/Os are prioritized on all the datanodes and
completes faster by 40%.

4. CONCLUSIONS AND FUTURE WORK

This paper proposes IBIS, an Interposed Big-data I/O
Scheduler, to provide global 1/O performance differentiation
to big-data applications. Experimental evaluation shows
with IBIS, an application’s (WordCount) performance can
be strongly isolated from the contention generated by a high-
ly I/O-intensive application (TeraGen) (< 5% slowdown in
total runtime). The results also show that IBIS can effec-
tively achieve specified sharing ratio of the global bandwidth
between two competing parallel applications by coordina-
tion. In the future work, IBIS will support the scheduling
of other I/Os used by big-data applications in addition to
HDFS 1/0s. The I/O scheduling provided by IBIS will then
be integrated with the existing CPU scheduling in big-data
systems. Both types of resources are essential to the differ-
ent stages of big-data applications and need to be managed
holistically to achieve the application-desired quality of ser-
vice.

S. REFERENCES

[1] Yet another resource negotiator.
hadoop.apache.org/docs/current /hadoop-yarn/.

[2] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In Proceedings of the 6th
conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, OSDI’04, page 10,
Berkeley, CA, USA, 2004. USENIX Association.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop Distributed File System. In 2010 IEEE
26th Symposium on Mass Storage Systems and
Technologies (MSST), pages 1-10. IEEE, May 2010.

[4] Y. Wang and A. Merchant. Proportional-share
scheduling for distributed storage systems. In FAST,
pages 47-60. USENIX, 2007.

