
A User-level Secure Grid File System
Ming Zhao Renato J. Figueiredo

Advanced Computing and Information Systems Laboratory (ACIS)

Electrical and Computer Engineering, University of Florida

{ming, renato}@acis.ufl.edu

ABSTRACT
A grid-wide distributed file system provides convenient data
access interfaces that facilitate fine-grained cross-domain data
sharing and collaboration. However, existing widely-adopted
distributed file systems do not meet the security requirements for
grid systems. This paper presents a Secure Grid File System
(SGFS) which supports GSI-based authentication and access
control, end-to-end message privacy, and integrity. It employs
user-level virtualization of NFS to provide transparent grid data
access leveraging existing, unmodified clients and servers. It
supports user and application-tailored security customization per
SGFS session, and leverages secure management services to
control and configure the sessions. The system conforms to the
GSI grid security infrastructure and allows for seamless
integration with other grid middleware. A SGFS prototype is
evaluated with both file system benchmarks and typical
applications, which demonstrates that it can achieve strong
security with an acceptable overhead, and substantially
outperform native NFS in wide-area environments by using disk
caching.

1. INTRODUCTION
Distributed “Grid” computing systems have been successfully
applied in several domains of science, providing for sharing of
resources and data across administrative boundaries. A key
challenge arising in such systems is data management - how to
seamlessly provide data to applications and users in wide-area
environments. In the absence of widely deployed grid-wide
distributed file systems (DFSs), existing solutions are often based
on explicit file transfer (“staging”), or require users to program
applications with specific grid-enabling APIs. Nonetheless, a
grid-wide file system can facilitate data access and sharing by
exposing familiar interfaces of local area DFSs (such as NFS
[41][7][40]) to users. It is also desirable for applications that
cannot be modified, require implicit data access, have complex
access patterns, operate on large and sparse data sets, or require
fine-grained data sharing, because data transfers can be performed
on-demand, on a per-block basis.

Security is one of the most important concerns for data
management in grid environments, where data are shared across

organizations with limited mutual-trust, and stored and transferred
on resources with limited security. Providing secure grid-wide
data access is a challenging task with existing DFSs. In a grid
system, virtual organizations are dynamically established,
applications and services are dynamically initiated, and entities
and trust are dynamically created. Conventional DFSs are not
capable to meet this challenge, because they are designed for
general file system usage (typically for LANs), and favor static,
homogeneous configurations – rather than the dynamic
environments encountered in grid deployments.

Nonetheless, recent work has shown the feasibility of applying
user-level techniques to build wide-area file systems on top of
existing kernel implementations [34][16]. Examples of systems
that use NFS to mount grid data are found in the middleware of
Legion [43], PUNCH [26], and In-VIGO [1]. This paper proposes
such a user-level solution that addresses the aforementioned
challenges with a Secure Grid File System (SGFS). It enables
secure network communications based on mature technologies
(SSL/TLS [17][12]), and employs widely-accepted security
tokens (X.509/GSI certificates [42]) to provide compatible grid
authentication and flexible access control. SGFS allows data
sessions to be created on a per-user or per-application basis, and
such sessions can be customized with respect to the security
policies and mechanisms. Furthermore, it leverages service-based
middleware with standards-conforming security (WS-Security
[54]) to manage and configure the sessions.

Overall, the proposed approach makes the following contributions:
1) it achieves strong security for grid-wide file systems; 2) it
leverages user-level techniques that support unmodified
applications and operating systems; 3) it supports flexible
selection of security configurations for file systems based on user
and application needs; 4) it conforms to the grid security
infrastructure (GSI) and therefore can be easily integrated with
other grid middleware and systems.

The paper evaluates an implementation of SGFS with file system
benchmarks (IOzone and PostMark), and applications capturing
the behavior of both interactive access to data in a development
environment (MAB) and scientific computing that exhibits a mix
of CPU and I/O activity (Seismic). Experiments were conducted
in a LAN to study the overhead from the user-level techniques,
and also in an emulated WAN setup which captures the target
environment for SGFS. Results from this analysis demonstrate
that the solution achieves strong security with reasonable
overhead, and a tradeoff can be made to balance the performance
and security strength for the file systems. It also shows that SGFS
can effectively hide high network latencies using disk caching and
deliver efficient data access in wide-area environments, which
substantially outperforms native NFS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SC07 November 10-16, 2007, Reno, Nevada, USA
(c) 2007 ACM 978-1-59593-764-3/07/0011…$5.00

The rest of this paper is organized as follows: Section 2 describes
the background and related work; Section 3 and 4 explain the
design and implementation details; Section 5 discusses the
deployment, Section 6 presents the experimental evaluation and
Section 7 concludes the paper.

2. Background and Related Work
2.1 File System Virtualization and Enhancements
Traditionally DFSs are designed for general file system usage,
implemented in operating systems, and deployed by
administrators at the granularity of a collection of users. There are
no mechanisms that allow a DFS to be customized to support
application- or user-tailored configurations. In contrast, user-level
techniques can be leveraged to extend and enhance kernel file
system functionality based on loop-back proxies - in essence,
virtualizing DFSs by means of intercepting RPCs (Remote
Procedure Calls) of protocols such as NFS.

A grid-wide file system (GFS) can be built upon the virtualization
of NFS [16][45], and Figure 1 shows such an example. The native
NFS server exports the shared filesystem /GFS/X to the localhost,
and users outside the localhost can only mount it via the server-
side proxy. The proxy inspects every incoming RPC request,
checks the message’s user credentials against a GFS exports file,
and then forwards the authorized request to the NFS server to
complete the data access. Meanwhile, user credential mapping is
also performed by the proxy between the account where X’s job is
running and the one where X’s files are stored.

GFS sessions can be dynamically created on a per-
application/user basis (Figure 2). Each session can be customized
individually according to the data access requirements or
characteristics on a variety of aspects, e.g. the use of disk caching
and its parameters. Service-base middleware can be used to
manage the life-cycles and configurations of the sessions [44].

Related work has studied using user-level techniques to improve a
variety of aspects of DFSs: The Sun Automounter [8] mounts file
systems when they are referenced; CFS [3] supports a
cryptography file system; Alex [10] enables FTP browsing via a
file system interface; Kosha [6] implements peer-to-peer routing;
Pangaea [38] supports aggressive replication; [46] enables
application-tailored cache consistencies; Pond provides an NFS

interface to OceanStore [37]; and LegionFS [43] provides a file
system interface to Legion [20]. While related to these efforts,
this paper focuses on applying user-level security mechanisms to
address the limitations of kernel DFSs in order to provide a secure
grid-wide file system.

2.2 Secure Distributed File System
Existing DFSs have diverse security designs and strengths. Earlier
versions (V2 [41] and V3 [7]) of NFS rely on UNIX-style
authentication, with user and group IDs. Although stronger
authentication flavors are defined in the specifications, they have
not prevailed in deployments. There is also no support for privacy
and integrity in these versions, and NFS RPC messages can be
easily spoofed, altered and forged. Strong security has not been
available until the latest version (V4 [40]), which mandates the
support of the RPCSEC_GSS flavor [14]. RPCSEC_GSS provides
RPC-layer security based on the GSS-API [30], and a conforming
NFS V4 implementation must support two security mechanisms,
Kerberos V5 [31] and LIPKEY [13].

All NFS versions use an exports file to specify the hosts that are
allowed to access an exported directory. The ACCESS procedure
call was introduced in NFS V3 to provide fine-grained access
control using POSIX-model ACLs, but again it is not widely used
in practice. NFS V4 improves upon this by providing Windows
NT-model ACLs which have richer semantics and wider
deployments. In addition, NFS V4 represents users and groups
with string IDs instead of integers, which facilitates cross-domain
identity mapping.

Another important family of DFSs, Andrew File System (AFS
[39]) and its successors (OpenAFS [48] and Coda [5]) use
Kerberos-based systems to provide strong security. Access control
is achieved by associating an ACL with directories that list
positive or negative rights for a user or group. Kerberos relies on
centralized control and works well within an Intranet. But cross-
domain security is difficult to set up because it requires the
involved administrations to negotiate a trust relationship.

None of these conventional DFSs has been designed to support
grid security requirements. There is also related work on
extending DFS security at kernel-level. In particular, the GridNFS
[21] project develops a GSI-compatible security in NFS V4.
However, such a design requires kernel support that is difficult to

File server S

/GFS/X

Export /GFS/X
to X@C

uid/gid mapping
user

data

proxy
NFS

server

Compute server C

Mount S:/GFS/X

NFS

client

proxy

LAN/WAN

SSH channel

X’s job

RPCRPC
session key Export /GFS/X

to localhost

Figure 1 (up): A grid-wide file system can be built upon the
virtualization of NFS. SSH tunneling and session-key
authentication can be employed to provide security.
Figure 2 (right): GFS sessions can be dynamically created to
provide on-demand grid data access. The management services
are leveraged to control and configure the sessions. S2

data

Session I

FSS

DSS

S1

data

proxy

proxy

FSS

Job

FSS

C1

$

proxy

Job

FSS

C2

$

proxy Session II

FSS: File System Service

DSS: Data Scheduler Service

deploy across shared grid environments, and it faces the same
limitations as kernel DFSs, that is, it is unable to employ per-user
or per-application security configurations. In contrast, a SGFS-
style user-level solution can support flexible customization of grid
file systems based on individual application and user needs.

User-level techniques can achieve privacy and integrity of NFS
through secure tunneling, where SSH or SSL can be leveraged to
establish a secure end-to-end connection between the client and
server for NFS traffic [4]. A secure tunnel multiplexed by users
faces the same limitations as NFS, since RPC-layer mechanism is
still required for authentication and authorization within the
tunnel. A session-key based inter-proxy authentication can be
used along with secure tunneling to provide security for grid file
systems [45] (Figure 1). In this model, per-session SSH channels
are created to ensure privacy and integrity of each file system
session, while the client- and server-side proxies perform
authentication and authorization using a session key dynamically
created and securely distributed by middleware.

The key advantages of such an approach are in that existing RPC-
based clients and servers can be reused without modifications, and
it leverages mature security technologies. However, it requires
additional middleware to set up tunnels and keys, and its
performance also suffers from the overhead of double user-level
forwarding. In addition, it is not compatible with grid security
standards, which presents a hurdle to the interoperability with
other grid middleware. The proposed SGFS inherits the merits of
this approach and addresses its limitations by protecting RPC
communication directly with SSL, without the addition of
tunneling, and uses widely-accepted grid security tokens to
provide compatible authentication and authorization.

Self-certifying File System (SFS [34]) also leverages user-level
loop-back client and server to enhance DFS security. It addresses
the problem of mutual authentication between a file server and
users by providing self-certifying pathnames for files. Such a
pathname has the server’s public key embedded inside, which is
used by a client to verify the authenticity of the server, and then
create a secure channel to protect the file system traffic. SFS is
then extended to provide decentralized access control, in which
users are allowed to create file sharing groups with ACLs in the
file system [25]. When a user tries to access a file, the
authentication server fetches the user’s credentials and uses them
along with the ACL to authorize the access. Compared to SFS, the
proposed SGFS focuses on providing data access that meets the
grid security requirements, and supports per-user/application file
system customization.

2.3 Grid Security Standards
In [42] several key requirements were studied for a grid security
model, including the support for multiple security mechanisms,
dynamic creation of services, and dynamic establishment of trust
domains. This research resulted in a de facto grid security
standard, GSI, which is built upon the Public Key Infrastructure
(PKI). In PKI-based grid security, a public key certificate (e.g.
X.509 [22]) along with its associated private key uniquely
identifies a grid user and is used for authentication. The certificate
is often validated by checking the signature of its issuer, a trusted
party known as a certificate authority (CA). Then the user identity
is checked against certain access control mechanism (e.g. gridmap
file in GSI, MayI layer in Legion [15]) for authorization. In

addition, public key technologies can also encrypt and digitally
sign a message in order to protect its privacy and integrity.
Another important grid security requirement is delegation, which
allows a service to act on behalf of a user. This can also be
supported with extensions to public key certificates, e.g. proxy
certificates in GSI and credentials in Legion.

Grid security can be implemented at two different levels.
Transport level security [17][12] uses public key certificates to
create a secure socket layer connection between two end-points
and protect the data exchanges between them. It is a mature
technology that has high-performance implementations (e.g.
OpenSSL [49]), but it lacks service-level semantics and does not
work for multi-hop connections. Message level security is a suite
of standards arising from the emerging Web service technologies
[54][52][53], which provides security at the layer of SOAP
messaging. It is agnostic to transport layer protocols and
connections, and supports more service-level functionalities.
However, its performance is not comparable to transport level
security because XML processing is expensive and it lacks
efficient implementations. In this paper, a two-level security
architecture that exploits the advantages of both approaches is
proposed for the SGFS-based grid data management.

In the related data management solutions, GSI-based GridFTP [2]
provides API for programming grid data access, and RFT is a web
service for reliable file transfer using GridFTP; Legion [20] is an
object-based grid system, which employs a modified NFS server
to provide access to file objects, and it also integrates GSI in
Legion-G [24]; the Condor system [32] uses system call
interception or application relinking to support remote I/O, and it
also supports GSI in Condor-G [18]. This paper proposes a grid-
wide file system with compatible security mechanisms with these
efforts. It differentiates from and also complements them in that
SGFS-based data sessions allow unmodified application binaries
to access grid data using existing kernel clients and servers, and
support application-tailored per-session customizations.

3. Design
This paper proposes a two-level security architecture for SGFS-
based grid data management (Figure 3). It leverages transport
level security to protect the file system traffic of SGFS, and
employs message level security to secure the interactions with the
management services. Both layers utilize widely-accepted
security tokens (X.509/GSI certificates) to support grid user
authentication and file access control. The rest of this section
presents this architectural design, followed by the implementation
details in the next section.

3.1 Secure Data Access
Secure data access in SGFS is provided by transport level security
mechanisms, which enable an efficient secure end-to-end
connection between client- and server-side proxies to protect RPC
communications. In order to create a SGFS session for a grid user
to access a file server, public key based user and server
certificates are used to establish the mutual authentication
between the proxies. (A user certificate can be the user’s grid
identity certificate, or a proxy certificate issued by the user that
supports delegation.) After a successful authentication, a shared
key is negotiated between the two parties and is used to encrypt

File server S

proxy

Compute server C

proxy

LAN/WAN

RPC/TLS

X’s job

X’s

certificate

Access

control

SOAP/WS-Security

user

data

FSS FSS

DSS

/GFS/X

Figure 3: The security architecture of SGFS-based data
management system. Transport level security is leveraged to
protect the data access on SGFS, while message level security
is employed to secure the interactions with the management
services. Grid user certificates and ACLs are used for
authentication and access control.

the SGFS traffic, while the integrity can also be provided using
digital signatures or Message Authentication Code (MAC).

An authenticated user’s certificate is used by the server-side
proxy to make authorization decisions, i.e. whether to grant the
user’s access to the exported files. This is achieved using a grid-
style ACL mechanism which associates file system access
permissions with the grid user’s identity in the certificate. Such an
access control is provided with different granularities allowing for
flexible selection per session needs. For an authorized data access
request, necessary identity mapping is also performed by the
server-side proxy so that the request can be successfully executed
on the file server.

The choice of security mechanisms and policies is flexible and
customizable per SGFS session, in order to satisfy different
security requirements from users and applications. This is
important because such configurations have implications on both
security and performance. For example, if the data transferred by
SGFS is not confidential, encryption can be avoided to improve
the data access performance, while digital signatures can still be
employed to protect its integrity. In contrast, for a SGFS session
created for highly sensitive data, encryption must be enabled with
strong ciphers which require substantial CPU cycles to compute.

3.2 Secure Management Services
SGFS can be directly used by grid users to enable flexible data
sharing. In a large grid system, where many SGFS sessions are
dynamically created, the management services offer better
capability of controlling the sessions and coordinating the data
access. As illustrated in Figure 2, the File System Service (FSS)
runs on every client and server and controls the local proxies to
establish and configure SGFS sessions; and the Data Scheduler
Service (DSS) provides the scheduling and customization of
sessions through the interactions with client- and server-side FSSs.

To create a SGFS session through the services, a grid user or a
service that acts on behalf of the user needs to authenticate with
DSS using the user’s certificate. Authorization is also performed
by checking the certificate against an ACL, or consulting a
dedicated authorization service. An authorized user can then
proceed to delegate the management services the right to create a
SGFS session on behalf the user: the DSS uses the user’s
certificate to interact with the client- and server-side FSSs, which
in turn configure the proxies to use this certificate to establish a
secure file system session.

Security for service interactions is enabled at the message level
(Figure 3). Despite the performance inefficiency, message level
security offers great functionality at the service level, which is
necessary for the management services to use and interact with
other high-level services. These services are not in the critical
path of grid data access; they are only involved infrequently when
control is needed on a SGFS session, specifically, when creating,
configuring and destroying a session. Therefore, the use of more
expensive security mechanisms does not hurt an established SGFS
session’s I/O performance, and has negligible overhead compared
to a session’s lifecycle.

4. Implementation
4.1 SSL-enabled Secure RPC
Secure communication for NFS RPC is achieved using transport
layer security protocols (SSL/TLS [17][12] - referred to generally
as SSL). Although secure RPC can be realized at the RPC-layer
itself (RPCSEC_GSS [14]), several factors have motivated the
use of SSL: it has very mature and efficient implementations,
which have been successfully employed by many important
applications; it supports a wide range of algorithms, which can be
leveraged to support flexible security configurations; SGFS
sessions are established on per-user/application basis, and thus
can use SSL to provide full-featured security without using any
RPC-layer mechanisms.

A SSL-enabled secure RPC library has been developed for SGFS
based on two key packages, TI-RPC [51] and OpenSSL [49]. TI-
RPC (Transport Independent RPC) is the replacement for the
original transport-specific RPC. It allows distributed applications
to transparently support RPC over connectionless and connection-
oriented transports for both IPv4 and v6. OpenSSL is an excellent
implementation of SSL, and has recently included the support for
datagram protocols (DTLS). Therefore, these tools can be
effectively utilized to build a secure RPC library that supports
both TCP and UDP.

In this library secure RPC APIs are provided in a way that closely
resembles the regular RPC APIs. For example, clnt_tli_ssl_create
and svc_tli_ssl_create are two expert-level APIs for creating a
RPC client and server, respectively, using a secure transport for
communications. These APIs take the same parameters as their
regular counterparts with an additional one for the security
configuration structure. The use of authentication, encryption and
MAC as well as their specific algorithms can be specified through
this structure and passed on to the library to create secure
transports for RPC with the desired security mechanisms.

This secure RPC library is generic to support all RPC-based
applications. The fact that both TI-RPC and OpenSSL are
standalone packages helps its use by ordinary users without the
need to change any system-level configurations. The current

implementation is based on Linux; support for other platforms is
also conceivable.

4.2 GSI-based SGFS Proxy
The SGFS proxies are developed based on our previous work of
virtual file system proxies [16][45]. They are enhanced to use the
SSL-enabled secure RPC library for communications, and are also
extended with the capability of parsing and validating GSI-based
certificates. Using these proxies to establish a grid-wide file
system, the privacy and integrity of data access are protected in
the secure RPCs, while grid authentication and authorization are
performed based on the user and server certificates.

A SGFS proxy is configured by a user or service through a
configuration file, which is useful for customizing several
important aspects of a SGFS session (e.g. the use of disk caching
and its parameters). This configuration mechanism is augmented
to include the security configurations, including the algorithms for
authentication, encryption and MAC, and the paths to user, host
and trusted CA certificates. In this way, both the client- and
server-side proxies can be properly configured to use the grid
user’s and server’s certificates to authenticate with each other,
and set up a data session with the desired security mechanisms
and policies.

A SGFS session’s security customization can also be reconfigured
by signaling the proxies to reload the configuration files. Such a
dynamic reconfiguration is very useful in many important
scenarios. For example, it can force a proxy to reload the
certificate when the original one is expired or believed to be
breached. It can reset a session’s security setup when the desired
configuration is changed. It can also be used to force a SSL-
renegotiation and refresh the session key for a long-lived session.
In fact, a proxy can be configured with a timeout value to enable
periodical automatic renegotiation.

4.3 Grid File Access Control
After a successful mutual authentication, the grid user’s certificate
presented by the client-side proxy is cached by the server-side
proxy and used for authorization of the data requests received
from this session. The user credentials (UNIX user and group ID)
in each NFS RPC message are from the client-side account
allocated for a grid user or job. They do not represent the grid
user’s identity, and cannot be used for the purpose of
authorization, but they are still necessary for the identity mapping.
For each authorized RPC request, these credentials are mapped to
a local user account’s credentials, which are then used by the
kernel NFS server to grant access to files. This authorization and
mapping are determined by the grid file access control policies.

With GSI-enabled proxies, a variety of ACL mechanisms can be
employed to enforce access control for SGFS sessions. The basic
mechanism is based on a gridmap file similarly to GSI’s, which
provides access control per exported filesystem. This file
describes the mapping between a user’s grid identity
(distinguished name) in the certificate and a local account’s name.
If a mapping exists for a user in the gridmap file, the user gains
the same access rights to the exported filesystem as the
corresponding local user. Otherwise, the user is mapped to an
anonymous user, or denied access completely, depending on the
session’s configuration. In SGFS, the gridmap file can be set up
on a per-session basis to enable flexible sharing. For example, if a
user wants to share her files with another user, she only needs to

add the mapping between that user’s distinguished name and her
local account name in the session’s gridmap file.

Fine-grained access control is realized by leveraging the ACCESS
procedure call available in NFS V3. Each file or directory can
have an ACL file associated with it (under the same path and
named in the style of .filename.acl). A user or service can grant or
deny a user’s access to a file or directory by putting the user’s
distinguished name inside the corresponding ACL file along with
a bit mask encoding the access permissions. (Only the NFS V3
style ACL is supported in the current implementation.) Upon
receiving an ACCESS request, the server-side proxy checks the
user’s grid identity against the requested file/directory’s ACL,
and returns the corresponding bit mask if the user is found in the
ACL, or a zero which disables all access permissions.

A file or directory automatically inherits its parent’s ACL if it
does not have a dedicated ACL file. This inheritance mechanism
can reduce the management complexity of ACLs. For the reason
of performance, the ACLs are cached in memory by the server-
side proxy once they are read from disk. The ACL files are
protected by the server-side proxy from remote access, and can
only be modified by the local owner of the files manually, or
through an authorized service as explained later. Note that in the
SGFS security model, the NFS server delegates the access control
of the exported filesystems completely to the proxies. So the ACL
mechanisms in kernel (except the kernel exports file) are no
longer useful and should be disabled to avoid overhead.

4.4 GSI-based Management Services
The SGFS management services are implemented using
WSRF::Lite [55], a Perl-based implementation of WSRF (Web
Services Resource Framework [19]). This tool supports signing
and verifying of SOAP messages using X.509 certificates
according to the WS-Security standard, which is utilized to enable
grid security at the service level. The resulting SGFS services can
securely communicate with each other, use the grid user and
server certificates to perform authentication and authorization,
and then control the SGFS proxies to use these certificates to
establish a secure file system session.

As mentioned earlier, the management services are responsible
for creating and customizing SGFS-based data sessions on behalf
of grid users or services. These operations are provided through
web service interfaces, which conform to the WSRF standard;
while the security of the service-level interactions also follows
web service security standards and is compatible to GSI. This is
important to provide interoperability with other grid services, e.g.
to serve a job scheduler which needs to prepare data access for the
jobs submitted to a grid resource.

The SGFS services support flexible grid file access control using
the aforementioned mechanisms. Per-filesystem based ACLs are
stored in the DSS database, and used to automatically create
gridmap files that are used by the server-side proxies for the
corresponding SGFS sessions. For fine-grained access control, the
services manage the per-file/directory ACLs through the server-
side proxies that are responsible for exporting the filesystems. In a
large grid system, the access control to grid resources is often
dedicated to the virtual organization’s security service (e.g. a
Community Authorization Service [36]). In this case, the SGFS
services can consult this security service for file access control
decisions based on individual grid users, or groups of users.

5. Deployment
SGFS can be conveniently deployed on grid resources because it
does not require any modifications to either applications or
kernels. It also obeys the least privilege principle in that the
proxies and services work completely at user level and use
unprivileged network ports, and they can be managed using a
single regular user account (e.g. user gfs) on each host. On the
server-side, the only privilege required is the configuration of a
host-wide exports file used by the kernel NFS server. This can be
restricted to a single entry in the exports file by organizing all the
grid-accessible filesystems under a single path (e.g. /GFS), which
need only be exported to the localhost. On the client-side, the use
of file system mount and un-mount is necessary, and it can also be
minimized by giving only the local SGFS management account
the permission to use sudo or a setuid program to mount and un-
mount SGFS sessions to a restricted path (e.g. /GFS).

To use SGFS (with or without the services), it is not necessary for
a grid user to have a personal account on the client or server. The
services and proxies create a secure file system session on behalf
of the user between the account where her job is running and the
account where her files are stored. These job and file accounts are
often provided by mapping a grid user to a local user [42], or
allocated on-demand for dynamically submitted jobs [16].

6. Performance
6.1 Setup
A prototype of the proposed SGFS is evaluated in this section
with experiments. File system benchmarks (IOzone and Postmark)
are used to investigate the overhead of achieving strong security
under intensive I/O load. Benchmark applications modeling
workloads in software development and scientific computing are
also employed to study its performance with typical file system
usages.

Both LAN and WAN environments are considered in the
experiments. LAN-based runs study the overhead from the user-
level techniques, while tests in an emulated WAN reveal its
performance for the targeted grid environments. NIST Net [9] is
used to emulate different wide-area network latencies. The file
system client and server as well as the NIST Net router are set up
on VMware-based virtual machines. They are hosted on separated
physical servers connected via Gigabit Ethernet. Each physical
server has dual 3.2GHz hyperthreaded Xeon processors and 4GB
of memory. The client and server VMs are both configured with 1
CPU, and have 256MB and 768MB memory respectively.

The use of a network emulator and virtual machines facilitates the
quick deployment of a controllable and replicable experimental
setup. However, the timekeeping within a virtual machine may be
inaccurate so the system clock on a physical server is used to
measure time, which suffices the granularity required by this
evaluation. All the experiments were conducted on virtual
machines running on dedicated physical servers without
interference from other workloads.

Different (secure) DFS setups are experimented, including:

Nfs-v3 and nfs-v4: The native kernel-level NFS V3 and V4
provide the baseline performance for comparison. Although not

evaluated here, kernel-level secure NFS solutions (e.g. Kerberos-
enabled NFS, GridNFS) can be expected to have worse
performance than their results. Kernel NFS implementations use
only memory for caching and revalidate the cached data when the
file is reopened or its attributes have timed out. NFS-V4 can also
provide delegation, which allows a client to aggressively cache
data, but this feature is not yet widely supported.

Gfs and gfs-ssh: The basic Grid File System [16] without any
security enhancements, and the SSH-enabled secure GFS [45].
Their results demonstrate the overhead from the user-level RPC
processing and SSH tunneling.

Sfs: The related work of Self-certifying File System [34] - another
NFS-based user-level secure file system. The overhead from the
user-level techniques can also be observed from its performance.
SFS aggressively caches attributes and access permissions in
memory, which can improve metadata operations.

Sgfs: The approach proposed in this paper. By comparing to the
above systems, the experiments examine the performance of the
SSL-enabled strong authentication, privacy and integrity.
Aggressive disk caching of attributes, access permissions and data
are used in the WAN-based tests, so those results also reflect the
potential performance improvement from that.

In all of the above setups, the server exports the filesystem with
write delay and synchronous update, and the client accesses the
server using TCP and 32KB read and write block sizes.

The experiments only consider file systems dedicated to a single
user or job. For scenarios where multiple users/jobs share the data
concurrently, different application-tailored cache consistency
protocols can be applied in SGFS, which overlay upon the native
NFS consistency mechanisms and provide improvements to both
performance and consistency. A detailed discussion and
evaluation can be found in [46].

All the experiment results are reported with the average and
standard deviation values from multiple runs. Every run was
started with cold client-side caches by unmouting the file system
and flushing the disk cache.

6.2 Filesystem Benchmarks
6.2.1 IOzone
IOzone [35] analyzes a file system’s performance by performing
read and write operations on a large file with a variety of access
patterns. In this experiment, it is executed on the client in
read/reread mode, which sequentially reads a 512MB file twice
from the server. Since the client has only 256MB of memory, the
buffer cache doe not help with its LRU-based replacement for the
benchmark’s sequential reads. In fact, the client needs to read a
total of 1GB data from the server during the execution. On the
server side, the file is preloaded to the memory before each run,
so there is no actual disk I/O involved in the tests. This “extreme”
intensive setup reveals the worst-case overhead from SGFS’ user-
level virtualization and security enhancements.

The experiments evaluate various SGFS configurations that have
different security strengths, as follows:

0

50

100

150

200

250

300

350

400

nfs-

v3

nfs-

v4

sfs gfs sgfs-

sha

sgfs-

rc

sgfs-

aes

gfs-

ssh

R
u
n
t
im

e

(
s
e
c
o
n
d
)

Figure 4: IOzone runtime on the different file system setups
in LAN.

0

5

10

15

20

25

30

35

40

Time (second)

U
s
e

r

C

P
U

T

im
e

(
%

)

gfs

sgfs-sha

sgfs-rc

sgfs-aes

sfs

Figure 5: IOzone client-side CPU utilization of the user-level
file system proxy/daemon.

0

5

10

15

20

25

30

35

40

Time (second)

U
s
e

r

C

P
U

T

im
e

(
%

)

gfs

gfs-sha

gfs-rc

gfs-aes

sfs

Figure 6: IOzone server-side CPU utilization of the user-
level file system proxy/daemon.

Sgfs-aes uses AES (Rijndael [11]) in CBC mode with 256bit key,
a very strong cipher, to encrypt RPC traffic, and ensures integrity
with SHA1-based HMAC [47].

Sgfs-rc uses RC4 (ARCFOUR [28]) with 128bit key, a
“medium”-strength cipher for encryption, and also enables SHA1-
HMAC for integrity.

Sgfs-sha does not use any encryption but still provides integrity
using SHA1-HMAC.

To compare with SGFS, in gfs-ssh the SSH tunnels are configured
to use 256bit AES-CBC and SHA1-HMAC, which is similar to
the sgfs-aes configuration; SFS provides privacy and integrity
using a customized RC4 and SHA1-HMAC, which is close to the
sgfs-rc setup.

Figure 4 illustrates the runtimes of IOzone on the above DFS
setups in LAN. The user-level file systems all show a slow down
of more than two-fold compared to the kernel NFS
implementations. However, such intensive workload is very rare
in practice, and the user-level processing latency can often be
overlapped with application “thinking” time or diminished by
disk I/O latency. More importantly, in a WAN environment, the
network latency becomes the dominant factor and renders the
user-level latency negligible. User-level caching techniques can
further hide the latency and improve the file system’s
performance. These discussions will be validated with the
experiment in Section 6.2.2.

Comparing the different secure GFS configurations, sgfs-sha has
the lowest overhead from the security enhancements (9% w.r.t.
gfs), because it only calculates HMAC but does not perform any
encryption/decryption on the file system traffic. With the use of
encryption, the overhead is increased to 15% in sgfs-rc, and 50%
in sgfs-aes. Gfs-ssh has a much higher overhead than the other
ones (more than six-fold slowdown w.r.t. gfs). This can be at least
partially attributed to the penalties from the double user-level
forwarding: for every RPC message, two network stack traversals
and kernel-user space switches are required by GFS and SSH to
process it. As discussed earlier, such an overhead is magnified by
this intensive experiment setup.

The proposed new SGFS approach removes this extra penalty,
and thus improves the performance substantially. Notice that sgfs-
rc is about 15% slower than sfs, which is due to our less efficient
prototype implementation. In contrast to SFS’ asynchronous
RPCs, the use of blocking RPCs in SGFS prevents it from
handling multiple outstanding requests simultaneously. A
multithreaded implementation of SGFS is currently under
development.

The experiment also measures the overhead of the user-level file
systems in terms of CPU utilization. The user time percentages
for GFS/SGFS proxies and SFS daemons were collected every 5
seconds throughout the benchmark’s execution. The client- and
server-side results are plotted in Figure 5 and 6 respectively. On
the client, the basic GFS’ CPU usage is very low, averaging 0.6%
and under 1% for all the time. For SGFS, the utilization goes up
to 5% with SHA1-HMAC, and further increased to about 8%
when encryption/decryption is also used (256bit-AES consumes
slightly more CPU than 128bit-RC4). On the server, the CPU
usage is even less for gfs, sgfs-sha and sgfs-rc, averaging 0.3%,
1.5% and 3.6% respectively. All the SGFS configurations need

less CPU than SFS which has more than 30% utilization on both
sides.

6.2.2 PostMark
PostMark [27] is a more realistic file system benchmark that
simulates the workloads from emails, news and web commence
applications. It starts with the creation of a pool of directories and
files (creation phase), then issues a number of transactions,
including create, delete, read and append, on the initial pool
(transaction phase), and finally removes all the directories and
files (deletion phase). In contrast to the uniform, sequential data
accesses used in the IOzone experiment, the file system is
randomly accessed with a variety of data and metadata operations
from PostMark.

In this experiment, the initial number of directories and files are
100 and 500 respectively, and the number of transactions is 1000.
The transactions are equally distributed between create and delete,
and between read and append. The file sizes range from 512B to
16KB, and thus the benchmark excises mostly on metadata
operations and small writes.

Figure 7 shows the runtimes of each PostMark phase for the
aforementioned DFS setups. The strong SGFS configuration sgfs-
aes is used for the rest of this section, and is denoted as sgfs from
here on. For the creation and deletion phases, the runtimes of the
secure file systems are all very close to the native NFS’ (gfs-ssh is
marginally worse than the others). However, for the more
intensive transaction phase, where a large number of small data
and metadata updates are involved, only sgfs shows a close
performance to NFS (V3), and it is better than sfs and gfs-ssh by
17% and 14% respectively.

The above experiment was conducted in a LAN environment,
where the network round-trip time (RTT) between the file system
client and server is about 0.3ms. Then it was repeated in the
emulated WAN with different network latencies. Figure 8
compares the total runtimes of PostMark on nfs-v3 and sgfs.
Benefited from the use of disk caching, SGFS shows a very slow
decrease in performance as the network latency grows. It is also
significantly more efficient than native NFS in wide-area
environments, and the speedup is about two-fold when the RTT is
80ms. These results prove our earlier discussions that a user-level
secure file system can be very efficient for grid-scale systems.

Since no performance advantage has been observed in the version
of NFS-V4 used in the experiments, only the results from NFS-
V3 are reported here, as well as in the following experiments.
Note that even though improved delegation support in V4
implementations may lead to better performance, SGFS provides
the unique feature of application-tailored per-session
customization.

6.3 Application Benchmarks
6.3.1 Software Development
This experiment models the typical software development process
using a modified Andrew benchmark (MAB). It consists of four
phases that exercise different aspects of a file system. The first
phase (copy) makes a copy of a software source tree, which
transfers a large number of small files within the file system. The
second phase (stat) recursively examines the status of every file,
and thus exercises metadata lookups intensively. The third phase
(search) reads every file thoroughly to search for a keyword. The
last phase (compile) compiles the entire source tree, which

generates a large number of data and metadata operations.
Because the original Andrew benchmark [23] uses a workload
that is too light for today’s file systems, the source tree is replaced
with the package of an OpenSSH client (openssh-4.6p1). It is a 3-
level source tree with 13 directories and 449 files, and the entire
compilation generates 194 binaries and object files.

The benchmark is executed on nfs-v3 and sgfs in both LAN and
emulated WAN (with 40ms RTT), and the results are shown in
Figure 9. Sgfs performs as well as nfs-v3 for the first three phases
in LAN, and in the intensive compile phase, it shows a relatively
small overhead of 14%. In WAN, SGFS caching effectively hides
the network latency, and the total runtime of MAB is slowed
down by only 2.5 times. Compared to nfs-v3, it is more than four
times faster, and the speedup is approximately nine-fold, five-fold
and eight-fold for the stat, search and compile phases respectively.
Although not shown here, the performance of sgfs in LAN can
also be improved if disk caching is used, in which the compile
phase is only 2% slower than nfs-v3.

6.3.2 Scientific Computing
The second application benchmark uses a scientific tool, Seismic,
which implements algorithms used by seismologists to locate

0

10

20

30

40

50

60

nfs-v3 nfs-v4 sfs sgfs gfs-ssh

R
u

n
t
i
m

e

(
s
e

c
o

n
d

)

creation transaction deletion

Figure 7: Runtime of each PostMark phase on the different
DFS setups in LAN.

0

500

1000

1500

2000

2500

5 10 20 40 80

Network RTT (ms)

R
u
n
t
im

e

(
s
e
c
o
n
d
)

nfs-v3 sgfs

Figure 8: Total runtime of Postmark on NFS-V3 and SGFS
in the different network setups.

resources of oil. It is taken from the SPEC HPC96 suite [50], and
its sequential version is used in the experiment. The execution
consists of four phases: data generation (1), data stacking (2),
time migration (3) and depth migration (4). Phase 1 prepares a
large initial data file, and each of the following phases performs
certain computation based on its previous phase’s output file and
then generates its own results on disk. In the end, the intermediate
outputs are removed and only the results from the last two phases
are preserved. This benchmark models a grid application that is
both I/O and computation intensive.

This experiment was also conducted in both LAN and emulated
WAN (with 40ms RTT). Based on the results shown in Figure 10,
similar observations can be made as the previous experiment: in
LAN, the performance of sgfs is very close to nfs-v3; in WAN,
sgfs still delivers a good performance and is substantially better
than nfs-v3. In phase 1, sgfs stores the large output entirely in
cache with the use of write-back; in phase 2, a large number of
reads can be satisfied from the data cached in disk, which are not
available in memory; and at the end, sgfs also saves considerable
time from writing back only the final results but not the temporary
data to the server. Consequently, sgfs shows no slow down in
WAN, and phase 2 in fact runs faster because disk caching is not
enabled in LAN. Compared to nfs-v3, it is more than five times
faster in the total runtime, and the speedup is about two-fold,
forty-fold and four-fold for the first three phases respectively.

7. Conclusions
A grid-wide file system can provide users and applications with
transparent access to grid data, but it must support strong security
in order to be used in untrusted, cross-domain grid environments.
Meanwhile, flexible, customizable security configurations are
also desirable to meet different user and application needs. This
paper presents a user-level secure grid file system (SGFS) that
addresses these challenges. It employs SSL-enabled strong
security, conforms to the GSI standard, supports flexible access
control, and allows for customization of security mechanisms and
policies. In addition, it leverages secure middleware services for
the management of dynamic data sessions.

This paper shows that secure grid data management can be
effectively achieved using user-level file system techniques. The
experiments based on a SGFS prototype also demonstrate that
strong security can be provided with an acceptable overhead. The
tradeoff observed between security strength and performance
overhead proves that an application-tailored security
configuration is very important. The results also show that the use
of disk caching can help SGFS to hide high network latencies and
deliver efficient secure data access in the targeted wide-area
environments.

This paper focuses on the security issues of network data access
in grid systems; however, the data storage need also be protected
from untrusted servers and administrators. Therefore, our future
work will consider building user-level cryptographic functions
into SGFS to ensure the privacy and integrity of data stored on the
servers and provide a complete end-to-end grid data security.

The secure RPC library and SGFS prototype developed in this
paper, as well as the Modified Andrew Benchmark used in the
experiments, are available at http://www.acis.ufl.edu/~ming
/software.

8. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their helpful comments. This research is sponsored by NSF under
grants EIA-0224442, EEC-0228390, ACI-0219925, ANI-0301108
and SCI-0438246. The authors also acknowledge the use of
resources from the IBM SUR program and the Defense University
Research Instrumentation Program (DURIP). Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the sponsors.

9. REFERENCES
[1] S. Adabala et al, “From Virtualized Resources to Virtual

Computing Grids: The In-VIGO System”, Future Generation
Computing Systems, Vol 21/6, 2005.

26 26

155
126

4 4

53

55 5

107

22

99
112

1199

150

0

200

400

600

800

1000

1200

1400

nfs-v3 sgfs nfs-v3 sgfs

R
u
n
t
im

e

(
s
e
c
o
n
d
)

copy

stat

search

compile

LAN WAN

Figure 9: Runtime of each MAB phase on NFS-V3 and SGFS
in both LAN and WAN. The time needed to write back data
at the end of execution is 51.2s in average with a standard
deviation of 1.3s.

38.3 40.6

88.9

40.2
27 38

1021

24
3 4 13 4

167.2 167.3 173.9 167.8

0

200

400

600

800

1000

1200

nfs-v3 sgfs nfs-v3 sgfs

R
u

n
t
im

e

(
s
e

c
o

n
d

)

phase 1

phase 2

phase 3

phase 4

LAN WAN

Figure 10: Runtimes of each Seismic phase on NFS-V3 and
SGFS in both LAN and WAN. The time needed to write back
data at the end of execution is 14.2s in average with a
standard deviation of 1.3s.

[2] B. Allcock et al, “Data Management and Transfer in High
Performance Computational Grid Environments”, Parallel
Comp Journal, Volume 28, Issue 5, May 2002.

[3] M. Blaze, “A Cryptographic File System for Unix”, 1st
ACM Conference on Computer and Communications
Security, November 1993.

[4] J. C. Bowman, “Secure NFS via SSH Tunnel”, URL:
www.math.ualberta.ca/imaging/snfs/

[5] P. J. Braam, “The Coda Distributed File System”, Linux
Journal, #50, June 1998.

[6] A. Butt et al, “Kosha: A Peer-to-Peer Enhancement for the
Network File System”, Supercomputing, 2004.

[7] B. Callaghan, B. Pawlowski, P. Staubach, “NFS Version 3
Protocol Specification”, RFC 1813, Network Working Group,
June 1995.

[8] B. Callaghan, T. Lyon, “The Automouner”, Winter 1989
USENIX Conference, pp 43-51, 1989.

[9] M. Carson, D. Santay, “NIST Net - A Linux-based Network
Emulation Tool”, SIGCOMM Computer Communication
Review, Volume 33, Issue 3, July 2003.

[10] V. Cate, “Alex - A Global Filesystem”, USENIX File
System Workshop, May 1992.

[11] J. Daemen, V. Rijmen, “AES Proposal: Rijndael”, 1999.
[12] T. Dierks, E. Rescorla, “The Transport Layer Security (TLS)

Protocol”, RFC 4346, April 2006.
[13] M. Eisler, “LIPKEY - A Low Infrastructure Public Key

Mechanism Using SPKM”, RFC 2847, June 2000.
[14] M. Eisler, A. Chiu, L. Ling, “RPCSEC_GSS Protocol

Specification”, RFC 2203, September 1997.
[15] A. Ferrari, F. Knabe, M. Humphrey, S. Chapin, A. Grimshaw,

“A Flexible Security System for Metacomputing
Environments”, 7th International Conference on High-
Performance Computing and Networking, April 1999.

[16] R. J. Figueiredo, N. Kapadia, J. A. B. Fortes, “Seamless
Access to Decentralized Storage Services in Computational
Grids via a Virtual File System”, Cluster Computing, 7(2),
April 2004.

[17] A. O. Freier, P. Karlton, P. C. Kocher, “The SSL Protocol
Version 3.0”, Internet Draft, 1996.

[18] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke,
“Condor-G: A Computation Management Agent for Multi-
Institutional Grids”, Cluster Computing, Volume 5, Issue 3,
July 2002.

[19] I. Foster (ed) et al, “Modeling Stateful Resources using Web
Services”, White Paper, March 5, 2004.

[20] A. S. Grimshaw, A. Ferrari, F. Knabe, M. Humphrey,
“Wide-Area Computing: Resource Sharing on A Large
Scale”, Computer, 32(5):29–37, May 1999.

[21] P. Honeyman, W. A. Adamson, S. McKee, “GridNFS:
Global Storage for Global Collaborations”, Local to Global
Data Interoperability - Challenges and Technologies, 2005.

[22] R. Housley et al, “Internet X.509 Public Key Infrastructure
Certificate and CRL Profile”, RFC 2459, January 1999.

[23] J. Howard et al, “Scale and Performance in a Distributed File
System”, ACM Transactions on Computer Systems, Volume
6, Issue 1, 1998.

[24] M. Humphrey, “From Legion To Legion-G To OGSI.NET:
Object-Based Computing For Grids”, 17th International
Parallel and Distributed Processing Symposium, 2003.

[25] M. Kaminsky et al, “Decentralized User Authentication in a
Global File System”, 19th ACM Symposium on Operating
Systems Principles, 2003.

[26] N. H. Kapadia, J. A. B. Fortes, “Punch: An Architecture for
Web-enabled Wide-area Network-Computing,” Cluster
Computing, vol. 2, no. 2, 1999.

[27] J. Katcher, “PostMark: A New File System Benehmark”,
Technical Report TR-3022, Network Appliance, 1997.

[28] Kalle Kaukonen, Rodney Thayer, “A Stream Cipher
Encryption Algorithm ‘Arcfour’”, Internet Draft, 1999.

[29] J. Kubiatowicz et al., “OceanStore: An Architecture for
Global-Scale Persistent Storage”, 9th International
Conference on Architectural Support for Programming
Languages and Operating Systems, November 2000.

[30] J. Linn, “Generic Security Service Application Program
Interface”, RFC 1508, September 1993.

[31] J. Linn, “The Kerberos Version 5 GSS-API Mechanism”,
RFC 1964, June 1996.

[32] M. Litzkow, M. Livny, M. W. Mutka, “Condor: a Hunter of
Idle Workstations”, 8th International Conference on
Distributed Computing Systems, 1988.

[33] D. Mazières, “A Toolkit for User-Level File Systems”,
USENIX Technical Conference, June 2001.

[34] D. Mazières, M. Kaminsky, M. F. Kaashoek, E. Witchel,
“Separating Key Management from File System Security”,
Symposium on Operating Systems Principles, 1999.

[35] W. Norcott, “The IOzone Filesystem Benchmark”, URL:
www.iozone.org

[36] L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke,
“A Community Authorization Service for Group
Collaboration”, 3rd International Workshop on Policies for
Distributed Systems and Networks, 2002.

[37] S. Rhea et al, “Pond: The Oceanstore Prototype”, 2nd
USENIX Conference on File and Storage Technologies,
2003.

[38] Y. Saito et al, “Taming Aggressive Replication in the
Pangaea Wide-area File System”, 5th Symposium on
Operating Systems Design and Implementation, 2002.

[39] M. Satyanarayanan, “Scalable, Secure, and Highly Available
Distributed File Access”, IEEE Computer, 23(5), May 1990.

[40] S. Shepler et al, “Network File System (NFS) Version 4
Protocol”, RFC 3530, April 2003.

[41] Sun Microsystems, Inc., “NFS: Network File System
Protocol specification”, RFC 1094, March 1989.

[42] V. Welch et al, “Security for Grid Services”, 12th IEEE
International Symposium on High Performance Distributed
Computing, 2003.

[43] B. White, M. Walker, M. Humphrey, A. S. Grimshaw,
“LegionFS: A Secure and Scalable File System Supporting
Cross-Domain High-Performance Applications”,
Supercomputing, 2001.

[44] M. Zhao, V. Chadha, R. J. Figueiredo, “Supporting
Application-Tailored Grid File System Sessions with WSRF-
Based Services”, 14th IEEE International Symposium on
High Performance Distributed Computing, July 2005.

[45] M. Zhao, J. Zhang, R. J. Figueiredo, “Distributed File
System Virtualization Techniques Supporting On-Demand
Virtual Machine Environments for Grid Computing”, Cluster
Computing, Volume 9, Number 1, January 2006.

[46] M. Zhao, R. J. Figueiredo, “Application-Tailored Cache
Consistency for Wide-Area File Systems”, 26th International
Conference on Distributed Computing Systems, July 2006.

[47] “The Keyed Hash Message Authentication Code (HMAC)”,
FIPS Pub 198, National Institute of Standards and
Technology, 2002.

[48] “Open Source Version of AFS”, URL: www.openafs.org
[49] “OpenSSL: The Open Source toolkit for SSL/TLS”, URL:

www.openssl.org
[50] “SPEC HPC96 Benchmark Suite”, URL:

www.spec.org/hpc96
[51] “TI-PRC”, URL:

nfsv4.bullopensource.org/doc/tirpc_rpcbind.php
[52] “Web Services Secure Conversation Language”,

URL:www6.software.ibm.com/software/developer/library/w
s-secureconversation.pdf

[53] “Web Services Security Policy Language”,
URL:www6.software.ibm.com/software/developer/library/w
s-secpol.pdf

[54] “WS-Security Specification”, URL: www.oasis-
open.org/specs/index.php#wssv1.0

[55] “WSRF::Lite”, URL:
www.sve.man.ac.uk/Research/AtoZ/ILCT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

