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ABSTRACT 
A grid-wide distributed file system provides convenient data 
access interfaces that facilitate fine-grained cross-domain data 
sharing and collaboration. However, existing widely-adopted 
distributed file systems do not meet the security requirements for 
grid systems. This paper presents a Secure Grid File System 
(SGFS) which supports GSI-based authentication and access 
control, end-to-end message privacy, and integrity. It employs 
user-level virtualization of NFS to provide transparent grid data 
access leveraging existing, unmodified clients and servers. It 
supports user and application-tailored security customization per 
SGFS session, and leverages secure management services to 
control and configure the sessions. The system conforms to the 
GSI grid security infrastructure and allows for seamless 
integration with other grid middleware. A SGFS prototype is 
evaluated with both file system benchmarks and typical 
applications, which demonstrates that it can achieve strong 
security with an acceptable overhead, and substantially 
outperform native NFS in wide-area environments by using disk 
caching. 

1. INTRODUCTION 
Distributed “Grid” computing systems have been successfully 
applied in several domains of science, providing for sharing of 
resources and data across administrative boundaries. A key 
challenge arising in such systems is data management - how to 
seamlessly provide data to applications and users in wide-area 
environments. In the absence of widely deployed grid-wide 
distributed file systems (DFSs), existing solutions are often based 
on explicit file transfer (“staging”), or require users to program 
applications with specific grid-enabling APIs. Nonetheless, a 
grid-wide file system can facilitate data access and sharing by 
exposing familiar interfaces of local area DFSs (such as NFS 
[41][7][40]) to users. It is also desirable for applications that 
cannot be modified, require implicit data access, have complex 
access patterns, operate on large and sparse data sets, or require 
fine-grained data sharing, because data transfers can be performed 
on-demand, on a per-block basis.  

Security is one of the most important concerns for data 
management in grid environments, where data are shared across 

organizations with limited mutual-trust, and stored and transferred 
on resources with limited security. Providing secure grid-wide 
data access is a challenging task with existing DFSs. In a grid 
system, virtual organizations are dynamically established, 
applications and services are dynamically initiated, and entities 
and trust are dynamically created. Conventional DFSs are not 
capable to meet this challenge, because they are designed for 
general file system usage (typically for LANs), and favor static, 
homogeneous configurations – rather than the dynamic 
environments encountered in grid deployments. 

Nonetheless, recent work has shown the feasibility of applying 
user-level techniques to build wide-area file systems on top of 
existing kernel implementations [34][16]. Examples of systems 
that use NFS to mount grid data are found in the middleware of 
Legion [43], PUNCH [26], and In-VIGO [1]. This paper proposes 
such a user-level solution that addresses the aforementioned 
challenges with a Secure Grid File System (SGFS). It enables 
secure network communications based on mature technologies 
(SSL/TLS [17][12]), and employs widely-accepted security 
tokens (X.509/GSI certificates [42]) to provide compatible grid 
authentication and flexible access control. SGFS allows data 
sessions to be created on a per-user or per-application basis, and 
such sessions can be customized with respect to the security 
policies and mechanisms. Furthermore, it leverages service-based 
middleware with standards-conforming security (WS-Security 
[54]) to manage and configure the sessions. 

Overall, the proposed approach makes the following contributions: 
1) it achieves strong security for grid-wide file systems; 2) it 
leverages user-level techniques that support unmodified 
applications and operating systems; 3) it supports flexible 
selection of security configurations for file systems based on user 
and application needs; 4) it conforms to the grid security 
infrastructure (GSI) and therefore can be easily integrated with 
other grid middleware and systems. 

The paper evaluates an implementation of SGFS with file system 
benchmarks (IOzone and PostMark), and applications capturing 
the behavior of both interactive access to data in a development 
environment (MAB) and scientific computing that exhibits a mix 
of CPU and I/O activity (Seismic). Experiments were conducted 
in a LAN to study the overhead from the user-level techniques, 
and also in an emulated WAN setup which captures the target 
environment for SGFS. Results from this analysis demonstrate 
that the solution achieves strong security with reasonable 
overhead, and a tradeoff can be made to balance the performance 
and security strength for the file systems. It also shows that SGFS 
can effectively hide high network latencies using disk caching and 
deliver efficient data access in wide-area environments, which 
substantially outperforms native NFS. 
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The rest of this paper is organized as follows: Section 2 describes 
the background and related work; Section 3 and 4 explain the 
design and implementation details; Section 5 discusses the 
deployment, Section 6 presents the experimental evaluation and 
Section 7 concludes the paper. 

2. Background and Related Work 
2.1 File System Virtualization and Enhancements 
Traditionally DFSs are designed for general file system usage, 
implemented in operating systems, and deployed by 
administrators at the granularity of a collection of users. There are 
no mechanisms that allow a DFS to be customized to support 
application- or user-tailored configurations. In contrast, user-level 
techniques can be leveraged to extend and enhance kernel file 
system functionality based on loop-back proxies - in essence, 
virtualizing DFSs by means of intercepting RPCs (Remote 
Procedure Calls) of protocols such as NFS.  

A grid-wide file system (GFS) can be built upon the virtualization 
of NFS [16][45], and Figure 1 shows such an example. The native 
NFS server exports the shared filesystem /GFS/X to the localhost, 
and users outside the localhost can only mount it via the server-
side proxy. The proxy inspects every incoming RPC request, 
checks the message’s user credentials against a GFS exports file, 
and then forwards the authorized request to the NFS server to 
complete the data access. Meanwhile, user credential mapping is 
also performed by the proxy between the account where X’s job is 
running and the one where X’s files are stored. 

GFS sessions can be dynamically created on a per-
application/user basis (Figure 2). Each session can be customized 
individually according to the data access requirements or 
characteristics on a variety of aspects, e.g. the use of disk caching 
and its parameters. Service-base middleware can be used to 
manage the life-cycles and configurations of the sessions [44]. 

Related work has studied using user-level techniques to improve a 
variety of aspects of DFSs: The Sun Automounter [8] mounts file 
systems when they are referenced; CFS [3] supports a 
cryptography file system; Alex [10] enables FTP browsing via a 
file system interface; Kosha [6] implements peer-to-peer routing; 
Pangaea [38] supports aggressive replication; [46] enables 
application-tailored cache consistencies; Pond provides an NFS 

interface to OceanStore [37]; and LegionFS [43] provides a file 
system interface to Legion [20]. While related to these efforts, 
this paper focuses on applying user-level security mechanisms to 
address the limitations of kernel DFSs in order to provide a secure 
grid-wide file system. 

2.2 Secure Distributed File System 
Existing DFSs have diverse security designs and strengths. Earlier 
versions (V2 [41] and V3 [7]) of NFS rely on UNIX-style 
authentication, with user and group IDs. Although stronger 
authentication flavors are defined in the specifications, they have 
not prevailed in deployments. There is also no support for privacy 
and integrity in these versions, and NFS RPC messages can be 
easily spoofed, altered and forged. Strong security has not been 
available until the latest version (V4 [40]), which mandates the 
support of the RPCSEC_GSS flavor [14]. RPCSEC_GSS provides 
RPC-layer security based on the GSS-API [30], and a conforming 
NFS V4 implementation must support two security mechanisms, 
Kerberos V5 [31] and LIPKEY [13].  

All NFS versions use an exports file to specify the hosts that are 
allowed to access an exported directory. The ACCESS procedure 
call was introduced in NFS V3 to provide fine-grained access 
control using POSIX-model ACLs, but again it is not widely used 
in practice. NFS V4 improves upon this by providing Windows 
NT-model ACLs which have richer semantics and wider 
deployments. In addition, NFS V4 represents users and groups 
with string IDs instead of integers, which facilitates cross-domain 
identity mapping. 

Another important family of DFSs, Andrew File System (AFS 
[39]) and its successors (OpenAFS [48] and Coda [5]) use 
Kerberos-based systems to provide strong security. Access control 
is achieved by associating an ACL with directories that list 
positive or negative rights for a user or group. Kerberos relies on 
centralized control and works well within an Intranet. But cross-
domain security is difficult to set up because it requires the 
involved administrations to negotiate a trust relationship. 

None of these conventional DFSs has been designed to support 
grid security requirements. There is also related work on 
extending DFS security at kernel-level. In particular, the GridNFS 
[21] project develops a GSI-compatible security in NFS V4. 
However, such a design requires kernel support that is difficult to 
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deploy across shared grid environments, and it faces the same 
limitations as kernel DFSs, that is, it is unable to employ per-user 
or per-application security configurations. In contrast, a SGFS-
style user-level solution can support flexible customization of grid 
file systems based on individual application and user needs. 

User-level techniques can achieve privacy and integrity of NFS 
through secure tunneling, where SSH or SSL can be leveraged to 
establish a secure end-to-end connection between the client and 
server for NFS traffic [4]. A secure tunnel multiplexed by users 
faces the same limitations as NFS, since RPC-layer mechanism is 
still required for authentication and authorization within the 
tunnel. A session-key based inter-proxy authentication can be 
used along with secure tunneling to provide security for grid file 
systems [45] (Figure 1). In this model, per-session SSH channels 
are created to ensure privacy and integrity of each file system 
session, while the client- and server-side proxies perform 
authentication and authorization using a session key dynamically 
created and securely distributed by middleware.  

The key advantages of such an approach are in that existing RPC-
based clients and servers can be reused without modifications, and 
it leverages mature security technologies. However, it requires 
additional middleware to set up tunnels and keys, and its 
performance also suffers from the overhead of double user-level 
forwarding. In addition, it is not compatible with grid security 
standards, which presents a hurdle to the interoperability with 
other grid middleware. The proposed SGFS inherits the merits of 
this approach and addresses its limitations by protecting RPC 
communication directly with SSL, without the addition of 
tunneling, and uses widely-accepted grid security tokens to 
provide compatible authentication and authorization. 

Self-certifying File System (SFS [34]) also leverages user-level 
loop-back client and server to enhance DFS security. It addresses 
the problem of mutual authentication between a file server and 
users by providing self-certifying pathnames for files. Such a 
pathname has the server’s public key embedded inside, which is 
used by a client to verify the authenticity of the server, and then 
create a secure channel to protect the file system traffic. SFS is 
then extended to provide decentralized access control, in which 
users are allowed to create file sharing groups with ACLs in the 
file system [25]. When a user tries to access a file, the 
authentication server fetches the user’s credentials and uses them 
along with the ACL to authorize the access. Compared to SFS, the 
proposed SGFS focuses on providing data access that meets the 
grid security requirements, and supports per-user/application file 
system customization. 

2.3 Grid Security Standards 
In [42] several key requirements were studied for a grid security 
model, including the support for multiple security mechanisms, 
dynamic creation of services, and dynamic establishment of trust 
domains. This research resulted in a de facto grid security 
standard, GSI, which is built upon the Public Key Infrastructure 
(PKI). In PKI-based grid security, a public key certificate (e.g. 
X.509 [22]) along with its associated private key uniquely 
identifies a grid user and is used for authentication. The certificate 
is often validated by checking the signature of its issuer, a trusted 
party known as a certificate authority (CA). Then the user identity 
is checked against certain access control mechanism (e.g. gridmap 
file in GSI, MayI layer in Legion [15]) for authorization. In 

addition, public key technologies can also encrypt and digitally 
sign a message in order to protect its privacy and integrity. 
Another important grid security requirement is delegation, which 
allows a service to act on behalf of a user. This can also be 
supported with extensions to public key certificates, e.g. proxy 
certificates in GSI and credentials in Legion. 

Grid security can be implemented at two different levels.  
Transport level security [17][12] uses public key certificates to 
create a secure socket layer connection between two end-points 
and protect the data exchanges between them. It is a mature 
technology that has high-performance implementations (e.g. 
OpenSSL [49]), but it lacks service-level semantics and does not 
work for multi-hop connections. Message level security is a suite 
of standards arising from the emerging Web service technologies 
[54][52][53], which provides security at the layer of SOAP 
messaging. It is agnostic to transport layer protocols and 
connections, and supports more service-level functionalities. 
However, its performance is not comparable to transport level 
security because XML processing is expensive and it lacks 
efficient implementations. In this paper, a two-level security 
architecture that exploits the advantages of both approaches is 
proposed for the SGFS-based grid data management. 

In the related data management solutions, GSI-based GridFTP [2] 
provides API for programming grid data access, and RFT is a web 
service for reliable file transfer using GridFTP; Legion [20] is an 
object-based grid system, which employs a modified NFS server 
to provide access to file objects, and it also integrates GSI in 
Legion-G [24]; the Condor system [32] uses system call 
interception or application relinking to support remote I/O, and it 
also supports GSI in Condor-G [18]. This paper proposes a grid-
wide file system with compatible security mechanisms with these 
efforts. It differentiates from and also complements them in that 
SGFS-based data sessions allow unmodified application binaries 
to access grid data using existing kernel clients and servers, and 
support application-tailored per-session customizations. 

3. Design 
This paper proposes a two-level security architecture for SGFS-
based grid data management (Figure 3). It leverages transport 
level security to protect the file system traffic of SGFS, and 
employs message level security to secure the interactions with the 
management services. Both layers utilize widely-accepted 
security tokens (X.509/GSI certificates) to support grid user 
authentication and file access control. The rest of this section 
presents this architectural design, followed by the implementation 
details in the next section. 

3.1 Secure Data Access 
Secure data access in SGFS is provided by transport level security 
mechanisms, which enable an efficient secure end-to-end 
connection between client- and server-side proxies to protect RPC 
communications. In order to create a SGFS session for a grid user 
to access a file server, public key based user and server 
certificates are used to establish the mutual authentication 
between the proxies. (A user certificate can be the user’s grid 
identity certificate, or a proxy certificate issued by the user that 
supports delegation.) After a successful authentication, a shared 
key is negotiated between the two parties and is used to encrypt 
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the SGFS traffic, while the integrity can also be provided using 
digital signatures or Message Authentication Code (MAC). 

An authenticated user’s certificate is used by the server-side 
proxy to make authorization decisions, i.e. whether to grant the 
user’s access to the exported files. This is achieved using a grid-
style ACL mechanism which associates file system access 
permissions with the grid user’s identity in the certificate. Such an 
access control is provided with different granularities allowing for 
flexible selection per session needs. For an authorized data access 
request, necessary identity mapping is also performed by the 
server-side proxy so that the request can be successfully executed 
on the file server.  

The choice of security mechanisms and policies is flexible and 
customizable per SGFS session, in order to satisfy different 
security requirements from users and applications. This is 
important because such configurations have implications on both 
security and performance. For example, if the data transferred by 
SGFS is not confidential, encryption can be avoided to improve 
the data access performance, while digital signatures can still be 
employed to protect its integrity. In contrast, for a SGFS session 
created for highly sensitive data, encryption must be enabled with 
strong ciphers which require substantial CPU cycles to compute. 

3.2 Secure Management Services 
SGFS can be directly used by grid users to enable flexible data 
sharing. In a large grid system, where many SGFS sessions are 
dynamically created, the management services offer better 
capability of controlling the sessions and coordinating the data 
access. As illustrated in Figure 2, the File System Service (FSS) 
runs on every client and server and controls the local proxies to 
establish and configure SGFS sessions; and the Data Scheduler 
Service (DSS) provides the scheduling and customization of 
sessions through the interactions with client- and server-side FSSs. 

To create a SGFS session through the services, a grid user or a 
service that acts on behalf of the user needs to authenticate with 
DSS using the user’s certificate. Authorization is also performed 
by checking the certificate against an ACL, or consulting a 
dedicated authorization service. An authorized user can then 
proceed to delegate the management services the right to create a 
SGFS session on behalf the user: the DSS uses the user’s 
certificate to interact with the client- and server-side FSSs, which 
in turn configure the proxies to use this certificate to establish a 
secure file system session. 

Security for service interactions is enabled at the message level 
(Figure 3). Despite the performance inefficiency, message level 
security offers great functionality at the service level, which is 
necessary for the management services to use and interact with 
other high-level services. These services are not in the critical 
path of grid data access; they are only involved infrequently when 
control is needed on a SGFS session, specifically, when creating, 
configuring and destroying a session. Therefore, the use of more 
expensive security mechanisms does not hurt an established SGFS 
session’s I/O performance, and has negligible overhead compared 
to a session’s lifecycle. 

4. Implementation 
4.1 SSL-enabled Secure RPC 
Secure communication for NFS RPC is achieved using transport 
layer security protocols (SSL/TLS [17][12] - referred to generally 
as SSL). Although secure RPC can be realized at the RPC-layer 
itself (RPCSEC_GSS [14]), several factors have motivated the 
use of SSL: it has very mature and efficient implementations, 
which have been successfully employed by many important 
applications; it supports a wide range of algorithms, which can be 
leveraged to support flexible security configurations; SGFS 
sessions are established on per-user/application basis, and thus 
can use SSL to provide full-featured security without using any 
RPC-layer mechanisms. 

A SSL-enabled secure RPC library has been developed for SGFS 
based on two key packages, TI-RPC [51] and OpenSSL [49]. TI-
RPC (Transport Independent RPC) is the replacement for the 
original transport-specific RPC. It allows distributed applications 
to transparently support RPC over connectionless and connection-
oriented transports for both IPv4 and v6. OpenSSL is an excellent 
implementation of SSL, and has recently included the support for 
datagram protocols (DTLS). Therefore, these tools can be 
effectively utilized to build a secure RPC library that supports 
both TCP and UDP. 

In this library secure RPC APIs are provided in a way that closely 
resembles the regular RPC APIs. For example, clnt_tli_ssl_create 
and svc_tli_ssl_create are two expert-level APIs for creating a 
RPC client and server, respectively, using a secure transport for 
communications. These APIs take the same parameters as their 
regular counterparts with an additional one for the security 
configuration structure. The use of authentication, encryption and 
MAC as well as their specific algorithms can be specified through 
this structure and passed on to the library to create secure 
transports for RPC with the desired security mechanisms.  

This secure RPC library is generic to support all RPC-based 
applications. The fact that both TI-RPC and OpenSSL are 
standalone packages helps its use by ordinary users without the 
need to change any system-level configurations. The current 



implementation is based on Linux; support for other platforms is 
also conceivable. 

4.2 GSI-based SGFS Proxy 
The SGFS proxies are developed based on our previous work of 
virtual file system proxies [16][45]. They are enhanced to use the 
SSL-enabled secure RPC library for communications, and are also 
extended with the capability of parsing and validating GSI-based 
certificates. Using these proxies to establish a grid-wide file 
system, the privacy and integrity of data access are protected in 
the secure RPCs, while grid authentication and authorization are 
performed based on the user and server certificates. 

A SGFS proxy is configured by a user or service through a 
configuration file, which is useful for customizing several 
important aspects of a SGFS session (e.g. the use of disk caching 
and its parameters). This configuration mechanism is augmented 
to include the security configurations, including the algorithms for 
authentication, encryption and MAC, and the paths to user, host 
and trusted CA certificates. In this way, both the client- and 
server-side proxies can be properly configured to use the grid 
user’s and server’s certificates to authenticate with each other, 
and set up a data session with the desired security mechanisms 
and policies. 

A SGFS session’s security customization can also be reconfigured 
by signaling the proxies to reload the configuration files. Such a 
dynamic reconfiguration is very useful in many important 
scenarios. For example, it can force a proxy to reload the 
certificate when the original one is expired or believed to be 
breached. It can reset a session’s security setup when the desired 
configuration is changed. It can also be used to force a SSL-
renegotiation and refresh the session key for a long-lived session. 
In fact, a proxy can be configured with a timeout value to enable 
periodical automatic renegotiation. 

4.3 Grid File Access Control 
After a successful mutual authentication, the grid user’s certificate 
presented by the client-side proxy is cached by the server-side 
proxy and used for authorization of the data requests received 
from this session. The user credentials (UNIX user and group ID) 
in each NFS RPC message are from the client-side account 
allocated for a grid user or job. They do not represent the grid 
user’s identity, and cannot be used for the purpose of 
authorization, but they are still necessary for the identity mapping. 
For each authorized RPC request, these credentials are mapped to 
a local user account’s credentials, which are then used by the 
kernel NFS server to grant access to files. This authorization and 
mapping are determined by the grid file access control policies. 

With GSI-enabled proxies, a variety of ACL mechanisms can be 
employed to enforce access control for SGFS sessions. The basic 
mechanism is based on a gridmap file similarly to GSI’s, which 
provides access control per exported filesystem. This file 
describes the mapping between a user’s grid identity 
(distinguished name) in the certificate and a local account’s name. 
If a mapping exists for a user in the gridmap file, the user gains 
the same access rights to the exported filesystem as the 
corresponding local user. Otherwise, the user is mapped to an 
anonymous user, or denied access completely, depending on the 
session’s configuration. In SGFS, the gridmap file can be set up 
on a per-session basis to enable flexible sharing. For example, if a 
user wants to share her files with another user, she only needs to 

add the mapping between that user’s distinguished name and her 
local account name in the session’s gridmap file. 

Fine-grained access control is realized by leveraging the ACCESS 
procedure call available in NFS V3. Each file or directory can 
have an ACL file associated with it (under the same path and 
named in the style of .filename.acl). A user or service can grant or 
deny a user’s access to a file or directory by putting the user’s 
distinguished name inside the corresponding ACL file along with 
a bit mask encoding the access permissions. (Only the NFS V3 
style ACL is supported in the current implementation.) Upon 
receiving an ACCESS request, the server-side proxy checks the 
user’s grid identity against the requested file/directory’s ACL, 
and returns the corresponding bit mask if the user is found in the 
ACL, or a zero which disables all access permissions.  

A file or directory automatically inherits its parent’s ACL if it 
does not have a dedicated ACL file. This inheritance mechanism 
can reduce the management complexity of ACLs. For the reason 
of performance, the ACLs are cached in memory by the server-
side proxy once they are read from disk. The ACL files are 
protected by the server-side proxy from remote access, and can 
only be modified by the local owner of the files manually, or 
through an authorized service as explained later. Note that in the 
SGFS security model, the NFS server delegates the access control 
of the exported filesystems completely to the proxies. So the ACL 
mechanisms in kernel (except the kernel exports file) are no 
longer useful and should be disabled to avoid overhead. 

4.4 GSI-based Management Services 
The SGFS management services are implemented using 
WSRF::Lite [55], a Perl-based implementation of WSRF (Web 
Services Resource Framework [19]). This tool supports signing 
and verifying of SOAP messages using X.509 certificates 
according to the WS-Security standard, which is utilized to enable 
grid security at the service level. The resulting SGFS services can 
securely communicate with each other, use the grid user and 
server certificates to perform authentication and authorization, 
and then control the SGFS proxies to use these certificates to 
establish a secure file system session. 

As mentioned earlier, the management services are responsible 
for creating and customizing SGFS-based data sessions on behalf 
of grid users or services. These operations are provided through 
web service interfaces, which conform to the WSRF standard; 
while the security of the service-level interactions also follows 
web service security standards and is compatible to GSI. This is 
important to provide interoperability with other grid services, e.g. 
to serve a job scheduler which needs to prepare data access for the 
jobs submitted to a grid resource. 

The SGFS services support flexible grid file access control using 
the aforementioned mechanisms. Per-filesystem based ACLs are 
stored in the DSS database, and used to automatically create 
gridmap files that are used by the server-side proxies for the 
corresponding SGFS sessions. For fine-grained access control, the 
services manage the per-file/directory ACLs through the server-
side proxies that are responsible for exporting the filesystems. In a 
large grid system, the access control to grid resources is often 
dedicated to the virtual organization’s security service (e.g. a 
Community Authorization Service [36]). In this case, the SGFS 
services can consult this security service for file access control 
decisions based on individual grid users, or groups of users. 



5. Deployment 
SGFS can be conveniently deployed on grid resources because it 
does not require any modifications to either applications or 
kernels. It also obeys the least privilege principle in that the 
proxies and services work completely at user level and use 
unprivileged network ports, and they can be managed using a 
single regular user account (e.g. user gfs) on each host. On the 
server-side, the only privilege required is the configuration of a 
host-wide exports file used by the kernel NFS server. This can be 
restricted to a single entry in the exports file by organizing all the 
grid-accessible filesystems under a single path (e.g. /GFS), which 
need only be exported to the localhost. On the client-side, the use 
of file system mount and un-mount is necessary, and it can also be 
minimized by giving only the local SGFS management account 
the permission to use sudo or a setuid program to mount and un-
mount SGFS sessions to a restricted path (e.g. /GFS).  

To use SGFS (with or without the services), it is not necessary for 
a grid user to have a personal account on the client or server. The 
services and proxies create a secure file system session on behalf 
of the user between the account where her job is running and the 
account where her files are stored. These job and file accounts are 
often provided by mapping a grid user to a local user [42], or 
allocated on-demand for dynamically submitted jobs [16]. 

6. Performance 
6.1 Setup 
A prototype of the proposed SGFS is evaluated in this section 
with experiments. File system benchmarks (IOzone and Postmark) 
are used to investigate the overhead of achieving strong security 
under intensive I/O load. Benchmark applications modeling 
workloads in software development and scientific computing are 
also employed to study its performance with typical file system 
usages. 

Both LAN and WAN environments are considered in the 
experiments. LAN-based runs study the overhead from the user-
level techniques, while tests in an emulated WAN reveal its 
performance for the targeted grid environments. NIST Net [9] is 
used to emulate different wide-area network latencies. The file 
system client and server as well as the NIST Net router are set up 
on VMware-based virtual machines. They are hosted on separated 
physical servers connected via Gigabit Ethernet. Each physical 
server has dual 3.2GHz hyperthreaded Xeon processors and 4GB 
of memory. The client and server VMs are both configured with 1 
CPU, and have 256MB and 768MB memory respectively.  

The use of a network emulator and virtual machines facilitates the 
quick deployment of a controllable and replicable experimental 
setup. However, the timekeeping within a virtual machine may be 
inaccurate so the system clock on a physical server is used to 
measure time, which suffices the granularity required by this 
evaluation. All the experiments were conducted on virtual 
machines running on dedicated physical servers without 
interference from other workloads. 

Different (secure) DFS setups are experimented, including: 

Nfs-v3 and nfs-v4: The native kernel-level NFS V3 and V4 
provide the baseline performance for comparison. Although not 

evaluated here, kernel-level secure NFS solutions (e.g. Kerberos-
enabled NFS, GridNFS) can be expected to have worse 
performance than their results. Kernel NFS implementations use 
only memory for caching and revalidate the cached data when the 
file is reopened or its attributes have timed out. NFS-V4 can also 
provide delegation, which allows a client to aggressively cache 
data, but this feature is not yet widely supported. 

Gfs and gfs-ssh: The basic Grid File System [16] without any 
security enhancements, and the SSH-enabled secure GFS [45]. 
Their results demonstrate the overhead from the user-level RPC 
processing and SSH tunneling. 

Sfs: The related work of Self-certifying File System [34] - another 
NFS-based user-level secure file system. The overhead from the 
user-level techniques can also be observed from its performance. 
SFS aggressively caches attributes and access permissions in 
memory, which can improve metadata operations. 

Sgfs: The approach proposed in this paper. By comparing to the 
above systems, the experiments examine the performance of the 
SSL-enabled strong authentication, privacy and integrity. 
Aggressive disk caching of attributes, access permissions and data 
are used in the WAN-based tests, so those results also reflect the 
potential performance improvement from that. 

In all of the above setups, the server exports the filesystem with 
write delay and synchronous update, and the client accesses the 
server using TCP and 32KB read and write block sizes. 

The experiments only consider file systems dedicated to a single 
user or job. For scenarios where multiple users/jobs share the data 
concurrently, different application-tailored cache consistency 
protocols can be applied in SGFS, which overlay upon the native 
NFS consistency mechanisms and provide improvements to both 
performance and consistency. A detailed discussion and 
evaluation can be found in [46]. 

All the experiment results are reported with the average and 
standard deviation values from multiple runs. Every run was 
started with cold client-side caches by unmouting the file system 
and flushing the disk cache. 

6.2 Filesystem Benchmarks 
6.2.1 IOzone 
IOzone [35] analyzes a file system’s performance by performing 
read and write operations on a large file with a variety of access 
patterns. In this experiment, it is executed on the client in 
read/reread mode, which sequentially reads a 512MB file twice 
from the server. Since the client has only 256MB of memory, the 
buffer cache doe not help with its LRU-based replacement for the 
benchmark’s sequential reads. In fact, the client needs to read a 
total of 1GB data from the server during the execution. On the 
server side, the file is preloaded to the memory before each run, 
so there is no actual disk I/O involved in the tests. This “extreme” 
intensive setup reveals the worst-case overhead from SGFS’ user-
level virtualization and security enhancements. 

The experiments evaluate various SGFS configurations that have 
different security strengths, as follows:  
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Figure 4: IOzone runtime on the different file system setups 
in LAN. 

0

5

10

15

20

25

30

35

40

Time (second)

U
s
e

r
 
C

P
U

 
T

im
e

 
(
%

)

gfs

sgfs-sha

sgfs-rc

sgfs-aes

sfs

Figure 5: IOzone client-side CPU utilization of the user-level 
file system proxy/daemon. 

0

5

10

15

20

25

30

35

40

Time (second)

U
s
e

r
 
C

P
U

 
T

im
e

 
(
%

)

gfs

gfs-sha

gfs-rc

gfs-aes

sfs

Figure 6: IOzone server-side CPU utilization of the user-
level file system proxy/daemon. 

Sgfs-aes uses AES (Rijndael [11]) in CBC mode with 256bit key, 
a very strong cipher, to encrypt RPC traffic, and ensures integrity 
with SHA1-based HMAC [47]. 

Sgfs-rc uses RC4 (ARCFOUR [28]) with 128bit key, a 
“medium”-strength cipher for encryption, and also enables SHA1-
HMAC for integrity. 

Sgfs-sha does not use any encryption but still provides integrity 
using SHA1-HMAC. 

To compare with SGFS, in gfs-ssh the SSH tunnels are configured 
to use 256bit AES-CBC and SHA1-HMAC, which is similar to 
the sgfs-aes configuration; SFS provides privacy and integrity 
using a customized RC4 and SHA1-HMAC, which is close to the 
sgfs-rc setup. 

Figure 4 illustrates the runtimes of IOzone on the above DFS 
setups in LAN. The user-level file systems all show a slow down 
of more than two-fold compared to the kernel NFS 
implementations. However, such intensive workload is very rare 
in practice, and the user-level processing latency can often be 
overlapped with application “thinking” time or diminished by 
disk I/O latency. More importantly, in a WAN environment, the 
network latency becomes the dominant factor and renders the 
user-level latency negligible. User-level caching techniques can 
further hide the latency and improve the file system’s 
performance. These discussions will be validated with the 
experiment in Section 6.2.2. 

Comparing the different secure GFS configurations, sgfs-sha has 
the lowest overhead from the security enhancements (9% w.r.t. 
gfs), because it only calculates HMAC but does not perform any 
encryption/decryption on the file system traffic. With the use of 
encryption, the overhead is increased to 15% in sgfs-rc, and 50% 
in sgfs-aes. Gfs-ssh has a much higher overhead than the other 
ones (more than six-fold slowdown w.r.t. gfs). This can be at least 
partially attributed to the penalties from the double user-level 
forwarding:  for every RPC message, two network stack traversals 
and kernel-user space switches are required by GFS and SSH to 
process it. As discussed earlier, such an overhead is magnified by 
this intensive experiment setup.  

The proposed new SGFS approach removes this extra penalty, 
and thus improves the performance substantially. Notice that sgfs-
rc is about 15% slower than sfs, which is due to our less efficient 
prototype implementation. In contrast to SFS’ asynchronous 
RPCs, the use of blocking RPCs in SGFS prevents it from 
handling multiple outstanding requests simultaneously. A 
multithreaded implementation of SGFS is currently under 
development. 

The experiment also measures the overhead of the user-level file 
systems in terms of CPU utilization. The user time percentages 
for GFS/SGFS proxies and SFS daemons were collected every 5 
seconds throughout the benchmark’s execution.  The client- and 
server-side results are plotted in Figure 5 and 6 respectively. On 
the client, the basic GFS’ CPU usage is very low, averaging 0.6% 
and under 1% for all the time. For SGFS, the utilization goes up 
to 5% with SHA1-HMAC, and further increased to about 8% 
when encryption/decryption is also used (256bit-AES consumes 
slightly more CPU than 128bit-RC4). On the server, the CPU 
usage is even less for gfs, sgfs-sha and sgfs-rc, averaging 0.3%, 
1.5% and 3.6% respectively. All the SGFS configurations need 

less CPU than SFS which has more than 30% utilization on both 
sides. 



6.2.2 PostMark 
PostMark [27] is a more realistic file system benchmark that 
simulates the workloads from emails, news and web commence 
applications. It starts with the creation of a pool of directories and 
files (creation phase), then issues a number of transactions, 
including create, delete, read and append, on the initial pool 
(transaction phase), and finally removes all the directories and 
files (deletion phase). In contrast to the uniform, sequential data 
accesses used in the IOzone experiment, the file system is 
randomly accessed with a variety of data and metadata operations 
from PostMark. 

In this experiment, the initial number of directories and files are 
100 and 500 respectively, and the number of transactions is 1000. 
The transactions are equally distributed between create and delete, 
and between read and append. The file sizes range from 512B to 
16KB, and thus the benchmark excises mostly on metadata 
operations and small writes. 

Figure 7 shows the runtimes of each PostMark phase for the 
aforementioned DFS setups. The strong SGFS configuration sgfs-
aes is used for the rest of this section, and is denoted as sgfs from 
here on. For the creation and deletion phases, the runtimes of the 
secure file systems are all very close to the native NFS’ (gfs-ssh is 
marginally worse than the others). However, for the more 
intensive transaction phase, where a large number of small data 
and metadata updates are involved, only sgfs shows a close 
performance to NFS (V3), and it is better than sfs and gfs-ssh by 
17% and 14% respectively. 

The above experiment was conducted in a LAN environment, 
where the network round-trip time (RTT) between the file system 
client and server is about 0.3ms. Then it was repeated in the 
emulated WAN with different network latencies. Figure 8 
compares the total runtimes of PostMark on nfs-v3 and sgfs. 
Benefited from the use of disk caching, SGFS shows a very slow 
decrease in performance as the network latency grows. It is also 
significantly more efficient than native NFS in wide-area 
environments, and the speedup is about two-fold when the RTT is 
80ms. These results prove our earlier discussions that a user-level 
secure file system can be very efficient for grid-scale systems. 

Since no performance advantage has been observed in the version 
of NFS-V4 used in the experiments, only the results from NFS-
V3 are reported here, as well as in the following experiments. 
Note that even though improved delegation support in  V4 
implementations may lead to better  performance, SGFS  provides 
the unique feature of application-tailored per-session 
customization. 

6.3 Application Benchmarks 
6.3.1 Software Development 
This experiment models the typical software development process 
using a modified Andrew benchmark (MAB). It consists of four 
phases that exercise different aspects of a file system. The first 
phase (copy) makes a copy of a software source tree, which 
transfers a large number of small files within the file system. The 
second phase (stat) recursively examines the status of every file, 
and thus exercises metadata lookups intensively. The third phase 
(search) reads every file thoroughly to search for a keyword. The 
last phase (compile) compiles the entire source tree, which 

generates a large number of data and metadata operations. 
Because the original Andrew benchmark [23] uses a workload 
that is too light for today’s file systems, the source tree is replaced 
with the package of an OpenSSH client (openssh-4.6p1). It is a 3-
level source tree with 13 directories and 449 files, and the entire 
compilation generates 194 binaries and object files. 

The benchmark is executed on nfs-v3 and sgfs in both LAN and 
emulated WAN (with 40ms RTT), and the results are shown in 
Figure 9. Sgfs performs as well as nfs-v3 for the first three phases 
in LAN, and in the intensive compile phase, it shows a relatively 
small overhead of 14%. In WAN, SGFS caching effectively hides 
the network latency, and the total runtime of MAB is slowed 
down by only 2.5 times. Compared to nfs-v3, it is more than four 
times faster, and the speedup is approximately nine-fold, five-fold 
and eight-fold for the stat, search and compile phases respectively. 
Although not shown here, the performance of sgfs in LAN can 
also be improved if disk caching is used, in which the compile 
phase is only 2% slower than nfs-v3.  

6.3.2 Scientific Computing 
The second application benchmark uses a scientific tool, Seismic, 
which implements algorithms used by seismologists to locate 
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resources of oil. It is taken from the SPEC HPC96 suite [50], and 
its sequential version is used in the experiment. The execution 
consists of four phases: data generation (1), data stacking (2), 
time migration (3) and depth migration (4). Phase 1 prepares a 
large initial data file, and each of the following phases performs 
certain computation based on its previous phase’s output file and 
then generates its own results on disk. In the end, the intermediate 
outputs are removed and only the results from the last two phases 
are preserved. This benchmark models a grid application that is 
both I/O and computation intensive. 

This experiment was also conducted in both LAN and emulated 
WAN (with 40ms RTT). Based on the results shown in Figure 10, 
similar observations can be made as the previous experiment: in 
LAN, the performance of sgfs is very close to nfs-v3; in WAN, 
sgfs still delivers a good performance and is substantially better 
than nfs-v3. In phase 1, sgfs stores the large output entirely in 
cache with the use of write-back; in phase 2, a large number of 
reads can be satisfied from the data cached in disk, which are not 
available in memory; and at the end, sgfs also saves considerable 
time from writing back only the final results but not the temporary 
data to the server. Consequently, sgfs shows no slow down in 
WAN, and phase 2 in fact runs faster because disk caching is not 
enabled in LAN. Compared to nfs-v3, it is more than five times 
faster in the total runtime, and the speedup is about two-fold, 
forty-fold and four-fold for the first three phases respectively.  

7. Conclusions 
A grid-wide file system can provide users and applications with 
transparent access to grid data, but it must support strong security 
in order to be used in untrusted, cross-domain grid environments. 
Meanwhile, flexible, customizable security configurations are 
also desirable to meet different user and application needs. This 
paper presents a user-level secure grid file system (SGFS) that 
addresses these challenges. It employs SSL-enabled strong 
security, conforms to the GSI standard, supports flexible access 
control, and allows for customization of security mechanisms and 
policies. In addition, it leverages secure middleware services for 
the management of dynamic data sessions.  

This paper shows that secure grid data management can be 
effectively achieved using user-level file system techniques. The 
experiments based on a SGFS prototype also demonstrate that 
strong security can be provided with an acceptable overhead. The 
tradeoff observed between security strength and performance 
overhead proves that an application-tailored security 
configuration is very important. The results also show that the use 
of disk caching can help SGFS to hide high network latencies and 
deliver efficient secure data access in the targeted wide-area 
environments. 

This paper focuses on the security issues of network data access 
in grid systems; however, the data storage need also be protected 
from untrusted servers and administrators. Therefore, our future 
work will consider building user-level cryptographic functions 
into SGFS to ensure the privacy and integrity of data stored on the 
servers and provide a complete end-to-end grid data security. 

The secure RPC library and SGFS prototype developed in this 
paper, as well as the Modified Andrew Benchmark used in the 
experiments, are available at http://www.acis.ufl.edu/~ming 
/software. 
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