

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 756–770, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Cooperative Autonomic Management in Dynamic
Distributed Systems

Jing Xu1, Ming Zhao2, and José A.B. Fortes1

1 ACIS Lab, Electrical and Computer Engineering, University of Florida
2 Computing and Information Sciences, Florida International University

{jxu,fortes}@acis.ufl.edu
mzhao@fiu.edu

Abstract. The centralized management of large distributed systems is often im-
practical, particularly when the both the topology and status of the system
change dynamically. This paper proposes an approach to application-centric self-
management in large distributed systems consisting of a collection of autonomic
components that join and leave the system dynamically. Cooperative autonomic
components self-organize into a dynamically created overlay network. Through
local information sharing with neighbors, each component gains access to global
information as needed for optimizing performance of applications. The approach
has been validated and evaluated by developing a decentralized autonomic sys-
tem consisting of multiple autonomic application managers previously developed
for the In-VIGO grid-computing system. Using analytical results from complex
random network and measurements done in a prototype system, we demonstrate
the robustness, self-organization and adaptability of our approach, both theoreti-
cally and experimentally.

1 Introduction

Scalability, cost and administrative overheads make it desirable for large dynamic
distributed computing systems to be self-manageable. This is a particularly challeng-
ing goal in dynamic environments, such as grids, where large numbers of resources
are discovered or aggregated on-demand and are subject to hard-to-predict loads,
failures or off-times. With the increasing complexity of system management, the need
for self-managing systems, as proposed in [24], has never been more important than
today. Extensive research [11][12][22] has focused on providing autonomic capabili-
ties to individual system components, such as databases, application servers and mid-
dleware components. In general, these autonomic components use an application-level
manager that is capable of monitoring and/or predicting performance and allocating
resources as needed to deliver reliable applications with the expected Quality of Ser-
vice (QoS). One can envision the use of these or similar components and their auto-
nomic capabilities as the basic building blocks of large distributed systems.

Three questions that arise in this context are addressed in this paper. First, what in-
teractions should take place among individual components, in order to achieve system-
level self-management needed to support application-level autonomics? Implicit in this
question is the need for information sharing among different components. Second,

 Cooperative Autonomic Management in Dynamic Distributed Systems 757

what type of network should be used to support the interactions? Implicit in this ques-
tion is the need for the network to be highly scalable and robust to failures. Third, how
should autonomic managers be designed to interact with other components, and en-
hance their autonomic ability? Implicit in this question is the need for cooperation
among managers to efficiently collect and share information.

This paper proposes an approach for distributed-system self-management arising
from interactions among the autonomic components deployed in the system. The key
features of the proposed design are the effective use of components’ limited monitor-
ing and communicating capability, and their adaptation to the surrounding environment
on the basis of information provided through a management overlay. The proposed
system has the following properties:
• Self-adaptation: The system can dynamically respond to a changing environment

to provide individual application managers with information and resources
needed for achieving the desired QoS.

• Self-organization: The decentralized coordination enables the system to adapt to
changes without external control. The global optimization is achieved through lo-
cal decisions and interactions among neighbors.

• Robustness: There are no central resources that could become single points of
failure or performance bottlenecks. Reconfiguration mechanisms effectively deal
with dynamic resource availability.

An application of proposed approach in the context of the In-VIGO grid-computing
system [1], is presented in this paper. In-VIGO provides a distributed environment
where multiple application instances can coexist in virtual or physical resources. A
virtual application manager (VAM) is a middleware component used to process user
requests and manage application execution. Previous work considered the integration
of autonomic capabilities into VAM to achieve self-optimizing and self-healing com-
putation [22]. In this paper, a decentralized autonomic virtual application management
system (DAVAM) is designed and implemented to further improve the scalability,
efficiency and robustness. The DAVAM system is deployed on a large testbed that
consists of tens of dynamic VAMs managing continuous jobs on hundreds of virtual
machines with time-varying loads. Compared with our previously proposed centralized
approach, the DAVAM system produces much lower job execution time and higher
throughput in highly dynamic environments.

The rest of the paper is organized as follows. Section 2 describes the architecture of
the decentralized autonomic system. Section 3 presents an analytical analysis of the
system. The case study on DAVAM is presented in Section 4 and its experimental
evaluation is discussed in Section 5. Section 6 reviews related work and Section 7
concludes the paper.

2 Autonomic System Model

We consider a highly dynamic distributed computing system consisting of a large
collection of autonomic components [10]. Multiple components share distributed
resources, as exemplified by grid-computing systems.

758 J. Xu, M. Zhao, and J.A.B. Fortes

2.1 Autonomic Manager (AM) Model

The distributed system contains multiple autonomic components, each consisting of
one or more managed components (e.g. jobs and resources) and an autonomic man-
ager (AM). The behaviors of the components are independently managed by their
AMs. To make optimal decisions towards desired states, AMs require global knowl-
edge of the changing environment. However, in large distributed systems it is not
scalable to collect and provide global knowledge through a central location.

Fig. 1. A distributed autonomic system consisting of autonomic managers (AMs) across two
domains, each with a registry indexing resources in the domain. Each AM contacts its domain
registry to choose both the resources to be monitored (called local resources) and other AMs
(called neighbors) to exchange local information.

To solve this problem, individual AMs are extended to monitor a small piece of
their environment (hereon called local resources). Each AM has only a local view of
the whole environment. However, interactions among the managers provide them
with a global view of the system. The AM model (Fig. 1.) consists of the following
components:

 Monitor: it collects, aggregates and filters the status information from its man-
aged elements and its local resources.

 Controller: it manages the elements’ behaviors based on analysis and prediction
using the local knowledge.

 Communicator: it supports information exchanges with other autonomic managers.
 Local Knowledge Base: it stores the information obtained locally and through

information exchanges between neighbors.

2.2 Decentralized Autonomic System

Because the computing resources are organized into domains which may correspond
to administrative domains, a distributed domain registry infrastructure is designed to
provide scalable and reliable resource location and AM discovery services. Each
registry maintains an index of resources and the list of existing AMs in its domain.

 Cooperative Autonomic Management in Dynamic Distributed Systems 759

When an autonomic component joins the domain, its AM registers its unique id in the
registry, and chooses some existing AMs to cooperate with and selects some re-
sources in the domain as its local resources. To improve reliability, nearby domain
registries periodically exchange information so that each registry’s local resource and
AM lists are replicated in some other registries.

Local resource claiming: Each AM randomly selects a number of resources in the
domain which have not yet selected by other AMs registry and claims them by
marking the corresponding entries with its id. Once a resource is claimed by an AM,
its status is monitored by the AM and stored in its local knowledge base during the
claiming period. An AM disclaims its resources by unmarking them in the registry
before its departure from the system.

Neighborhood building: When an AM joins a domain it selects m existing AMs in the
same domain as its potential neighbors. AMs in the same neighborhood cooperate
with each other by exchanging information. The neighbor selection can take place
randomly, or preferentially which means that some AMs are more attractive and have
a better chance to get neighbors. When departing from its domain, an AM unregisters
itself by deleting its id from the domain registry and sends a message to its neighbors.
In case an AM needs other domain’s information, it can ask its domain registry for
AMs in other domains to build a "cross-domain" neighborhood.

Information sharing and filtering: During its lifecycle, each AM becomes a dynamic
information source by monitoring its local resources. This local information can be
propagated through multi-AM cooperation. Every AM that receives a message from a
neighbor must store it and later forward it to its other neighbors. Two approaches are
used toghether to reduce the number of messages transmitted among the AMs. One is
to define an obsolescence relation [14] between messages: a message m1 is recognized
as obsolete if m2 contains more recent information that subsumes m1. The other way is
to evaluate how useful each message is, and drop the low-value messages.

2.3 Dynamic AM Network

The AM neighborhoods define a dynamic overlay network that changes as the AMs
join and leave the system, in a manner similar to a peer-to-peer network [18][17]. The
AMs must adapt their behaviors and interactions to the changing state. For example,
an AM leaving or crashing may cause serious effects - claimed local resources may be
no longer monitored by anyone, and some AMs may become isolated from others. To
prevent and repair the damages, the following mechanisms are proposed.

Dynamic resource claiming: By periodically checking the domain registry, AMs can
obtain the domain information such as the number of resources and AMs currently in
the system, and then adjust the number of resources it should monitor to balance the
monitoring load over the network. However, the information provided by domain
registries might be incorrect because of AMs’ unpredictable failures. To solve this
problem, once an AM detects its neighbor’s failure, it informs the domain registry and
reclaims the resources that became unmonitored because of the failure.

760 J. Xu, M. Zhao, and J.A.B. Fortes

Dynamic neighborhood building: If an AM decides to leave, it informs its neighbors
by sending them a farewell message. In the case of AM or network failure, each AM
measures the interval between two successive messages sent from the same neighbor
and sets a timeout to detect the failure. When an AM is informed of a neighbor’s
departure or detects a neighbor’s failure, it chooses its new neighbor with probability
p (set to 0.5 as explained in Section 3.3). This mechanism allows AMs to maintain
network connectivity.

3 Analytical Evaluation

3.1 Network Model

We use the conceptual framework and notations from complex network theory [2][6]
to model the AM network and analyze its topology features. The decentralized auto-
nomic system is modeled as a network in which each AM is represented by a node,
and two nodes are linked if they are neighbors. The following notations are used to
describe the network.

)(tn : the total number of nodes at time t.

)(tr : the total number of resources at time t.

m : the number of neighbors a node connects to when joining the network.

:)(tki
the degree (the number of neighbors) of the ith node at time t.

)(toi
: the local load (the number of claimed resources) of the ith node at time t.

The first two parameters describe the entire network and can be obtained directly
from the domain registry, while the rest of the parameters describe the behavior of
individual nodes.

3.2 Node Joining and Neighbor Selection

Consider the case where the network starts with one node, and at each step, a new
node joins and connects to m existing nodes. At time t the network has a total of n(t)
nodes (mtn >>)(, for a large system). It is well known that the resulting network has

the following properties [6].

Total number of links:)(2/)()()(2 tmnmmtmnte ≈+−= (1)

Average degree: k (t) = 2e(t) / n(t) ≈ 2m (2)

Diameter: d (t) = ln n(t) / ln k (t) ≈ ln n(t) / ln 2m (3)

Eq. (3) shows that the network diameter (shortest-path length between any two nodes)
is small even for a large network. This “small world effect” [20] ensures that local
information of one node can be propagated to any other node very quickly even in
large networks. Different neighbor selection policies result in different network degree
distributions. The random selection results in exponential distribution. In contrast, the

 Cooperative Autonomic Management in Dynamic Distributed Systems 761

preferential linking (the likelihood of connecting to a node is proportional to the node’s
degree) leads to a power-law distribution [2]. The major differences between these
networks are their robustness against random network errors as discussed next.

3.3 Neighborhood Rebuilding

The effect of random damage on networks was simulated in [2] and the results show
that scale-free networks display a high degree of tolerance against random failures.
For exponential networks, Eq. (4) indicates that average degree decreases linearly
with growing f (the fraction of removed nodes), which in turn increases network di-
ameter (see Eq. (3)).

k '= k (1− f) (4)

A dynamic neighborhood rebuilding mechanism is proposed to avoid this impact.
When a node leaves the network, a fraction p of its neighbors establish new relation-
ships with other nodes. Eq. (5) indicates that by choosing p equal to 0.5 the average
degree can remain approximately constant, so does the network diameter.

k '= 2e'
n' ≈

2 k n / 2 − (1− p)k fn()
n(1− f) ⇒

p= 0.5

k (5)

3.4 Local Load Adjustment

We use)(/)()(~ tntrto = to express the average ratio of the number of resources r(t) to

the network size n(t) at time t . To balance the load on all the nodes, when a node
joins the network, oi(t) is initialized as follows:

⎡ ⎤
⎪⎩

⎪
⎨
⎧ <

=
otherwiseo

otoifto
toi max

max)(~)(~
)((6)

The maximum number of resources each node can monitor is bounded to avoid over-
loading. Because the value of õ(t) may change as the network size and resource avail-
ability vary, each node periodically compares its current load with õ(t) and adjusts it
accordingly.

3.5 Communication Cost

Each node in the network sends messages to its neighbors at constant time inter-
val TΔ . With information filtering, the message size si can be bound to a fixed value
S. The global communication cost of the network is

StnmStestkC ii ⋅⋅=⋅≤⋅=∑)(2)(2)((7)

which grows linearly with the network size. But from the perspective of a single node,
the average communication cost stays almost constant.

SmtnCc ⋅≈= 2)(/ (8)

762 J. Xu, M. Zhao, and J.A.B. Fortes

4 Case Study: DAVAM System

In order to validate the proposed model, we used In-VIGO [1] grid middleware to
implement a decentralized Autonomic Virtual Application Management (DAVAM)
system.

Fig. 2. The high-level view of autonomic VAM in In-VIGO. This figure shows multiple VAMs
that submit jobs on multiple machines.

4.1 Background

In-VIGO is a grid-computing infrastructure that uses virtualization technologies to
provide secure application execution environments. Fig. 2 provides a high-level view
of the role of the autonomic Virtual Application Manager (AVAM) in In-VIGO (de-
tailed in [22]). Typically, a user initiates an application session to run instances of a
computational tool on grid resources1.

Each session is managed by a middleware component, called the Virtual Applica-
tion Manager. Autonomic features including self-optimization and self-healing are
integrated into the AVAM. It relies on monitoring of job and resource conditions,
predicting violations of user- and/or system-expected execution times, and restarting
jobs in resources capable of delivering acceptable times. To achieve desired per-
formance, each AVAM requires global knowledge of the time-varying resource
information. However, the centralized approach in [22] using a global controller to
collect and maintain the whole system status does not scale well in large-scale dis-
tributed systems.

4.2 Cooperative AVAM

Fig. 3. shows the major functions implemented in an AVAM. The local knowledge
base stores information such as dynamic local resources’ status, application run-time
performance, the list of the neighbors and local resources claimed by the AVAM.

1 A “tool” or “application” can consist of more than a single application, e.g., it could entail the

execution of a workflow of application.

 Cooperative Autonomic Management in Dynamic Distributed Systems 763

4.2.1 Controller
The controller is responsible for controlling the application execution to achieve reli-
able and optimized performance. The functions in the controller are listed below:

Fig. 3. The functions and information flow of a cooperative AVAM

Predict function: A memory-based learning algorithm [22][9] is used to predict re-
source usage for a given job, such as CPU cycles and memory usage. The basic idea
is that the resources consumed by a job often depend on the input parameters supplied
to the tool. Therefore, the “similarity” of two jobs is defined by the distance metric of
two sets of inputs and resource usage is predicted based on the tool execution history.

Select function: The controller scans the list of resources in the local knowledge base
and ranks them based on the job’s resource requirements and the resources’ capacity.
To optimize the job’s performance, the controller selects the resource with the highest
score. However, resource contention may happen if multiple AVAMs try to submit
jobs to the same “best” resource simultaneously. A ε-random rule is used to deal with
this problem. A randomly generated small number ε in the range [-0.1, 0.1] is added
to each resource’s score, and then Select function ranks the resource list with these
“modified” scores. By setting a small number ε, the ε-random rule is able to mitigate
resource contention to a certain extent.

Verify function: After a resource is selected, this function checks the current status of
the resource and verifies whether its score is still valid. If not, the controller selects
the next candidate resource in the ranked list and repeats this verification process.

Analyze function: After a job is submitted to the chosen resource, the monitor keeps
collecting the job's running status (e.g., current CPU time, elapsed time, and CPU
utilization consumed by the job), which is used to estimate the job’s progress (see
[22]). If it is predicted that the job cannot finish before the deadline, the controller
will try to find a better resource that can satisfy the job requirements and reschedules
the job to that resource. In the case when all the resources in one domain are heavily
loaded, the controller selects its “cross-domain” neighbors and communicates with
them to quickly get the resource information in other domains and determine on
which resource it can submit the job.

764 J. Xu, M. Zhao, and J.A.B. Fortes

4.2.2 Monitor and Communicator
The monitor periodically collects local resources’ status information and checks every
submitted job periodically. If the job finishes successfully, the monitor collects some
statistic data about this execution and reports it to the local knowledge base for his-
torical records. The communicator is responsible for sending and receiving messages
to and from neighbors. There are four types of messages exchanged between
neighbors.

Joining/leaving: An AVAM sends messages to its neighbors to notify its arrival or
departure.

Local resource table: Each AVAM has its own current view of the resources’ status
and stores it in a local resource table. To disseminate this information, every AVAM
periodically (every 10 seconds in our implementation) sends its local resource table to
the neighbors.

Rewiring: Before leaving, an AVAM selects a fraction p (set to 0.5 in our case) of its
neighbors and sends them rewiring messages. The receivers then choose some other
AVAMs as their new neighbors.

4.2.3 Information filtering
The resources information collected by an AVAM must be filtered before being
added to the local resource table to reduce message size. Each record has an age at-
tribute to indicate the time elapsed since the last update. If two records contain the
same resource’s status, the older one gets filtered out.

Information filtering also happens by purging the lower-values records from the
table. Concentrating on CPU-intensive applications, AVAMs are interested in re-
sources with high CPU processing power. Thus, the value of the ith resource is de-
fined as follows. If CPU utilization stays below 100%, the CPU capacity is calculated
by the CPU speed and utilization; otherwise, it is computed using the CPU load (the
queue length of the runnable processes). A weight of 0.01 is used to make these two
measurements comparable.

Valuei =
CPU _ Speedi × (1− CPU _Utilizationi) if CPU_Utilizationi < 100%

CPU _ Speedi /CPU _ Loadi × 0.01 otherwise

⎧
⎨
⎩

 (9)

Due to the dynamic nature of grid resources, the older a resource record becomes, the
less accurate it is. Therefore, the record’s value is reduced by a factor corresponding
to its age, represented as α (α = 1− age /max), where the max is set to 60 seconds in
our implementation. With this information filtering, a local resource table’s size is
reduced by only retaining the resources with high CPU processing capability.

5 Experimental Evaluation

This section evaluates the proposed DAVAM system with respect to scalability, effi-
ciency and robustness.

 Cooperative Autonomic Management in Dynamic Distributed Systems 765

5.1 Setup

The experiments were conducted on a subset of the In-VIGO system. The computer
resources consist of 200 VMware-server virtual machines (each has 128 MB memory
and runs Red Hat 7.3) hosted on a cluster of ten dual 2.4GHz hyper-threaded Xeon
nodes. In the experiments, a considerable amount of background load was also intro-
duced into the resources by launching CPU-intensive jobs. Dynamic loading envi-
ronments were created by randomly choosing and loading different subsets of the
resources (100 randomly chosen resources, unless otherwise noted) every 50 seconds.
The domain registries are implemented with MySQL. TunProb (Numerical Calcula-
tion of the Transmission Probability for One-Dimensional Electron Tunneling), a tool
available on the In-VIGO portal, is used as a benchmark representative of CPU-
intensive workloads. In the experiments each AVAM was used to manage the execu-
tion of one or more instances of TunProb.

The DAVAM system initialization process starts with one AVAM. Then at each
increment of time (one second) one new AVAM is started until the expected system
size is reached. Each AVAM establishes connections with m (0~6) existing AVAMs
in its domain. Each AVAM monitors up to five virtual machines as its local resources,
and updates their status in its local resource table every ten seconds. AVAM
neighbors exchange their local resource tables every ten seconds and the table can
only keep up to ten records.

5.2 Experimental Evaluation of Efficiency

The efficiency of the DAVAM system is reflected by each AVAM being able to quickly
obtain the current status of the entire system and find good resources for its jobs. The
first experiment investigates how the performance changes with different numbers of
neighbors each AVAM contacts when joining the system. Fifty AVAMs were initially
started in the domain, and ten seconds later another five AVAMs joined and each se-
lected m (0~6) neighbors. After ten seconds of their arrivals, the five AVAMs began to
submit jobs continuously until they left the domain 140 seconds later.

30
35
40
45
50
55
60

0 1 2 3 4 5 6

T
hr

ou
gh

pu
t

10

12

14

16

18

0 1 2 3 4 5 6
m

A
ve

ra
ag

e
ru

nt
im

e
(s

)

(b)

(a)

Fig. 4. The comparison of the total number of jobs finished by 5 AVAMs (a) and the TunProb
jobs’ average execution time (b) with different values of m during 150 seconds

766 J. Xu, M. Zhao, and J.A.B. Fortes

Fig. 4. compares the average job runtime and the throughput (the total number of
jobs completed by the five AVAMs) with different values of m. As expected, the worst
performance occurs when each AVAM does not have any neighbors. As the value of m
increases, the performance improves because AVAMs can learn more resources’ infor-
mation through interaction with their neighbors and select resources more wisely. Fig-
ure 4 also indicates that, when m exceeds five, the throughput drops because the benefit
from contacting more neighbors is outweighed by communication overhead.

5.3 Experimental Evaluation of Scalability

In the second experiment, we studied the system scalability by comparing the per-
formance of DAVAM with centralized and round-robin approaches. Forty AVAMs
join the domain and each one submits jobs continuously for 150 seconds. In the
DAVAM approach, each AVAM selects two neighbors. The neighbor selections, with
and without preference, lead to two types of networks, power-law and exponential
networks [2], respectively. The centralized approach uses a central monitor to collect
and store resources’ status in a central database. Each AVAM chooses the best re-
source currently available in the database to submit its jobs. The round-robin ap-
proach does not need any resource status information and chooses resources in a
round-robin manner. The experiments were conducted in three loading environments
– low, medium and high, in which 30%, 50% and 70% of randomly chosen resources
were loaded with CPU-intensive processes, respectively.

Fig. 5. shows the average job runtime and the overall throughput of the different
approaches. Both exponential and power-law AVAM networks deliver similar best
performance because the small world property makes sure that each AVAM in the
network can obtain the latest system-wide resource status very quickly. Furthermore,
the ε-random resource selection rule avoids resource contention among multiple
AVAMs. In contrast, the centralized approach suffers from database-access conten-
tion between the AVAMs and the central monitor. The round-robin approach gives
the worst performance because it does not consider any dynamic information for
resource selection.

Fig. 5. The comparison of the jobs’ average execution time and the total number of jobs fin-
ished by 40 AVAMs for the DAVAM and the centralized and round-robin approaches in three
different loading environments

 Cooperative Autonomic Management in Dynamic Distributed Systems 767

5.4 Experimental Evaluation of Robustness

The third experiment studies the robustness of the DAVAM approach, where the
system-level information is constructed by the distributed cooperative AVAMs, in
contrast with the centralized approach, where a central database is used to store the
global knowledge. In the experiment, 50 AVAMs were started at the same time. After
200 seconds, half of them left and the others continued to work and submit jobs for
another 200 seconds. In DAVAM the remaining AVAMs react to system changes by
contacting new neighbors and reclaiming resources from the domain registry. The
neighborhood rebuilding mechanism maintains the DAVAM network connectivity,
and the resource reclaiming ensures that most of the resources are monitored by at
least one AVAM. Fig. 6. compares the average job runtime and the throughput by the
25 AVAMs before and after the other AVAMs’ leaving. For both exponential and
power-law networks, the performance of the remaining AVAMs is almost unaffected
even if a high number of AVAMs left the system.

For the centralized approach, on the contrary, if the central database fails, none of
the AVAMs can retrieve any new information from the database, so they have to
continue using the resources chosen before the database failure. Figure 6 shows that,
without the dynamic resource information provided by the database, the performance
drops dramatically. Similar effects can be observed if the central monitor fails.

before AVAM
leaving

before AVAM
leaving before DB

failure
after after

after

80

120

160

200

240

exponential power-law centralized-
monitoring

T
hr

ou
gh

pu
t

before

beforebefore

after AVAM
leaving

after DB
 failure

after AVAM
leaving

10

20

30

40

50

exponential power-law centralized-
monitoring

A
ve

ra
ge

 ru
nt

im
e

(s
)

Fig. 6. TunProb jobs’ average execution time and the total number of jobs finished by 25
AVAMs before and after AVAM leaving, for DAVAM exponential and power-law networks,
and before and after failure of a central database when it is used for centralized monitoring

5.5 Discussion

It may possible to design a hierarchical system to circumvent scalability issues caused
by a purely centralized approach and also achieve the similar performance with the
p2p approach. However, in a dynamic environment where nodes can join and leave at
any time, it is very difficult to construct and maintain a balanced, optimal hierarchical
structure. Moreover, the supernodes (root notes) at the top level in the hierarchical
system can potentially cause single-point system failures and/or lead to isolated nodes
in the system. Although replication can compensate for potential unstable behavior of
a supernode, it will add resource costs and communication overhead to keep replicas
consistent.

768 J. Xu, M. Zhao, and J.A.B. Fortes

6 Related Work

Agent-based [8][16] modeling is a very natural and flexible way to model distributed
interconnected systems. In [2] several distributed and self-organizing algorithms are
proposed for placement of services on servers. For each service a service manager is
instantiated to create multiple “ants” (agents) and send them out to the server net-
work. The ant travels from one server to another, choosing the servers along the path
based on locally available information. The ant then finally makes a decision, based
on the knowledge it has accumulated on its travel. Service manager and the spawned
ants work with local information, which ensures scalability. Similarly, Messor pro-
posed to use “ants” wandering over the network to explore load conditions. The goal
is to achieve load balancing by ants moving jobs from the most overloaded node to
underloaded ones.

In our system, each autonomic component can be identified as an agent, and the
autonomic system as a multi-agent system. Each autonomic component is both coop-
erative (sharing its local knowledge with neighbors) and selfish (trying to find and
allocate the best resources for its own jobs). The authors in [8] claim that no obvious
gain can be achieved from communication between agents. The reason is that if all the
agents have a "better" picture of the whole system, they all tend to use the best re-
sources and thus cause competition. In contrast, the resource verification and ε-
random selection mechanisms applied to our system can prevent this problem and
their effectiveness is proved by the experiments.

The peer-to-peer model offers an alternative to the traditional client-server model
for many large-scale applications in distributed setting. Epidemic (or gossip) algo-
rithms [7][4] have proved to be effective solutions for disseminating information in
large-scale systems. The basic idea is that each process periodically chooses a random
subset of processes in the system and sends them the new information it has received.

Traditional epidemic algorithms rely on each process having knowledge of the
global membership which is not realistic for large groups of processes. Our system
uses a very simple membership protocol to establish and rebuild neighbor connec-
tivity with support from the decentralized domain registry service.

7 Conclusions

This paper presents an autonomic computing system in which multiple autonomic
components collaborate to optimize the behavior of the system. A general autonomic
manager model is designed to control the managed elements’ internal state and man-
age its interactions with the surrounding environment. The autonomic manager is
lightweight, making it suitable for many distributed systems. Each has a local view of
the system state and communicates periodically its partial knowledge to its neighbors,
thus contributing to building a common, shared global view of the system state. A
decentralized registry provides scalable and reliable neighbor and resource discovery
service for the system. The overlay network structured by the neighbor relationships
is demonstrated to be highly reliable and efficient. The results show that the decen-
tralized and cooperative nature of the system yields a number of desirable properties,
including efficiency, robustness, and scalability under a highly dynamic environment.

 Cooperative Autonomic Management in Dynamic Distributed Systems 769

In Introduction we raised the question of what component interactions are needed
for system-level self-management to support autonomic applications. Our results show
that simple exchanges of local information suffice to enable application managers to
find resources that best suit performance requirements of an application. Another ques-
tion asked which network should be used to support the communication needed to
establish connectivity and share information. We found that both exponential and
power-law networks yield small diameters to support low-latency communication
needed for timely sharing of information among system components. The question of
how to design autonomic managers capable of cooperatively interacting with each
other has been answered by describing a set of functions implemented by the typical
components of an autonomic manager: monitor, communicator, controller and a local
knowledge base. The interaction between managers consists of simple information
exchanges and each manager has a small cache to store partial “global” information to
enhance its autonomic ability. The resulting design is rather lightweight and applicable
beyond the concrete In-VIGO scenario used in this paper to validate the proposed
approach.

There are additional questions that require further research. Among them, to what
degree does our design mitigate the occurrence of races or oscillations among re-
quests or job allocations? Our approach reduces their likelihood because communica-
tion latencies are small, age attributes are used to avoid using very dated information
and an ε-random resource selection rule is used to mitigate the probability of resource
contention. A complete answer would require a characterization of the conditions that
lead to oscillations and races in distributed systems without (and with) our techniques.
This is outside the scope of this paper and left as a challenge for future work.

Acknowledgments. The US National Science Foundation partially supports this work
under grant numbers IIP 0925103, CNS 0855123, CNS 0821622, IIP 0823896, IIP
0758596. We also acknowledge the support of the Bell-South Foundation and Shared
University Research grants from IBM.

References

1. Adabala, S., et al.: From Virtualized Resources to Virtual Computing Grids: The In-VIGO
System. In: Future Generation Computing Systems (2005)

2. Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. of Mod.
Phys. 74 (2002)

3. Andrzejak, A., et al.: Algorithms for Self-Organization and Adaptive Service Placement in
Dynamic Distributed Systems. HPL Tech. Rep. 9/02

4. Barabasi, A., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks.
Physica A (1999)

5. Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal Multi-
cast. ACM TOCS 17 (1999)

6. Cohen, R., Erez, K., ben-Avraham, D., Havlin, S.: Resilience of the Internet to random
breakdowns. Phys. Rev. Let. (2000)

7. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks. Adv. Phys. 51 (2002)
8. Eugster, P.T., Guerraoui, R., Kermarrec, A.M., Massoulie, L.: Epidemic Information Dis-

semination in Distributed Systems. IEEE Computer 37 (2004)

770 J. Xu, M. Zhao, and J.A.B. Fortes

9. Jennings, N.R.: Building complex, distributed system: the case for an agent-based ap-
proach. Communications of the ACM 44(4), 35–41 (2001)

10. Kapadia, N., Fortes, J.A.B., Brodley, C.E.: Predictive Application-Performance Modeling
in a Computational Grid Environment. In: Proceedings of the 8th IEEE international Sym-
posium on High Performance Distributed Computing (August 1999)

11. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer (2003)
12. Liu, H., Parashar, M., Hariri, S.: A Component-based Programming Framework for Auto-

nomic Applications. In: Proceedings of the First international Conference on Autonomic
Computing (June 2004)

13. Melcher, B., Mitchell, B.: Towards an autonomic framework: Self-configuring network
services and developing autonomic applications. Intel Technology Journal 8(4) (2004)

14. Pereira, J., Rodrigues, L., Oliveira, R.: Semantically Reliable Multicast: Definition Imple-
mentation and Performance Evaluation. IEEE Trans. Computers 52 (2003)

15. Qiao, Y., Bustamante, F.: ‘Elders know best -handling churn in less structured p2p sys-
tems. In: 5th IEEE Intl. Conf. on Peer-to-Peer Computing (2005)

16. Schaerf, A., Shoham, Y., Tennenholtz, M.: Adaptive load balancing: A study in multi-
agent learning. J. A.I. Res. (1995)

17. Schoder, D., Fischbach, K.: Core Concepts in Peer-to-Peer (P2P) Networking. In: P2P
Computing: The Evolution of a Disruptive Technology. Idea Group Inc., Hershey

18. Steinmetz, R., Wehrle, K. (eds.): Peer-to-Peer Systems and Applications. LNCS,
vol. 3485. Springer, Heidelberg (2005)

19. Thrun, S.B.: The Role of Exploration in Learning and Control. In: Handbook of Intelligent
Control: Neural Fuzzy and Adaptive Approaches. Van Nostrand Reinhold (1992)

20. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393 (1998)
21. White, S.R., Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An architectural ap-

proach to autonomic computing. In: Proceedings of the First international Conference on
Autonomic Computing (2004)

22. Xu, J., Adabala, S., Fortes, J.: Towards Autonomic Virtual Application Manager in In-
VIGO system. In: Proceedings of the Second international Conference on Autonomic
Computing (June 2005)

23. Xu, J., Zhao, M., Fortes, J.: Cooperative Autonomic Management in Dynamic Distributed
Systems. Technical Report (April 2006)

24. IBM’s Perspective on Autonomic Computing,
 http://www.research.ibm.com/autonomic/

	Cooperative Autonomic Management in Dynamic Distributed Systems
	Introduction
	Autonomic System Model
	Autonomic Manager (AM) Model
	Decentralized Autonomic System
	Dynamic AM Network

	Analytical Evaluation
	Network Model
	Node Joining and Neighbor Selection
	Neighborhood Rebuilding
	Local Load Adjustment
	Communication Cost

	Case Study: DAVAM System
	Background
	Cooperative AVAM
	Controller
	Monitor and Communicator
	Information filtering

	Experimental Evaluation
	Setup
	Experimental Evaluation of Efficiency
	Experimental Evaluation of Scalability
	Experimental Evaluation of Robustness
	Discussion
	Related Work

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

