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Abstract. The centralized management of large distributed systems is often im-
practical, particularly when the both the topology and status of the system 
change dynamically. This paper proposes an approach to application-centric self-
management in large distributed systems consisting of a collection of autonomic 
components that join and leave the system dynamically. Cooperative autonomic 
components self-organize into a dynamically created overlay network. Through 
local information sharing with neighbors, each component gains access to global 
information as needed for optimizing performance of applications. The approach 
has been validated and evaluated by developing a decentralized autonomic sys-
tem consisting of multiple autonomic application managers previously developed 
for the In-VIGO grid-computing system. Using analytical results from complex 
random network and measurements done in a prototype system, we demonstrate 
the robustness, self-organization and adaptability of our approach, both theoreti-
cally and experimentally. 

1   Introduction 

Scalability, cost and administrative overheads make it desirable for large dynamic 
distributed computing systems to be self-manageable. This is a particularly challeng-
ing goal in dynamic environments, such as grids, where large numbers of resources 
are discovered or aggregated on-demand and are subject to hard-to-predict loads, 
failures or off-times. With the increasing complexity of system management, the need 
for self-managing systems, as proposed in [24], has never been more important than 
today. Extensive research [11][12][22] has focused on providing autonomic capabili-
ties to individual system components, such as databases, application servers and mid-
dleware components. In general, these autonomic components use an application-level 
manager that is capable of monitoring and/or predicting performance and allocating 
resources as needed to deliver reliable applications with the expected Quality of Ser-
vice (QoS). One can envision the use of these or similar components and their auto-
nomic capabilities as the basic building blocks of large distributed systems.  

Three questions that arise in this context are addressed in this paper. First, what in-
teractions should take place among individual components, in order to achieve system-
level self-management needed to support application-level autonomics? Implicit in this 
question is the need for information sharing among different components. Second, 
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what type of network should be used to support the interactions? Implicit in this ques-
tion is the need for the network to be highly scalable and robust to failures. Third, how 
should autonomic managers be designed to interact with other components, and en-
hance their autonomic ability? Implicit in this question is the need for cooperation 
among managers to efficiently collect and share information.  

This paper proposes an approach for distributed-system self-management arising 
from interactions among the autonomic components deployed in the system. The key 
features of the proposed design are the effective use of components’ limited monitor-
ing and communicating capability, and their adaptation to the surrounding environment 
on the basis of information provided through a management overlay. The proposed 
system has the following properties:  
• Self-adaptation: The system can dynamically respond to a changing environment 

to provide individual application managers with information and resources 
needed for achieving the desired QoS. 

• Self-organization: The decentralized coordination enables the system to adapt to 
changes without external control. The global optimization is achieved through lo-
cal decisions and interactions among neighbors.  

• Robustness: There are no central resources that could become single points of 
failure or performance bottlenecks. Reconfiguration mechanisms effectively deal 
with dynamic resource availability.  

An application of proposed approach in the context of the In-VIGO grid-computing 
system [1], is presented in this paper. In-VIGO provides a distributed environment 
where multiple application instances can coexist in virtual or physical resources. A 
virtual application manager (VAM) is a middleware component used to process user 
requests and manage application execution. Previous work considered the integration 
of autonomic capabilities into VAM to achieve self-optimizing and self-healing com-
putation [22]. In this paper, a decentralized autonomic virtual application management 
system (DAVAM) is designed and implemented to further improve the scalability, 
efficiency and robustness. The DAVAM system is deployed on a large testbed that 
consists of tens of dynamic VAMs managing continuous jobs on hundreds of virtual 
machines with time-varying loads. Compared with our previously proposed centralized 
approach, the DAVAM system produces much lower job execution time and higher 
throughput in highly dynamic environments.  

The rest of the paper is organized as follows. Section 2 describes the architecture of 
the decentralized autonomic system. Section 3 presents an analytical analysis of the 
system. The case study on DAVAM is presented in Section 4 and its experimental 
evaluation is discussed in Section 5. Section 6 reviews related work and Section 7 
concludes the paper.  

2   Autonomic System Model 

We consider a highly dynamic distributed computing system consisting of a large 
collection of autonomic components [10]. Multiple components share distributed 
resources, as exemplified by grid-computing systems.  
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2.1   Autonomic Manager (AM) Model 

The distributed system contains multiple autonomic components, each consisting of 
one or more managed components (e.g. jobs and resources) and an autonomic man-
ager (AM). The behaviors of the components are independently managed by their 
AMs. To make optimal decisions towards desired states, AMs require global knowl-
edge of the changing environment. However, in large distributed systems it is not 
scalable to collect and provide global knowledge through a central location. 

 

Fig. 1. A distributed autonomic system consisting of autonomic managers (AMs) across two 
domains, each with a registry indexing resources in the domain. Each AM contacts its domain 
registry to choose both the resources to be monitored (called local resources) and other AMs 
(called neighbors) to exchange local information. 

To solve this problem, individual AMs are extended to monitor a small piece of 
their environment (hereon called local resources). Each AM has only a local view of 
the whole environment. However, interactions among the managers provide them 
with a global view of the system. The AM model (Fig. 1.) consists of the following 
components: 

 Monitor: it collects, aggregates and filters the status information from its man-
aged elements and its local resources.  

 Controller: it manages the elements’ behaviors based on analysis and prediction 
using the local knowledge. 

 Communicator: it supports information exchanges with other autonomic managers.  
 Local Knowledge Base: it stores the information obtained locally and through 

information exchanges between neighbors. 

2.2   Decentralized Autonomic System 

Because the computing resources are organized into domains which may correspond 
to administrative domains, a distributed domain registry infrastructure is designed to 
provide scalable and reliable resource location and AM discovery services. Each 
registry maintains an index of resources and the list of existing AMs in its domain. 
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When an autonomic component joins the domain, its AM registers its unique id in the 
registry, and chooses some existing AMs to cooperate with and selects some re-
sources in the domain as its local resources. To improve reliability, nearby domain 
registries periodically exchange information so that each registry’s local resource and 
AM lists are replicated in some other registries.  

Local resource claiming: Each AM randomly selects a number of resources in the 
domain which have not yet selected by other AMs registry and claims them by 
marking the corresponding entries with its id. Once a resource is claimed by an AM, 
its status is monitored by the AM and stored in its local knowledge base during the 
claiming period. An AM disclaims its resources by unmarking them in the registry 
before its departure from the system.  

Neighborhood building: When an AM joins a domain it selects m existing AMs in the 
same domain as its potential neighbors. AMs in the same neighborhood cooperate 
with each other by exchanging information. The neighbor selection can take place 
randomly, or preferentially which means that some AMs are more attractive and have 
a better chance to get neighbors. When departing from its domain, an AM unregisters 
itself by deleting its id from the domain registry and sends a message to its neighbors. 
In case an AM needs other domain’s information, it can ask its domain registry for 
AMs in other domains to build a "cross-domain" neighborhood.  

Information sharing and  filtering: During its lifecycle, each AM becomes a dynamic 
information source by monitoring its local resources. This local information can be 
propagated through multi-AM cooperation. Every AM that receives a message from a 
neighbor must store it and later forward it to its other neighbors. Two approaches are 
used toghether to reduce the number of messages transmitted among the AMs. One is 
to define an obsolescence relation [14] between messages: a message m1 is recognized 
as obsolete if m2 contains more recent information that subsumes m1. The other way is 
to evaluate how useful each message is, and drop the low-value messages.  

2.3   Dynamic AM Network 

The AM neighborhoods define a dynamic overlay network that changes as the AMs 
join and leave the system, in a manner similar to a peer-to-peer network [18][17]. The 
AMs must adapt their behaviors and interactions to the changing state. For example, 
an AM leaving or crashing may cause serious effects - claimed local resources may be 
no longer monitored by anyone, and some AMs may become isolated from others. To 
prevent and repair the damages, the following mechanisms are proposed. 

Dynamic resource claiming: By periodically checking the domain registry, AMs can 
obtain the domain information such as the number of resources and AMs currently in 
the system, and then adjust the number of resources it should monitor to balance the 
monitoring load over the network. However, the information provided by domain 
registries might be incorrect because of AMs’ unpredictable failures. To solve this 
problem, once an AM detects its neighbor’s failure, it informs the domain registry and 
reclaims the resources that became unmonitored because of the failure. 
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Dynamic neighborhood building: If an AM decides to leave, it informs its neighbors 
by sending them a farewell message. In the case of AM or network failure, each AM 
measures the interval between two successive messages sent from the same neighbor 
and sets a timeout to detect the failure. When an AM is informed of a neighbor’s 
departure or detects a neighbor’s failure, it chooses its new neighbor with probability 
p (set to 0.5 as explained in Section 3.3). This mechanism allows AMs to maintain 
network connectivity. 

3   Analytical Evaluation 

3.1   Network Model 

We use the conceptual framework and notations from complex network theory [2][6] 
to model the AM network and analyze its topology features. The decentralized auto-
nomic system is modeled as a network in which each AM is represented by a node, 
and two nodes are linked if they are neighbors. The following notations are used to 
describe the network. 

)(tn : the total number of nodes at time t. 

)(tr : the total number of resources at time t. 

m : the number of neighbors a node connects to when joining the network. 

:)(tki
the degree (the number of neighbors) of  the ith node at time t. 

)(toi
: the local load (the number of claimed resources) of the ith node at time t. 

The first two parameters describe the entire network and can be obtained directly 
from the domain registry, while the rest of the parameters describe the behavior of 
individual nodes.  

3.2   Node Joining and Neighbor Selection 

Consider the case where the network starts with one node, and at each step, a new 
node joins and connects to m existing nodes. At time t  the network has a total of n(t) 
nodes ( mtn >>)( , for a large system). It is well known that the resulting network has 

the following properties [6]. 

Total number of links: )(2/)()()( 2 tmnmmtmnte ≈+−=  (1)

Average degree: k (t) = 2e(t) / n(t) ≈ 2m  (2)

Diameter: d (t) = ln n(t) / ln k (t) ≈ ln n(t) / ln 2m  (3)

Eq. (3) shows that the network diameter (shortest-path length between any two nodes) 
is small even for a large network. This “small world effect” [20] ensures that local 
information of one node can be propagated to any other node very quickly even in 
large networks. Different neighbor selection policies result in different network degree 
distributions. The random selection results in exponential distribution. In contrast, the 
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preferential linking (the likelihood of connecting to a node is proportional to the node’s 
degree) leads to a power-law distribution [2]. The major differences between these 
networks are their robustness against random network errors as discussed next. 

3.3   Neighborhood Rebuilding 

The effect of random damage on networks was simulated in [2] and the results show 
that scale-free networks display a high degree of tolerance against random failures. 
For exponential networks, Eq. (4) indicates that average degree decreases linearly 
with growing f (the fraction of removed nodes), which in turn increases network di-
ameter (see Eq. (3)).  

k '= k (1− f )  (4)

A dynamic neighborhood rebuilding mechanism is proposed to avoid this impact. 
When a node leaves the network, a fraction p of its neighbors establish new relation-
ships with other nodes. Eq. (5) indicates that by choosing p equal to 0.5 the average 
degree can remain approximately constant, so does the network diameter. 

k '= 2e'
n' ≈

2 k n / 2 − (1− p)k fn( )
n(1− f ) ⇒

p= 0.5

k  (5)

3.4   Local Load Adjustment 

We use )(/)()(~ tntrto =  to express the average ratio of the number of resources r(t) to 

the network size n(t) at time t . To balance the load on all the nodes, when a node 
joins the network, oi(t) is initialized as follows: 

⎡ ⎤
⎪⎩

⎪
⎨
⎧ <

=
otherwiseo

otoifto
toi max

max)(~)(~
)(  (6)

The maximum number of resources each node can monitor is bounded to avoid over-
loading. Because the value of õ(t) may change as the network size and resource avail-
ability vary, each node periodically compares its current load with õ(t) and adjusts it 
accordingly. 

3.5   Communication Cost 

Each node in the network sends messages to its neighbors at constant time inter-
val TΔ . With information filtering, the message size si can be bound to a fixed value 
S. The global communication cost of the network is  

StnmStestkC ii ⋅⋅=⋅≤⋅=∑ )(2)(2)(  (7)

which grows linearly with the network size. But from the perspective of a single node, 
the average communication cost stays almost constant. 

SmtnCc ⋅≈= 2)(/  (8)
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4   Case Study: DAVAM System 

In order to validate the proposed model, we used In-VIGO [1] grid middleware to 
implement a decentralized Autonomic Virtual Application Management (DAVAM) 
system.  

 

Fig. 2. The high-level view of autonomic VAM in In-VIGO. This figure shows multiple VAMs 
that submit jobs on multiple machines. 

4.1   Background 

In-VIGO is a grid-computing infrastructure that uses virtualization technologies to 
provide secure application execution environments. Fig. 2 provides a high-level view 
of the role of the autonomic Virtual Application Manager (AVAM) in In-VIGO (de-
tailed in [22]). Typically, a user initiates an application session to run instances of a 
computational tool on grid resources1. 

Each session is managed by a middleware component, called the Virtual Applica-
tion Manager. Autonomic features including self-optimization and self-healing are 
integrated into the AVAM. It relies on monitoring of job and resource conditions, 
predicting violations of user- and/or system-expected execution times, and restarting 
jobs in resources capable of delivering acceptable times. To achieve desired per-
formance, each AVAM requires global knowledge of the time-varying resource 
information. However, the centralized approach in [22] using a global controller to 
collect and maintain the whole system status does not scale well in large-scale dis-
tributed systems.  

4.2   Cooperative AVAM 

Fig. 3. shows the major functions implemented in an AVAM. The local knowledge 
base stores information such as dynamic local resources’ status, application run-time 
performance, the list of the neighbors and local resources claimed by the AVAM.  

                                                           
1  A “tool” or “application” can consist of more than a single application, e.g., it could entail the 

execution of a workflow of application. 
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4.2.1   Controller  
The controller is responsible for controlling the application execution to achieve reli-
able and optimized performance. The functions in the controller are listed below:  

 

Fig. 3. The functions and information flow of a cooperative AVAM 

Predict function: A memory-based learning algorithm [22][9] is used to predict re-
source usage for a given job, such as CPU cycles and memory usage. The basic idea 
is that the resources consumed by a job often depend on the input parameters supplied 
to the tool. Therefore, the “similarity” of two jobs is defined by the distance metric of 
two sets of inputs and resource usage is predicted based on the tool execution history.  

Select function: The controller scans the list of resources in the local knowledge base 
and ranks them based on the job’s resource requirements and the resources’ capacity. 
To optimize the job’s performance, the controller selects the resource with the highest 
score. However, resource contention may happen if multiple AVAMs try to submit 
jobs to the same “best” resource simultaneously. A ε-random rule is used to deal with 
this problem. A randomly generated small number ε in the range [-0.1, 0.1] is added 
to each resource’s score, and then Select function ranks the resource list with these 
“modified” scores. By setting a small number ε, the ε-random rule is able to mitigate 
resource contention to a certain extent. 

Verify function: After a resource is selected, this function checks the current status of 
the resource and verifies whether its score is still valid. If not, the controller selects 
the next candidate resource in the ranked list and repeats this verification process. 

Analyze function: After a job is submitted to the chosen resource, the monitor keeps 
collecting the job's running status (e.g., current CPU time, elapsed time, and CPU 
utilization consumed by the job), which is used to estimate the job’s progress (see 
[22]). If it is predicted that the job cannot finish before the deadline, the controller 
will try to find a better resource that can satisfy the job requirements and reschedules 
the job to that resource. In the case when all the resources in one domain are heavily 
loaded, the controller selects its “cross-domain” neighbors and communicates with 
them to quickly get the resource information in other domains and determine on 
which resource it can submit the job.   
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4.2.2   Monitor and Communicator 
The monitor periodically collects local resources’ status information and checks every 
submitted job periodically. If the job finishes successfully, the monitor collects some 
statistic data about this execution and reports it to the local knowledge base for his-
torical records. The communicator is responsible for sending and receiving messages 
to and from neighbors. There are four types of messages exchanged between 
neighbors. 

Joining/leaving: An AVAM sends messages to its neighbors to notify its arrival or 
departure.  

Local resource table: Each AVAM has its own current view of the resources’ status 
and stores it in a local resource table. To disseminate this information, every AVAM 
periodically (every 10 seconds in our implementation) sends its local resource table to 
the neighbors. 

Rewiring: Before leaving, an AVAM selects a fraction p (set to 0.5 in our case) of its 
neighbors and sends them rewiring messages. The receivers then choose some other 
AVAMs as their new neighbors. 

4.2.3   Information filtering 
The resources information collected by an AVAM must be filtered before being 
added to the local resource table to reduce message size. Each record has an age at-
tribute to indicate the time elapsed since the last update. If two records contain the 
same resource’s status, the older one gets filtered out.   

Information filtering also happens by purging the lower-values records from the 
table. Concentrating on CPU-intensive applications, AVAMs are interested in re-
sources with high CPU processing power. Thus, the value of the ith resource is de-
fined as follows. If CPU utilization stays below 100%, the CPU capacity is calculated 
by the CPU speed and utilization; otherwise, it is computed using the CPU load (the 
queue length of the runnable processes). A weight of 0.01 is used to make these two 
measurements comparable.  

Valuei = 
CPU _ Speedi × (1− CPU _Utilizationi)    if CPU_Utilizationi < 100%

CPU _ Speedi /CPU _ Loadi × 0.01                                        otherwise

⎧ 
⎨ 
⎩ 

 (9)

Due to the dynamic nature of grid resources, the older a resource record becomes, the 
less accurate it is. Therefore, the record’s value is reduced by a factor corresponding 
to its age, represented as α (α = 1− age /max ), where the max is set to 60 seconds in 
our implementation. With this information filtering, a local resource table’s size is 
reduced by only retaining the resources with high CPU processing capability. 

5   Experimental Evaluation 

This section evaluates the proposed DAVAM system with respect to scalability, effi-
ciency and robustness. 
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5.1   Setup 

The experiments were conducted on a subset of the In-VIGO system. The computer 
resources consist of 200 VMware-server virtual machines (each has 128 MB memory 
and runs Red Hat 7.3) hosted on a cluster of ten dual 2.4GHz hyper-threaded Xeon 
nodes. In the experiments, a considerable amount of background load was also intro-
duced into the resources by launching CPU-intensive jobs. Dynamic loading envi-
ronments were created by randomly choosing and loading different subsets of the 
resources (100 randomly chosen resources, unless otherwise noted) every 50 seconds. 
The domain registries are implemented with MySQL. TunProb (Numerical Calcula-
tion of the Transmission Probability for One-Dimensional Electron Tunneling), a tool 
available on the In-VIGO portal, is used as a benchmark representative of CPU-
intensive workloads. In the experiments each AVAM was used to manage the execu-
tion of one or more instances of TunProb.  

The DAVAM system initialization process starts with one AVAM. Then at each 
increment of time (one second) one new AVAM is started until the expected system 
size is reached. Each AVAM establishes connections with m (0~6) existing AVAMs 
in its domain. Each AVAM monitors up to five virtual machines as its local resources, 
and updates their status in its local resource table every ten seconds. AVAM 
neighbors exchange their local resource tables every ten seconds and the table can 
only keep up to ten records. 

5.2   Experimental Evaluation of Efficiency 

The efficiency of the DAVAM system is reflected by each AVAM being able to quickly 
obtain the current status of the entire system and find good resources for its jobs. The 
first experiment investigates how the performance changes with different numbers of 
neighbors each AVAM contacts when joining the system. Fifty AVAMs were initially 
started in the domain, and ten seconds later another five AVAMs joined and each se-
lected m  (0~6) neighbors. After ten seconds of their arrivals, the five AVAMs began to 
submit jobs continuously until they left the domain 140 seconds later. 
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Fig. 4. The comparison of the total number of jobs finished by 5 AVAMs (a) and the TunProb 
jobs’ average execution time (b) with different values of m during 150 seconds 
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Fig. 4. compares the average job runtime and the throughput (the total number of 
jobs completed by the five AVAMs) with different values of m. As expected, the worst 
performance occurs when each AVAM does not have any neighbors. As the value of m 
increases, the performance improves because AVAMs can learn more resources’ infor-
mation through interaction with their neighbors and select resources more wisely. Fig-
ure 4 also indicates that, when m exceeds five, the throughput drops because the benefit 
from contacting more neighbors is outweighed by communication overhead. 

5.3   Experimental Evaluation of Scalability 

In the second experiment, we studied the system scalability by comparing the per-
formance of DAVAM with centralized and round-robin approaches. Forty AVAMs 
join the domain and each one submits jobs continuously for 150 seconds. In the 
DAVAM approach, each AVAM selects two neighbors. The neighbor selections, with 
and without preference, lead to two types of networks, power-law and exponential 
networks [2], respectively. The centralized approach uses a central monitor to collect 
and store resources’ status in a central database. Each AVAM chooses the best re-
source currently available in the database to submit its jobs. The round-robin ap-
proach does not need any resource status information and chooses resources in a 
round-robin manner. The experiments were conducted in three loading environments 
– low, medium and high, in which 30%, 50% and 70% of randomly chosen resources 
were loaded with CPU-intensive processes, respectively.  

Fig. 5. shows the average job runtime and the overall throughput of the different 
approaches. Both exponential and power-law AVAM networks deliver similar best 
performance because the small world property makes sure that each AVAM in the 
network can obtain the latest system-wide resource status very quickly. Furthermore, 
the ε-random resource selection rule avoids resource contention among multiple 
AVAMs. In contrast, the centralized approach suffers from database-access conten-
tion between the AVAMs and the central monitor. The round-robin approach gives 
the worst performance because it does not consider any dynamic information for 
resource selection. 

 

Fig. 5. The comparison of the jobs’ average execution time and the total number of jobs fin-
ished by 40 AVAMs for the DAVAM and the centralized and round-robin approaches in three 
different loading environments 
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5.4   Experimental Evaluation of Robustness 

The third experiment studies the robustness of the DAVAM approach, where the 
system-level information is constructed by the distributed cooperative AVAMs, in 
contrast with the centralized approach, where a central database is used to store the 
global knowledge. In the experiment, 50 AVAMs were started at the same time. After 
200 seconds, half of them left and the others continued to work and submit jobs for 
another 200 seconds. In DAVAM the remaining AVAMs react to system changes by 
contacting new neighbors and reclaiming resources from the domain registry. The 
neighborhood rebuilding mechanism maintains the DAVAM network connectivity, 
and the resource reclaiming ensures that most of the resources are monitored by at 
least one AVAM. Fig. 6. compares the average job runtime and the throughput by the 
25 AVAMs before and after the other AVAMs’ leaving. For both exponential and 
power-law networks, the performance of the remaining AVAMs is almost unaffected 
even if a high number of AVAMs left the system.  

For the centralized approach, on the contrary, if the central database fails, none of 
the AVAMs can retrieve any new information from the database, so they have to 
continue using the resources chosen before the database failure. Figure 6 shows that, 
without the dynamic resource information provided by the database, the performance 
drops dramatically. Similar effects can be observed if the central monitor fails. 
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Fig. 6. TunProb jobs’ average execution time and the total number of jobs finished by 25 
AVAMs before and after AVAM leaving, for DAVAM exponential and power-law networks, 
and before and after failure of a central database when it is used for centralized monitoring 

5.5   Discussion 

It may possible to design a hierarchical system to circumvent scalability issues caused 
by a purely centralized approach and also achieve the similar performance with the 
p2p approach.  However, in a dynamic environment where nodes can join and leave at 
any time, it is very difficult to construct and maintain a balanced, optimal hierarchical 
structure. Moreover, the supernodes (root notes) at the top level in the hierarchical 
system can potentially cause single-point system failures and/or lead to isolated nodes 
in the system. Although replication can compensate for potential unstable behavior of 
a supernode, it will add resource costs and communication overhead to keep replicas 
consistent.  
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6   Related Work 

Agent-based [8][16] modeling is a very natural and flexible way to model distributed 
interconnected systems. In [2] several distributed and self-organizing algorithms are 
proposed for placement of services on servers. For each service a service manager is 
instantiated to create multiple “ants” (agents) and send them out to the server net-
work. The ant travels from one server to another, choosing the servers along the path 
based on locally available information. The ant then finally makes a decision, based 
on the knowledge it has accumulated on its travel. Service manager and the spawned 
ants work with local information, which ensures scalability. Similarly, Messor pro-
posed to use “ants” wandering over the network to explore load conditions. The goal 
is to achieve load balancing by ants moving jobs from the most overloaded node to 
underloaded ones.  

In our system, each autonomic component can be identified as an agent, and the 
autonomic system as a multi-agent system. Each autonomic component is both coop-
erative (sharing its local knowledge with neighbors) and selfish (trying to find and 
allocate the best resources for its own jobs). The authors in [8] claim that no obvious 
gain can be achieved from communication between agents. The reason is that if all the 
agents have a "better" picture of the whole system, they all tend to use the best re-
sources and thus cause competition. In contrast, the resource verification and ε-
random selection mechanisms applied to our system can prevent this problem and 
their effectiveness is proved by the experiments. 

The peer-to-peer model offers an alternative to the traditional client-server model 
for many large-scale applications in distributed setting. Epidemic (or gossip) algo-
rithms [7][4] have proved to be effective solutions for disseminating information in 
large-scale systems. The basic idea is that each process periodically chooses a random 
subset of processes in the system and sends them the new information it has received.  

Traditional epidemic algorithms rely on each process having knowledge of the 
global membership which is not realistic for large groups of processes. Our system 
uses a very simple membership protocol to establish and rebuild neighbor connec-
tivity with support from the decentralized domain registry service. 

7   Conclusions 

This paper presents an autonomic computing system in which multiple autonomic 
components collaborate to optimize the behavior of the system. A general autonomic 
manager model is designed to control the managed elements’ internal state and man-
age its interactions with the surrounding environment. The autonomic manager is 
lightweight, making it suitable for many distributed systems. Each has a local view of 
the system state and communicates periodically its partial knowledge to its neighbors, 
thus contributing to building a common, shared global view of the system state. A 
decentralized registry provides scalable and reliable neighbor and resource discovery 
service for the system. The overlay network structured by the neighbor relationships 
is demonstrated to be highly reliable and efficient. The results show that the decen-
tralized and cooperative nature of the system yields a number of desirable properties, 
including efficiency, robustness, and scalability under a highly dynamic environment.  
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In Introduction we raised the question of what component interactions are needed 
for system-level self-management to support autonomic applications. Our results show 
that simple exchanges of local information suffice to enable application managers to 
find resources that best suit performance requirements of an application. Another ques-
tion asked which network should be used to support the communication needed to 
establish connectivity and share information. We found that both exponential and 
power-law networks yield small diameters to support low-latency communication 
needed for timely sharing of information among system components. The question of 
how to design autonomic managers capable of cooperatively interacting with each 
other has been answered by describing a set of functions implemented by the typical 
components of an autonomic manager: monitor, communicator, controller and a local 
knowledge base. The interaction between managers consists of simple information 
exchanges and each manager has a small cache to store partial “global” information to 
enhance its autonomic ability.  The resulting design is rather lightweight and applicable 
beyond the concrete In-VIGO scenario used in this paper to validate the proposed 
approach. 

There are additional questions that require further research. Among them, to what 
degree does our design mitigate the occurrence of races or oscillations among re-
quests or job allocations? Our approach reduces their likelihood because communica-
tion latencies are small, age attributes are used to avoid using very dated information 
and an ε-random resource selection rule is used to mitigate the probability of resource 
contention. A complete answer would require a characterization of the conditions that 
lead to oscillations and races in distributed systems without (and with) our techniques. 
This is outside the scope of this paper and left as a challenge for future work. 
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