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Abstract— The hosting of databases on virtual machines (VMs) 
has great potential to improve the efficiency of resource 
utilization and the ease of deployment of database systems.  
This paper considers the problem of allocation of physical 
resources on demand to a database’s VM according to QoS 
(Quality of Service) requirements. This is a challenging 
problem because of the highly dynamic and complex nature of 
database systems and their workloads. An autonomic resource 
management approach is proposed to address this problem 
based on adaptive fuzzy modeling and prediction techniques. 
The approach can effectively capture the relationship between 
a dynamically changing database workload, which is both CPU 
and I/O intensive, and its VM’s consumption of resources, 
including both CPU cycles and disk bandwidth. It can be used 
to predict the resource needs of a database VM online and to 
guide the on-demand resource allocation according to the 
workload demand and desired QoS. A prototype of the 
proposed resource management system is evaluated using 
typical database workloads based on TPC-H and RUBiS. The 
results demonstrate that the proposed approach can efficiently 
allocate resources for a database VM that is serving CPU and 
I/O intensive queries while meeting the QoS targets. 

I. INTRODUCTION 
A system-level virtual machine (VM) (e.g., VMware [1], 

Xen [2]) can be a powerful platform for deploying and 
hosting database systems. From the perspective of database 
users, VMs enable fine-tuned databases to be encapsulated 
along with their execution environments and conveniently 
deployed as appliances on different hosting systems. From 
the perspective of resource owners, VMs allow flexible 
resource allocation to meet changing database needs and 
efficient resource utilization by sharing resources between 
databases and other applications. However, although many 
important applications, such as Web and application servers, 
have been widely deployed on VMs, efficient hosting of 
databases on virtualized resources is still very challenging 
due to the highly complex and dynamic nature of database 
systems and their workloads. Typical databases have to serve 
dynamically changing workloads consisting of a wide variety 
of queries, whereas the query executions can consume 
different types and amounts of resources, including both 
CPU and I/O. These properties make it difficult to host 
databases on shared resources without compromising 
performance or wasting resources. 

This paper aims to address the above challenges through 
an autonomic VM resource management system that can 
automatically control and optimize the allocations of 
different types of resources to database VMs based on their 
workload demands and QoS (Quality of Service) objectives. 

The fundamental goal of this proposed system is two-fold. 
First, it should be able to automatically learn a database 
VM’s needs for multi-type resources to service a complex 
query workload so that resources can be efficiently allocated 
to the VM while satisfying the desired query QoS. Second, it 
should be able to automatically adapt to the dynamic changes 
of a database VM’s resource usage and timely adjust the 
VM’s resource allocations to maintain both the efficiency of 
resource usages and the QoS of queries.  

To realize the above stated goals, this paper proposes a 
fuzzy-modeling based online learning and prediction 
approach to the autonomic resource management of 
virtualized database hosting systems. In this approach, fuzzy-
logic based modeling is adopted to automatically learn the 
resource usage behaviors of database VMs based on 
observed query workload characteristics and VM resource 
consumptions. This modeling method does not require any a 
priori knowledge of the system’s internal structure and it can 
efficiently describe complex and nonlinear system behaviors. 
Specifically, a database VM’s resource model is constructed 
online and updated dynamically to learn the relationship 
between a query workload’s changing characteristics and the 
VM’s needs of multi-type resources, particularly CPU cycles 
and I/O bandwidth. This model is then applied also online to 
predict the database VM’s multi-type resource needs for its 
current workload and to allocate resources efficiently to the 
VM and meanwhile meet the QoS target for the queries.  

This resource management system is implemented for 
Xen-based VM environments and it is evaluated using a 
series of experiments based on typical database benchmarks 
(TPC-H [3], RUBiS [4]). The results demonstrate that the 
system can efficiently allocate resources for a database VM 
that is serving CPU and I/O intensive queries while still 
delivering the same level of performance as when all the 
resources are dedicated to the VM. The results also show that 
the system can adapt to dynamic transitions of the database 
VM’s resource usage caused by changing workload intensity 
and composition, achieving both resource efficiency and 
query QoS in a timely manner. 

In summary, this paper has made the following unique 
contributions: 1) It proposes a novel autonomic resource 
management system for database VMs, which can efficiently 
allocate different types of resources according to the query 
workload demand and can timely adapt to changes in their 
resource usage behaviors; 2)  It develops an implementation 
for typical Xen-based VM systems, which can manage and 
optimize the use of both CPU cycles and I/O bandwidth for 
database VMs serving resource-intensive workloads; 3) The 
overall approach proposed in this paper is also generally 
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applicable to the virtualized hosting of other kinds of  
challenging applications that have dynamic and complex 
resource usage behaviors. 

The rest of this paper is organized as follows. Section 2 
describes the background and motivation of this research. 
Section 3 discusses the detailed design and implementation 
of the proposed system. Section 4 presents an experimental 
evaluation of the prototype. Section 5 examines the related 
work and Section 5 concludes this paper. 

II. BACKGROUND AND MOTIVATION 

A. System Virtual Machines 
The emergence of VMs is driven by the fast maturation 

and wide availability of virtualization technologies, as well 
as the rapid growth of computing power on modern 
computer systems. The VMs considered in this paper are 
system-level VMs [1][2], which are based on the 
virtualization of an entire physical host’s resources, 
including CPU, memory, and I/O devices, presenting virtual 
resources to the guest operating systems and applications. 
Such VMs are mainly implemented by the layer of software 
called Virtual Machine Monitor (VMM, a.k.a. hypervisor). 
Although our proposed techniques can also be applied to 
some other types of virtualization (e.g., OS-extension based 
VMs [5][6]), those are not the focus of this paper.  

This paper considers the use of dedicated VMs to host 
different applications and allow them to transparently share 
the underlying resources. Because the multiplexing of 
applications to resources is provided at a lower level of the 
system, it has the following advantages compared to 
traditional OS-based resource sharing: 1) VMs provide 
strong isolation for resource sharing, allowing applications 
on one VM to be protected from failures and security 
breaches occurred on another concurrently hosted VM; 2) 
Virtualization supports flexible allocation of various types of 
resources to VMs, and VM migration further enables 
dynamic balancing of resource usages across physical hosts; 
3) VMs allow application-tailored customization of their 
execution environments, including OSes and libraries, and 
enable applications to be seamlessly deployed onto resources 
with heterogeneous configurations. 

B. Virtualized Database Hosting 
Traditionally, databases are hosted on dedicated physical 

servers that have sufficient hardware resources to satisfy 
their expected peak workloads with desired QoS. However, 
this is often inefficient for the real-world situations in many 
application domains such as e-business [7] and stream data 
management [8][9], where the workloads are intrinsically 
dynamic in terms of their bursty arrival patterns and ever-
changing unit processing costs. Even under domains where 
traditional static workload exists, the database can 
dynamically switch from one workload to another at runtime. 
For example, an online vendor database that serves large 
number of user queries during the day may switch to internal 
bookkeeping jobs early in the morning. Therefore, the 
limitations of the traditional database hosting approach are 
two-fold. First, peak-load based resource provision leads to 

overprovision and thus underutilization of resources for 
normal state workloads. This can cause considerable 
infrastructural and operational overhead. Second, as a 
steady-state workload demand exceeds its previously 
expected peak value, the database’s performance may drop 
dramatically due to overload, unless it can be moved to a 
more powerful server through a lengthy relocation process. 

Using VMs to host databases can effectively address the 
above limitations, because virtualized resources, including 
CPU, memory, and I/O, are decoupled from their physical 
infrastructure and can be flexibly allocated to the databases 
as needed. Virtualization can consolidate many dedicatedly 
provisioned physical servers into a small number of shared 
ones, where each of them can be carved into multiple virtual 
resource containers to provision resources to applications. 
This approach allows a database system to share the 
consolidated resources with other databases and applications, 
with strong isolation by hosting them on dedicated VMs. It 
also allows a database VM’s resource allocation to elastically 
grow and shrink based on the workload’s demand. In 
addition, database VMs can be dynamically migrated across 
physical machines for resource optimization. 

Virtualization also offers a new paradigm for database 
deployments. Modern databases have become rather 
sophisticated software systems, where their installation, 
configuration, and tuning often require substantial domain 
knowledge and experience as well as considerable efforts 
from the database administrators (DBA). This presents a 
hurdle to the wide deployment and effective use of 
databases. VM-based database hosting allows carefully 
installed and finely tuned databases to be distributed as 
simply as copying the data that represent the database VMs. 
In this way, a DBA only needs to install, configure, and tune 
a database once in the environment provided by a VM. With 
that, the deployment of the database on a new host only 
entails transferring the VM data to the host, creating a new 
VM instance from the data, and starting the new database 
that is already deployed in the VM. In addition, this approach 
allows databases to be quickly replicated and distributed for 
performance and reliability improvements. 

C. Autonomic VM Resource Management 
VM-based application hosting allows dynamic resource 

allocations based on the demands from applications, thereby 
improving the overall resource utilization. However, a key 
challenge to the success of this approach is how to allocate 
resources to a VM to achieve both the application desired 
QoS and the system desired resource efficiency, and how to 
do so for all the VMs automatically and continuously. To 
address this challenge, autonomic computing techniques can 
be employed to realize self-managing of VM resource 
configurations according to the high-level application 
performance and resource utilization objectives [10]. A 
Monitor-Analyze-Plan-Execute (MAPE) control loop [11] 
can be deployed to monitor the VM’s workload demand, 
analyze its resource needs, plan its resource configuration, 
and then execute it accordingly. This paper follows this 
approach to build an autonomic system for the resource 
management of virtualized database hosting systems. 
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An important task of an autonomic resource management 
system is to analyze a VM’s resource usage behaviors and 
decide its proper resource configuration based on its hosted 
application’s workload demand and QoS requirements. This 
task is particularly challenging for database systems because 
of their highly complex and dynamic multi-type resource 
usages. Database queries can be both CPU and I/O intensive 
and a typical database workload can have a diverse variety of 
such queries with dynamically changing composition. This 
makes it difficult to determine the allocations of multi-type 
resources to a database VM without over-provisioning and 
yet satisfying its desired query performance. 

In order to understand a VM’s resource needs for its 
hosted application, several different types of approaches 
have been proposed and they are examined in details in 
Section V. In particular, machine learning techniques can be 
employed to learn the relationship between the workload 
demand and the VM’s resource usages, which can be then 
used to guide the resource allocation to the VM. Machine-
learning based approaches are advantageous than others in 
that a VM’s resource usage model is automatically created 
from data observed from the system, without assuming any a 
priori knowledge about the system’s structure.  

Compared to other typical machine learning techniques, 
fuzzy-logic based modeling is particularly suited to 
efficiently model systems with complex behaviors [17]. Our 
previous work has successfully applied this approach to the 
CPU resource management of VMs hosting CPU-intensive 
Web servers [18]. However, the management of virtualized 
database systems raises new, important challenges: First, 
how to effectively manage a VM with multi-type resource 
demands, including not only CPU cycles but also I/O 
bandwidth, which is known to be difficult to model and 
control; Second, how to timely adapt to the dynamic changes 
in a VM’s resource needs in terms of not only changing 
intensity but also shifting demand across different resource 
types. These new challenges are addressed by the system 
proposed in this paper in which databases serve as an 
excellent example of applications with dynamic, multi-type 
resource usage behaviors. 

D. Fuzzy-logic based System Modeling 
Fuzzy logic [17] is suited for dealing with uncertain 

problems in real world, which transforms imprecise 
linguistic statement into quantified logical input-output 
relations by using mathematical functions. A set in the fuzzy 
world, describes vague concepts such as hot weather, faster 
runner, etc., called fuzzy set, which no longer has a crisp, 
clearly defined boundary. Instead, elements can be contained 
to a fuzzy set with a partial degree of membership which is 
determined by a membership function that maps the input 
space to a membership value between 0 and 1. A 
membership function can be of any shape as long as its range 
is within [0, 1] and the commonly used ones include 
triangular, Gaussian, and sigmoid functions. 

Fuzzy modeling combines fuzzy logic with mathematical 
equations to describe the discovered patterns of system 
behavior and to guide the control strategies of the system. A 
fuzzy model is a rule base which consists of a collection of 

fuzzy rules in the form of “If x is A then y is B”, where A and 
B are linguistic values defined by fuzzy sets with associated 
membership functions. To reduce the size of the dataset and 
the corresponding number of fuzzy rules, data clustering 
techniques are often employed to derive a concise 
representation of the system’s behavior and to determine a 
minimum number of fuzzy rules needed in the model. 

The process of formulating the mapping from a given 
input to an output on a fuzzy rule base is called fuzzy 
inference, which entails the following steps: 1) Evaluation of 
antecedents: The input variables are fuzzified to the degree 
to which they belong to each of the appropriate fuzzy sets via 
the corresponding membership functions; 2) Implication to 
consequents: Implication is performed on each fuzzy rule by 
modifying the fuzzy set in the consequent to the degree 
specified by the antecedent; 3) Aggregation of consequents: 
The outputs of all the fuzzy rules are aggregated into a single 
fuzzy set which is then inversely translated into a single 
numeric value through a defuzzification method. 

III. APPROACH 
This paper proposes an autonomic resource management 

system to automatically control and optimize the multi-type 
resource utilizations for database VMs serving dynamic and 
complex workloads. The objective of this system is two-fold: 
First, without any a priori knowledge of the database system 
itself, the proposed management system should be able to 
determine the relationship between the database workload 
demands and the VM’s needs of multi-type resources for 
meeting the desired QoS; Second, the system should be able 
to timely update its model and adjust the resource allocation 
when the workload is dynamically changing its intensity and 
shifting its demands across different resource types. 

Figure 1 illustrates the high-level architecture of our 
proposed autonomic resource management system which 
consists of four key modules, Application and VM Sensors, 
Adaptive Learner, Resource Predictor, and Resource 
Allocator. As a workload executes on the database VM, the 
Application and VM Sensors monitor the characteristics of 
the workload w(t), its performance p(t), and the VM’s 
resource usage r(t). This information is fed to the Adaptive 
Learner to model the VM’s resource needs and continuously 
updates the model. With this model and the monitored 
current workload w(t), the Resource Predictor produces an 
estimation of the resource needs for time t+1. Based on this 
prediction, the Resource Allocator then adjusts the VM’s 
resource configurations accordingly. Together, these 
modules form a continuous closed loop for the database 
VM’s resource control and optimization. 

A.  Application and VM Sensors 
As illustrated in Figure 2, the Sensors collect real-time 

information from both an application (current workload 
characteristics and QoS) and its VM (current resource 
usage), which are necessary to build the VM resource usage 
model and to predict its current resource needs. 

1) Workload Characterization 
Workload characterization is the process of describing 

the characteristics of a workload that are relevant to its 
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resource usage behaviors when executed on a database VM. 
Such characteristics provide important inputs to the effective 
modeling and prediction of a database VM’s resource needs. 
A commonly used workload characteristic is the request rate 
which describes the workload’s intensity and is strongly 
correlated with its resource demand. For example, a typical 
workload for a Web server can be characterized by its HTTP 
request rate, where the more HTTP requests received per 
period of time, the more CPU cycles the VM will consume 
during the period in order to process those requests [18]. 
However, the request composition of the workload may also 
have a significant impact on the resource demands and need 
to be considered for the modeling. A Web server’s workload 
can contain a mix of static-content requests and dynamic-
content requests, which have different needs on the use of 
CPU and I/O resources. Therefore, the ratio between these 
two types of requests can be taken as another characteristic 
to describe such a workload and contributes to the modeling 
of the Web server VM’s resource usage.  

The characterization of a database workload is even more 
challenging because of the complexity and diversity of 
individual queries and the dynamism of the workload. A 
real-world database’s workload typically consists of large 
numbers of different kinds of queries, each with widely 
varying resource requirements, where the workload’s query 
composition also changes dynamically over time [19]. This 
poses a great challenge to consider all the different resource-
intensive queries for characterizing the behaviors of a 
database workload. To address this challenge, this paper 
employs the following two different solutions for effective 
database workload characterization. 

The first solution is to group the queries in a workload 
into a small number of categories based on their behaviors in 
consuming resources, and then describe the workload as a 
vector of arrival rates of these different categories. For 
workloads that have a fixed set of queries (even though the 
size of this set may be very large), offline modeling can be 
performed to observe their resource usage behaviors and data 
clustering techniques can be used to group the queries into 
representative clusters.  For example, Martin and Wasserman 
et al. [20] have considered the use of unsupervised data 
mining techniques to classify the TPC-H queries into four 
clusters which have distinct resource consumption patterns. 

However, for workloads with queries that cannot be learned 
or modeled a priori, they have to be characterized online. To 
this end, we will consider in our future work the use of query 
cost estimation from DBMS (Database Management System) 
to drive the online characterization of such a workload.  

The second solution is to describe a database workload 
based on the knowledge of the application that generates the 
database queries. Particularly, in a typical multi-tiered Web 
system, queries received at the database tier are triggered by 
the user requests at the Web tier. The types of such requests 
can have distinct impact on the resource usages of their 
triggered queries. For example, in a multi-tier online auction 
site [4], the user interactions with the website mainly include 
several different types such as browsing, bidding, and 
selling, which generate different types of queries with 
distinct CPU and I/O usage behaviors (Section IV.C). 
Consequently, the composition of these different types of 
HTTP requests received at the Web tier, which is easily 
observable, can be then taken to infer the characteristics of 
the corresponding query workload at the database tier. 

2) Resource Usage Monitoring 
The VM Sensor is responsible of collecting the VM’s 

real-time resource usage information, which is the other key 
component of the inputs to VM resource usage modeling. 
Although workload characteristics are collected from the 
application running inside of the VM, resource utilizations 
need to be monitored from outside of the VM. This is 
important because the application’s virtual resource usages 
do not truthfully represent its VM’s physical resource 
usages. Due to the need of virtualization, an application’s use 
of one type of resources may incur the use of a different 
amount of this type as well as the use of other types of 
resources for the VM. For example, an application’s I/Os to 
its VM’s virtual disk can trigger a different amount of I/Os to 
the physical disk, depending on how the virtual disk is stored 
physically; The processing of these virtual I/Os also costs 
CPU cycles due to the need of I/O virtualization. Therefore, 
resource usage monitoring needs to be done at the VM level, 
instead of at the application level, in order to capture all the 
necessary resources for servicing its workload on a VM. 

The VM Sensor monitors multiple types of resources 
including CPU, memory, and disk and network I/Os. This is 
key to the modeling of a database application because it has 
complex resource usage behaviors and can have intensive 
demands for multi-type resources. Database management 
and query optimization can be highly CPU intensive, 
whereas loading and storing records to and from storage can 
be highly disk I/O intensive. In addition, if the database 
storage is delegated to a remote server across the network, as 
in many commercial database setups, the database system 
can also be highly network I/O intensive. Therefore, the 
resource management system considers CPU cycles and I/O 
bandwidths as the resource costs for database queries and 
monitors both of their usages for the VMs.  

Typical VM technologies all provide a comprehensive 
interface for the monitoring of VM resource usages. In the 
prototype built upon the Xen VM environment, the VM 
Sensor is implemented as a user-level daemon running on 
Xen’s management and I/O VMs, which are privileged VMs 

 
Figure 1. Architecture of the autonomic resource management system for 
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dedicated for VM management and I/O processing for the 
entire physical host. Specifically, the resource monitoring 
daemon uses Xen’s xentop utility to collect a VM’s CPU 
utilization and the Linux iostat utility to collect the statistics 
of a VM’s I/O bandwidth usages. 

3) Performance Measurement 
In addition to the information about application workload 

and VM resource usage, the management system also needs 
to monitor the application’s current performance, which is 
important to decide whether the current resource usage can 
represent the VM’s resource needs for the desired QoS, and 
whether the current resource allocation is sufficient to meet 
the desired QoS. The information of application performance 
is also collected by the Application Sensor. For a typical 
application, the commonly used performance metrics include 
throughput (number of completed requests per unit time) and 
average request response time (average service time of 
requests per unit time). Generally, workloads with large 
volumes of small requests are more interested in throughput, 
whereas those with small number of large requests are more 
concerned with the average response time.   

These two metrics are also often used to measure a 
database workload’s performance, both of which can be 
collected by the Application Sensor. Note that we consider a 
workload as a continuous, dynamic process. Therefore, the 
throughput and average response time reported by the Sensor 
are fine-grained, real-time measurements taken periodically 
from the queries, rather than the overall values measured 
only once for the entire workload. To implement the 
performance measurement, the Sensor can collect such 
information from typical DBMSs that are capable of 
monitoring and reporting query statistics in their logs. A 
more general way is to implement the Sensor as a proxy that 
interposes between the database client and server, so it can 
forward the queries to the database and meanwhile measure 
their performance. This is the approach taken by our 
prototype, where the Sensor runs as a database proxy on the 
same VM that the database is hosted on. 

B. Adaptive Learner 
The Adaptive Learner module is responsible for creating 

and updating the model that represents the relationship 
between a database workload and its VM’s resource needs. 
Although DBMS also provides estimations of the resource 
costs for queries based on its internal query evaluation 
strategy, this mechanism is not used in our approach to 
predict the database VM’s resource needs because of two 
important reasons. First, the accuracy of DBMS query cost 
estimation is known to be limited [21]. Although it works 
well for relative cost comparison for the purpose of selecting 
the optimal execution plan for a query, it is not sufficient to 
provide an accurate estimation of the query’s actual resource 
needs and to guide the resource allocation. Second, the 
resource estimation given by DBMS, which runs inside of a 
VM and is completely unaware of the virtualization, cannot 
truthfully capture the resource needs of the VM, which can 
be significantly influenced by the virtualization process and 
the resource competition from co-hosted VMs.   

Therefore, in our proposed resource management system, 
the Adaptive Learner employs a fuzzy modeling based 
approach to automatically discover the relationship between 
a database workload and its VM’s resource needs. Fuzzy 
modeling is the process of constructing fuzzy rules based on 
the input and output data pairs, <w(t), r(t)>, which are 
periodically collected by the Application and VM Sensors. 
Both the workload input w(t) and the resource usage output 
r(t) can be vectors with multiple dimensions. For w(t), each 
dimension represents certain characteristic of the workload 
and for r(t) each dimension maps to one type of consumed 
resources. Note that the Learner needs to filter out the 
unqualified data points collected when the workload 
performance p(t) cannot satisfy its QoS objective, because 
such data do not represent the actual resource needs of the 
VM and cannot be used to train the VM’s resource model. 
Caution also needs to be taken to ensure that sufficient 
qualified data points are available in time so that the desired 
model can be quickly created as discussed later. 

The Adaptive Leaner builds a fuzzy rule base from the 
qualified input-output data to model a database VM’s 
resource usage behaviors. However, it is not efficient to 
generate one rule for every specific data pair, which may 
also lead to over-fitting due to error or noise in the data. In 
order to build a concise rule base with a small number of 
fuzzy rules that can effectively represent the VM behaviors, 
clustering method is used to group similar data points into 
clusters. Specifically, the Learner adopts an efficient one-
pass clustering algorithm, subtractive clustering [22]. This 
method starts from assuming each data point as a potential 
cluster center and selecting the cluster center with the most 
number of neighbors within a certain radius. After removing 
the data points belonging to the previous cluster, it continues 
to determine the next center for the remaining data until 
every data point belongs to a certain cluster. Once the 
clustering completes, each resulting cluster exemplifies a 
representative characteristic of the system behaviors and can 
be used to create a fuzzy rule accordingly.  

Tthe Adaptive Leaner generates Sugeno-type fuzzy rules 
[23] from the clustered data for VM resource usage 
modeling. This type of fuzzy rules uses a crisp, linear or 
constant function as the membership function, which is 
suitable for mathematical analysis. To elaborate on this 
modeling process, suppose for input the workload w(t) is 
described by N different characteristics, [C1, C2, …, CN] and 
for output, two types of resources, CPU and I/O, [RCPU, RIO], 
are consumed. If K clusters are formed from all the data 
pairs, then K rules are produced for this fuzzy model. The 
rule base is constructed as following: 

Ri: IF input [C1, C2, …, CN] is in cluster i, 
THEN output [RCPU, RIO]T = Ai[C1, C2, …,CN]T+bi, 0<i<K 

Each fuzzy rule is generated in a way that the corresponding 
cluster specifies a fuzzy set in the antecedent associated with 

a Gaussian membership function, 𝜇(𝑤) = 𝑒−
(𝑤−𝑐)2

2𝜎2 , where 
the Gaussian center c is set as the center of the cluster, and 
the parameter 𝜎 is equal to the radius of the cluster. In the 
consequence of a fuzzy rule, the output r(t) is a linear 
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function of w(t), where the matrix Ai and vector bi are fitting 
parameters estimated using the least-squares method. 

The above modeling process is performed continuously 
online as queries are executed on the database VM, and it is 
capable of dynamically adapting to transitions in the VM’s 
resource usage behaviors. Such a transition can be triggered 
by the change of the workload’s composition of queries with 
different types of resource demands. It can also occur due to 
the change of the database’s query optimization strategy. In 
order to adapt to these dynamic changes, the Adaptive 
Learner continuously updates the VM’s resource usage 
model based on the data collected by the Sensors in real 
time. So when a transition happens, new data points that 
reflect the workload’s current characteristics and the VM’s 
current resource usages are fed to the Adaptive Learner for 
modeling. A new set of clusters are discovered from these 
data to represent the current characteristics in the database 
VM’s model. Finally, the fuzzy model is updated with a new 
set of fuzzy rules that represent the VM’s current resource 
usage behaviors for its current workload. In this way, both 
the system structure and parameters are learned and adapted 
in real time from online data streams. The system model is 
gradually evolved as opposed to a fixed structure model, and 
the learning process is incremental and automatic. Owing to 
the speed of subtractive clustering and fuzzy modeling, this 
whole model updating process can be completed quickly 
within a find-grained resource control interval. 

C. Resource Predictor 
With the fuzzy model created from the Adaptive Leaner, 

the Resource Predictor module performs fuzzy inference to 
generate an estimate of the resource demand r(t) given its 
current workload w(t) collected from the Application Sensor. 
In a clustering-based Sugeno-type fuzzy model mentioned 
above, Gaussian membership function is used in the 
antecedent of each rule to fuzzify the input w(t) to its 
membership of the cluster in every rule. The membership 
value computed is then used as the weight for implication. In 
defuzzification, the consequent output of each rule is 
generated by the linear equation specified by associated 
parameters. A final output is then aggregated from all the 
weighted fuzzy outputs. The final amounts of resources 
estimated by the Predictor are considered as the demands of 
resources for the next resource control interval and sent to 
the Resource Allocator to guide the VM resource allocation. 

D.  Resource Allocator 
In virtualized database hosting systems, a VM serves as a 

virtualized resource container to the hosted database, where 
different types of resources can be dynamically allocated to 
this container to servicing the database’s workload. This is in 
contrast of traditional, non-virtualized database hosting, 
where a database’s resource availability is statically defined 
by its physical host’s configuration. In our proposed resource 
management system, the Resource Allocator module is 
responsible for periodically adjusting the allocations of 
multi-type resources to a database VM according to the 
Resource Predictor’s estimation of its resource needs.  

However, the Resource Allocator needs to deal with 
situations where the resource prediction given by the VM’s 
fuzzy model is inaccurate and causes the database’s query 
performance to diverge from the desired QoS target. This 
happens when the database workload is first started or when 
its resource usage behaviors are changing, because the fuzzy 
rule base does not have the necessary rules to reflect these 
new behaviors yet. Such inaccuracy in the VM resource 
estimation is addressed by the resource management system 
according to the following two different scenarios.  

If the VM’s resource needs are underestimated, it will 
lead to performance drop for the workload to perform below 
its QoS target. To quickly recover from the performance loss 
due to this underestimation, the Resource Allocator invokes 
a backup resource allocation policy after the QoS target is 
missed for several consecutive periods of time. This backup 
policy increases the current resource allocation by a fixed 
percentage in order to satisfy the VM’s unknown resource 
needs which are beyond the previous resource allocation 
level. This fixed increment on VM resource allocation is 
accumulated until the QoS comes back to the target value, 
and afterwards the resource allocation is sustained at that 
level until the target is met for several consecutive periods of 
time. Because the VM resource usage can be monitored and 
controlled at a fine granularity, this backup policy allows the 
resource underestimation to be quickly recovered and the 
performance loss to be small and transient. Meanwhile, it is 
also important for fast model adaptation, because it allows 
qualified data points to become quickly available so that the 
model can be updated to reflect the current resource needs 
and produce correct resource estimations in a timely manner.  

If a VM’s resource needs are overestimated, it will lead 
to either underutilization of the allocated resources or 
overachieving of the query QoS. In the former case, the 
VM’s actual resource needs are already reflected by its 
current resource usages, which will be collected by the 
Application Sensor and taken by the Adaptive Learner to 
update the model and correct the inaccuracy automatically. 
In the latter case, the model does not have the knowledge of 
the VM’s current resource needs, so another backup policy 
also needs to be invoked to reduce the resource allocation by 
a fixed amount. Its usage is similar to the use of the backup 
policy described in the above resource underestimation 
scenario, except that the resource allocation is decreased 
instead of being increased. This ensures that the resource 
allocation can be quickly brought down to the necessary 
level so that efficient VM resource usages can be achieved 
while meeting the desired query QoS target. 

Finally, the Resource Allocator also needs to handle the 
situation where the available resources on a physical host are 
not sufficient to satisfy the needs from all the concurrently 
hosted VMs. If applicable, some VMs can be migrated to 
other hosts in order to reduce the resource contention. 
Otherwise, the Resource Allocator needs to perform a cross-
VM optimization based on their SLAs (Service-level 
Agreements) and to maximize the total profit that can be 
obtained from the VMs. This is not the focus of this paper, 
and our previous work of profit-driven cross-VM resource 
optimization can be leveraged here, which maximizes the 
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total profit by considering both the revenues from hosting 
applications and the penalty from unsatisfied QoS [18]. 

Typical VM technologies all support dynamic and fine-
grained adjustment to a VM’s resource configuration. In a 
Xen-based VM environment, the Resource Allocator is 
implemented as a user-level daemon running on the 
privileged management VM. Specifically, the allocation of 
CPU cycles is done through the sEDF CPU scheduler [24] 
implemented by Xen. The CPU share for a VM is presented 
by both slice s and period p in a way that s units of time in 
each period of length p is received by that VM. Xen does not 
directly support the allocation of disk I/O bandwidth to VMs, 
but it is implemented in our resource management system 
using dm-ioband [25], a Linux block I/O bandwidth 
controller, by throttling the VM’s use of I/O bandwidth to 
the physical disk where its disk image file is stored. 

IV. EVALUATION 

A. Setup 
This section evaluates our proposed autonomic resource 

management system using database benchmarks hosted on a 
typical VM environment. The testbed is deployed on a quad-
core Intel Q6600 2.4GHz physical machine, which has 4GB 
of memory and 142GB of SATA disk storage. Xen 3.3.1 is 
installed to provide the VMs, where the OS for both dom0 
and domU VMs is Ubuntu Linux 8.10 with paravirtualized 
2.6.18.8. A dedicated domU VM is used to host the database 
server, and our resource management system is hosted on a 
separated VM. The VM’s use of CPU and disk I/Os are 
collected using xentop and iostat, where the I/O bandwidth 

usage is the sum of reads and writes per unit time. Resource 
allocations to VMs use the sEDF CPU scheduler to assign 
CPU shares and using dm-ioband I/O controller to set the 
cap for I/O bandwidth. The sEDF scheduler uses 100ms 
period in the work-conserving mode. The VM resource 
monitoring and control period is set to 20 seconds in Section 
IV.B and 10 seconds in Section IV.C. The overhead from the 
management system is very small, which uses about 20MB 
memory and 1% CPU when measured every second. 

Two typical database benchmarks are considered in our 
experiments, including TPC-H [3] and RUBiS [4]. Their 
performance is measured in two different cases: the 
controlled case, where the database VM’s resource usages 
are controlled based on our proposed approach; and the ideal 
case, where there is no restriction on the database VM’s 
resource usages. By comparing VM resource usages and 
workload performance between the controlled case and  ideal 
case, these experiments evaluate whether our proposed 
system can correctly estimate the database VM’s resource 
needs, achieve the same level of performance as in the ideal 
case, and save substantial resources compared to peak-load 
based static resource allocation. Every experiment is 
repeated multiple times and the results from the average case 
are reported here. Each run of the experiments is started with 
cold memory cache by restarting the database.  

B. TPC-H Experiments 
TPC-H provides 22 representative queries in business 

decision support system. The executions of these queries 
involve the processing of large volumes of data with a high 
degree of complexity, which can result in diverse behaviors 

 
Figure 2. CPU usage for the CPU intensive workload 

 
Figure 3. Average query response time for the CPU intensive workload 

 
Figure 4. I/O bandwidth usage for the I/O intensive workload 

 
Figure 5. Average query response time for the I/O intensive workload 
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of multi-type resource usages. Based on these queries, we 
have constructed synthetic database workloads with varying 
demands of different types of resources. These workloads are 
kept relatively simple in order to clearly demonstrate the 
impact of workload intensity and composition on the VM’s 
resource usages. In these experiments, training and testing of 
the VM resource model are done separately using different 
subset of the available data points, in order to evaluate the 
accuracy of our fuzzy-modeling based approach for learning 
and predicting the resource needs of a database VM. The 
modeling of more realistic and complex workloads with 
online training is considered in Section IV.C. The database 
used here is an instance of PostgresSQL 8.1.3 with 1.1 GB of 
data, hosted on a VM with one CPU and 512MB memory. 

1) CPU-intensive Workload 
The first experiment considers the Pricing Summary 

Report Query (Q1) from TPC-H, which reports the amount 
of business that was billed, shipped, and returned. It is a CPU 
intensive query that involves a series of SUM and AVG 
operations based on GROUP BY and ORDER BY clauses. 
The workload is generated by continuously issuing copies of 
Q1 to the database with an increasing request rate from 10 to 
50 request/minute. Each rate is sustained for a period of 300 
seconds before incremented to a higher rate. Different sets of 
the data are used for training and testing (100 points each). 

Because the resulting workload is not I/O intensive, here 
we only show the results from the VM’s CPU modeling and 
allocation. Figure 2 and 3 compare the CPU usage and the 
average query response time between the controlled case and 
the ideal case as the request rate in the test dataset increases. 
The results show that the learned model can be used to 

accurately predict the database VM’s CPU needs for 
delivering the same performance as in the ideal case for such 
a CPU intensive workload. 

2) I/O-intensive Workload 
In the second experiment, the workload is generated in a 

way similar to the previous one, except that it uses the 
Forecasting Revenue Change Query (Q6) from TPC-H, 
which quantifies the amount of revenue increase resulted 
from eliminating certain companywide discounts in a given 
percentage range in a given year. This query examines a 
large table in the database and is highly I/O intensive. The 
size of this table is reduced in this experiment to make Q6 
less I/O intensive, so that we can vary its request rate in a 
larger range (35~135 request/minute). Further, in order to 
show the workload’s worst case I/O demand, this downsized 
table is duplicated many times so that contiguous Q6 
requests access different copies of the table and the memory 
caching cannot help to speed up the query processing. The 
training dataset has 250 points and the test set has 200 points. 

Because the resulting workload is not CPU intensive, 
here we only show the results from the VM’s I/O modeling 
and allocation. Figure 4 and 5 compare the I/O usage and the 
average query response time between the controlled case and 
ideal case for the test dataset. The results show that our 
approach can also accurately model the I/O bandwidth needs 
of such an I/O intensive workload and meanwhile achieve 
the best performance as in the ideal case.  

We recognize that the prediction given by our approach 
for the database VM’s I/O needs is the upper bound, because 
memory caching can leverage data locality to reduce the 
VM’s actual I/O usage. Nonetheless, compared to peak-load 
based static resource allocation, it can still save substantial 
I/O bandwidth which can be used to satisfy the needs of 
other VMs. Further improvement upon this upper bound 
estimation requires knowledge of database system’s memory 
cache usage, which will be considered in our future work. 

3) Mixed CPU/IO-intensive Workload 
In the third experiment, the previously considered two 

queries, Q1 and Q6, are mixed together to construct a 
workload that is both CPU and I/O intensive. The total 
request rate of this mixed workload is increased from 20 to 
80 request/minute, where at each rate the composition of the 
mixture workload is also changed by varying the ratio 
between Q1 and Q6 from 0.25 to 4. This experiment is 
designed to evaluate our proposed system’s effectiveness of 
modeling a database VM serving workloads with changing 
query request rate and query composition, both of which 
have a significant impact on the VM’s resource usages. 
Correspondingly, the workload is characterized by both the 
overall request rate and the ratio between Q1 and Q6. We 
use 450 data points for training and 350 for testing. 

Figure 6 and 7 illustrate the database VM’s resource 
models learned from the training dataset, which show two 
three-dimensional nonlinear relationships between the query 
workload’s request rate and Q1/Q6 ratio and the VM’s CPU 
and I/O usages. The results demonstrate that our system can 
properly capture such complex behaviors in VM resource 
usages. Figure 8 and 9 compare the CPU and I/O usages 
between the controlled case and ideal case when the request 

 
Figure 6. CPU model for the mixed CPU/IO intensive workload 

 
Figure 7. I/O model for the mixed CPU/IO intensive workload 
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rate is 45 request/minute and the percentage of Q1 varies 
from 0.2 to 0.8 in the test dataset; Figure 10 compares the 
query throughput between these two cases in this setup. (The 
results from other request rates are similar and omitted here 
for conciseness.) The results show that the VM’s resource 
model can accurately estimate both its CPU and I/O demand 
simultaneously for delivering the ideal performance to such a 
workload with mixed CPU and I/O intensive queries. 

C. RUBiS 
RUBiS models an online auction site that supports the 

core functionalities such as browsing, selling, and bidding 
[4]. It is used to evaluate our proposed approach’s accuracy 
and adaptability for modeling the resource needs of a 
database VM servicing a highly complex workload with 

dynamically changing characteristics. A typical two-tier 
setup is employed in these experiments, where the Web 
server and database server are deployed on separated VMs. 
The Web VM hosts Apache Tomcat 4.1.40 with the RUBiS 
website and its clients, and it is configured with one CPU 
and 512 MB of memory. The database VM hosts MySQL 
5.0 with 1.1 GB of data and it is configured with one CPU 
and 1 GB of memory. Each client session opens a persistent 
HTTP connection to the Web server, where the requests 
represent a variety of interactions between a user and the 
auction site, which mainly include browsing items, bidding, 
and buying and selling items. These HTTP requests will then 
trigger corresponding queries to the database server.  

Three types of RUBiS workloads are considered, which 
have different mixes of user interactions: The browsing mix 
simulates users’ browsing requests on the auction site which 
include only read-only interactions; the bidding mix also 
simulates users’ bidding and selling requests, which account 
for 15% of the entire workload’s requests, so it has both read 
and write interactions with the auction site; the high-bidding 
mix simulates even more bidding and selling requests (30% 
of the entire workload’s requests) and is thus more write-
intensive than the other two mixes. The think time in all 
RUBiS mixes are generated from a negative exponential 
distribution with a mean value of seven seconds.  

The number of clients and the composition of the 
different types of user requests have strong impact on the 
corresponding database workload’s query request rate and 
usage of different types of resources. Therefore, they are 
both considered as input to the modeling of the database 
VM’s resource needs and they can be measured from the 
Web tier which interfaces with users on the auction site. 
Unlike the TPC-H experiments, in this experiment, the 
training of VM resource model is done completely online, 
i.e., the model is continuously updated as new data come in 
while it is applied to predict VM resource needs. 

The first RUBiS experiment studies our proposed 
approach’s accuracy and adaptability for a workload with 
dynamically changing intensity. The 15% bidding workload 
mix is used with its number of clients varying from 100 to 
300, and then to 500, where at each value it is sustained for a 
period of 300 seconds and then incremented to a higher rate 
without up ramp and down ramp. Figure 11 and 12 compare 
the database VM’s CPU and I/O usages between the 
controlled case and ideal case; Figure 13 compares the query 
throughput between these two cases. The results show that 
both resource usages and query throughput in the controlled 
case are consistent with the ideal case. It proves that our 
approach can properly allocate resources to the VM for such 
a complex workload to deliver the ideal performance. It does 
so without dedicating the entire physical host to the VM and 
thus saves substantial CPU cycles and disk I/O bandwidth. 

This second RUBiS experiment evaluates our approach 
for a workload with dynamically changing query mix. It is 
done by dynamically switching the workload from the 
browsing mix to the bidding mix, and then to the high-
bidding mix, where each one lasts 600 seconds and transits 
to next mix without up ramp and down ramp. The number of 
concurrent client sessions is kept at 100 throughout the 

 
Figure 8. CPU usage for the mixed CPU/IO intensive workload when the 

request rate is 45 request/minute 

 
Figure 9. I/O bandwidth usage for the mixed CPU/IO intensive workload 

when the request rate is 45 request/minute 

 
Figure 10. Average query response time for the mixed CPU/IO intensive 

workload when the request rate is 45 request/minute 
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experiment. Figure 14 compares the database VM’s I/O 
bandwidth usage between the controlled case and ideal case 
(the comparison of CPU usage is omitted here because this 
workload is not CPU intensive); Figure 15 compares the 
query throughput between these two cases. These results 
show that, during most of the experiment, the controlled case 
can closely follow the ideal case in terms of both I/O usage 
and query performance for such a complex workload. 

However, when the workload switches from the first mix 
to the second mix at the 610 second, the controlled case’s 
performance becomes temporarily worse than the ideal case, 
as the model learned from the previous mix’s behaviors is no 
longer suitable for estimating the new mix’s I/O bandwidth 
needs. As a result, the backup policy is automatically 
invoked when the QoS target is missed for three consecutive 
periods and an additional fixed amount of I/O bandwidth 
(100%) is allocated upon the model’s estimated I/O needs, in 
order to quickly bring the QoS back to the target level and 
meanwhile allow new qualified data to become available for 
updating the model. This explains the temporary over-
allocation in the controlled case compared to the ideal case 
during the transition phase (from 640 to 720 second). The 

results also show that the QoS in the controlled case indeed 
quickly converges to the ideal case after the transition. The 
backup policy is stopped when the QoS target is met for 
three consecutive periods, and the model’s prediction is 
again used to allocate I/O bandwidth as normal as it can now 
correctly estimate the VM’s I/O needs for the new workload 
mix. (Although not shown in the results, similar behaviors 
are also observed in the previous RUBiS experiment when 
the workload transits from 100 concurrent clients to 300.) 

Note that this experiment setup reveals the worst-case 
performance of our system because the transitions between 
different workload mixes happen suddenly and abruptly. Due 
to the nature of RUBiS, a surge in request rate also occurs 
whenever a workload mix starts, which makes it even more 
challenging to handle the transtion. However, for real-world 
workloads, such transitions are typically incremental and 
slow, which would allow our system more time to adapt to 
the change and reduce the performance loss during the 
transitions. Nonetheless, even for such a challenging setup, 
our system can still properly deal with the transitions and 
have short adverse impact on the query performance, which 
further proves its good adaptability. 

V. RELATED WORK 
Various solutions have been studied in the literature to 

address the problem of automatically deciding a VM’s 
resource needs based on its hosted application’s demand and 
QoS requirement. They generally employ modeling or 
control techniques to determine VM resource configurations 
and adopt autonomic techniques [10][11] to automatically 
optimize VM resource allocations. Although there is also a 
significant body of related work on the performance 
modeling of non-virtualized systems, due to the limited 
space, the discussions here focus only on virtualized resource 
management. Nonetheless, the solutions proposed for non-
virtualized autonomic resource management can also fall 
into the several categories discussed below. 

The first category of solutions employs queuing theory to 
construct analytical performance models for applications 
executed on VMs. For example, Doyle et al. derived 
analytical models from basic queuing theory to predict 
response times of Internet services under different load and 
resource allocation [26]; Bennani et al. considered using 
multiclass queuing networks to predict the response time and 
throughput for online and batch workloads on VM based 
application environments [27]. However, the effectiveness of 
this type of solutions is restricted by their assumptions about 
a virtualized system’s internal model, which are often 
insufficient for capturing its resource usage complexities.  

The second category of solutions applies control theory 
to automatically adjust VM resource allocation in order to 
achieve the desired application performance. Such solutions 
often assume a linear relationship between QoS parameters 
and control parameters and involve a system identification 
phase to train the model parameters. In addition, the control 
parameters typically must be specified or configured offline 
on a per-workload basis. For example, autoregressive models 
have been used to map CPU allocation to average response 
times of Web servers [28][29]; Autoregressive moving 

 
Figure 11. CPU usage for the RUBiS workload with changing intensity 

 
Figure 12. I/O usage for the RUBiS workload with changing intensity 

 
Figure 13. Throughput for the RUBiS workload with changing intensity 
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average models have also been considered to represent a 
more general relationship between application performance 
and its VM’s multi-type resource usages [30]; The “1000 
islands” work is an integrated, control-theory based approach 
to virtualized datacenter resource management using both 
dynamic resource allocation and VM migration [31]. 

In comparison, the third category of solutions considers 
machine learning techniques to automatically learn the 
complex resource model for a virtualized system based on 
data observed from the system. For example, the CRAVE 
project employs simple regression analysis to predict the 
performance impact of memory allocation to VMs [13]; 
Wood et al. also use regression method to map a resource 
usage profile obtained on a physical system to one that can 
be used on a virtualized system [14]; The VCONF project 
has studied using reinforcement learning to automatically 
tune the CPU and memory configurations of a VM in order 
to achieve good performance for its hosted application [15]; 
Kund et al. employs artificial neural networks to build 
performance models that consider both resource allocation to 
VMs and resource interference between VMs [16].  

Our proposed fuzzy-logic based VM modeling solution 
also falls into the third category. It is advantageous in that it 
does not require any a priori knowledge of the VM’s 
resource usage behaviors, and it can efficiently model a 
nonlinear system with dynamically changing operating 
conditions. Our previous work [18] has studied fuzzy 
modeling for the CPU resource management of VMs hosting 
CPU-intensive Web servers. This paper takes this approach 
to address the new challenges in VM-based hosting of 
applications that have more complex, multi-type resource 
usage behaviors. Specifically, our system is able to manage 
and optimize VM’s use of not only CPU but also I/O 

resource, which is known to be more difficult to model and 
control. It is also capable of handling dynamic workloads 
with shifting demands across different resource types. 

Research on the resource management of virtualized 
database hosting systems is still in its infancy. Farooq et al. 
experimentally evaluated VM-based databases and showed 
that the overhead is very small compared to natively hosted 
databases, thus justifying the feasibility of such approaches 
[31]. Soror et al. addressed the problem of automatic VM 
resource configuration for hosting databases by leveraging 
DBMS query cost model, which is calibrated to reflect the 
cost when queries are executed on VMs [32]. However, this 
work treats a workload as a static entity with a fixed set of 
queries, so the performance considered is the overall runtime 
and the VM configuration is done statically for the entire 
workload. The offline calibration process considers VM’s 
use of CPU, memory, and I/Os as independent from each 
other, which may not hold due to the complexity of resource 
virtualization. When the DBMS cost model is inaccurate, 
this work employs online refinement by assuming a linear 
model between workload performance and VM resource 
allocation. Therefore, it is unclear how this approach would 
apply to and how well it would perform for a workload with 
complex resource usages and dynamically changing 
behaviors. In comparison, our proposed approach is capable 
of addressing such dynamism and complexity which are 
typical in database workloads and virtualized systems. 

VI. CONCLUSION AND FUTURE WORK 
Virtualization can greatly facilitate the deployment of 

database systems and substantially improve their resource 
utilization. To fulfill this potential, resource management is 
the key, which should be able to automatically allocate 

 
Figure 14.  I/O bandwidth usages for the RUBiS workload with changing mix 

 
Figure 15. Query throughput for the RUBiS workload with changing mix 
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resources to database VMs based on their demands and QoS 
targets. This paper presents an autonomic resource 
management system that can achieve this goal through fuzzy 
modeling based approach, which learns a database VM’s 
resource usage behaviors based on observed data and 
predicts its resource needs for its current workload demand. 
This process is done continuously online to guide dynamic 
resource allocation and adapt to dynamic changes in the 
system. Experiments based on typical database benchmarks 
demonstrate that our system can accurately estimate a 
database VM’s resource needs for dynamic and complex 
query workloads, and it can save substantial resources 
compared to peak-load based static allocation while 
achieving the desired query QoS. Finally, the approach taken 
by this research is also generally applicable to address the 
virtual resource management for other types of applications 
that have dynamic and complex resource usage behaviors. 

In our future work, we will consider to further 
improvements along the following directions. First, our 
current approach treats an application’s VM as a black box in 
resource management, which has the advantage of being 
agnostic to application specifics and thereby applicable to 
different applications. However, application knowledge can 
be carefully leveraged to further improve its effectiveness 
and efficiency. In particular, for database VMs, online 
workload characterization can take advantage of the query 
cost estimation from DBMS, whereas more efficient I/O 
bandwidth allocation can be based on the knowledge of 
DBMS buffer management. Second, our current system 
manages each VM separately based on its individual 
workload and QoS target. Nonetheless, for VMs hosting 
dependent applications, e.g., different tiers of a multi-tier 
application, their resource management can be considered 
holistically, in order to further optimize the overall resource 
usage and achieve the end-to-end QoS goals. 
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