

Autonomic Resource Management for Virtualized Database

Hosting Systems

Technical Report 2009-07-01

July, 2009

School of Computing and Information Sciences (SCIS)

Florida International University (FIU)

Miami, Florida, USA 33199-0001

Lixi Wang*, Jing X u, Ming Zhao*, Yicheng Tu‡, Jose Fortes

* Florida International University, {lwang007, mzhao}@fiu.edu
 University of Florida, {jxu, fortes}@ufl.edu

‡ University of South Florida, ytu@cse.usf.edu

mailto:ytu@cse.usf.ed�

2

Autonomic Resource Management for Virtualized Database Hosting Systems

Lixi Wang*, Jing Xu, Ming Zhao*, Yicheng Tu‡, Jose Fortes
* Florida International University, {lwang007, mzhao}@fiu.edu

 University of Florida, {jxu, fortes}@ufl.edu
‡ University of South Florida, ytu@cse.usf.edu

Abstract— The hosting of databases on virtual machines (VMs)
has great potential to improve the efficiency of resource
utilization and the ease of deployment of database systems.
This paper considers the problem of allocation of physical
resources on demand to a database’s VM according to QoS
(Quality of Service) requirements. This is a challenging
problem because of the highly dynamic and complex nature of
database systems and their workloads. An autonomic resource
management approach is proposed to address this problem
based on adaptive fuzzy modeling and prediction techniques.
The approach can effectively capture the relationship between
a dynamically changing database workload, which is both CPU
and I/O intensive, and its VM’s consumption of resources,
including both CPU cycles and disk bandwidth. It can be used
to predict the resource needs of a database VM online and to
guide the on-demand resource allocation according to the
workload demand and desired QoS. A prototype of the
proposed resource management system is evaluated using
typical database workloads based on TPC-H and RUBiS. The
results demonstrate that the proposed approach can efficiently
allocate resources for a database VM that is serving CPU and
I/O intensive queries while meeting the QoS targets.

I. INTRODUCTION
A system-level virtual machine (VM) (e.g., VMware [1],

Xen [2]) can be a powerful platform for deploying and
hosting database systems. From the perspective of database
users, VMs enable fine-tuned databases to be encapsulated
along with their execution environments and conveniently
deployed as appliances on different hosting systems. From
the perspective of resource owners, VMs allow flexible
resource allocation to meet changing database needs and
efficient resource utilization by sharing resources between
databases and other applications. However, although many
important applications, such as Web and application servers,
have been widely deployed on VMs, efficient hosting of
databases on virtualized resources is still very challenging
due to the highly complex and dynamic nature of database
systems and their workloads. Typical databases have to serve
dynamically changing workloads consisting of a wide variety
of queries, whereas the query executions can consume
different types and amounts of resources, including both
CPU and I/O. These properties make it difficult to host
databases on shared resources without compromising
performance or wasting resources.

This paper aims to address the above challenges through
an autonomic VM resource management system that can
automatically control and optimize the allocations of
different types of resources to database VMs based on their
workload demands and QoS (Quality of Service) objectives.

The fundamental goal of this proposed system is two-fold.
First, it should be able to automatically learn a database
VM’s needs for multi-type resources to service a complex
query workload so that resources can be efficiently allocated
to the VM while satisfying the desired query QoS. Second, it
should be able to automatically adapt to the dynamic changes
of a database VM’s resource usage and timely adjust the
VM’s resource allocations to maintain both the efficiency of
resource usages and the QoS of queries.

To realize the above stated goals, this paper proposes a
fuzzy-modeling based online learning and prediction
approach to the autonomic resource management of
virtualized database hosting systems. In this approach, fuzzy-
logic based modeling is adopted to automatically learn the
resource usage behaviors of database VMs based on
observed query workload characteristics and VM resource
consumptions. This modeling method does not require any a
priori knowledge of the system’s internal structure and it can
efficiently describe complex and nonlinear system behaviors.
Specifically, a database VM’s resource model is constructed
online and updated dynamically to learn the relationship
between a query workload’s changing characteristics and the
VM’s needs of multi-type resources, particularly CPU cycles
and I/O bandwidth. This model is then applied also online to
predict the database VM’s multi-type resource needs for its
current workload and to allocate resources efficiently to the
VM and meanwhile meet the QoS target for the queries.

This resource management system is implemented for
Xen-based VM environments and it is evaluated using a
series of experiments based on typical database benchmarks
(TPC-H [3], RUBiS [4]). The results demonstrate that the
system can efficiently allocate resources for a database VM
that is serving CPU and I/O intensive queries while still
delivering the same level of performance as when all the
resources are dedicated to the VM. The results also show that
the system can adapt to dynamic transitions of the database
VM’s resource usage caused by changing workload intensity
and composition, achieving both resource efficiency and
query QoS in a timely manner.

In summary, this paper has made the following unique
contributions: 1) It proposes a novel autonomic resource
management system for database VMs, which can efficiently
allocate different types of resources according to the query
workload demand and can timely adapt to changes in their
resource usage behaviors; 2) It develops an implementation
for typical Xen-based VM systems, which can manage and
optimize the use of both CPU cycles and I/O bandwidth for
database VMs serving resource-intensive workloads; 3) The
overall approach proposed in this paper is also generally

3

applicable to the virtualized hosting of other kinds of
challenging applications that have dynamic and complex
resource usage behaviors.

The rest of this paper is organized as follows. Section 2
describes the background and motivation of this research.
Section 3 discusses the detailed design and implementation
of the proposed system. Section 4 presents an experimental
evaluation of the prototype. Section 5 examines the related
work and Section 5 concludes this paper.

II. BACKGROUND AND MOTIVATION

A. System Virtual Machines
The emergence of VMs is driven by the fast maturation

and wide availability of virtualization technologies, as well
as the rapid growth of computing power on modern
computer systems. The VMs considered in this paper are
system-level VMs [1][2], which are based on the
virtualization of an entire physical host’s resources,
including CPU, memory, and I/O devices, presenting virtual
resources to the guest operating systems and applications.
Such VMs are mainly implemented by the layer of software
called Virtual Machine Monitor (VMM, a.k.a. hypervisor).
Although our proposed techniques can also be applied to
some other types of virtualization (e.g., OS-extension based
VMs [5][6]), those are not the focus of this paper.

This paper considers the use of dedicated VMs to host
different applications and allow them to transparently share
the underlying resources. Because the multiplexing of
applications to resources is provided at a lower level of the
system, it has the following advantages compared to
traditional OS-based resource sharing: 1) VMs provide
strong isolation for resource sharing, allowing applications
on one VM to be protected from failures and security
breaches occurred on another concurrently hosted VM; 2)
Virtualization supports flexible allocation of various types of
resources to VMs, and VM migration further enables
dynamic balancing of resource usages across physical hosts;
3) VMs allow application-tailored customization of their
execution environments, including OSes and libraries, and
enable applications to be seamlessly deployed onto resources
with heterogeneous configurations.

B. Virtualized Database Hosting
Traditionally, databases are hosted on dedicated physical

servers that have sufficient hardware resources to satisfy
their expected peak workloads with desired QoS. However,
this is often inefficient for the real-world situations in many
application domains such as e-business [7] and stream data
management [8][9], where the workloads are intrinsically
dynamic in terms of their bursty arrival patterns and ever-
changing unit processing costs. Even under domains where
traditional static workload exists, the database can
dynamically switch from one workload to another at runtime.
For example, an online vendor database that serves large
number of user queries during the day may switch to internal
bookkeeping jobs early in the morning. Therefore, the
limitations of the traditional database hosting approach are
two-fold. First, peak-load based resource provision leads to

overprovision and thus underutilization of resources for
normal state workloads. This can cause considerable
infrastructural and operational overhead. Second, as a
steady-state workload demand exceeds its previously
expected peak value, the database’s performance may drop
dramatically due to overload, unless it can be moved to a
more powerful server through a lengthy relocation process.

Using VMs to host databases can effectively address the
above limitations, because virtualized resources, including
CPU, memory, and I/O, are decoupled from their physical
infrastructure and can be flexibly allocated to the databases
as needed. Virtualization can consolidate many dedicatedly
provisioned physical servers into a small number of shared
ones, where each of them can be carved into multiple virtual
resource containers to provision resources to applications.
This approach allows a database system to share the
consolidated resources with other databases and applications,
with strong isolation by hosting them on dedicated VMs. It
also allows a database VM’s resource allocation to elastically
grow and shrink based on the workload’s demand. In
addition, database VMs can be dynamically migrated across
physical machines for resource optimization.

Virtualization also offers a new paradigm for database
deployments. Modern databases have become rather
sophisticated software systems, where their installation,
configuration, and tuning often require substantial domain
knowledge and experience as well as considerable efforts
from the database administrators (DBA). This presents a
hurdle to the wide deployment and effective use of
databases. VM-based database hosting allows carefully
installed and finely tuned databases to be distributed as
simply as copying the data that represent the database VMs.
In this way, a DBA only needs to install, configure, and tune
a database once in the environment provided by a VM. With
that, the deployment of the database on a new host only
entails transferring the VM data to the host, creating a new
VM instance from the data, and starting the new database
that is already deployed in the VM. In addition, this approach
allows databases to be quickly replicated and distributed for
performance and reliability improvements.

C. Autonomic VM Resource Management
VM-based application hosting allows dynamic resource

allocations based on the demands from applications, thereby
improving the overall resource utilization. However, a key
challenge to the success of this approach is how to allocate
resources to a VM to achieve both the application desired
QoS and the system desired resource efficiency, and how to
do so for all the VMs automatically and continuously. To
address this challenge, autonomic computing techniques can
be employed to realize self-managing of VM resource
configurations according to the high-level application
performance and resource utilization objectives [10]. A
Monitor-Analyze-Plan-Execute (MAPE) control loop [11]
can be deployed to monitor the VM’s workload demand,
analyze its resource needs, plan its resource configuration,
and then execute it accordingly. This paper follows this
approach to build an autonomic system for the resource
management of virtualized database hosting systems.

4

An important task of an autonomic resource management
system is to analyze a VM’s resource usage behaviors and
decide its proper resource configuration based on its hosted
application’s workload demand and QoS requirements. This
task is particularly challenging for database systems because
of their highly complex and dynamic multi-type resource
usages. Database queries can be both CPU and I/O intensive
and a typical database workload can have a diverse variety of
such queries with dynamically changing composition. This
makes it difficult to determine the allocations of multi-type
resources to a database VM without over-provisioning and
yet satisfying its desired query performance.

In order to understand a VM’s resource needs for its
hosted application, several different types of approaches
have been proposed and they are examined in details in
Section V. In particular, machine learning techniques can be
employed to learn the relationship between the workload
demand and the VM’s resource usages, which can be then
used to guide the resource allocation to the VM. Machine-
learning based approaches are advantageous than others in
that a VM’s resource usage model is automatically created
from data observed from the system, without assuming any a
priori knowledge about the system’s structure.

Compared to other typical machine learning techniques,
fuzzy-logic based modeling is particularly suited to
efficiently model systems with complex behaviors [17]. Our
previous work has successfully applied this approach to the
CPU resource management of VMs hosting CPU-intensive
Web servers [18]. However, the management of virtualized
database systems raises new, important challenges: First,
how to effectively manage a VM with multi-type resource
demands, including not only CPU cycles but also I/O
bandwidth, which is known to be difficult to model and
control; Second, how to timely adapt to the dynamic changes
in a VM’s resource needs in terms of not only changing
intensity but also shifting demand across different resource
types. These new challenges are addressed by the system
proposed in this paper in which databases serve as an
excellent example of applications with dynamic, multi-type
resource usage behaviors.

D. Fuzzy-logic based System Modeling
Fuzzy logic [17] is suited for dealing with uncertain

problems in real world, which transforms imprecise
linguistic statement into quantified logical input-output
relations by using mathematical functions. A set in the fuzzy
world, describes vague concepts such as hot weather, faster
runner, etc., called fuzzy set, which no longer has a crisp,
clearly defined boundary. Instead, elements can be contained
to a fuzzy set with a partial degree of membership which is
determined by a membership function that maps the input
space to a membership value between 0 and 1. A
membership function can be of any shape as long as its range
is within [0, 1] and the commonly used ones include
triangular, Gaussian, and sigmoid functions.

Fuzzy modeling combines fuzzy logic with mathematical
equations to describe the discovered patterns of system
behavior and to guide the control strategies of the system. A
fuzzy model is a rule base which consists of a collection of

fuzzy rules in the form of “If x is A then y is B”, where A and
B are linguistic values defined by fuzzy sets with associated
membership functions. To reduce the size of the dataset and
the corresponding number of fuzzy rules, data clustering
techniques are often employed to derive a concise
representation of the system’s behavior and to determine a
minimum number of fuzzy rules needed in the model.

The process of formulating the mapping from a given
input to an output on a fuzzy rule base is called fuzzy
inference, which entails the following steps: 1) Evaluation of
antecedents: The input variables are fuzzified to the degree
to which they belong to each of the appropriate fuzzy sets via
the corresponding membership functions; 2) Implication to
consequents: Implication is performed on each fuzzy rule by
modifying the fuzzy set in the consequent to the degree
specified by the antecedent; 3) Aggregation of consequents:
The outputs of all the fuzzy rules are aggregated into a single
fuzzy set which is then inversely translated into a single
numeric value through a defuzzification method.

III. APPROACH
This paper proposes an autonomic resource management

system to automatically control and optimize the multi-type
resource utilizations for database VMs serving dynamic and
complex workloads. The objective of this system is two-fold:
First, without any a priori knowledge of the database system
itself, the proposed management system should be able to
determine the relationship between the database workload
demands and the VM’s needs of multi-type resources for
meeting the desired QoS; Second, the system should be able
to timely update its model and adjust the resource allocation
when the workload is dynamically changing its intensity and
shifting its demands across different resource types.

Figure 1 illustrates the high-level architecture of our
proposed autonomic resource management system which
consists of four key modules, Application and VM Sensors,
Adaptive Learner, Resource Predictor, and Resource
Allocator. As a workload executes on the database VM, the
Application and VM Sensors monitor the characteristics of
the workload w(t), its performance p(t), and the VM’s
resource usage r(t). This information is fed to the Adaptive
Learner to model the VM’s resource needs and continuously
updates the model. With this model and the monitored
current workload w(t), the Resource Predictor produces an
estimation of the resource needs for time t+1. Based on this
prediction, the Resource Allocator then adjusts the VM’s
resource configurations accordingly. Together, these
modules form a continuous closed loop for the database
VM’s resource control and optimization.

A. Application and VM Sensors
As illustrated in Figure 2, the Sensors collect real-time

information from both an application (current workload
characteristics and QoS) and its VM (current resource
usage), which are necessary to build the VM resource usage
model and to predict its current resource needs.

1) Workload Characterization
Workload characterization is the process of describing

the characteristics of a workload that are relevant to its

5

resource usage behaviors when executed on a database VM.
Such characteristics provide important inputs to the effective
modeling and prediction of a database VM’s resource needs.
A commonly used workload characteristic is the request rate
which describes the workload’s intensity and is strongly
correlated with its resource demand. For example, a typical
workload for a Web server can be characterized by its HTTP
request rate, where the more HTTP requests received per
period of time, the more CPU cycles the VM will consume
during the period in order to process those requests [18].
However, the request composition of the workload may also
have a significant impact on the resource demands and need
to be considered for the modeling. A Web server’s workload
can contain a mix of static-content requests and dynamic-
content requests, which have different needs on the use of
CPU and I/O resources. Therefore, the ratio between these
two types of requests can be taken as another characteristic
to describe such a workload and contributes to the modeling
of the Web server VM’s resource usage.

The characterization of a database workload is even more
challenging because of the complexity and diversity of
individual queries and the dynamism of the workload. A
real-world database’s workload typically consists of large
numbers of different kinds of queries, each with widely
varying resource requirements, where the workload’s query
composition also changes dynamically over time [19]. This
poses a great challenge to consider all the different resource-
intensive queries for characterizing the behaviors of a
database workload. To address this challenge, this paper
employs the following two different solutions for effective
database workload characterization.

The first solution is to group the queries in a workload
into a small number of categories based on their behaviors in
consuming resources, and then describe the workload as a
vector of arrival rates of these different categories. For
workloads that have a fixed set of queries (even though the
size of this set may be very large), offline modeling can be
performed to observe their resource usage behaviors and data
clustering techniques can be used to group the queries into
representative clusters. For example, Martin and Wasserman
et al. [20] have considered the use of unsupervised data
mining techniques to classify the TPC-H queries into four
clusters which have distinct resource consumption patterns.

However, for workloads with queries that cannot be learned
or modeled a priori, they have to be characterized online. To
this end, we will consider in our future work the use of query
cost estimation from DBMS (Database Management System)
to drive the online characterization of such a workload.

The second solution is to describe a database workload
based on the knowledge of the application that generates the
database queries. Particularly, in a typical multi-tiered Web
system, queries received at the database tier are triggered by
the user requests at the Web tier. The types of such requests
can have distinct impact on the resource usages of their
triggered queries. For example, in a multi-tier online auction
site [4], the user interactions with the website mainly include
several different types such as browsing, bidding, and
selling, which generate different types of queries with
distinct CPU and I/O usage behaviors (Section IV.C).
Consequently, the composition of these different types of
HTTP requests received at the Web tier, which is easily
observable, can be then taken to infer the characteristics of
the corresponding query workload at the database tier.

2) Resource Usage Monitoring
The VM Sensor is responsible of collecting the VM’s

real-time resource usage information, which is the other key
component of the inputs to VM resource usage modeling.
Although workload characteristics are collected from the
application running inside of the VM, resource utilizations
need to be monitored from outside of the VM. This is
important because the application’s virtual resource usages
do not truthfully represent its VM’s physical resource
usages. Due to the need of virtualization, an application’s use
of one type of resources may incur the use of a different
amount of this type as well as the use of other types of
resources for the VM. For example, an application’s I/Os to
its VM’s virtual disk can trigger a different amount of I/Os to
the physical disk, depending on how the virtual disk is stored
physically; The processing of these virtual I/Os also costs
CPU cycles due to the need of I/O virtualization. Therefore,
resource usage monitoring needs to be done at the VM level,
instead of at the application level, in order to capture all the
necessary resources for servicing its workload on a VM.

The VM Sensor monitors multiple types of resources
including CPU, memory, and disk and network I/Os. This is
key to the modeling of a database application because it has
complex resource usage behaviors and can have intensive
demands for multi-type resources. Database management
and query optimization can be highly CPU intensive,
whereas loading and storing records to and from storage can
be highly disk I/O intensive. In addition, if the database
storage is delegated to a remote server across the network, as
in many commercial database setups, the database system
can also be highly network I/O intensive. Therefore, the
resource management system considers CPU cycles and I/O
bandwidths as the resource costs for database queries and
monitors both of their usages for the VMs.

Typical VM technologies all provide a comprehensive
interface for the monitoring of VM resource usages. In the
prototype built upon the Xen VM environment, the VM
Sensor is implemented as a user-level daemon running on
Xen’s management and I/O VMs, which are privileged VMs

Figure 1. Architecture of the autonomic resource management system for

VM-based databases

Application & VM
Sensors

Adaptive Learner

Resource Allocator

Resource Predictor

Database

Rule base

VM

w(t), r(t)

p(t)

w(t), r(t)

w(t)

Updated
rules

r(t+1)

Resource
allocations

W
or

klo
ad

ch

ar
ac

te
ris

tic
s

w(t): Workload characteristics
r(t): VM resource usages
p(t): Query performance

6

dedicated for VM management and I/O processing for the
entire physical host. Specifically, the resource monitoring
daemon uses Xen’s xentop utility to collect a VM’s CPU
utilization and the Linux iostat utility to collect the statistics
of a VM’s I/O bandwidth usages.

3) Performance Measurement
In addition to the information about application workload

and VM resource usage, the management system also needs
to monitor the application’s current performance, which is
important to decide whether the current resource usage can
represent the VM’s resource needs for the desired QoS, and
whether the current resource allocation is sufficient to meet
the desired QoS. The information of application performance
is also collected by the Application Sensor. For a typical
application, the commonly used performance metrics include
throughput (number of completed requests per unit time) and
average request response time (average service time of
requests per unit time). Generally, workloads with large
volumes of small requests are more interested in throughput,
whereas those with small number of large requests are more
concerned with the average response time.

These two metrics are also often used to measure a
database workload’s performance, both of which can be
collected by the Application Sensor. Note that we consider a
workload as a continuous, dynamic process. Therefore, the
throughput and average response time reported by the Sensor
are fine-grained, real-time measurements taken periodically
from the queries, rather than the overall values measured
only once for the entire workload. To implement the
performance measurement, the Sensor can collect such
information from typical DBMSs that are capable of
monitoring and reporting query statistics in their logs. A
more general way is to implement the Sensor as a proxy that
interposes between the database client and server, so it can
forward the queries to the database and meanwhile measure
their performance. This is the approach taken by our
prototype, where the Sensor runs as a database proxy on the
same VM that the database is hosted on.

B. Adaptive Learner
The Adaptive Learner module is responsible for creating

and updating the model that represents the relationship
between a database workload and its VM’s resource needs.
Although DBMS also provides estimations of the resource
costs for queries based on its internal query evaluation
strategy, this mechanism is not used in our approach to
predict the database VM’s resource needs because of two
important reasons. First, the accuracy of DBMS query cost
estimation is known to be limited [21]. Although it works
well for relative cost comparison for the purpose of selecting
the optimal execution plan for a query, it is not sufficient to
provide an accurate estimation of the query’s actual resource
needs and to guide the resource allocation. Second, the
resource estimation given by DBMS, which runs inside of a
VM and is completely unaware of the virtualization, cannot
truthfully capture the resource needs of the VM, which can
be significantly influenced by the virtualization process and
the resource competition from co-hosted VMs.

Therefore, in our proposed resource management system,
the Adaptive Learner employs a fuzzy modeling based
approach to automatically discover the relationship between
a database workload and its VM’s resource needs. Fuzzy
modeling is the process of constructing fuzzy rules based on
the input and output data pairs, <w(t), r(t)>, which are
periodically collected by the Application and VM Sensors.
Both the workload input w(t) and the resource usage output
r(t) can be vectors with multiple dimensions. For w(t), each
dimension represents certain characteristic of the workload
and for r(t) each dimension maps to one type of consumed
resources. Note that the Learner needs to filter out the
unqualified data points collected when the workload
performance p(t) cannot satisfy its QoS objective, because
such data do not represent the actual resource needs of the
VM and cannot be used to train the VM’s resource model.
Caution also needs to be taken to ensure that sufficient
qualified data points are available in time so that the desired
model can be quickly created as discussed later.

The Adaptive Leaner builds a fuzzy rule base from the
qualified input-output data to model a database VM’s
resource usage behaviors. However, it is not efficient to
generate one rule for every specific data pair, which may
also lead to over-fitting due to error or noise in the data. In
order to build a concise rule base with a small number of
fuzzy rules that can effectively represent the VM behaviors,
clustering method is used to group similar data points into
clusters. Specifically, the Learner adopts an efficient one-
pass clustering algorithm, subtractive clustering [22]. This
method starts from assuming each data point as a potential
cluster center and selecting the cluster center with the most
number of neighbors within a certain radius. After removing
the data points belonging to the previous cluster, it continues
to determine the next center for the remaining data until
every data point belongs to a certain cluster. Once the
clustering completes, each resulting cluster exemplifies a
representative characteristic of the system behaviors and can
be used to create a fuzzy rule accordingly.

Tthe Adaptive Leaner generates Sugeno-type fuzzy rules
[23] from the clustered data for VM resource usage
modeling. This type of fuzzy rules uses a crisp, linear or
constant function as the membership function, which is
suitable for mathematical analysis. To elaborate on this
modeling process, suppose for input the workload w(t) is
described by N different characteristics, [C1, C2, …, CN] and
for output, two types of resources, CPU and I/O, [RCPU, RIO],
are consumed. If K clusters are formed from all the data
pairs, then K rules are produced for this fuzzy model. The
rule base is constructed as following:

Ri: IF input [C1, C2, …, CN] is in cluster i,
THEN output [RCPU, RIO]T = Ai[C1, C2, …,CN]T+bi, 0<i<K

Each fuzzy rule is generated in a way that the corresponding
cluster specifies a fuzzy set in the antecedent associated with

a Gaussian membership function, 𝜇(𝑤) = 𝑒−
(𝑤−𝑐)2

2𝜎2 , where
the Gaussian center c is set as the center of the cluster, and
the parameter 𝜎 is equal to the radius of the cluster. In the
consequence of a fuzzy rule, the output r(t) is a linear

7

function of w(t), where the matrix Ai and vector bi are fitting
parameters estimated using the least-squares method.

The above modeling process is performed continuously
online as queries are executed on the database VM, and it is
capable of dynamically adapting to transitions in the VM’s
resource usage behaviors. Such a transition can be triggered
by the change of the workload’s composition of queries with
different types of resource demands. It can also occur due to
the change of the database’s query optimization strategy. In
order to adapt to these dynamic changes, the Adaptive
Learner continuously updates the VM’s resource usage
model based on the data collected by the Sensors in real
time. So when a transition happens, new data points that
reflect the workload’s current characteristics and the VM’s
current resource usages are fed to the Adaptive Learner for
modeling. A new set of clusters are discovered from these
data to represent the current characteristics in the database
VM’s model. Finally, the fuzzy model is updated with a new
set of fuzzy rules that represent the VM’s current resource
usage behaviors for its current workload. In this way, both
the system structure and parameters are learned and adapted
in real time from online data streams. The system model is
gradually evolved as opposed to a fixed structure model, and
the learning process is incremental and automatic. Owing to
the speed of subtractive clustering and fuzzy modeling, this
whole model updating process can be completed quickly
within a find-grained resource control interval.

C. Resource Predictor
With the fuzzy model created from the Adaptive Leaner,

the Resource Predictor module performs fuzzy inference to
generate an estimate of the resource demand r(t) given its
current workload w(t) collected from the Application Sensor.
In a clustering-based Sugeno-type fuzzy model mentioned
above, Gaussian membership function is used in the
antecedent of each rule to fuzzify the input w(t) to its
membership of the cluster in every rule. The membership
value computed is then used as the weight for implication. In
defuzzification, the consequent output of each rule is
generated by the linear equation specified by associated
parameters. A final output is then aggregated from all the
weighted fuzzy outputs. The final amounts of resources
estimated by the Predictor are considered as the demands of
resources for the next resource control interval and sent to
the Resource Allocator to guide the VM resource allocation.

D. Resource Allocator
In virtualized database hosting systems, a VM serves as a

virtualized resource container to the hosted database, where
different types of resources can be dynamically allocated to
this container to servicing the database’s workload. This is in
contrast of traditional, non-virtualized database hosting,
where a database’s resource availability is statically defined
by its physical host’s configuration. In our proposed resource
management system, the Resource Allocator module is
responsible for periodically adjusting the allocations of
multi-type resources to a database VM according to the
Resource Predictor’s estimation of its resource needs.

However, the Resource Allocator needs to deal with
situations where the resource prediction given by the VM’s
fuzzy model is inaccurate and causes the database’s query
performance to diverge from the desired QoS target. This
happens when the database workload is first started or when
its resource usage behaviors are changing, because the fuzzy
rule base does not have the necessary rules to reflect these
new behaviors yet. Such inaccuracy in the VM resource
estimation is addressed by the resource management system
according to the following two different scenarios.

If the VM’s resource needs are underestimated, it will
lead to performance drop for the workload to perform below
its QoS target. To quickly recover from the performance loss
due to this underestimation, the Resource Allocator invokes
a backup resource allocation policy after the QoS target is
missed for several consecutive periods of time. This backup
policy increases the current resource allocation by a fixed
percentage in order to satisfy the VM’s unknown resource
needs which are beyond the previous resource allocation
level. This fixed increment on VM resource allocation is
accumulated until the QoS comes back to the target value,
and afterwards the resource allocation is sustained at that
level until the target is met for several consecutive periods of
time. Because the VM resource usage can be monitored and
controlled at a fine granularity, this backup policy allows the
resource underestimation to be quickly recovered and the
performance loss to be small and transient. Meanwhile, it is
also important for fast model adaptation, because it allows
qualified data points to become quickly available so that the
model can be updated to reflect the current resource needs
and produce correct resource estimations in a timely manner.

If a VM’s resource needs are overestimated, it will lead
to either underutilization of the allocated resources or
overachieving of the query QoS. In the former case, the
VM’s actual resource needs are already reflected by its
current resource usages, which will be collected by the
Application Sensor and taken by the Adaptive Learner to
update the model and correct the inaccuracy automatically.
In the latter case, the model does not have the knowledge of
the VM’s current resource needs, so another backup policy
also needs to be invoked to reduce the resource allocation by
a fixed amount. Its usage is similar to the use of the backup
policy described in the above resource underestimation
scenario, except that the resource allocation is decreased
instead of being increased. This ensures that the resource
allocation can be quickly brought down to the necessary
level so that efficient VM resource usages can be achieved
while meeting the desired query QoS target.

Finally, the Resource Allocator also needs to handle the
situation where the available resources on a physical host are
not sufficient to satisfy the needs from all the concurrently
hosted VMs. If applicable, some VMs can be migrated to
other hosts in order to reduce the resource contention.
Otherwise, the Resource Allocator needs to perform a cross-
VM optimization based on their SLAs (Service-level
Agreements) and to maximize the total profit that can be
obtained from the VMs. This is not the focus of this paper,
and our previous work of profit-driven cross-VM resource
optimization can be leveraged here, which maximizes the

8

total profit by considering both the revenues from hosting
applications and the penalty from unsatisfied QoS [18].

Typical VM technologies all support dynamic and fine-
grained adjustment to a VM’s resource configuration. In a
Xen-based VM environment, the Resource Allocator is
implemented as a user-level daemon running on the
privileged management VM. Specifically, the allocation of
CPU cycles is done through the sEDF CPU scheduler [24]
implemented by Xen. The CPU share for a VM is presented
by both slice s and period p in a way that s units of time in
each period of length p is received by that VM. Xen does not
directly support the allocation of disk I/O bandwidth to VMs,
but it is implemented in our resource management system
using dm-ioband [25], a Linux block I/O bandwidth
controller, by throttling the VM’s use of I/O bandwidth to
the physical disk where its disk image file is stored.

IV. EVALUATION

A. Setup
This section evaluates our proposed autonomic resource

management system using database benchmarks hosted on a
typical VM environment. The testbed is deployed on a quad-
core Intel Q6600 2.4GHz physical machine, which has 4GB
of memory and 142GB of SATA disk storage. Xen 3.3.1 is
installed to provide the VMs, where the OS for both dom0
and domU VMs is Ubuntu Linux 8.10 with paravirtualized
2.6.18.8. A dedicated domU VM is used to host the database
server, and our resource management system is hosted on a
separated VM. The VM’s use of CPU and disk I/Os are
collected using xentop and iostat, where the I/O bandwidth

usage is the sum of reads and writes per unit time. Resource
allocations to VMs use the sEDF CPU scheduler to assign
CPU shares and using dm-ioband I/O controller to set the
cap for I/O bandwidth. The sEDF scheduler uses 100ms
period in the work-conserving mode. The VM resource
monitoring and control period is set to 20 seconds in Section
IV.B and 10 seconds in Section IV.C. The overhead from the
management system is very small, which uses about 20MB
memory and 1% CPU when measured every second.

Two typical database benchmarks are considered in our
experiments, including TPC-H [3] and RUBiS [4]. Their
performance is measured in two different cases: the
controlled case, where the database VM’s resource usages
are controlled based on our proposed approach; and the ideal
case, where there is no restriction on the database VM’s
resource usages. By comparing VM resource usages and
workload performance between the controlled case and ideal
case, these experiments evaluate whether our proposed
system can correctly estimate the database VM’s resource
needs, achieve the same level of performance as in the ideal
case, and save substantial resources compared to peak-load
based static resource allocation. Every experiment is
repeated multiple times and the results from the average case
are reported here. Each run of the experiments is started with
cold memory cache by restarting the database.

B. TPC-H Experiments
TPC-H provides 22 representative queries in business

decision support system. The executions of these queries
involve the processing of large volumes of data with a high
degree of complexity, which can result in diverse behaviors

Figure 2. CPU usage for the CPU intensive workload

Figure 3. Average query response time for the CPU intensive workload

Figure 4. I/O bandwidth usage for the I/O intensive workload

Figure 5. Average query response time for the I/O intensive workload

0

10

20

30

40

50

60

70

80

90

100

10 15 20 25 30 35 40 45 50

CP
U

Ut
iliz

at
io

n
(%

)

Request Rate (Request/Minute)

Ideal Case

Controlled Case

0

0.5

1

1.5

2

2.5

3

3.5

4

10 15 20 25 30 35 40 45 50

Re
sp

on
se

 Ti
m

e
(S

ec
on

d)

Request Rate (Request/Minute)

Ideal Case

Controlled Case

0

2

4

6

8

10

12

14

16

35 55 75 95 115 135

I/
O

Ba
nd

w
id

th
 (M

B/
s)

Request Rate (Request/Minute)

Ideal Case

Controlled Case

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

35 55 75 95 115 135

Re
sp

on
se

 Ti
m

e
(S

ec
on

d)

Request Rate (Request/Minute)

Ideal Case

Controlled Case

9

of multi-type resource usages. Based on these queries, we
have constructed synthetic database workloads with varying
demands of different types of resources. These workloads are
kept relatively simple in order to clearly demonstrate the
impact of workload intensity and composition on the VM’s
resource usages. In these experiments, training and testing of
the VM resource model are done separately using different
subset of the available data points, in order to evaluate the
accuracy of our fuzzy-modeling based approach for learning
and predicting the resource needs of a database VM. The
modeling of more realistic and complex workloads with
online training is considered in Section IV.C. The database
used here is an instance of PostgresSQL 8.1.3 with 1.1 GB of
data, hosted on a VM with one CPU and 512MB memory.

1) CPU-intensive Workload
The first experiment considers the Pricing Summary

Report Query (Q1) from TPC-H, which reports the amount
of business that was billed, shipped, and returned. It is a CPU
intensive query that involves a series of SUM and AVG
operations based on GROUP BY and ORDER BY clauses.
The workload is generated by continuously issuing copies of
Q1 to the database with an increasing request rate from 10 to
50 request/minute. Each rate is sustained for a period of 300
seconds before incremented to a higher rate. Different sets of
the data are used for training and testing (100 points each).

Because the resulting workload is not I/O intensive, here
we only show the results from the VM’s CPU modeling and
allocation. Figure 2 and 3 compare the CPU usage and the
average query response time between the controlled case and
the ideal case as the request rate in the test dataset increases.
The results show that the learned model can be used to

accurately predict the database VM’s CPU needs for
delivering the same performance as in the ideal case for such
a CPU intensive workload.

2) I/O-intensive Workload
In the second experiment, the workload is generated in a

way similar to the previous one, except that it uses the
Forecasting Revenue Change Query (Q6) from TPC-H,
which quantifies the amount of revenue increase resulted
from eliminating certain companywide discounts in a given
percentage range in a given year. This query examines a
large table in the database and is highly I/O intensive. The
size of this table is reduced in this experiment to make Q6
less I/O intensive, so that we can vary its request rate in a
larger range (35~135 request/minute). Further, in order to
show the workload’s worst case I/O demand, this downsized
table is duplicated many times so that contiguous Q6
requests access different copies of the table and the memory
caching cannot help to speed up the query processing. The
training dataset has 250 points and the test set has 200 points.

Because the resulting workload is not CPU intensive,
here we only show the results from the VM’s I/O modeling
and allocation. Figure 4 and 5 compare the I/O usage and the
average query response time between the controlled case and
ideal case for the test dataset. The results show that our
approach can also accurately model the I/O bandwidth needs
of such an I/O intensive workload and meanwhile achieve
the best performance as in the ideal case.

We recognize that the prediction given by our approach
for the database VM’s I/O needs is the upper bound, because
memory caching can leverage data locality to reduce the
VM’s actual I/O usage. Nonetheless, compared to peak-load
based static resource allocation, it can still save substantial
I/O bandwidth which can be used to satisfy the needs of
other VMs. Further improvement upon this upper bound
estimation requires knowledge of database system’s memory
cache usage, which will be considered in our future work.

3) Mixed CPU/IO-intensive Workload
In the third experiment, the previously considered two

queries, Q1 and Q6, are mixed together to construct a
workload that is both CPU and I/O intensive. The total
request rate of this mixed workload is increased from 20 to
80 request/minute, where at each rate the composition of the
mixture workload is also changed by varying the ratio
between Q1 and Q6 from 0.25 to 4. This experiment is
designed to evaluate our proposed system’s effectiveness of
modeling a database VM serving workloads with changing
query request rate and query composition, both of which
have a significant impact on the VM’s resource usages.
Correspondingly, the workload is characterized by both the
overall request rate and the ratio between Q1 and Q6. We
use 450 data points for training and 350 for testing.

Figure 6 and 7 illustrate the database VM’s resource
models learned from the training dataset, which show two
three-dimensional nonlinear relationships between the query
workload’s request rate and Q1/Q6 ratio and the VM’s CPU
and I/O usages. The results demonstrate that our system can
properly capture such complex behaviors in VM resource
usages. Figure 8 and 9 compare the CPU and I/O usages
between the controlled case and ideal case when the request

Figure 6. CPU model for the mixed CPU/IO intensive workload

Figure 7. I/O model for the mixed CPU/IO intensive workload

10

rate is 45 request/minute and the percentage of Q1 varies
from 0.2 to 0.8 in the test dataset; Figure 10 compares the
query throughput between these two cases in this setup. (The
results from other request rates are similar and omitted here
for conciseness.) The results show that the VM’s resource
model can accurately estimate both its CPU and I/O demand
simultaneously for delivering the ideal performance to such a
workload with mixed CPU and I/O intensive queries.

C. RUBiS
RUBiS models an online auction site that supports the

core functionalities such as browsing, selling, and bidding
[4]. It is used to evaluate our proposed approach’s accuracy
and adaptability for modeling the resource needs of a
database VM servicing a highly complex workload with

dynamically changing characteristics. A typical two-tier
setup is employed in these experiments, where the Web
server and database server are deployed on separated VMs.
The Web VM hosts Apache Tomcat 4.1.40 with the RUBiS
website and its clients, and it is configured with one CPU
and 512 MB of memory. The database VM hosts MySQL
5.0 with 1.1 GB of data and it is configured with one CPU
and 1 GB of memory. Each client session opens a persistent
HTTP connection to the Web server, where the requests
represent a variety of interactions between a user and the
auction site, which mainly include browsing items, bidding,
and buying and selling items. These HTTP requests will then
trigger corresponding queries to the database server.

Three types of RUBiS workloads are considered, which
have different mixes of user interactions: The browsing mix
simulates users’ browsing requests on the auction site which
include only read-only interactions; the bidding mix also
simulates users’ bidding and selling requests, which account
for 15% of the entire workload’s requests, so it has both read
and write interactions with the auction site; the high-bidding
mix simulates even more bidding and selling requests (30%
of the entire workload’s requests) and is thus more write-
intensive than the other two mixes. The think time in all
RUBiS mixes are generated from a negative exponential
distribution with a mean value of seven seconds.

The number of clients and the composition of the
different types of user requests have strong impact on the
corresponding database workload’s query request rate and
usage of different types of resources. Therefore, they are
both considered as input to the modeling of the database
VM’s resource needs and they can be measured from the
Web tier which interfaces with users on the auction site.
Unlike the TPC-H experiments, in this experiment, the
training of VM resource model is done completely online,
i.e., the model is continuously updated as new data come in
while it is applied to predict VM resource needs.

The first RUBiS experiment studies our proposed
approach’s accuracy and adaptability for a workload with
dynamically changing intensity. The 15% bidding workload
mix is used with its number of clients varying from 100 to
300, and then to 500, where at each value it is sustained for a
period of 300 seconds and then incremented to a higher rate
without up ramp and down ramp. Figure 11 and 12 compare
the database VM’s CPU and I/O usages between the
controlled case and ideal case; Figure 13 compares the query
throughput between these two cases. The results show that
both resource usages and query throughput in the controlled
case are consistent with the ideal case. It proves that our
approach can properly allocate resources to the VM for such
a complex workload to deliver the ideal performance. It does
so without dedicating the entire physical host to the VM and
thus saves substantial CPU cycles and disk I/O bandwidth.

This second RUBiS experiment evaluates our approach
for a workload with dynamically changing query mix. It is
done by dynamically switching the workload from the
browsing mix to the bidding mix, and then to the high-
bidding mix, where each one lasts 600 seconds and transits
to next mix without up ramp and down ramp. The number of
concurrent client sessions is kept at 100 throughout the

Figure 8. CPU usage for the mixed CPU/IO intensive workload when the

request rate is 45 request/minute

Figure 9. I/O bandwidth usage for the mixed CPU/IO intensive workload

when the request rate is 45 request/minute

Figure 10. Average query response time for the mixed CPU/IO intensive

workload when the request rate is 45 request/minute

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

CP
U

 U
til

iza
tio

n
(%

)

Percentage of Q1 (%)

Ideal Case

Controlled Case

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

I/
O

 B
an

dw
id

th
 (M

B/
s)

Percentage of Q1 (%)

Ideal Case

Controlled Case

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

Q
ue

ry
 Th

ro
ug

hp
ut

 (Q
ue

ry
/M

in
ut

e)

Percentage of Q1 (%)

Controlled Case

Ideal Case

11

experiment. Figure 14 compares the database VM’s I/O
bandwidth usage between the controlled case and ideal case
(the comparison of CPU usage is omitted here because this
workload is not CPU intensive); Figure 15 compares the
query throughput between these two cases. These results
show that, during most of the experiment, the controlled case
can closely follow the ideal case in terms of both I/O usage
and query performance for such a complex workload.

However, when the workload switches from the first mix
to the second mix at the 610 second, the controlled case’s
performance becomes temporarily worse than the ideal case,
as the model learned from the previous mix’s behaviors is no
longer suitable for estimating the new mix’s I/O bandwidth
needs. As a result, the backup policy is automatically
invoked when the QoS target is missed for three consecutive
periods and an additional fixed amount of I/O bandwidth
(100%) is allocated upon the model’s estimated I/O needs, in
order to quickly bring the QoS back to the target level and
meanwhile allow new qualified data to become available for
updating the model. This explains the temporary over-
allocation in the controlled case compared to the ideal case
during the transition phase (from 640 to 720 second). The

results also show that the QoS in the controlled case indeed
quickly converges to the ideal case after the transition. The
backup policy is stopped when the QoS target is met for
three consecutive periods, and the model’s prediction is
again used to allocate I/O bandwidth as normal as it can now
correctly estimate the VM’s I/O needs for the new workload
mix. (Although not shown in the results, similar behaviors
are also observed in the previous RUBiS experiment when
the workload transits from 100 concurrent clients to 300.)

Note that this experiment setup reveals the worst-case
performance of our system because the transitions between
different workload mixes happen suddenly and abruptly. Due
to the nature of RUBiS, a surge in request rate also occurs
whenever a workload mix starts, which makes it even more
challenging to handle the transtion. However, for real-world
workloads, such transitions are typically incremental and
slow, which would allow our system more time to adapt to
the change and reduce the performance loss during the
transitions. Nonetheless, even for such a challenging setup,
our system can still properly deal with the transitions and
have short adverse impact on the query performance, which
further proves its good adaptability.

V. RELATED WORK
Various solutions have been studied in the literature to

address the problem of automatically deciding a VM’s
resource needs based on its hosted application’s demand and
QoS requirement. They generally employ modeling or
control techniques to determine VM resource configurations
and adopt autonomic techniques [10][11] to automatically
optimize VM resource allocations. Although there is also a
significant body of related work on the performance
modeling of non-virtualized systems, due to the limited
space, the discussions here focus only on virtualized resource
management. Nonetheless, the solutions proposed for non-
virtualized autonomic resource management can also fall
into the several categories discussed below.

The first category of solutions employs queuing theory to
construct analytical performance models for applications
executed on VMs. For example, Doyle et al. derived
analytical models from basic queuing theory to predict
response times of Internet services under different load and
resource allocation [26]; Bennani et al. considered using
multiclass queuing networks to predict the response time and
throughput for online and batch workloads on VM based
application environments [27]. However, the effectiveness of
this type of solutions is restricted by their assumptions about
a virtualized system’s internal model, which are often
insufficient for capturing its resource usage complexities.

The second category of solutions applies control theory
to automatically adjust VM resource allocation in order to
achieve the desired application performance. Such solutions
often assume a linear relationship between QoS parameters
and control parameters and involve a system identification
phase to train the model parameters. In addition, the control
parameters typically must be specified or configured offline
on a per-workload basis. For example, autoregressive models
have been used to map CPU allocation to average response
times of Web servers [28][29]; Autoregressive moving

Figure 11. CPU usage for the RUBiS workload with changing intensity

Figure 12. I/O usage for the RUBiS workload with changing intensity

Figure 13. Throughput for the RUBiS workload with changing intensity

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300 400 500 600 700 800

CP
U

 U
til

iza
tio

n
(%

)

Time(Second)

Controlled Case
Ideal Case

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800

I/
O

 B
an

dw
id

th
 (K

B/
s)

Time(Second)

Controlled Case
Ideal Case

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800

Th
ro

ug
hp

ut
(Q

ue
ry

/s
)

Time(Second)

Controlled Case

Ideal Case

12

average models have also been considered to represent a
more general relationship between application performance
and its VM’s multi-type resource usages [30]; The “1000
islands” work is an integrated, control-theory based approach
to virtualized datacenter resource management using both
dynamic resource allocation and VM migration [31].

In comparison, the third category of solutions considers
machine learning techniques to automatically learn the
complex resource model for a virtualized system based on
data observed from the system. For example, the CRAVE
project employs simple regression analysis to predict the
performance impact of memory allocation to VMs [13];
Wood et al. also use regression method to map a resource
usage profile obtained on a physical system to one that can
be used on a virtualized system [14]; The VCONF project
has studied using reinforcement learning to automatically
tune the CPU and memory configurations of a VM in order
to achieve good performance for its hosted application [15];
Kund et al. employs artificial neural networks to build
performance models that consider both resource allocation to
VMs and resource interference between VMs [16].

Our proposed fuzzy-logic based VM modeling solution
also falls into the third category. It is advantageous in that it
does not require any a priori knowledge of the VM’s
resource usage behaviors, and it can efficiently model a
nonlinear system with dynamically changing operating
conditions. Our previous work [18] has studied fuzzy
modeling for the CPU resource management of VMs hosting
CPU-intensive Web servers. This paper takes this approach
to address the new challenges in VM-based hosting of
applications that have more complex, multi-type resource
usage behaviors. Specifically, our system is able to manage
and optimize VM’s use of not only CPU but also I/O

resource, which is known to be more difficult to model and
control. It is also capable of handling dynamic workloads
with shifting demands across different resource types.

Research on the resource management of virtualized
database hosting systems is still in its infancy. Farooq et al.
experimentally evaluated VM-based databases and showed
that the overhead is very small compared to natively hosted
databases, thus justifying the feasibility of such approaches
[31]. Soror et al. addressed the problem of automatic VM
resource configuration for hosting databases by leveraging
DBMS query cost model, which is calibrated to reflect the
cost when queries are executed on VMs [32]. However, this
work treats a workload as a static entity with a fixed set of
queries, so the performance considered is the overall runtime
and the VM configuration is done statically for the entire
workload. The offline calibration process considers VM’s
use of CPU, memory, and I/Os as independent from each
other, which may not hold due to the complexity of resource
virtualization. When the DBMS cost model is inaccurate,
this work employs online refinement by assuming a linear
model between workload performance and VM resource
allocation. Therefore, it is unclear how this approach would
apply to and how well it would perform for a workload with
complex resource usages and dynamically changing
behaviors. In comparison, our proposed approach is capable
of addressing such dynamism and complexity which are
typical in database workloads and virtualized systems.

VI. CONCLUSION AND FUTURE WORK
Virtualization can greatly facilitate the deployment of

database systems and substantially improve their resource
utilization. To fulfill this potential, resource management is
the key, which should be able to automatically allocate

Figure 14. I/O bandwidth usages for the RUBiS workload with changing mix

Figure 15. Query throughput for the RUBiS workload with changing mix

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

I/O
 Ba

nd
wi

dt
h

(K
B/

s)

x 102

Time (Second)

I/O Usage in Controlled Case

Predicted I/O Usage in Controlled Case

I/O Usage in Ideal Case

Allocated I/O in Controlled Case

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Qu
er

y T
hr

ou
gh

pu
t (

Qu
er

y/
s)

Time (Second)

Controlled Case

Ideal Case

13

resources to database VMs based on their demands and QoS
targets. This paper presents an autonomic resource
management system that can achieve this goal through fuzzy
modeling based approach, which learns a database VM’s
resource usage behaviors based on observed data and
predicts its resource needs for its current workload demand.
This process is done continuously online to guide dynamic
resource allocation and adapt to dynamic changes in the
system. Experiments based on typical database benchmarks
demonstrate that our system can accurately estimate a
database VM’s resource needs for dynamic and complex
query workloads, and it can save substantial resources
compared to peak-load based static allocation while
achieving the desired query QoS. Finally, the approach taken
by this research is also generally applicable to address the
virtual resource management for other types of applications
that have dynamic and complex resource usage behaviors.

In our future work, we will consider to further
improvements along the following directions. First, our
current approach treats an application’s VM as a black box in
resource management, which has the advantage of being
agnostic to application specifics and thereby applicable to
different applications. However, application knowledge can
be carefully leveraged to further improve its effectiveness
and efficiency. In particular, for database VMs, online
workload characterization can take advantage of the query
cost estimation from DBMS, whereas more efficient I/O
bandwidth allocation can be based on the knowledge of
DBMS buffer management. Second, our current system
manages each VM separately based on its individual
workload and QoS target. Nonetheless, for VMs hosting
dependent applications, e.g., different tiers of a multi-tier
application, their resource management can be considered
holistically, in order to further optimize the overall resource
usage and achieve the end-to-end QoS goals.

REFERENCES
[1] Carl A. Waldspurger, “Memory resource management in VMware

ESX server”, Proceedings of the 5th symposium on Operating
systems design and implementation, December 2002.

[2] P. Barham et al., “Xen and the Art of Virtualization”, in Proc. of the
ACM Symposium on Operating Systems Principles, October 2003

[3] TPC-H Benchmark Specification, URL: http://www. tcp. org.
[4] C. Amza et al., “Specification and Implementation of Dynamic Web

Site Benchmarks”, In Proceedings of WWC-5: IEEE 5th Annual
Workshop on Workload Characterization, October 2002.

[5] Linux Vserver, http://linux-vserver.org/.
[6] OpenVZ, http://wiki.openvz.org/.
[7] A. Chen et al., “Heuristics for Selecting Robust Database Structures

with Dynamic Query Patterns”, European Journal on Operational
Research, 168(1):200–220, January 2006.

[8] M. Zhang et al., “Data Mining Meets Performance Evaluation: Fast
Algorithms for Modeling Bursty Traffic”, In Proceedings of the 18th
ICDE Conference, pages 507–516, Feburary 2002.

[9] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson
Modeling”, Transactions on Networking, 3(3):226–244, 1995.

[10] J. O. Kephart, D. M. Chess, “The Vision of Autonomic Computing”,
IEEE Computer, 36(1): 41-50, 2003.

[11] Steve White, James Hanson, Ian Whalley, David Chess, and Jeffrey
Kephart., “An Architectural Approach to Autonomic Computing”, In
Proc. 1st International Conference on Autonomic Computing, 2004.

[12] J. Matthews, et al., “Quantifying the performance isolation properties
of virtualization systems”, in Proceedings of the 2007 workshop on
Experimental computer science, 2007.

[13] Jonathan Wildstrom, Peter Stone, Emmett Witchel, “CARVE: A
Cognitive Agent for Resource Value Estimation”, in Proc. of 5th
IEEE International Conference on Autonomic Computing, 2008.

[14] T. Wood, L. Cherkasova, K. Ozonat, P. Shenoy, “Profiling and
Modeling Resource Usage of Virtualized Applications”, Proc. of the
9th International Middleware Conference, December, 2008.

[15] Jia Rao et al., “VCONF: A Reinforcement Learning Approach to
Virtual Machines Auto-configuration”, in Proc. of 6th IEEE
International Conference on Autonomic Computing (ICAC), 2009.

[16] Sajib Kundu et al., “Application Performance Modeling in a
Virtualized Environment”, in Proc. of 16th IEEE International
Symposium on High-Performance Computer Architecture, 2010.

[17] L. A. Zadeh, “Fuzzy Sets”, Information and Control, vol. 8, no. 3,
pp. 338-353, June 1965.

[18] Jing Xu et al., “Autonomic Resource Management in Virtualized
Data Centers Using Fuzzy-logic-based Control”, Cluster Computing,
Vol. 11, No. 3, Pages: 213-227, September 2008.

[19] Stefan Krompass, Umesh Dayal, Harumi Kuno and Alfons Kemper,
“Dynamic Workload Management for Very Large Data Warehouses:
Juggling Feathers and Bowling Balls”, In Proc. of International
Conference on Very Large Data Bases, pages 1105-1115, 2007.

[20] Patrick Martin, Said Elnaffar, and Ted J. Wasserman, “Workload
Models for Autonomic Database Management Systems”, In Proc. of
Intl. Conference on Autonomic and Autonomous Systems, 2006.

[21] S. Chaudhuri, “Relational Query Optimization – Data Management
Meets Statistical Estimation”, Communications of ACM 52(10):86-
86, October 2009.

[22] S. Chiu, “Fuzzy Model Identification Based on Cluster Estimation”,
Journal of Intelligent and Fuzzy Systems, Vol. 2, No. 3, 1994.

[23] M. Sugeno and T. Yasukawa, “A Fuzzy-Logic-Based Approach to
Qualitative Modeling”, IEEE Trans. on Fuzzy Systems, 1(1), 1993.

[24] I. Leslie et al., “The Design and Implementation of an Operating
System to Support Distributed Multimedia Applications”, IEEE
Journal of Selected Areas in Communications, 1996.

[25] dm-ioband, URL: http://sourceforge.net/apps/trac/ioband.
[26] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat., “Model-Based

Resource Provisioning in a Web Service Utility”, in Proc. of the 4th
USENIX Symposium on Internet Technologies and Systems, 2003.

[27] M. Bennani and D. Menascé, “Resource Allocation for Autonomic
Data Centers using Analytic Performance Models”, in Proc. of 2nd
IEEE International Conference on Autonomic Computing, 2005.

[28] X. Liu, X. Zhu, S. Singhal, M. Arlitt, “Adaptive Entitlement Control
of Resource Containers on Shared Servers”, in Proc. of 9th IFIP/IEEE
International Symposium on Integrated Network Management, 2005.

[29] Z. Wang, X Zhu, S. Singhal, “Utilization and SLO-Based Control for
Dynamic Sizing of Resource Partitions”, in Proc. of 16th IFIP/IEEE
Distributed Systems: Operations and Management (DSOM), 2005.

[30] Pradeep Padala et al., “Automated Control of Multiple Virtualized
Resources”, In Proc. of the 4th ACM SIGOPS/EuroSys European
Conference on Computer Systems, 2009.

[31] X. Zhu et al., “1000 Islands: Integrated Capacity and Workload
Management for the Next Generation Data Center”, Proc. of the 5th
IEEE International Conference on Autonomic Computing, 2008.

[32] Umar Farooq Minhas, Jitendra Yadav, Ashraf Aboulnaga, Kenneth
Salem, “Database Systems on Virtual Machines: How Much do You
Lose?”, Intl. Workshop on Self-Managing Database Systems, 2008.

[33] Ahmed Soror et al., “Automatic Virtual Machine Configuration for
Database Workloads”, Proceedings of ACM SIGMOD International
Conference on Management of Data, pages 953-966, June 2008.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Martin:Patrick.html�
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/e/Elnaffar:Said.html�

14

	I. Introduction
	II. Background And Motivation
	A. System Virtual Machines
	B. Virtualized Database Hosting
	C. Autonomic VM Resource Management
	D. Fuzzy-logic based System Modeling

	III. Approach
	A. Application and VM Sensors
	1) Workload Characterization
	2) Resource Usage Monitoring
	3) Performance Measurement

	B. Adaptive Learner
	C. Resource Predictor
	D. Resource Allocator

	Evaluation
	A. Setup
	B. TPC-H Experiments
	1) CPU-intensive Workload
	2) I/O-intensive Workload
	3) Mixed CPU/IO-intensive Workload

	C. RUBiS

	V. Related Work
	VI. Conclusion and Future Work
	References

