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ABSTRACT 

Virtual Machines are becoming increasingly valuable to resource 
consolidation and management, providing efficient and secure 
resource containers, along with desired application execution 
environments. This paper focuses on the VM-based resource 
reservation problem, that is, the reservations of CPU, memory and 
network resources for individual VM instances, as well as for VM 
clusters. In particular, it considers the scenario where one or 
several physical servers need to be vacated to start a cluster of 
VMs for dedicated execution of parallel jobs. VMs provide a 
primitive for transparently vacating workloads through migration; 
however, the process of migrating several VMs can be time-
consuming and needs to be estimated. To achieve this goal, this 
paper seeks to provide a model that can characterize the VM 
migration process and predict its performance, based on a 
comprehensive experimental analysis. The results show that, 
given a certain VM’s migration time, it is feasible to predict the 
time for a VM with other configurations, as well as the time for 
migrating a number of VMs. The paper also shows that migration 
of VMs in parallel results in shorter aggregate migration times, 
but with higher per-VM migration latencies. Experimental results 
also quantify the benefits of buffering the state of migrated VMs 
in main memory without committing to hard disks. 

 

1. INTRODUCTION 
With the rapid growth of computational power on compute 
servers, and the fast maturing of x86 virtualization technologies, 
Virtual Machines (VM) have become increasingly important to 
supporting efficient and flexible resource provisioning. Modern 
virtual machine technologies (e.g. [14][15][2]) allow a single 
physical server to be carved into multiple virtual resource 
containers, each delivering a powerful, secure, and isolated 
execution environment for applications. In addition to providing 
access to resources, such environments can be customized to 
encapsulate the entire software and hardware platform needed by 
the applications and support their seamless deployments.  

The management of these VM-based resource containers, e.g. 
lifecycle management and resource allocation, can be conducted 
through the interfaces provided by the virtualization platforms. 
This allows the VMs to be scheduled as processes in typical 
operating systems, and QoS-aware schedulers, similar to those 
available in operating systems, can be employed to allow the VMs 
to time- and space-share resources, and in the meantime provide 
QoS guarantees for the applications running inside of the VMs. 

This paper focuses on the VM-based resource reservation, that is, 
the reservations of CPU, memory and network resources for 
individual VM instances, as well as for VM clusters. The 
fundamental goal is to enable an application to request the 
creation of virtual machines and clusters based on high-level 
specifications of both the VMs’ environments and its desired QoS. 
This scenario has been motivated by the need encountered by 
scientists in the brain-machine interface domain [5]. Their 
applications are time-sensitive during their execution, but need 
only be active during the execution of an experiment (e.g. a trial 
with an animal, or a training/testing run).  

Allocating dedicated resources in this scenario can lead to 
resource inefficiencies; VMs here allow time-sharing of resources 
at a coarse granularity and can lead to better resource utilization. 
Hence, it is desirable to reserve cluster resources for creating a set 
of VMs to run these tasks. To implement such policy, all hosted 
VMs from the cluster to be reserved need to be vacating - through 
suspension, or if other resources are available, through migration. 
This preparation should be done in time to meet the reserved 
schedule, but cannot be too early and waste the resources that are 
useful to serve other tasks. 

In order to make efficient resource reservation, this VM-based 
approach need take into account the overhead, which requires an 
accurate cost estimation for both the migration of the existing 
VMs, and the instantiation and configuration of the scheduled 
new VMs. In addition, the overhead on the applications running 
inside of the migrated VMs should also be considered. Previous 
work has shown that the VM creation’s overhead can be small 
and accountable [8][13], which can be leveraged in this cost 
estimation. However, there is no extensive study on the cost 
associated with migration of multiple VMs with the goal of 
vacating a resource. Addressing to this problem, this paper seeks 
to provide a model that can characterize the VM migration 
process and predict its performance, based on a comprehensive 
experimental analysis. 

A series of experiments were conducted to measure and model the 
different phases for migrating a number of running VMs from one 
physical host to another. The results show that, given a certain 
VM’s migration time, it is feasible to predict the time for a VM 
with other configurations, as well as the time for migrating a 
number of VMs. The impact of a VM’s migration on its 
application is also studied in this paper, which shows that it takes 
longer for the application to recover than the actual VM migration 
time. Finally, different migration strategies are compared and the 
results show that parallel migration is faster for migrating 
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multiple VMs, but it has more interference to the performance of 
the applications on the migrated VMs. 

The rest of this paper is organized as follows: Section 2 describes 
the background of VM-based resource reservation; Section 3 
presents the experimental analysis of VM migration; Section 4 
discusses the related work, and Section 5 concludes the paper. 

2. VM-BASED RESOURCE 
RESERVATION 
Figure 1 illustrates the architecture for VM-based resource 
reservation. It consists of two levels of resource management, 
which cooperate to serve resource requests, received from, e.g. a 
job manager that schedules job submissions. 

2.1 Virtual Resource Manager 
The virtual resource manager provides a centralized management 
for the virtualized resources that are distributed across the 
physical hosts. It exposes an abstract interface to the resource 
clients and serves their resource requests. The clients do not need 
to know the details of the resource provisioning, and in fact, they 
can be even unaware of that the resources are virtualized. They 
only need to specify the types and quantities of resources that are 
necessary for the scheduled jobs, e.g. the amount of CPU cycles, 
memory space, storage capability and network bandwidth. To 
make an advance resource reservation, a time schedule can also 
be associated with the desired resource usage in the request. 
(Because a VM-based resource container incurs additional 
overhead from the virtualization, a resource controller that can 
correctly estimate the resource usage for a given job’s VM is 
necessary for making the resource requests. However, this is not 
the focus of this paper, and previous work [17] can be leveraged 
to provide this functionality.) 
Upon receiving such a resource request (1), the virtual resource 
manager first performs the admission control based on the current 
resource allocation and reservation state of the physical hosts (2). 

If there are resources available for the requested quantity and 
schedule, it then proceeds and interacts with the VM schedulers to 
make the resource reservation on the selected physical hosts (3). 
The VM schedulers then migrate the existing VMs as needed (4) 
and create new VMs for the scheduled jobs accordingly (5). After 
the reservation is completed, one or several resource handlers (e.g. 
IPs and accounts of the allocated VMs) are returned to the client 
(6), and they are valid for job submissions when the scheduled 
time arrives. On the other hand, a request is rejected if the virtual 
resource manager determines that the available resources are not 
sufficient to satisfy the request.  
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Figure 1: VM-based resource reservation. It consists of two levels of resource management which cooperate to serve resource 
reservation. As shown in (a), the virtual resource manager decides to vacate physical cluster P1 in order to start a set of new VMs 
to satisfy the resource request from the job manager. It coordinates with the VM schedulers to migrate the VMs (V1-V9) from 
physical cluster P1 to P2 and P3. After the new VMs are started, their resource handles are returned to the job manager for job 
submissions. The change of resource allocation on the clusters during this reservation process is also illustrated in (b). 
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The virtual resource manger also supports the request of preparing 
a desired software environment on the reserved resources. Such 
an environment includes the operating system, applications, and 
libraries that are necessary for the job executions. For instance, a 
dedicated VMPlant service [8] can be leveraged by the virtual 
resource manager to provide this support. This service enables the 
automated VM creation and customization, using a graph-based 
model to define VM configuration actions, and providing instant 
VM creations based on cloning from a set of typical VM images. 

2.2 Virtual Machine Scheduler 
A VM scheduler is on every physical server to manage the VMs 
that are hosted on it. It runs side by side with the VM monitor, 
and leverages the interface provided by the VM software to 
control the configurations and lifecycles of the VMs. Such an 
interface can be the scripting API provided for VMware Server,   
the web service interface for VMware Infrastructure, and the 
command-line interface for managing Xen. 
The VM schedulers provide a unified interface for resource 
reservation, which allows the virtual resource manager to make 
resource reservations without knowing their underlying control 
mechanisms that can be very different and specific to the VM 
software deployed on their physical hosts. The virtual resource 
manager only needs to specify the quantity and schedule of the 
necessary resources, and the VM schedulers are responsible to 



carry out the resource reservation and VM creations using the 
mechanisms provided by the VM software. 

2.3 VM Migration Based Resource Reservation 
VM-based resource reservation needs to take into account the 
overhead associated with this approach, and an accurate cost 
estimation is important for the virtual resource manager to 
provide correct admission control and make efficient resource 
reservation. Specifically, the requested resources must be 
prepared in time to satisfy the requested schedule, but they should 
not be allocated too early and waste the resources that can 
potentially serve other tasks. The costs from VM-based resource 
reservation include both the overhead for migrating existing VMs 
and making the resources available for the new jobs, and the time 
needed to create and configure the desired environment with VMs. 
Previous work has shown that the later can be small and 
accountable [8][13], so this paper focuses on modeling the cost 
associated with the VM migrations. 
In particular, we consider the problem of allowing a cluster 
resource to be reserved for a parallel application with real-time 
constraints. The motivation is drawn from brain-machine interface 
(BMI) experiments where a cluster is used to execute several 
computational models in parallel during a closed-loop experiment 
which involves data acquisition (from sensors in an implanted 
animal), processing, visualization and robot actuation [5]. The 
goal is to support parallel processing using dedicated resources 
when such an experiment takes place, while also allowing a 
cluster resource to be utilized by other workloads when such 
experiments are not taking place. 
To support the above scenario, the virtual resource manager needs 
to vacate a cluster for the parallel application, and move all the 
existing VMs, which are running various other workloads, to 
other hosts (Figure 1(b)). It thus needs to make efficient 
reservations for resources on both the hosts being dedicated for 
the task, and the hosts where the VMs are migrated to. The 
migrations of these VMs can take a considerable amount of time, 
and may cause a certain amount of performance degradation on 
the jobs that are running on these migrated VMs. Hence, the 
virtual resource manager must consider these factors when it 
makes the reservation decision. In order to achieve this, a clear 
understanding of the VM migration process is necessary, and a 
model is also desirable for estimating the migration cost based on 
the configurations and running states of the migrated VMs. In the 
following section, an extensive experimental analysis is 
conducted towards these goals. 

3. EXPERIMENTAL ANALYSIS 
3.1 Setup 
To help the decision of VM-based resource reservation, a series of 
experiments were conducted to model and analyze the process of 
migrating a number of running VMs from one host to another. 
The studies reported in this paper focus on the VMware Server 
(1.0.3) based VM monitor. The VMs are hosted on a cluster of 
physical servers. Each physical node has two dual-core 2.33GHz 
Xeon processors and 4GB of memory, runs Fedora Core 6 with 
kernel 2.6.22, and is connected with Gigabit Ethernet. Due to the 
limitation of the physical nodes, the VM memory size considered 
in these experiments is up to 1GB. However, the findings from 

the experiments are also applicable if more physical resources are 
available for VMs with larger memory sizes. 

The VMs are installed with Ubuntu 7 with kernel 2.6.20. The 
VMs’ virtual disks share the same read-only image, which is 
stored on a storage server and accessed through NFS (version 3 
[3]). Changes to the virtual disks from the VM executions are 
stored in the form of redo log files. The running VMs’ memory 
states are also mapped to files, and when they are suspended, 
these files capture their memory snapshots. In the absence of an 
efficient shared storage system in our setup, for performance 
reasons these disk redo logs and memory state files are stored on 
the local file system (EXT3 in the ordered mode) of the hosts.  

The VM migration process considered in this paper entails of 
three phases, “suspend”, “copy” and “resume”. In the suspend 
phase, the VM is suspended on the origin host, and its memory is 
captured to the memory state file. In the copy phase, the VM’s 
configuration, memory state and disk redo files are transferred to 
the destination host through FTP. In the resume phase, the VM 
restores its memory state from the snapshot and then resumes its 
execution. The default background memory restoration used by 
VMware is disabled so that an exact measurement of the resume 
phase can be obtained. 

This migration strategy is not based on VMotion [18] or other 
migration mechanisms provided by VMware.  It is analyzed since 
the primary goal is to vacate multiple VMs from a resource in a 
timely fashion rather than minimize the downtime per VM. 

All the experiments were repeated for more than 50 runs, and 
their results are reported in the following subsections with both 
average values and standard deviations. Because the system time 
inside of VMs can be imprecise, the system time from a separate 
physical server was used for timekeeping during the experiments. 

3.2 Migrating a Single VM 
The first group of experiments studies the three migration phases 
for a single VM, and analyzes its migration time with different 
VM configurations. 

3.2.1 Experiments with Different Memory Sizes 
Since a VM’s memory state file is often the major part of the data 
that need be transferred during the migration process, this 
experiment considers VMs with different memory sizes to 
investigate the impact of size on migration times. The 
experimental results (Figure 2) show that the time needed for the 
suspend and resume phases are relatively stable, and only 
increases slightly as the memory size increases, because more 
memory pages need be processed during these two phases. On the 
other hand, the copy time quickly grows and dominates the 
migration time for larger memory sizes. 

In order to find out the relationship between the time needed for 
the copy phase and the size of the VM memory, regression 
methods are used to model it. Based on the data from this 
experiment, a polynomial function can best characterize this 
relationship, as illustrated by the diamond-shaped points and the 
solid line in Figure 3. The reason for a nonlinear model is that 
when the memory size is relatively small, the speed of the copy 
phase is limited by the network bandwidth (Gigabit/s); however, 



for greater memory sizes, a large amount of dirty pages are 
buffered in memory during the copy phase, and the kernel forces 
to flush these data in foreground, which then throttles the copy 
phase by the throughput of the disk (around 50MB/s). Because the 
kernel I/O scheduling policy decides when and how to flush the 
data, this model is dependent on the parameters used by the kernel. 
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Figure 2: The time needed for the three phases of migrating a 
single VM with different memory sizes. A local disk on the 
destination host was used to store the migrated VM states. 
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Figure 4: The time needed for the three phases of migrating a 
single VM with different memory sizes. A RAMFS on the 
destination host was used to store the migrated VM states. 
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Figure 3: Using regression methods to model the relationship 
between the time needed for the copy phase and the size of 
the VM memory. 
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Figure 5: The time needed for the suspend and resume 
phases of migrating a VM with different amounts of 
continuously modified memory. 

To isolate the impact of the disk I/O on the migration process, we 
have also conducted an experiment using a RAM-based file 
system (RAMFS) on the destination host to store the state of the 
migrated VM. (RAMFS can also be set up on the source host to 
reduce disk I/Os in the suspend phase.) The results from this setup 
also represent the cases where other mechanisms, e.g. direct 
memory-to-memory copy, are available to avoid this problem. 
Since the VM’s memory state is not backed by stable storage, a 
viable recovery scheme is necessary for the VM in case of a crash. 
Figure 4 shows the time needed for the migration phases when 
RAMFS is used, and the dashed line in Figure 3 models the copy 
phase (round-shaped points) using regression methods. It is 
evident that a linear function can very well characterize this 
relationship between the copy time and the VM memory size.  

The above two models demonstrate that, given a VM’s migration 
time for a particular memory size, it is feasible to predict the time 
for migrating a VM with other memory sizes. In addition, this 
analysis is also applicable if the size of other VM states, e.g. the 
disk redo files, need be considered. 

3.2.2  Experiments with Memory-intensive Workloads 

The above results also show that the time needed for both suspend 
and resume phases are small. The resume phase is typically very 
fast since after the copy phase is done, the VM’s memory state is 
already buffered in memory (assuming the destination host has 
enough memory for the migrated VM), and thus the resuming 
does not require additional disk reads. The suspend time is also 
usually short, because the running VM’s memory is frequently 
synchronized with its memory state file, and the suspend phase 
does not involve many disk writes either.  

If a considerable amount of memory pages need be synchronized 
when the VM is suspended, this phase will take longer. To study 
the impact of this factor, a program which continuously touches a 
given amount of memory was intentionally started in a VM that 
was under migration (with a memory size of 1.1GB). Its resume 
and suspend phases, with different amounts of modified memory, 
is compared to the baseline performance when this program is not 
used (Figure 5). (The time for the copy phase is not affected by 
the workloads of the migrated VMs, since FTP need transfer the 
same amount data across network no mater whether the memory 
state files are sparse or not.) The results show that the resume 
phase is indeed fast and stable, but the suspending time increases 
nearly proportionally with respect to the size of the modified 
memory. Note that typical applications do not possess such a bad 



behavior, and the suspend phase is generally fast as also 
confirmed by the following experiments. The results from using 
this “rogue” program give an upper bound on the resuming time 
based on this worst-case scenario. 

3.3 Migrating a Sequence of VMs 
The second group of experiments investigates the process of 
migrating a sequence of VMs, and study whether it is feasible to 
predict the total migration time based on the time for a single VM. 

3.3.1 Experiments with Different Number of VMs 

In this experiment, different numbers of VMs are migrated 
consecutively, each with a memory size of 256MB. Figure 6 plots 
the per-VM’s migration time, when the local disk on the 
destination host is used to store the copied VM states. The results 
show that the suspend and copy phase are not affected by the 
number of VMs, but the resume phase becomes slower as more 
VMs are migrated, and its variance also increases significantly. 
This is also because of the aforementioned flushing of dirty data 
from copying a VM’s state files. It not only throttles this VM’s 
migration, but also interferes with the following VMs’ migrations 
because of the uncompleted writes. This situation aggravates as 
more VMs are migrated in sequence. In the worst case, the entire 

CPU is in the I/O wait state, and this write “hog” blocks all the 
following migration processes for a considerable period of time. 
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Figure 6: The per-VM migration time when different numbers 
of VMs, each with a 256MB memory, were migrated in 
sequence. A local disk on the destination host is used to store 
the migrated VM states. 
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Figure 8: The per-VM migration time when different numbers 
of VMs, each with a 512MB memory, were migrated in 
sequence. A local disk on the destination host was used to store 
the migrated VM states. 
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Figure 7: The per-VM migration time when different 
numbers of VMs, each with a 256MB memory, were 
migrated in sequence. A RAMFS on the destination host was 
used to store the migrated VM states. 
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Figure 9: The per-VM migration time when different 
numbers of VMs, each with a 512MB memory, were 
migrated in sequence. A RAMFS on the destination host was 
used to store the migrated VM states. 

Figure 7 shows the results from using the RAMFS on the 
destination host to store the copied VM states, which prove again 
that such a setup can effectively solve the above problem, and the 
migration time becomes very consistent regardless of the number 
of migrated VMs. Figure 8 and Figure 9 show the time for 
migrating a sequence of larger VMs, each with 512MB memory, 
using the local disk and the RAMFS, respectively. The results 
confirm that the former setup causes increase in the resume time 
and its variance, while the later one helps to make the migration 
process stable and predictable. Therefore, this RAMFS setup was 
used for all the following experiments. 

Memory space on the physical host may be a concern for using 
RAMFS to store the VM states. However, a RAMFS’ size is 
dynamically adjusted, growing or shrinking as needed by the data, 
and it does not necessarily consume extra memory, since the 
memory pages used by a VM’s state files on the RAMFS can be 
shared with the VM’s memory. Moreover, after the migration is 
completed, the VM’s states can still be backed up on local disks 
when a snapshot need be taken on persistent storage. 



3.3.2 Experiments with Different Workloads 

To further study the interference between the workloads running 
inside of the VMs and the migration process, several different 
types of workloads were used to load four VMs, each with 
512MB of memory, and their sequential migrations are analyzed 
in this subsection. We have considered two representative cases of 
workloads in this study: CPU-intensive and memory-intensive. A 
comprehensive analysis using a larger set of benchmarks is 
subject of future work. 

The first one is a CPU-intensive workload, which is adapted from 
the Freebench’s Distray benchmark [19]. It runs iteratively, where 
each iteration takes exactly 2 seconds and consumes 100% of 
CPU when executed on the VMs. This benchmark was started on 
each of the four VMs, which thus fully utilized all the CPUs 
available on their physical host. Their migration time as well the 
benchmark’s performance degradation is shown in Figure 10. The 
performance degradation is defined as the runtime of the iteration 
being affected by the migration, minus the regular iteration time. 
The results show that the performance degradation time is longer 
than the VM migration time by about 2 seconds, which means 
that it takes additional time for the benchmark to recover to its 
full performance after the its VM is migrated. Figure 11 illustrates 
one sample of the performance data collected from the benchmark 
during the migration process. 

The second workload uses a memory-intensive program that is 
similar to the one used in Section 3.2.2. It runs iteratively, where 
during each iteration it modifies almost the entire VM’s memory 
once, and then sleeps 1 second. The average iteration time is  1.75 
second, with a standard deviation of 0.06 second. With this 
program running inside the VMs, their migration time and the 
program’s performance degradation are plotted in Figure 12. 
Because two iterations of the program were affected by the 
migration, the performance degradation is the sum of these two 
iterations’ time, minus twice of the regular iteration time.  
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Figure 10: The migration time and performance degradation 
when four VMs were migrated in sequence, each with 512MB 
memory and a CPU-intensive benchmark running inside. 
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Figure 12: The migration time and performance degradation 
when four VMs were migrated in sequence, each with 512MB 
memory and a memory-intensive benchmark running inside. 
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Figure 11: The performance of a CPU-intensive benchmark 
running inside of four VMs that were under migration. 
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Figure 13: The performance of a memory-intensive 
benchmark running inside of four VMs that were under 
migration. 

The results show that the performance degradation experienced 
by the program is longer than the VM migration time by around 5 
seconds. The migration has a greater impact on this program than 
the previous CPU-intensive workload, which infers that it is a 
more memory-intensive process. Figure 13 illustrates one sample 
of the performance data reported by the program during the 
migration process. It is noticeable that the first VM’s migration 
takes more time than the other ones. This is because suspending 
the VMs for this memory-intensive program involves a 
considerable amount of disk writes, and the first VM’s migration 
has an additional start-up overhead from initiating the I/Os. 

The last workload considers typical web applications by using 
Apache (version 2.24) based web servers on the four VMs to 
serve HTTP requests. The HTTP clients were based on httperf 
[10], which issued requests with a constant rate (100 connections 



per second), and were run separately on another four VMs, hosted 
on a different physical server. The average migration time for 
these VMs is around 9 seconds, and a sample of the web servers’ 
throughputs, as well as the aggregate throughput, is plotted in 
Figure 14. The results show that the performance impact of the 
migration also stays a few seconds longer than the actual 
migration time. 

3.4 Migrating Multiple VMs in Parallel 
The last group of experiments considers migrating multiple VMs 
in parallel, in contrast to sequentially, and studies its benefits and 
costs. In these experiments, different numbers of VMs were 
migrated in parallel, each with the same memory size of 256MB 
or 512MB. Figure 15 shows the time for the entire process of 
migrating the considered VMs, compared to the time needed 
when they were migrated in sequential. The results show that 
parallel migration is faster, and the advantage becomes larger 
when more VMs are migrated together. For VMs with 256MB of 
memory, the speed up is 1.4 times for 4 VMs, and 1.6 times for 8 
VMs. For VMs with 512MB memory size, the speedup is 1.3 
times for 4 VMs, which is less than that of the smaller VMs. This 
is because the advantage from parallel migration is mostly from 
overlapping the suspend and resume phases of multiple VMs, 
since the copy phase is bounded by the available network 
bandwidth. For larger VMs, their migrations are dominated by the 
copy phase and thus cannot gain much from the parallel migration. 

Figure 16 compares parallel migration to sequential migration 
from another perspective by looking at the per-VM migration 
time. Contrary to the above results, the parallel migration has a 
much worse per-VM migration time than the sequential one. For 
VMs with 256MB memory, the slowdown is 2.2 times for 4 VMs, 
and 3.8 times for 8 VMs. For VMs with 512MB memory size, the 
slowdown is 1.5 times for 2VMs and 2.5 times for 4 VMs. This 
means that parallel migration incurs more overhead for the 
applications running inside of the VMs. Therefore, there is a 
tradeoff between increasing the speed of migrating multiple VMs 
and reducing the impact on the performance of the VMs. These 
different migration strategies can be selected based on the 
optimization needs. 
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Figure 14: The throughput of web servers running on four 
VMs that were under migration. 
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Figure 15: The comparison of total migration time for four 
VMs between parallel and sequential migration. 
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Figure 16: The comparison of per-VM migration time for four 
VMs between parallel and sequential migration. 

4. RELATED WORK 
Substantial research has been done on using VMs for resource 
consolidation and management for various types of systems. The 
In-VIGO project [1] proposes to build virtual grid systems using 
VMs to share resources and provide customized execution 
environments, and leveraging the VMPlant service [8] to 
automate the VM creation and configuration. VMs are used in [6] 
to provide virtual workspaces with desired software environment 
and resource allocation, and [13] has studied the overhead from 
managing these VMs. The Virtuoso project also considers VMs 
for distributed computing, and is able to co-schedule batch and 
interactive jobs’ VMs to satisfy the constraints on both 
responsiveness and compute rates [9]. The Shirako system [7] 



uses VMs to provide on-demand leasing of network shared 
resources. In [17], virtualized data centers are realized using VM-
based resource containers, and controllers are developed to 
estimate a VM’s resource usage based on its workload demand. 
In such VM-based systems, the migration of VMs is often 
considered as an important means of reallocating resources and 
improving performance. Particularly, in VIOLIN, a system built 
on VMs connected with virtual networks, migration is used to 
relocate the VMs for performance optimizations [11]. In [16], 
different strategies for VM migration are studied to eliminate 
performance hotspots from data centers. This paper considers 
resource management and VM migrations in the context of VM-
based resource reservation, while its results can also be useful to 
estimate the migration cost for other management tasks on VM-
based systems. 
Because of the importance of VM migrations, the optimization of 
this process has also been studied in the related research. In [12], 
several techniques are presented to improve the migration of VMs, 
including using memory ballooning to make a VM’s memory 
state more compressible, demand paging of VM disks, and 
content-based block sharing across disk states. Live migrations 
are also introduced for different VM technologies to provide zero 
downtime migration of VMs [4][18]. However, these techniques 
are not widely available, and the suspend-copy-resume scheme 
considered in the paper is still the common way of migrating VMs. 
In addition, live migrations often take longer time to finish and 
are not suited when timely migrations are needed. On the other 
hand, the methodology used in this paper can also be applied to 
study the migration when the above techniques can be leveraged. 

5. CONCLUSIONS AND FUTURE WORK 
VM migration is key to realizing VM-based resource reservation, 
and understanding its overhead is important to make efficient 
reservations. This paper seeks to model the migration process 
based on an extensive experimental study, and several interesting 
findings are revealed based on the results: An accurate estimation 
of the migration time for a number of VMs is possible given the 
measurement of a single VM’s migration time; The performance 
degradation period caused by a VM’s migration is relatively 
longer than the migration time; Different migration strategies can 
be selected for different optimizations, where parallel migration 
can deliver better speed when migrating multiple VMs, and 
sequential migration can reduce the performance overhead for the 
applications that are running on the migrated VMs. 

The ongoing investigation is focused on generalizing this paper’s 
results and evaluating the migration cost model across different 
hardware platforms, and different virtualization technologies. In 
the future work, the cost of another important type of migration 
mechanism, live migration, will also be modeled to help the 
resource reservation when it is available for use. 
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