
In Search of the Ideal Storage Configuration
for Docker Containers

Vasily Tarasov1, Lukas Rupprecht1, Dimitris Skourtis1, Amit Warke1, Dean Hildebrand1

Mohamed Mohamed1, Nagapramod Mandagere1, Wenji Li2, Raju Rangaswami3, Ming Zhao2
1IBM Research—Almaden 2Arizona State University 3Florida International University

Abstract—Containers are a widely successful technology today
popularized by Docker. Containers improve system utilization by
increasing workload density. Docker containers enable seamless
deployment of workloads across development, test, and produc-
tion environments. Docker’s unique approach to data manage-
ment, which involves frequent snapshot creation and removal,
presents a new set of exciting challenges for storage systems. At
the same time, storage management for Docker containers has
remained largely unexplored with a dizzying array of solution
choices and configuration options. In this paper we unravel
the multi-faceted nature of Docker storage and demonstrate its
impact on system and workload performance. As we uncover
new properties of the popular Docker storage drivers, this is a
sobering reminder that widespread use of new technologies can
often precede their careful evaluation.

I. INTRODUCTION

Operating Systems (OSs) use processes as a powerful and
convenient computing abstraction. However, as the hardware
capabilities of machines improved, it became cost-efficient to
share the abundant hardware resources across multiple users
and applications but with better isolation than native processes.
Process containers [1] made this transition possible. The rapid
adoption of containers is fueled by cloud computing whereby
multiple tenants can transparently run their workloads on the
same node. According to a recent poll, 25% of enterprises
already use containers, while at least 62% are at some stage
of adopting containers [2].

At its core, a container is a set of processes that is
isolated from other processes or containers running in the
system. Linux uses control groups (cgroups) [3], to limit
the resource usage (e.g., memory and CPU) of containers,
and namespaces [4] to confine process visibility. Since 2013,
Docker has emerged as a composite technology that en-
ables and simplifies the adoption of containers in modern
OSs [5]. Docker containers allow users to effectively capture
runtime environments in persistent images and easily execute
the resident software inside dynamically created containers.
Docker images contain all information needed to run the
packaged software which significantly simplifies deployment
across development, testing, and production environments.

While containers adequately address CPU and memory iso-
lation across workloads, storage isolation is more challenging.
At a fundamental level, storage for containers introduces the
need to deal with an abundance of duplicate data referenced
within container images. In a straw man implementation,
Docker would need to create a complete copy of the image for

every running container. This would cause a great burden on
the I/O subsystem and make container start time unacceptably
high for many workloads. As a result, copy-on-write (CoW)
storage and storage snapshots are popularly used and images
are structured in layers. A layer consists of a set of files and
layers with the same content can be shared across images,
reducing the amount of storage required to run containers.

With Docker, one can choose Aufs [6], Overlay2 [7],
Btrfs [8], or device-mapper (dm) [9] as storage drivers which
provide the required snapshotting and CoW capabilities for
images. None of these solutions, however, were designed with
Docker in mind and their effectiveness for Docker has not been
systematically evaluated in the literature. With Docker, the
depth of the file system software stack increases significantly.
Besides, the available variety of CoW configurations and the
possible diversity in workload mixes make the selection of
the right storage solution challenging. A system architect must
decide not only which CoW storage technology to use, but also
how to configure it. For example, with Aufs and Overlay2,
one needs to select the type of the underlying file system,
and for device-mapper, which file system to format the thin-
provisioned device with.

Unlike conventional workloads, Docker workloads induce
frequent snapshot creation and destruction. The amount of data
churn and the rate of image commits impact the behavior of
the system significantly. Moreover, the number of layers in an
image can impact performance both negatively and positively.
Finer-grained images with more layers increase the amount
of data that can be shared across different containers while
on the other hand, more layers cause more overhead when
accessing files in a container [10]. High-density containerized
environments also increase the diversity of workloads and
their parallelism. Resource isolation constraints imposed on
individual containers can further morph workloads in non-
trivial ways.

Although many questions arise when choosing storage for
Docker containers, there is little to no guidance in peer-
reviewed literature for selecting or designing storage for
Docker [11]. In this study, we demonstrate the complexity of
the Docker storage configuration and empirically demonstrate
how the selection of the storage solution impacts system
and workload performance. After discussing the relevant
background on Docker and introducing the available storage
drivers (§II), we make the following contributions:

• We present and discuss the different dimensions that



influence the choice of an appropriate storage solution
for Docker containers (§III).

• We conduct a preliminary evaluation of the introduced
dimensions and analyze their impact on performance and
stability (§IV).

We found that, for example, for read-intensive workloads,
Aufs and Overlay2 are a good choice, while Btrfs can work
well in deployments that experience a more diverse set of
workloads. Device-mapper has a stable codebase but its perfor-
mance is typically low and highly susceptible to the underlying
storage speed. These and other observations can serve as a
starting point for future work on storage management for
Docker containers.

II. DOCKER

Docker consists of a Command Line Tool (CLI) and a
daemon (sometimes called engine) which continuously runs
in the background of a dockerized system (Figure 1). The
Docker daemon receives user commands from the CLI to
build new or pull existing images, start or stop containers from
images, delete containers or images, and other actions. Next,
we introduce the relevant background on Docker images and
its concept of storage drivers in more detail.

A. Docker Images

Modern software relies heavily on the availability of a
file system interface for its processes (after all, “Everything
is a file” in UNIX-derived OSs [12]). Files not only store
binaries, configuration files, and data, but also provide access
to the system information and configuration (e.g., /proc and
/sys file systems). Docker therefore dynamically creates a
file system for a container to execute from. Docker file system
images are similar to VM images, except that they consist of
a series of layers. Every layer is a set of files. The layers get
stacked with files in the upper layers superseding files in the
layers below them. For example, in Figure 1, if the same file
resides in layers L0 and L1, then containers C1 and C2 only
see the version from L1. However, all files in L0 that do not
exist in the upper layers will be seen by containers C1 and
C2. In almost all cases, a container’s file system is stored in
the local storage device of the node in which it executes.

The number of layers in a single image ranges from one
to several dozens [10]. Similarly to git [13], the layers are
identified by fingerprints of their content. Different images
often share layers, which provides significant space and I/O
transfer savings. A layer in a Docker image often represents
a layer in the corresponding software stack. For example, an
image could consist of a Linux distribution layer, a libraries
layer, a middleware layer, and an application layer.

A container image is read-only, with changes to its file sys-
tem during execution stored separately. To create a container
from an image, Docker creates an additional writeable layer on
top of the image with which the container interacts. When the
container updates a file, the file is copied to the writable layer
and only the copy is updated (copy-on-write). Unless the user

I I I

C1 C2 C3Docker CLI

L L1

L0

Storage

L

Driver
Driver

Execution

DaemonDocker

Fig. 1: Docker high-level design. C stands for Container, I for
Image, and L for Layer. Three containers are created; C1 and
C2 use images that share two layers.

saves the changes as a new layer (and hence a new image),
the changes are discarded when the container is removed.

To store data persistently beyond the container removal,
users can attach one or more file system volumes using a
volume driver which provides the container access to data
using protocols such as NFS and iSCSI. In this study, our focus
is on challenges specific to configuring the local “ephemeral”
file system for storing and accessing container images.

Users exchange images via a Docker registry service which
typically runs on an independent machine. For example,
Docker Hub is a popular registry service storing over 400,000
public images [14]. Docker clients cache images locally and
therefore can start any number of containers from an image
after pulling it only once. In this paper we assume that images
are already pulled from the registry and focus on the startup
and shutdown performance of containers.

Docker containers are often managed by high-level frame-
works like Docker Swarm [15], Kubernetes [16], and oth-
ers [17]. Furthermore, many products use Docker containers as
a basic primitive for their workflows [18], [19]. In this paper,
we generate workloads at the Docker level, not employing
orchestration frameworks or complex workflows. We plan to
extend our evaluation in future.

B. Storage Drivers

Docker uses a variety of pluggable storage drivers1 to
manage the makeup and granularity of the layers and how
changes to layers are saved. A storage driver is responsible
for preparing a file system for a container. In this section, we
briefly describe the available Docker storage drivers and their
key differentiating features.

VFS: This simple driver does not save file updates
separately from an image via CoW, but instead creates a
complete copy of the image for each newly started container.
It can therefore run on top of any file system. While this driver
is not recommended for production due to its inefficiency, we
discuss it here and in our evaluation since it is very stable and
provides a good baseline.

Aufs: Another Union File System [6] is a union file
system that takes multiple directories, referred to as branches,

1Storage drivers are sometimes also called graphdrivers because they
maintain the graph (tree) of Docker layers and images.



and stacks them on top of each other to provide a single unified
view at a single mount point. Aufs performs file-level CoW,
storing updated versions of files in upper branches. To support
Docker, each branch maps to an image layer [20].

To find a file, Aufs searches each layer/branch from top
to bottom until the required file is found. Once found, a
file can be read by the container. To update a file, Aufs
first creates a copy of the file in the top writeable branch,
and then updates the newly copied file. Deletes are handled
by placing a whiteout file in the top writeable layer, which
obscures all versions of the file in the lower layers. Aufs
performance depends on many factors—application access
pattern, the number of files, distribution of files across layers,
and file sizes.

Overlay and Overlay2: Both of these drivers rely on the
same underlying file system—OverlayFS [7]—which is yet
another implementation of a union file system [21]. Unlike
Aufs, OverlayFS is in the Linux kernel mainline and is
therefore available in many Linux distributions out of the
box. The Overlay driver was created for an earlier version of
OverlayFS that supported only two layers: a read-only “lower”
layer and a mutable “upper” layer. To merge several read-only
layers the Overlay driver creates hardlinks to the shared files
which can lead to inode exhaustion problems. The Overlay2
driver relies on the newer version of OverlayFS (kernel 4.0
and higher) which already supports 128 lower branches and
therefore can merge up to 128 read-only layers without using
hardlinks. In this paper we do not evaluate the older Overlay
driver, and instead focus on the newer Overlay2 driver.

Device-mapper (dm): Unlike other storage drivers, dm
operates at the block level instead of at the file system level.
This driver uses Linux’s device-mapper subsystem to create
thin-provisioned block devices. First, an administrator creates
a pool, which typically stacks on top of two physical devices—
one for user data and one for device-mapper metadata (e.g.,
block mappings). Second, when Docker creates a container, the
dm driver allocates an individual volume for the container from
the pool. To benefit from CoW, dm usually creates volumes
as writable snapshots of previously created volumes.

However, for a Docker container to operate, it requires a file
system, rather than a raw block device. So, as a third step, dm
formats volumes with a configurable file system (usually Ext4
or XFS). By far the largest advantage of dm over Aufs and
Overlay2 is that it can perform CoW at a granularity finer than
a single file which is 512KB by default but configurable by
the user. On the other hand, dm is completely file system-
oblivious and therefore cannot benefit from using any file
system information during snapshot creation.

Btrfs: Btrfs [8] is a modern CoW file system based on
a CoW-friendly version of a B-tree [22]. Compared to Aufs
and Overlay2, Btrfs is a file system that natively supports
CoW and does not require an underlying file system. Btrfs
implements the concept of subvolumes which are directory
trees, represented in their own B-trees. Subvolumes can be
efficiently snapshotted by creating a new root which points to
the children of the existing root.

Storage Space I/O Driver Network
driver Efficiency perf Stability Traffic
VFS − − + ∼
Aufs ∼ ∼ − ∼
Overlay2 ∼ ∼ ∼ ∼
dm + ∼ + ∼
Btrfs + + − ∼

Legend: + positive ∼ neutral − negative

TABLE I: Gross comparison of container storage drivers.

The Btrfs storage driver [23] stores the base layer of an
image as a separate subvolume and consecutive images are
snapshots of their parent layer. Similar to dm, Btrfs performs
CoW at the granularity of blocks which is more efficient in
terms of performance and space utilization compared to file-
based CoW. On the downside, Btrfs can experience higher
fragmentation due to the finer-grained CoW.

III. DIMENSIONS OF CONTAINER STORAGE

When designing a containerized environment, one has to
choose from a large variety of storage options that span
multiple dimensions, which we describe in this section.

Storage drivers: As discussed in Section II-B, Docker
supports a variety of storage drivers. The storage driver choice
is driven by three main considerations [24]: 1) space efficiency,
2) I/O performance, and 3) stability. Each driver uses a differ-
ent approach to represent images and hence some drivers may
not be suitable for certain types of workloads. For instance,
if a large file is updated in a container, Aufs and OverlayFS
would have to copy the entire file, decreasing performance
and disk space usage. In another example, for containers with
many files and deep directories, Aufs lookup operations can
be slow because Aufs looks for a file at every layer of the
image one at a time. Further, in our experience, some drivers
are stable while others are experimental and not production-
ready. All this makes choosing the appropriate driver difficult
as it depends on the workload and the environment in which
it is deployed. Table I summarizes the positive and negative
impacts of each of the five supported Docker storage drivers
across efficiency, performance, and stability metrics.

Table I also includes a network traffic metric to demonstrate
that, unlike common belief, Docker exchanges images with a
registry service at the file-level granularity no matter which
storage driver is used. Significant improvements are possible
in this area [25], [10].

Image layers: Docker’s representation of images as “lay-
ers of changes” adds another dimension of complexity. Having
a large number of fine-grained, generic layers allows for a
higher degree of sharing between different containers. This
improves performance when pulling images from a central
registry and reduces storage consumption at the Docker host.
On the other hand, deeply layered images increase the latency
of file system operations such as open or read [10], because
more layers need to be traversed to reach the data. Depending
on the specific user workload, the number of layers might or
might not affect system performance.



Storage devices: Another important factor for Docker
deployments is which type of storage devices should be used
for storing container data. Docker is especially popular in the
cloud and large cloud vendors such as Amazon, Microsoft,
IBM, and Google offer a wide variety of storage options.
For example, Amazon offers local ephemeral and remote
persistent, block storage based on either SSDs or HDDs [26].
Depending on the VM instance type, one or the other (or both)
can be selected. For remote storage, a variety of options with
different throughput and IOPS values exist.

With Docker, the density and diversity of workloads running
against the same storage device increase significantly. This
is due to the fact that hosts can execute a larger number of
lightweight containers compared to VMs. As a result, match-
ing containers to the variety of available devices becomes a
more challenging task. The burden is on the user to optimize
for performance while keeping the cost low and ensuring that
all workloads have sufficient resources to run smoothly.

File systems: While the Btrfs driver is based upon a Btrfs
formatted device, the other drivers all include an additional file
system layer. Overlay2 and Aufs are both union file systems
that require an underlying file system such as Ext4 or XFS.
dm on the other hand exposes a block device and hence, has
to be formatted with a file system. While recommendations
exist for some drivers regarding the choice of file system [27],
it is unclear as to how this choice affects performance. Fur-
thermore, every file system has a large number of parameters
and their optimal values for Docker can be different than
for traditional setups. For example, file system journaling is
usually not needed as crash consistency is not required for a
container’s ephemeral (local) storage.

Workloads: The “right” choices made with respect to
the above dimensions are all influenced by the characteristics
of the intended workload. The workload itself has several di-
mensions in terms of read/write ratio, the type of I/O (random
or sequential), and the amount of data (size and number of
files) that it operates on. A read-only workload that operates
on a large number of files does not incur any overhead due to
CoW but may under-perform with deeply layered images as it
has to perform frequent lookups. Balancing such trade-offs is
difficult, especially when the workload characteristics are not
known or are not clearly defined.

Looking at the different dimensions, it becomes clear that
picking the optimal storage solution for a containerized work-
load is not straightforward. While some guidelines exist [24],
they do not cover all dimensions and do not provide clear
evidence as to how the different aspects of a given deployment
choice influence one another. Additionally, in many cases, the
best choices are tightly coupled with the workload characteris-
tics. Our evaluation study highlights some of the complexities
of running workloads within the Docker storage ecosystem.

IV. EVALUATION

The evaluation presented in this paper is not intended as a
comprehensive study. It is aligned with the goals of the paper

to demonstrate the impact (or the lack of it) of the Docker
storage configuration on workload performance.

Testbed: In our experiments we used an IBM x3650
M4 server provisioned to support environments with a high
density of containers per machine. Each node has two 8-
core Intel Xeon 2.6GHz CPUs, 96GB of RAM, and a single
128GB SSD fully dedicated to Docker. The nodes runs a
CentOS Linux 7.3.1611 (released in December 2016) with an
updated kernel version 4.11.6 (released in June 2017) to
enable support for Overlay2 and Aufs. For the same reason we
updated Docker to version 17.03.1-ce (released in March
2017). We used Ext4 as the underlying file system for the
storage drivers (except for the Btrfs driver). While we also
ran experiments with XFS, our preliminary results indicate no
significant difference caused by the file system and hence, we
do not show the XFS results.

In our earlier experiments (not presented in here) we used
an older kernel version (4.10) and Aufs hung under write-
intensive workloads. Furthermore, when we switched to the
newer 4.11 kernel, Aufs was returning errors on writes to the
internal portions of large files on XFS. We reported this issue
to the Aufs maintainers and it was recently fixed [28]. This
contributed to our decision to mark Aufs stability as negative.

Images: We created several Docker images for the ex-
periments. Each image is kept to the minimum size and only
contains a Filebench [29] installation along with the required
libraries. The total size of the image without the dataset is
2MB. Depending on the workload we created two images
from the Filebench base image: a single-file image Singlef
and a multi-file image Multif. The Singlef image contains a
single 1GB file while Multif includes about 16,000 64KB-size
files in a directory tree with an average depth of 3, similar to
Filebench’s Web-server workload. The total size of the Multif
dataset is therefore also 1GB.

Workloads: In all of our experiments we used the same
high-level workload: we simultaneously started 64 Docker
containers and then waited for all of them to exit. The idea
behind using such a workload was to resemble a parallel job,
such as a Spark job, which consists of a large number of equal
small tasks. Each task is launched in its own container and
operates on a different partition of the input data. We selected
64 containers assuming that every available core services 4
containers. We did not simulate application’s memory usage.

In each experiment, all containers were created from the
same image and each container ran until it performed 600 I/O
operations. The I/O speed was rate-limited to 10 synchronous
IOPS per container, reflecting a scenario when a containerized
application is not particularly I/O intensive. Though per-
container I/O accesses are infrequent, all containers together
produce a significant load on the I/O subsystem. In the case
of no I/O congestion, every container would execute for 60
seconds. However, in reality, every container took longer to
finish (up to 576 seconds) because 64 containers competed
for the limited storage bandwidth.

For the Singlef-image-based containers we experimented
with two workloads: 1) random 4KB reads from the 1GB file
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Fig. 2: Driver dimension: the number of running containers vs. time for different drivers and workloads.

(sf-reads) and 2) random 4KB updates to the file (sf-writes).
The corresponding two workloads for the Multif-image-based
containers are: 1) whole-file reads from randomly selected
64KB files (mf reads) and 2) whole-file overwrites of random
64KB files in the dataset (mf writes). For reproducibility,
before starting an experiment we deleted all old containers,
trimmed and reformatted the SSD, restarted the Docker dae-
mon, and cleared file system caches.

Below we present three experiments, each exploring a dif-
ferent dimension: storage driver, number of layers, and storage
device speed. Results for these experiments are presented
in Figures 2, 3, and 4, respectively. We repeated every
experiment three times and plot the average completion time
and the minimum and maximum times as error bars for
Figures 3 and 4. However, for the majority of the points, the
deviation was too small to be visible on the graphs. Figure 2
contains a time-series graph where standard deviation is not
applicable. We, however, verified that there were no significant
variation between the results of different runs.

Experiment 1—Drivers: In this experiment we moni-
tored how the total number of running containers changed over
time for different storage drivers (see Figure 2). As is expected,
for all drivers, the number of running containers first increased
and then decreased again to zero by the end of the experiment,
as all containers eventually finished. However, only Btrfs
started containers fast enough to run all 64 containers at a
high speed for every workload. Aufs and Overlay2 were as
fast as Btrfs for all workloads except sf-writes as they need to
perform expensive file-based CoW of the large 1GB file in this
workload. The latency of the very first write in a container in
this case reached up to hundreds of seconds due to the high I/O
pressure. Interestingly, the starting time of containers for this
workload was not impacted in the Aufs configuration, but was
significantly increased (compared to other workloads) in the
Overlay2 configuration. This resulted in a faster completion
of the experiment with the Aufs driver.

In terms of completion time, the dm driver under-performed
for the sf-reads, mf-reads, and mf-writes workloads by about
20%. The graphs indicate that this was mainly caused by the
slower setup and destruction of the writable layer by device
mapper. However, for the sf-writes workload, dm showed
better completion times than Aufs and Overlay2. This is
expected because dm’s CoW granularity is a block. We also

observe that dm’s performance took a more severe hit in sf-
writes than in other workloads. We believe this is because dm
has to first fetch 512KB blocks before updating them due to
read-before-write [30] requirements.

For comparison, we also included the VFS driver in this
experiment, which incurs unacceptably low performance. In
fact, to avoid Docker timeouts and to be able to fit the
resulting dataset on the SSD we had to limit the VFS driver
experiments to 24 containers. When creating a writable layer
for a container, the VFS driver copies all layers that belong
to the corresponding image. The start of a Docker container
requires the creation of two layers: one with configuration files
specific to the container (e.g., /etc/hosts), and another one
for the containerized application itself. Therefore, the start of
a container results in copying 2GB of data, irrespective of the
workload. This clearly indicates that storage CoW capability
is crucial for Docker’s feasibility in practice. Because of its
low performance, we do not evaluate the VFS driver further.

An interesting observation we made when running this
experiment was that Overlay2 and Aufs copy a file when
an application opens it with a O_RDWR flag, not when the
first write is issued. By default, Filebench was opening
files in O_RDWR mode, even for read-only workloads, which
initially resulted in low performance for the read workloads
with Overlay2 and Aufs. We modified Filebench to open files
in O_RDONLY mode for read-only workloads. This experience
shows that, first, applications have to be more careful when
picking an open flag within containers. Second, if a container-
ized application performs both reads and writes, it is beneficial
to segregate read-only data to one set of files, and write-only
data to a different set of files, if possible. This will reduce the
amount of data copied during the CoW process.

Experiment 2—Layers: Next, we evaluate the impact of
the number of layers within an image on performance. For
this experiment, we created layered versions of the Singlef
and Multif images. For Singlef, each layer overwrites 1%
of the 1GB file from a randomly chosen offset with random
bytes. For Multif, each layer overwrites 1% of the 64KB files
with random bytes. We varied the number of layers from 1
to 30 and measured the completion time for each of the four
workloads (see Figure 3).

Previous work has shown that the number of layers does
influence file access latencies [10]. Surprisingly, our results did
not reveal any dependency between the performance and the
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Fig. 3: Layer dimension: completion time vs. the number of layers for different drivers and workloads.
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Fig. 4: Device dimension: completion time vs. device latency for different drivers and workloads.

number of layers. We experimented with higher percentages of
inter-layer overwrites—5%, 10% and 20%—and still did not
see any impact of the number of layers on performance. We
believe that this is due to two reasons: 1) the overhead reported
by [10] is only on the order of milliseconds and hence, does
not have a significant impact for longer running workloads;
2) the overhead is only incurred for the first (uncached) access
to a file which reduces its impact even further.

While this initial exploration does not indicate an impact
of layers on performance, other interesting aspects of layering
can be investigated such as its impact on storage utilization and
caches. For example, we found that when a layered image is
created on a client using a Dockerfile [31], the client does not
fully benefit from the block-level CoW (in Btrfs and dm). E.g.,
the Singlef image with 10 layers was of 10GB size despite the
fact that only 10MB of the file were changed in each layer.
This happens because the image build process commits every
layer, and every commit generates a layer at file granularity
to exchange it with the Docker registry.

Experiment 3—Devices: To experiment with a wide
range of devices that cloud providers offer to a consumer,
we used our previously developed dm-delay tool to create
virtual devices with arbitrary latencies [32], [33]. We extended
dm-delay to support configurable queue depths and sub-
millisecond latencies; we present here the results for 0, 2, 4,
and 6 millisecond latencies when using a queue depth of 10.
We deployed dm-delay on top of the SSD used in the previous
experiments. Figure 4 highlights that in the majority of the
cases, all drivers operate slower on slow devices. However,
the impact when using the dm driver is much more severe
than with file-system-based drivers. We think this is due to
the fact that dm does not benefit from the page cache of the

underlying file system, as Aufs and Overlay2 do.
In this experiment we also occasionally ran into a problem

with Btrfs. At times, under write-intensive workloads, Btrfs
reported out-of-space errors even though there still was avail-
able space on the device. There are multiple reports on the
web related to this issue [34], [35], [36]. This contributed to
our decision to mark Btrfs stability as low in Table I.

V. RELATED WORK

Docker provides some guidance on selecting a storage
driver [24], but the recommendations are coarse grained and
not supported with experimental results. There are also nu-
merous non peer-reviewed postings online regarding container
storage performance, but they tend to either not focus on
storage [37] or they do not take the dimensions discussed in
this paper into account [38], [39], [40], [41].

Studies exist that compare the performance of containers
to virtual machines [42] or investigate container provisioning
times [43]. However, they do not consider the different storage
options that exist for Docker containers.

BetrFS improves the performance of copy-on-write file
systems [44], but these optimizations have not been adapted to
container workloads. While some additional work focuses on
optimizing copy-on-write with containers [45], [46], it lacks a
comprehensive evaluation and does not discuss the presented
container storage dimensions.

Some researchers suggested to replace local storage drivers
with distributed storage drivers [10], [47]. Slacker mixes NFS
with server-side cloning to improve performance [10]. Shifter
combines all storage layers into a single file stored in a parallel
file system [47]. Our work applies to these approaches as well,



since the storage and file system are simply two dimensions
that factor into container storage performance.

Finally, approaches exist to improve the management of
container images. Exo-clones alter container image snapshots
to be useable across different deployment environments [25].
CoMICon introduces a distributed, cooperative registry that
allows Docker hosts to share images between each other [48].
This is complementary to our work, since our focus is on
performance and not management or storage efficiency.

VI. CONCLUSIONS

Docker containers have become one of the major execution
environments for many different applications, producing a
unique workload blend that exercises storage’s writable snap-
shot capabilities like never before. There is a variety of generic
solutions that support CoW snapshots, but their effectiveness
for Docker containers is not well understood. First, it is not
trivial to understand which solution works best for Docker
and in which situation. Second, the generic solutions were not
designed with Docker in mind and may deliver suboptimal
performance due to its unique I/O workload.

We demonstrated in this paper that Docker storage systems
have many design dimensions and the design choices can
impact Docker performance profoundly. At the same time,
some dimensions that would, in theory, be expected to have a
significant effect on performance (e.g., the number of layers in
an image) do not have much impact in practice. While Btrfs
seems to provide the best performance across the evaluated
dimensions, its lower stability due to the out-of-space errors
can make it prohibitive for production deployments. We hope
that the information and experimental results presented here
will draw the deserved attention to this new, exciting, and
largely unexplored area.
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