
Kaleido: Enabling Efficient Scientific Data
Processing on Big-Data Systems

Saman Biookaghazadeh
Arizona State University

Tempe, Arizona
Email: sbiookag@asu.edu

Shujia Zhou
Northrup Grumman
Baltimore, Maryland

Email: szhou@umbc.edu

Ming Zhao
Arizona State University

Tempe, Arizona
Email: mingzhao@asu.edu

Abstract—Big-Data systems are increasingly important for
solving the data-driven problems in many science domains.
However, existing big-data systems cannot support the efficient
processing of self-describing data formats such as NetCDF which
are commonly used by scientific communities for data distribution
and sharing. This limitation presents a serious hurdle to the
further adoption of big-data systems by science domains. This
paper presents Kaleido, a solution to this problem by enabling
big-data systems to efficiently store and process scientific data.
Specifically, it enables Hadoop to directly store NetCDF data
on HDFS, and process them in MapReduce using convenient
APIs. It also enables Hive to support queries on NetCDF data,
transparent to the users. Moreover, it employs optimizations
tailored to scientific data, particularly dimension-aware layouts
which allow efficient execution of subset queries targeting any
dimension of a multi-dimensional dataset. The paper presents a
comprehensive evaluation of Kaleido using representative queries
on a typical geoscience dataset. The results show that Kaleido
achieves substantial speedup and space saving compared to
existing solutions for storing and processing NetCDF data on
Hadoop, and it also substantially outperforms the state-of-the-
art solutions for supporting subset queries on scientific data.

I. INTRODUCTION

Big data is an important computing paradigm increasingly
used by many disciplines for knowledge discovery, decision
making, and other data-driven tasks. Big-Data systems are
typically built upon programming frameworks that can ef-
fectively express data parallelism and exploit data locality
(e.g., MapReduce [1]) and storage systems that can provide
high scalability and availability (e.g., Google File System [2],
Hadoop HDFS [3]). A variety of high-level data services (e.g.,
BigTabale [4], HBase [5], Hive [6]) can be further built upon
such frameworks.

These technologies are increasingly important to scien-
tific applications from various disciplines. For example, typ-
ical geoscience models have multi-scale physical processes.
With current high performance computing power, ultra-high-
resolution, long-time simulations are feasible with a few thou-
sands of computer processors. Consequently, huge amounts of
data (easily over 100TB) are produced. Big-data technologies
are demanded to analyze the simulation outputs. However,
there are two important limitations to the use of existing big-
data solutions for scientific data.

First, commonly used big-data systems do not natively
support scientific data formats. Scientific data is often stored

in self-describing data formats (e.g., NetCDF [7], HDF5 [8]),
but, as an example, a NetCDF file loaded into HDFS as raw
data cannot be processed by MapReduce applications. Conse-
quently, scientific users who wish to use big-data computing
for their applications often have to convert their data to a much
more primitive data format (e.g., Comma Separated Values
(CSV)), which causes substantial time and space overhead.

Second, existing big-data solutions cannot provide efficient
support for the subset queries that are commonly used for
processing scientific data. A naive solution that loads all
data into memory and then processes the desired subset,
requires large amounts of unnecessary processing tasks and
unnecessary I/Os for loading the data. Solutions that prune
the data based on either the structures or indexes of the data,
work only for queries that require a subset on one particular
dimension [9], [10].

This paper presents Kaleido, a solution to address the
aforementioned limitations by enabling commonly used big-
data systems to support the storage and analysis of scientific
data stored using self-describing formats and optimize the
processing of subset queries on such data. First, we extend
HDFS to store scientific data in self-describing formats and
allow big-data applications such as MapReduce jobs to parse
and process the data. We also extend commonly used big-
data query engines such as Hive to allow users to query the
scientific data stored on HDFS.

Second, we optimize the performance of subset queries us-
ing a novel dimension-aware layout approach. Kaleido stores
several layouts of the same scientific dataset, each one sorted
by one of the dimensions of the data and optimized for queries
that require subsets on that dimension. In this way, given a
query requiring a subset on a specific dimension, Kaleido can
always find data sorted by that dimension and process it using
the minimum number of tasks.

We have developed a prototype of Kaleido based on Hadoop
2.5.2, Hive 1.2.0, and NetCDF3, and evaluated its perfor-
mance using a 1TB geoscience dataset on a twenty-two
nodes compute cluster. The results first show that Kaleido is
able to substantially improve both performance and storage
utilization. Compared to the traditional CSV approach and
the related Parquet solution [11], it achieves a speedup of
more than 657% and 31.81%, respectively, and reduces the
storage usage by 413% and 29.1%, respectively. Second, the

1

results also show that, by using dimension-aware layouts,
Kaleido is able to improve the performance for subset queries
targeting all dimensions, and it outperforms the related works
SciHadoop [9] and an indexing-based solution [10] by up to
373% and 423%, respectively.

The rest of this paper is organized as follows. Section
2 introduces the background and related works. Section 3
presents the design and implementation of Kaleido. Section
4 discusses the experimental evaluation results. Section 5
concludes the paper and outlines the future works.

II. BACKGROUND

A. Need of Big-Data Systems for Processing Scientific Data

Many science domains are increasingly data driven, requir-
ing processing of large amounts of simulation, experimental,
and observational data for scientific discoveries. For exam-
ple, the experimental data from Large Hadron Collider [12]
may provide better answers to the fundamental questions in
physics; to improve the predictability of hurricane tracking,
a large amount of real time sensor data from various types
of instruments need to be processed and incorporated into
forecasting models. Therefore, big-data systems are also im-
portant platforms for these science domains by providing the
necessary scalability and reliability for storing and processing
big scientific data.

Typical big-data systems are built upon a highly scalable
and available distributed storage system. For example, Google
File System (GFS) [2] and its open-source version, Hadoop
Distributed File System (HDFS) [3], provide fault tolerance
while storing massive amounts of data on a large number of
datanodes; while MapReduce [1] applications are executed in
a data-parallel fashion on the datanodes where their data is
stored. High-level data services can also be built upon such a
big-data computing framework. For example, Hive [6] allows
users to use common SQL queries on data stored in HDFS,
which are automatically converted to MapReduce tasks to
process the data.

When data is loaded in its native binary format into a big-
data file system such as GFS and HDFS, it is split into large
data blocks which are distributed across the datanodes in the
system. Both the map and reduce phases of a MapReduce ap-
plication can spawn large numbers of parallel tasks, depending
on the size of the input, on the datanodes of a big-data system
to process the data in parallel. To take advantage of data
locality, which is the key to the performance of MapReduce
applications, the map tasks are preferably scheduled onto the
datanodes that have the data blocks for them to process locally,
thereby in essence shipping computing to the data.

B. Need of Efficient Scientific Data Storage and Processing

Big-data systems are indeed increasingly used by users from
different science domains. However, there are several key
limitations of existing big-data solutions to provide efficient
storage and processing of scientific data.

First, existing big-data systems do not support the data
formats commonly used by scientific data. The de facto data

Fig. 1. 2D Illustration of the maximum rainfall on US continent, over different
time frames. Each small red box encloses a user-defined region for further
analysis of rainfall patterns.

formats used in many science domains are the self-describing
formats such as NetCDF [7] and HDF [8]. They provide a con-
cise and efficient way of storing array-oriented scientific data
in binary. They are self-describing and machine-independent,
which means that the description of data is not only well-
defined in machine understandable way but also meaningful
to human and conforms to relevant conventions [8]. For
scientific applications, a wide variety of named dimensions
and variables have been frequently used by broad scientific
user communities. Existing conventions enable the cooperation
and reuse of both standards and codes to transform, combine,
analyze, and display specified fields of the data [7]. For
example the settings of grids and physical units for climate
and weather simulations vary among different models. Self-
describing data formats facilitate the sharing of climate and
weather data.

These formats are not natively supported by the widely used
big-data systems. For example, one can load NetCDF files
into HDFS as binary data, but MapReduce applications cannot
interpret these data properly for processing. Consequently,
users often resort to cumbersome approaches by using these
systems for processing their data. First, they have to convert
their data stored in self-describing format, e.g., NetCDF, to
plain-text format using tools such as ncdump [13]. After the
conversion, the file needs to be further translated to a multi-
column table format such as CSV that is supported by a
big-data system such as Hadoop. This approach is not only
cumbersome to users but also incurs substantial time and space
overhead.

Second, existing big-data solutions cannot provide efficient
support of the subset queries that are commonly used for
processing scientific data. For example, a geoscientist may
want to find out the temperature characteristics of a certain
geographic area at a certain time, which requires processing

2

Fig. 2. Architecture of Kaleido for enabling scientific data storage and
processing on big-data systems

the temperature values of a subset of the spatiotemporal data
specified by the latitude and longitude ranges. For example,
in Figure 1, the weather systems, which in this case are
the rainfalls in different regions over different timestamps
(represented by the colored areas in the maps), generally
occupy only small portions of the whole dataset. Users who
are interested only in rainfalls use subset queries to process
only the relevant portions of data (represented by the red boxes
in the maps), which is supposed to be much more efficient that
processing the whole dataset [14].

A naive solution is to load all the data into memory and
then process only the required data subset, but it requires large
amounts of unnecessary map tasks and unnecessary I/Os for
loading the data. Other solutions like SciHadoop [9], Hadoop-
GIS [15], and SpatialHadoop [16] support loading only the
necessary data subset into memory for processing. But a query
may require a subset on any dimension of the data and the
required data is often not sequentially stored on storage, so
such solutions require loading large numbers of small pieces
of data and thus do not perform well. Related work has also
studied the use of indexing to reduce the data processing
overhead for subset queries [10]. But indexes cannot be created
for all the dimensions of the data; otherwise, the indexes would
be as expensive as the original data. Hence, for queries that
require subsets on the non-indexed dimensions, the processing
does not get any improvement. For example, for spatial-
temporal data, if only the time dimension is indexed, subset
queries on latitude and/or longitude are still slow.

III. DESIGN AND IMPLEMENTATION

Kaleido is designed to address the aforementioned limita-
tions of existing big-data solutions for scientific data. This
section presents how it 1) enables widely used big-data sys-
tems to directly support self-describing data formats, and 2)
enables these systems to support efficient execution of subset
queries on multi-dimensional scientific data.

A. Enabling Hadoop to Support Scientific Data

Hadoop employs parallel map and reduce tasks to complete
a large job. Each map task gets a split or multiple splits of
the input data and performs the computation preferably on the
node where the data locates. There is an InputFormat for each
type of input file format, which handles the splitting of input
data and then reading it through the RecordReader.

To support NetCDF data, Kaleido’s design is to introduce
new NetCDFInputFormat and NetCDFRecordReader APIs for
processing the NetCDF data stored on HDFS. Figure 2 illus-
trates the overall architecture of our approach. To implement
these new APIs, we exploit the standard NetCDF library
to implement a NetCDFDriver. NetCDFRecordReader uses
this NetCDFDriver to read the records from the NetCDF
data, where each record corresponds to a row in the multi-
dimensional array data, e.g., the temperatures of different
locations (latitude, longitude) at a specific time.

To ensure good performance of the map tasks that process
NetCDF data, NetCDFInputFormat needs to split the input
data based on the physical distribution of the data so that each
map task can get splits that are locally stored for processing. To
achieve this, NetCDFInputFormat uses the NetCDFDriver to
find out the offsets of the records and compare them to HDFS
block boundaries. Kaleido also supports efficient processing
of mutliple small files by packing as many as small NetCDF
files into a single split, up to the HDFS block size boundary.

Finally, Kaleido also employs an optimization, which is
rather than reading a variable at a time from the multi-
dimensional array stored in NetCDF, NetCDFRecordReader
uses a single read operation to retrieve a number of variables,
e.g., an entire row of values from the multi-dimensional
array. Experiments discussed in Section IV-D confirm that this
optimization can speed up the data processing by up to 2.5
times.

B. Enabling Hive to Support Scientific Data

Hive is a data warehousing solution which is built on top
of the Hadoop framework. Users can query data stored in
HDFS using SQL-style declarative language. For example,
a geoscientist can use a simple query such as SELECT
MAX(temperature) FROM table to find out the highest
temperature of a dataset without writing a single line of code.

As illustrated in Figure 2, every query submitted by users
would be transferred into an execution plan by Hive planner.
Hive driver receives this plan and submits corresponding map
and reduce tasks to Hadoop, which use InputFormat and SerDe
to read the data and apply the submitted query on it. InputFor-
mat is responsible for reading data and passing key-value pairs
to the map function. SerDe stands for SerializerDeserializer,
which transforms the output of RecordReader into a column-
oriented data format for Hive operators such as join and filter.

We have created a new NetCDFSerde to support the
NetCDF data format, which converts every variable value
from the multi-dimensional array stored in NetCDF into a
row for Hive. However, as mentioned earlier, our NetCD-
FRecordReader produces a bulk of values at a time for better

3

Fig. 3. Replicating single block on multiple nodes, using different layouts

performance. This behavior is not supported by the native
SerDe, since it only accepts one row at a time. To support
our optimization, we change the architecture of the map
tasks created by Hive so that each map task is able to use
NetCDFRecordReader to retrieve a bulk of values in one shot
and feed them to NetCDFSerde row by row.

C. Enabling Efficient Subset Queries

Based on the aforementioned framework for directly storing
and processing scientific data on big-data systems, Kaleido
further improves the performance for commonly used subset
queries using a novel dimension-aware layout technique. Users
of scientific data often query only a subset of the data along
one or more dimensions. For example, geoscientists often
investigate the formation and track of a hurricane or tornado
with comprehensive analysis on the areas near the center of the
hurricane or tornado. The subset area is along longitudinal as
well as latitudinal dimensions. Since the centers of hurricanes
or tornadoes move, the subset areas have to be adaptively
selected.

To address this problem, we propose a new dimension-
aware layout scheme in Kaleido which stores several layouts
of the same scientific dataset, each one sorted by one of the
dimensions of the data. For example, for a spatiotemporal
dataset, the original dataset is stored by the time dimension,
which is illustrated by the time-oriented layout in Figure 3.
Kaleido stores the dataset into three different layouts, each
sorted by one of the time, latitude, and longitude dimensions,
as illustrated in Figure 3. In this way, given a query requiring
subset on a specific dimension, Kaleido can always find the
best or near-best layout that is closely sorted by this dimension
and use this layout to process the query efficiently.

Specifically, Kaleido’s NetCDFInputFormat is able to de-
cide which layout to use for processing a query based on
its required subset, as illustrated in Figure 4. For example,
if the query has a boundary on the latitude dimension such as

“latitude<120”, NetCDFInputFormat will choose to read data
from the latitude-based layout of the NetCDF data. It uses the
boundaries specified by the subset to determine the necessary
data splits to process for the query. Correspondingly, only the
necessary map tasks will be launched to load and process these
data. If the splits are small, NetCDFInputFormat will pack
them into a fewer number of larger splits to further reduce
the number of required map tasks for processing them and
the associated overhead. Moreover, because the required data
subset is sequentially stored on storage in this chosen layout,
the data loading involves only sequential reads.

If a subset query specifies boundaries on more than one
dimension of the data, e.g., “latitude<60 and longitude>300”,
NetCDFInputFormat analyzes the required volumes of data
using different layouts and choose the most efficient one to
use. This process involves calculating the amount of data to
be read from storage from using either one of the two layouts
and then choosing the one that leads into less data to be fetched
from storage.

To efficiently create the dimension-aware layouts for a
dataset, Kaleido leverages the existing replication mechanism
of HDFS. When data is loaded into HDFS, instead of creat-
ing identical copies of each block, Kaleido creates different
layouts of the same data across multiple datanodes. In our
modified HDFS data replication pipeline, the primary replica
of a block receives the data from the original self-describing
file, which is generally sorted by one of the dimensions of
the data, e.g., time. It makes sure that the data in the block is
aligned to the boundary of this dimension, e.g., it contains all
the latitude and longitude values for the last time value in this
block. This block of data is then pushed to the other replicas,
each of which will apply the appropriate transformation to sort
the data in one of the other dimensions and store it persistently
on the local storage. Each replica also adds a header to its
data, which contains all metadata information, such as the
information about all variables available in the block, their
sizes, and the ranges of their values. When a map task is
assigned to process a block, its header helps the task parse
the binary format data.

This layout creation method has several benefits. First, it
minimizes the space overhead of our solution by leveraging the
existing replicas that big-data systems use for fault tolerance.
For example, HDFS employs by default three replicas for each
block, which can be well utilized to store the time-, latitude-,
and longitude-oriented layouts for spatial-temporal datasets.
For datasets that have more dimensions than the default
replication factor, users can choose to make additional replicas,
if all dimensions are important for servicing subset queries, or
skip the dimensions that are less important. Profiling can be
performed on the commonly used subset queries to determine
which three layouts would produce the most performance
improvements. Second, the method does not compromise the
reliability of data storage as the replicas of a block still store
the same subset of data, although their layouts are different,
and any replica can be recovered from the others in case of a
replica failure.

4

In a Hadoop system, the NameNode is responsible for
keeping track of data blocks and their replicas’ locations.
It is in contact with all DataNodes, in order to keep track
of updated information about each single node. In Kaleido,
NameNode is extended to also keep track of the data layout of
each replica, for every single block. The NetCDFInputFormat
determines which layout it should use to process a subset query
by extracting the requested dimensions from the input query
and then fetching the metadata of blocks that contain the target
dimension from the NameNode. Map tasks are then deployed
to process these blocks, which leverage the metadata in the
blocks to understand the layout of data and used it properly.

Our dimension-aware layout scheme shares some similari-
ties of the Trojan layout work [17] which uses different column
layouts to store the data so that queries that are interested
in different attributes of the data can find the attributes
stored sequentially and be processed efficiently. In comparison,
Kaleido’s dimension-aware layouts are sorted by different
dimensions of the multidimensional data. More importantly,
Kaleido is optimized for scientific data processing. First, it
supports the processing of self-describing data formats such
as NetCDF commonly used by scientific data. Second, it
leverages the metadata in NetCDF format to understand the
information about the data’s different dimensions. Third, in
Kaleido, each replica of a data block is sorted by one of the
major dimensions, which enables efficient, fine-grained data
pruning and processing for supporting subset queries targeting
any of these dimensions.

In native Hadoop, each block of data is replicated on three
different nodes, so the map task assigned to process this block
can be launched on any one of these nodes with local data as
the input. In comparison, Kaleido replicates a data block using
three different layouts, and it is often the case that only one
of the nodes can provide the best layout to a map task that
needs to process the data as required by a subset query. If
the node happens to be busy, e.g., when all of its CPU cores
are occupied by other tasks from the same or other jobs, the
map task that requires the best layout from this node cannot
be deployed.

Kaleido supports two different strategies to deal with
this situation: (1) delayed local execution which delays the
scheduling of the map task till there is a CPU core available
on the node to execute the task and provide the best layout
data to the task; and (2) remote execution which schedules the
map task to a node that does not have the best layout data and
where the task has to fetch the best layout data from a remote
node across the network. Delayed scheduling allows the map
task to use fast, local I/Os to access the data, whereas remote
execution ensures immediate execution of the task with no
delay. Our findings in the next section show that both strategies
are much more efficient than native Hadoop because of the
benefits of dimension-aware layouts.

IV. EVALUATION

A. Setup

In this section, we compare Kaleido to:

Fig. 4. Dimension-aware layouts of scientific data in big-data systems

TABLE I
BENCHMARK QUERIES

Q-Base SELECT AVG(val) FROM netcdf

Q-Time 1 SELECT AVG(val) FROM netcdf
WHERE 598290<time<1794870

Q-Time 2 SELECT AVG(val) FROM netcdf
WHERE 1196580<time<1794870

Q-Lat 1 SELECT AVG(val) FROM netcdf
WHERE 45<lat<135

Q-Lat 2 SELECT AVG(val) FROM netcdf
WHERE 90<lat<135

Q-Lon 1 SELECT AVG(val) FROM netcdf
WHERE 90<lon<270

Q-Lon 2 SELECT AVG(val) FROM netcdf
WHERE 180<lon<270

Q-LatLon 1 SELECT AVG(val) FROM netcdf
WHERE 90<lon<270 and lat<160

Q-LatLon 2 SELECT AVG(val) FROM netcdf
WHERE 180<lon<270 and lat<160

• Native approaches, including native Hadoop and Spark,
which provide a query interface using Hive and Spark
SQL, respectively, and store NetCDF data using CSV and
Parquet formats. Parquet is a data format that leverages
compression and columnar data representation to reduce
data size and avoid reading unnecessary columns or
blocks of data [11].

• SciHadoop [9], a related project which supports a cus-
tom array query language using MapReduce jobs to
process NetCDF-based scientific data stored on HDFS.
SciHadoop also provides a NoScan optimization which
prunes the data blocks involved in a query and reads only
the necessary data required by the query.

• A related indexing-based approach [10] which uses index-
ing to improve the performance of processing scientific
data on Hadoop. For spatiotemporal data, it creates (vari-
able, time, altitude) indexes for 2D spatial grids so that
only the necessary grids are loaded and processed for a
given data query.

We consider a 1TB NetCDF3 dataset, which represents
typical geoscience data containing a set of temperatures of

5

certain geolocations (latitude and longitude) at certain times.
The range of latitudes in the data is from 0 to 180, and the
range of longitude is from 0 to 360. We consider nine different
types of queries, listed in Table I and briefly explained below:

• Base query does query on the entire dataset.
• Query on time dimension: Q-Time 1 and Q-Time 2

require time dimension subsets and involve half and
quarter of the total data, respectively.

• Query on latitude dimension: Q-Lat 1 and Q-Lat 2
require latitude dimension subsets and involve half and
quarter of the total data.

• Query on longitude dimension: Q-Lon 1 and Q-Lon 2
require longitude dimension subsets and involve half and
quarter of the total data.

• Query on multiple dimensions: Q-LatLon 1 and Q-
LatLon 2 require subsets bounded by two dimensions
and involve half and quarter of the longitude dimension,
respectively, and 89% of the latitude dimension.

The experiments were done on a cluster of 20 nodes,
each with four eight-core 2.4 GHz Intel Xeon E5 CPUs,
64GB of RAM, and 1TB SAS disk, and interconnected
by a 10Gbps Ethernet switch. All nodes run Ubuntu 14.04
Linux with the 3.16.0-x86 64 kernel and use EXT4 as the
local file system. The evaluation uses Hadoop 2.5.2, Apache
Hive 1.2.0, and Apache Spark 1.6.0. One node serves as
the NameNode and the others as DataNodes. HDFS block
size is defaulted to 128MB, and replication level is three.
The NetCDFRecordReader read granularity, which is the total
number of variables being read by NetCDFRecordReader at
each attempt, is set to 131,072 bytes. Each Hadoop map task’s
resource usage is set to 1 CPU core and 1GB memory for
Kaleido and other approaches except for Parquet which is 1
CPU core and 2GB memory. Parquet requires more memory
and using 1GB per task will cause out-of-memory errors.
Finally, each Spark worker’s resource usage is also set to 1
CPU core and 1GB memory.

B. Query Performance

Figure 5 compares the runtime of the queries using different
approaches. Kaleido outperforms the CSV approach by 657%
on Hadoop and 420% on Spark, for querying the entire dataset
using Q-Base. The reason is the difference in the data size—
as we will discuss in subsequent sections, the CSV equivalent
of the NetCDF data consumes 413% more disk space, which
requires more map tasks and more time to process. For the
rest of the queries that involve only a subset of the data,
the difference is even greater as Kaleido processes only the
necessary data, which leads to 3520% better performance.

Kaleido outperforms the Parquet approach by 31.8% on
Hadoop and 10.7% on Spark, for querying the entire dataset
using Q-Base. Kaleido is also faster for all the subset queries
since it can leverage the correct layout, except for queries Q-
Time 1 and Q-Time 2 which show that Parquet on Spark
can do up to 22% better than Kaleido. We believe that this
exception is because Spark jobs are generally faster than
Hadoop jobs, and when ported to Spark, Kaleido should

perform similarly to, if not better than, native Spark for time-
subset queries as discussed in Section III. Overall, for queries
bounded by the latitude dimension, Kaleido is faster than
Parquet by up to 207% and 546% while processing half and
quarter of data and when the longitude dimension is involved,
Kaleido is faster by up to 263% and 672%.

Next, we compare Kaleido with the indexing-based ap-
proach [10], which first loads the whole data set into memory
and then does the pruning in memory when executing the
query. Because this approach has to load the whole dataset
from the disk, which issues unnecessary I/Os, it cannot provide
any performance improvement over Q-Base, except for queries
Q-Time 1 and Q-Time 2. As a result, for time-bounded
queries Kaleido is 8.4% and 5.8% faster than the indexing-
based approach for processing half and quarter of data, re-
spectively; and for subset queries on the other dimensions,
Kaleido is faster by up to 423%.

Finally, we compare Kaleido to SciHadoop, which prunes
the data before loading it into the memory from disk, by read-
ing only the interesting sections from blocks of the NetCDF
data. As the original data is sorted by the time dimension,
SciHadoop can benefit from sequential disk I/Os for queries
that require subsets on the time dimension, and perform as
well as Kaleido for Q-Time 1 and Q-Time 2. But for subset
queries on latitude and/or longitude dimensions, because the
required data are scattered across the file, SciHadoop has to
use many small, non-sequential I/Os to load the data. In order
to make the comparison of SciHadoop, and Kaleido fair, we
have enhanced SciHadoop to (1) use our solution’s optimiza-
tion for Hive and (2) use Hadoop’s Multi-Split InputFormat
which enables packing multiple small splits into one large
split in order to reduce the number of map tasks, for better
performance. Nonetheless, because Kaleido can always use
sequential data access using its dimension-aware layouts, it
still outperforms SciHadoop by up to 126% and 373% for
queries that require half and quarter of data, respectively, on
the latitude or longitude dimension, and 111% and 334% for
queries that require subsetting on both dimensions.

C. Data Conversion Overhead

A significant source of the overhead of CSV and Parquet
approaches is the time required to convert the NetCDF data
into the CSV and Parquet formats. Without native support
for self-describing data formats, scientific users need to first
prepare their data in a format that is supported by Hadoop,
and CSV and Parquet are two widely used ones.

To convert NetCDF data to CSV, one can use tools such as
ncdump [13], but it is a single-threaded application and is quite
slow. In addition, the amount of data that can be converted
is limited by the available resources on the single node. To
measure the best case conversion overhead, we leverage Hive
and Kaleido’s NetCDFInputFormat to convert NetCDF data to
CSV using all the datanodes in the system directly on HDFS.

There is no existing tool that can convert NetCDF data
to Parquet. Users often have to first convert NetCDF to
CSV and then use Hive to convert CSV to Parquet. Again,

6

 0

 2000

 4000

 6000

 8000

 10000

Q-Base Q-Time 1 Q-Time 2 Q-Lat 1 Q-Lat 2 Q-Lon 1 Q-Lon 2 Q-LatLon 1 Q-LatLon 2

7
8
1
0

5
3
6
9

1
3
5
9

1
1
4
2

1
1
9
7

1
0
9
1

1
0
3
1

7
8
2
5

5
3
7
8

1
4
0
2

3
6
0

5
0
1

4
8
3

4
6
2

7
7
8
8

5
3
5
8

1
3
9
9

2
2
1

2
5
2

2
3
9

2
3
8

7
8
2
2

5
3
6
0

1
4
0
7

1
0
9
7

1
1
2
2

1
0
3
3

4
5
7

7
7
8
5

5
3
3
3

1
3
9
1

1
1
2
6

1
1
2
0

1
0
1
8

2
1
5

7
8
2
3

5
4
0
1

1
7
4
4

1
3
4
1

1
1
3
9

9
9
8

4
8
1

7
7
8
6

5
3
5
9

1
7
3
7

1
3
6
7

1
1
2
5

1
0
0
6

2
2
5

7
8
2
9

5
3
7
8

1
7
1
6

1
4
3
4

1
1
1
8

1
0
0
1

4
7
3

7
8
3
5

5
3
6
8

1
7
2
5

1
4
0
6

1
1
2
8

9
8
2

2
2
6

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Query Type

CSV-Hadoop
CSV-Spark

Parquet-Hadoop
Parquet-Spark

Indexing
SciHadoop

Kaleido

Fig. 5. Query performance

 0

 1000

 2000

 3000

 4000

 5000

250 GB 500 GB 1 TB

1
0

6
1

5
2

0

2
1

2
2

1
0

3
9

4
3

4
6

2
1

2
7

C
o

n
v
e

rs
io

n
 T

im
e

 (
s
)

Data Size

CSV
Parquet

Fig. 6. Overhead for converting NetCDF data to CSV and Parquet

to estimate the best case overhead, we leverage Hive and
Kaleido’s NetCDFInputFormat to directly convert NetCDF
data to Parquet and parallelize the conversion, while in reality
the conversion overhead has to include the time that it takes
to convert from NetCDF to CSV too.

Figure 6 shows these best-case conversion overhead, which
takes 73 and 36 minutes for converting 1TB of data to CSV
and Parquet. In comparison, Kaleido avoids this overhead
altogether because it can process raw NetCDF data directly
from HDFS.

Storage space consumption on the big-data system is an-
other aspect to compare the different approaches. Because
Kaleido works directly on the raw NetCDF data, it incurs prac-
tically no space overhead—the only overhead is the metadata
that it stores in each data block of data, which consumes about
0.0003% of each block’ space. As it is shown in Figure 7, the
CSV and Parquet approaches require about 413% and 29.1%
more space, respectively, after converting the raw NetCDF
data. Therefore, in comparison, Kaleido saves space usage
substantially.

Although Kaleido works on raw NetCDF data directly, it
stores the data in different layouts to support efficient subset

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

250 GB 500 GB 1 TB

1
2

8
3

3
2

3

2
5

0

2
5

6
5

6
4

6

5
0

0

5
1

3
0

1
2

9
1

1
0

0
0S
p

a
c
e

 U
s
a

g
e

 (
G

B
)

Data Size

CSV Parquet NetCDF

Fig. 7. Space overhead

 100000

 1x10
6

 1x10
7

10 GB 100 GB

2
3

1
4

4
5

2
3

0
0

1
6

2
2

2
1

3
4

1

2
1

8
9

3
5

4

C
o

p
y
in

g
 T

im
e

 (
m

s
)

Data Size

Kaleido
Native

Fig. 8. Time for copying data into HDFS

queries on different dimensions of the data. As discussed in
Section III-C, Kaleido modifies the data replication mechanism
of HDFS so that when replicating a data block, each datanode
that stores a replica of the block transposes the received data
according to a different layout, sorted by one of the dimensions
of the data. This data transformation incurs some overhead
and is measured using an experiment. Figure 8 shows the

7

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 1 10 100 1000 10000 100000

R
u

n
ti
m

e
 (

s
)

of Variables

STDEV
Runtime Performance

Fig. 9. NetCDFRecordReader read granularity

time required for copying 10GB and 100GB of data from a
local file system into the HDFS, using the original HDFS vs.
Kaleido’s modified version. The results show that Kaleido adds
an overhead of less than 1.5% in data copying time compared
to native HDFS.

D. NetCDFRecordReader Read Granularity

As discussed in Section III-A, one of the optimizations that
Kaleido employs for efficient processing of scientific data is
to read data variables from storage in batches, instead of one
at a time, in its NetCDFRecordReader designed for NetCDF
data. Allowing a map task to load data in bulk can exploit the
storage’s sequential access performance, but loading too much
would cause map tasks to run out the datanodes’s memory
and cause them to crash and stop the MapReduce job from
completion.

We used an experiment to quantify the impact of our
NetCDFRecordReader’s read granularity. We used 6 datanodes
loaded with a total of 7.3GB of NetCDF data. Figure 9 shows
the execution time of the query Q-Time 1 when NetCD-
FRecordReader is configured to fetch a different number of
variables at a time. The x-axis is on log scale and the largest
read granularity is 131,072 bytes, which is about 512KB.

When the read granularity is small, the overhead of reading
a small number of bytes in each disk seek causes higher query
execution time. As we increase the read granularity, the total
query runtime drops quickly and it converges to around 73
seconds by reading at least 64 variables (about 256 bytes of
data) at a time. These results confirm that the performance
benefit of reading variables in batches in the Kaleido approach.

E. Impact of Data Locality

As discussed in Section III-C, with Kaleido’s dimension-
aware layouts, a map task may have to be delayed till the
node that stores the best layout of its required data is available
(Delayed Local Scheduling) or be executed on a different
node and use remote I/Os to fetch the best layout data
(Remote Execution). To evaluate this overhead, we compare
to a baseline Kaleido implementation which does not use

 0

 200

 400

 600

 800

 1000

 1200

 1400

1:1 1:3 1:5 1:7

2
4

6

2
5

7

2
4

7

4
6

9

4
9

4

4
6

9

7
2

1

7
3

6

7
3

3

1
0

0
5

1
0

7
9

1
0

4
2

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

CPU Allocation Ratio (Query:Competing Dummy Job)

Baseline
Delayed Local Execution

Remote Execution

Fig. 10. The impact of data locality using dimension-aware layouts

dimension-aware layouts and has three identical copies for
each block of data. The baseline has all the other optimizations
that Kaleido employs and Q-Time 1 is used for the evaluation,
so the results reveal only the overhead caused by delayed
scheduling or remote I/Os. To show the worst-case overhead,
we ran a dummy MapReduce job side by side with the query
to further reduce the query’s chance of getting nodes with the
best layout data for its map tasks. This competing job contends
for CPU cores on each node but does not perform any actual
I/O. This experiment used only nine of the cluster nodes.

Figure 10 shows the query runtime with different CPU
allocation between the query and the competing dummy job
(1:1, 1:3, 1:5, and 1:7). As the CPU allocation to the query
decreases from 1:1 to 1:7, the number of remote map tasks
increases from 63 to 201 when using the Remote Execution
strategy, whereas the amount of scheduling delay experienced
by the map tasks increases when using the Delayed Local
Scheduling strategy. The results show that the overhead of
Remote Execution is less than 3.68% and the overhead of
Delayed Local Scheduling is less than 7.36%. This overhead
is because that compared to the baseline, Kaleido’s job has
a lower probability of using tasks with locally stored data.
But, in both cases, the overhead is far outweighed by the
performance improvement achieved from using dimension-
aware layouts, as shown in the previous experiment. Moreover,
comparing the two strategies, Remote Execution is slightly
faster, because, with a relative fast network (10GigE in our
setup), the overhead of reading data remotely is less than
waiting for a local CPU to become available.

V. DISCUSSIONS

A. Apache Spark Support

Apache Spark [18] is another widely used big-data platform.
Many users prefer Spark over Hadoop for its advanced execu-
tion engine which enables iterative data flow and in-memory
computation. Kaleido could also be well integrated with Spark
and support the Spark ecosystem. Apache Spark uses the
same InputFormat approach as Hadoop to read input data into
RDDs, which is an immutable distributed data collection that

8

can be computed on different nodes of the cluster. As a result,
NetCDFInputFormat can be readily ported to Spark. During
the execution, NetCDFInputFormat can automatically iterate
over the return values of NetCDFRecordReader and feed
them into the lambda function of RDD. Note that the same
optimization discussed in Section III-A, which is processing
multiple rows at a time instead of one, should be applied to
Spark too.

SparkSQL [19] is a framework like Hive, which let users
query structured data inside Spark programs, using either SQL
or the DataFrame API. In case of SparkSQL [19], the same
optimization that Kaleido created for Hive could be applied
to SparkSQL, in order to treat record reader return values
as multiple rows instead of one. Moreover, Spark could also
act directly as the execution engine for our enhanced Hive
framework. In fact, Hive is able to convert the input query
into a Spark execution plan, and let Spark execute the query.
This approach allows our optimizations developed for Hive to
be immediately avaiable to Spark queries.

B. NetCDF4 and HDF5 support

NetCDF4 and HDF5 are new versions of self-describing
data formats. Compared to the NetCDF3 format considered
in this paper, these new formats support hierarchical data
structures, where data is stored by groups and each group can
be a container of additional groups in a hierarchical manner.
At the bottom level, each group stores a multi-dimensional
array, but across groups in the hierarchy, the array formats
can be different, which allows more flexible data storage.

Kaleido can also be readily extended to support NetCDF4
and HDF5 [8] data and achieve a similar performance as
reported in this paper for NetCDF3. As the hierarchical format
used by NetCDF4/HDF5 [8] allows different groups of data
in a file to have different dimensions, Kaleido can store each
group as a separate HDFS file (and then replicate it using
different layouts). To make this transparent to applications,
Kaleido can provide a virtual HDFS file to present the original
dataset to the applications, and perform the virtual-to-physical
HDFS file mappings internally. HDFS could be modified in
a way to store each group inside the original NetCDF data
as a separate physical file and perform the layout conversion
per group. Following this approach, each group of data in
the NetCDF4/HDF5 format could be mapped to a Hive table
with a set of column attributes. As a result, a complex user
query targeting different parts of distinct groups could be
modified into a query targeting multiple tables and serviced by
a join operation. Because data processing still happens on the
physical HDFS files using layouts optimized for the queries,
we can expect the same level of performance improvement
when compared to conventional approaches.

VI. RELATED WORK

There are several related efforts on enabling big-data plat-
forms to support scientific data. SciHadoop [9] extended the
Hadoop platform for NetCDF data, but it cannot deliver good
performance to queries that require subsets along dimensions

that are different from how the data is stored. Another related
work [10] uses an offline indexing process to create indexes
for spatial grids in the data, which is then used at the query
execution time to read only the necessary data. But, similarly
to SciHadoop, it cannot provide any improvement to queries
that require subsets on the non-indexed dimensions. In com-
parison, Kaleido employs dimension-aware layouts to enable
efficient support of subset queries on multiple dimensions, and
our evaluation shows that it significantly outperforms these
related solutions.

Trojan Data Layouts [17] is a related work that utilizes
different layouts of data to optimize query performance and
uses offline query analysis for selecting the set of candi-
date layouts. But it is designed for row-oriented datastore,
and cannot handle the storage and processing of scientific
data. In comparison, Kaleido embodies several optimizations
specifically created for multidimensional data stored in self-
describing formats.

Compared to the authors’ own short paper [20], this paper
has made substantial new contributions, particularly the effi-
cient support for subset queries which are important to many
scientific applications. The paper also includes a comprehen-
sive experimental evaluation by comparing to the commonly
used solutions, such as Apache Spark platform and Parquet
data format, as well as the related works in the literature, such
as SciHadoop and indexing-based approaches. The evaluation
has provided compelling results that Kaleido outperforms all
of these related solution in terms of both performance and
resource utilization.

Finally, there are other existing systems designed specifi-
cally for scientific data processing, such as SciDB [21] which
enables the execution of high-level queries on the scientific
data stored on distributed storage. Such systems often have
limited scope and use, and cannot be integrated with widely
used big-data platforms such as Hadoop and Spark. In compar-
ison, Kaleido enables scientific data to be efficiently processed
on the widely used big-data platforms.

VII. CONCLUSIONS AND FUTURE WORK

Kaleido presents an approach for enabling big-data systems
to support efficient storage and processing of scientific data.
It bridges an important gap between the self-describing data
commonly used by scientists for data distribution and sharing
and the big-data systems which are increasingly important
for scientific productivity. Based on this approach, we have
extended two important and widely used big-data platforms,
Hadoop and Hive, to support scientific data with optimiza-
tions tailored to such data. With Kaleido, users can write
MapReduce programs or use Hive queries to conveniently
process NetCDF data with substantially better performance
and ease of use than the existing methods. Our experiment
results obtained from typical queries on a geoscience dataset
confirm the improvements made by Kaleido in terms of
query performance and storage space usage. As discussed in
Section V, in our future works, we will extend Kaleido to
support HDF5/NetCDF4 data formats, which are increasingly

9

used among data scientists, and apply the general approach of
Kaleido to other important big-data systems such as Spark.

VIII. ACKNOWLEDGMENT

This research is sponsored by National Science Foundation
awards CNS-1562837, CNS-1629888, CMMI-1610282, and
IIS-1633381, and CAREER award CNS-1253944.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003,
pp. 29–43.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[5] A. S. Foundation. Apache HBase. [Online]. Available:
https://hbase.apache.org/

[6] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: A warehousing solution over a map-
reduce framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2,
pp. 1626–1629, 2009.

[7] R. K. Rew and G. P. Davis, “The unidata netcdf: Software for sci-
entific data access,” in Sixth International Conference on Interactive
Information and Processing Systems for Meteorology, Oceanography,
and Hydrology, 1990, pp. 33–40.

[8] hdfgroup. Hdf5. [Online]. Available:
https://www.hdfgroup.org/HDF5/doc/H5.intro.html

[9] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn,
N. Polyzotis, and S. Brandt, “SciHadoop: Array-based query processing
in Hadoop,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2011, p. 66.

[10] Z. Li, F. Hu, J. L. Schnase, D. Q. Duffy, T. Lee, M. K. Bowen, and
C. Yang, “A spatiotemporal indexing approach for efficient processing
of big array-based climate data with mapreduce,” International Journal
of Geographical Information Science, pp. 1–19, 2016.

[11] A. S. Foundation. Parquet. [Online]. Available:
https://parquet.apache.org

[12] S. Dimopoulos and G. Landsberg, “Black holes at the large hadron
collider,” Physical Review Letters, vol. 87, no. 16, p. 161602, 2001.

[13] Unidata. ncdump. [Online]. Available:
https://www.unidata.ucar.edu/software/netcdf/docs/netcdf/NetCDF-
Utilities.html

[14] X. Yang, S. Liu, K. Feng, S. Zhou, and X.-H. Sun, “Visualization and
adaptive subsetting of earth science data in HDFS: A novel data analysis
strategy with hadoop and spark,” in Big Data and Cloud Computing
(BDCloud), 2016 IEEE International Conferences on. IEEE, 2016, pp.
89–96.

[15] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz,
“Hadoop GIS: A high performance spatial data warehousing system over
mapreduce,” Proceedings of the VLDB Endowment, vol. 6, no. 11, pp.
1009–1020, 2013.

[16] A. Eldawy and M. F. Mokbel, “A demonstration of SpatialHadoop: An
efficient MapReduce framework for spatial data,” Proceedings of the
VLDB Endowment, vol. 6, no. 12, pp. 1230–1233, 2013.

[17] A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich, “Trojan data layouts:
Right shoes for a running elephant,” in Proceedings of the 2nd ACM
Symposium on Cloud Computing. ACM, 2011, p. 21.

[18] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2–2.

[19] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark SQL:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMODthusoo2009hive thusoo2009hiveInternational Conference on
Management of Data. ACM, 2015, pp. 1383–1394.

[20] S. Biookaghazadeh, Y. Xu, S. Zhou, and M. Zhao, “Enabling scientific
data storage and processing on big-data systems,” in Big Data (Big
Data), 2015 IEEE International Conference on. IEEE, 2015, pp. 1978–
1984.

[21] P. G. Brown, “Overview of SciDB: Large scale array storage, processing
and analysis,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 2010, pp. 963–968.

10

