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Abstract—The efficiency of metadata processing affects the file
system performance significantly. There are two bottlenecks in
metadata management in existing local file systems: 1) Path
lookup is costly because it causes a lot of disk I/Os, which
makes metadata operations inefficient. 2) Existing file systems
have deep I/O stack in metadata management, resulting in
additional processing overhead. To solve these two bottlenecks,
we decoupled data and metadata management and proposed
a metadata management layer for local file systems. First, we
separated the metadata based on their locations in the namespace
tree and aggregated the metadata into fixed-size metadata buckets
(MDBs). This design fully utilizes the metadata locality and
improves the efficiency of disk I/O in the path lookup. Second,
we customized an efficient MDB storage system on the raw
storage device. This design simplifies the file system I/O stack
in the metadata management and allows metadata lookup to be
completed with constant time complexity. Finally, this metadata
management layer gives users the flexibility to choose metadata
storage devices. We implemented a prototype called Otter. Our
evaluation demonstrated that Otter outperforms native EXT4,
XFS, Btrfs, BetrFS and TableFS in many metadata operations.
For instance, Otter has 1.2 times to 9.6 times performance
improvement over other tested file systems in file opening.

Index Terms—file system, metadata, path lookup, namespace

I. INTRODUCTION

Metadata processing incurs a lot of overhead in real-world
workloads [1]–[3]. To demonstrate this overhead, we used
four workloads (Fileserver, Webserver, Webproxy, Varmail) of
Filebench [4] in EXT4 on HDD for 60 seconds, with 50 GB
data set on a machine with 64 GB RAM. We observed that
metadata operations accounted for more than 39.4% of total
overhead. According to our analysis, there are two bottlenecks
in the metadata processing.

The first bottleneck is the high cost of path lookup. Path
lookup is a frequent operation in the file system. Although
caching directories can speed up path lookup, but it is un-
realistic to cache all directories in memory [5]–[7], so many
path lookups need to be performed on disk. However, on-
disk path lookup is slow in traditional file systems (e.g.
EXT4 [8], XFS [9] and Btrfs [10]). These file systems organize
directories as special files. This design makes path lookup
inefficient because it brings a lot of disk I/O when resolving
directory files. In addition, directories need to be recursively
resolved in the path lookup, which means that the metadata
of the next level directory is difficult to be perceived, so
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traditional file systems are difficult to fully utilize the metadata
locality.

The path lookup bottleneck also exists in KV-based file
systems, such as TableFS [11] and BetrFS [12], which store
metadata in write-optimized KV databases. The reasons for the
inefficiency of path lookup in these systems are: 1) Queries
are slow in the write-optimized databases in some cases.
Most write-optimized databases optimize disk I/O by caching
write operations, but additional overhead (e.g. multi-level table
query and value update) is required for queries. In addition, di-
rectory/file entry lookups require logarithmic time complexity
to complete in these write-optimized index (like LSM-Tree
and Bε-Tree). 2) These KV-based file systems are difficult
to fully utilize the metadata locality in a large namespace.
Although they can indirectly reflect metadata locality by
sorting paths in the tables, the table compaction (in TableFS)
and hierarchical sorting (in BetrFS) will destroy the locality
when the namespace size increases.

The second bottleneck is the deep I/O stack. Traditional
file systems manage metadata on memory and disk separately,
which causes data structure conversion and additional memory
copy. In the KV-based file systems, KV databases will bring
some additional overhead, such as the KV (de)serialization.
At the same time, the KV databases still need to run on top
of the underlying file system.

We designed and implemented Otter, an independent meta-
data management layer to address the above two bottlenecks.
Otter has two key designs. First, it improves the efficiency of
disk I/O in path lookup by reducing the number of I/Os and
cost of indexing on disk; Second, it decouples the metadata
and data management in the local file systems and simplifies
the I/O stack in metadata processing. We discarded stacking
metadata management on file management or KV database
to reduce the overhead of metadata structure conversion and
additional memory copy.

In summary, this paper makes the following contributions:
1) We designed a locality-aware metadata structure to accel-
erate the path lookup. The namespace tree is separated into
some fixed-size metadata buckets (MDBs). The MDB design
can improve the disk I/O efficiency because the path lookup
process can benefit from the metadata locality of the MDBs.
2) We designed an efficient MDB storage system based on
the fix-sized characteristic of MDB, which directly manages
the raw storage device. It simplifies the I/O stack in metadata
management and allows the directory/file entry lookup to be
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Fig. 1: Latency and Disk I/O Times of Opening File.

TABLE I: Overhead Breakdown

Path Depth 1 3 5 7

EXT4 Lookup 0% 24.9% 44.9% 60.2%

Other 100% 75.1% 55.1% 39.8%

Btrfs Lookup 0% 52.1% 68.5% 72.5%

Other 100% 47.9% 31.5% 27.5%

done in constant time. 3) We prototyped our solution based on
FUSE, called Otter. Our evaluations show that Otter achieves
substantial speedup over many well-known file systems in
many metadata operations. For example, Otter has more than
1.2 times to 9.6 times performance improvement than the
tested file systems in file opening.

The rest of the paper is organized as follows: Section II
describes the background and motivations. Section III presents
the design of Otter. Section IV presents the evaluation results.
Section V introduces the related works. Section VI concludes
the paper.

II. BACKGROUND AND MOTIVATIONS

This section introduces and analyzes two common bottle-
necks in the metadata management. First bottleneck is the
slow path lookup. Second bottleneck is the deep I/O stacks
in metadata processing.

A. Path Lookup

Path lookup is a frequent operation in file systems. Although
directory caching can improve the efficiency of path lookup
to some extent, path lookup still takes a lot of overhead in
some scenarios (e.g. random workload, large namespace). We
evaluated the cost of path lookup in EXT4, Btrfs, TableFS and
BetrFS through file open operation on the cold cache. Among
them, EXT4 and Btrfs are traditional file systems, whereas
TableFS and BetrFS are KV-based file systems. We used iostat
to detect the disk I/O times in file opening and used Perf [13]
to break down the latency into path lookup and other overhead.
The namespace trees used in these experiments consisted of
ten layers. It includes approximately one million directories
and files. Figure 1 and Table I illustrate that the latency and
the path lookup overhead increases rapidly as the path depth

increases. According to our analysis, there are two aspects that
lead to inefficient path lookup:

1) Metadata Organization Limitation: a) Traditional file
systems: These file systems organize namespace as special
files. During path lookup, for each level of the target path,
traditional file systems have to search the inode of the target
directory and resolve the directory content to get the inode
number of the next level directory. Figure 1 shows that EXT4
generated a lot of disk I/Os during path lookup. In particular,
EXT4 has many I/Os not only because of the directory resolv-
ing but also due to its inode prefetch mechanism. However, this
mechanism is almost ineffective in this experiment because
EXT4 is difficult to guarantee the metadata locality on the
disk (see the discussion in point 2). Btrfs is better than EXT4,
but at least one disk I/O is required for each level of path.

b) KV-based file systems: These file systems store the
metadata on write-optimized KV databases. They perform well
in some write-intense scenarios, but the path lookup has no
advantage in these systems. Many write-optimized indexes
improve I/O efficiency by caching the write operations on the
tree root. These structures add some overhead to the query
operation (e.g. path lookup). In TableFS, path lookup may
need to retrieve multiple table files in the LSM tree. In BetrFS,
each query operation has to apply all messages in the buffer on
the parent nodes to the leaf before returning the value. Figure
1 shows that the open latency in KV-based file systems is still
high.

2) Metadata Locality Limitation: The ability to take ad-
vantage of the metadata locality also affects path lookup
efficiency. a) Traditional file systems: These file systems are
difficult to accelerate through metadata locality in the path
lookup. First, path lookup needs to recursively resolve the
directory files for each level. Second, metadata are stored as
regular files and file storage cannot perceive the structure of the
namespace, so traditional file systems cannot perform efficient
metadata prefetching.

b) KV-based file systems: In some cases, metadata locality
can be reflected by sorting the paths in KV indexes, but this
method does not work well if the namespace is large. TableFS
sorts the metadata by their parent IDs and entry names on
the tables. However, when the namespace is large, metadata
locality is difficult to be reflected because they will be split
into many SSTables and the table compaction process will
destroy the metadata locality. For BetrFS, it is difficult to
reflect the inter-layer locality in the large namespace. BetrFS
sorts all metadata by their full-paths in a Bε-Tree. They sort
the paths first by the number of slashes, then lexicographically.
However, when the namespace is large and deep, many blocks
will be filled with metadata at the same layer in the directory
tree. Therefore, the inter-layer locality cannot be reflected.

Motivation 1. To improve the path lookup efficiency, we
separated the namespace tree with a subtree partition algorithm
and aggregated the subtree segments into some fixed-size
metadata buckets (MDBs). This method can fully utilize the
metadata locality in any workload and namespace.
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B. IO Stack in Metadata Management

The overhead of I/O stack also needs to be considered in
the metadata management. In traditional file systems, Linux
kernel uses VFS to manage in-memory metadata and provides
a global namespace, whereas the underlying file systems are
responsible for managing their own metadata and namespaces
on disk (Figure 2(a)). So, traditional file systems use differ-
ent metadata structures and management methods between
memory and disk. This design increases the complexity of
the file system I/O stack and takes additional overhead, such
as memory copy and metadata structure conversion. The
overhead of the I/O stack is more obvious on fast storage
devices [14].

The I/O stack in the KV-based file systems is also complex.
As shown in Figure 2(a), the metadata I/O needs to pass
both the KV database and the underlying file system. In
addition, KV databases will incur extra overhead. For example,
metadata are stored as KV pairs in the KV database, and
when metadata is read/written, the whole value needs to be
read/rewritten even if only a small portion of the metadata
is used. It results in unnecessary KV (de)serialization over-
head [15].

Motivation 2. To simplify the I/O stack in metadata man-
agement, we designed an independent metadata management
layer on the raw storage device for local file systems. We
implemented an efficient storage system based on the struc-
tural characteristics of MDBs and used the same metadata
structure on the memory and disk. These designs can provide
fast on-disk metadata indexing and reduce the overhead of
unnecessary data copy and structure conversion on the I/O
stack.

III. OTTER DESIGN

This section first introduces the design and the main oper-
ations of Otter, and then introduces the metadata storage and
show some advantages of metadata bucket design. Finally, it
introduces the file management and consistency guarantee.

A. Overview

Otter is an independent metadata management layer (as
shown in Figure 2(b)). Unlike existing architectures, we sep-

arated the metadata from data management in file systems.
Otter is responsible for managing metadata, which means that
all namespace operations will be done on Otter. Underlying
file systems are only responsible for managing file data. We
organized the metadata by a locality-aware method and used
direct I/O to directly manage raw block device. Otter provides
fast path lookup and a simple metadata I/O stack for local
file systems, which accelerates many metadata operations.
Furthermore, metadata are usually small and are accessed
frequently so they are ideal for storage on devices with high
speed but limited capacity devices (such as flash and non-
volatile memory). Otter gives users the flexibility to choose
metadata storage devices separately from the data storage
devices.

B. Locality-Aware Metadata Organization

Instead of organizing metadata using files or KV pairs,
Otter uses metadata buckets (MDBs) to store the metadata.
An MDB is a fixed-size (default is 128 KB) segment and is
the smallest I/O unit between the DRAM and disk. Figure
3 shows the metadata organization in Otter. The namespace
tree is separated by a subtree partition algorithm, and the
directories/files in the same partition are aggregated into the
same MDB. An MDB includes an entry area and a head.
The entry area includes many preallocated entries for storing
metadata, and they are indexed by a hash table. For a given
directory or file, we used the full path of the directory or file
as a hash key and the offset in the hash table as the hash value.
There are three entry types in an MDB: directory entries, file
entries and skip entries. Since the namespace tree is divided
into many subtrees, we used a skip entry to denote the split
point. The MDB head contains some descriptive information
(Figure 3(b)). Specially, entrance key records the root directory
of the MDB.

Path Lookup. The main process of path lookup is to search
the entry of each parent of the target path. Path lookup starts
from the root directory and MDB 0 (the root directory must
be in MDB 0). For each parent directory, Otter uses its full
path as the key to search the entry in the current MDB. There
are three different possibilities. In the first case, the key hits
an entry in the MDB hash table that is not a skip entry, which
means that the target metadata exists, so Otter can look up
the next level. The second case is an entry miss, which means
the parent does not exist and Otter needs to return the failure
type to the lookup function caller. In the third case, the key
hits a skip entry in the MDB hash table. This outcome means
the target entry is in the other MDB. Otter fetches the MDB
using the MDB ID recorded in the skip entry, then searches
for the entry in the new MDB and increases the current MDB
ID.

Creating Directory. The first step of directory creation is
to look up the parent directory of the given path. Otter tries to
create a new directory entry (dentry) in the MDB that contains
the parent directory. If this MDB is not full then we created
the new dentry in it and complete the create operation. If the
MDB is full then Otter launches the MDB split process and
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Fig. 3: Metadata Organization.

retry the directory creation. The MDB split process will be
introduce in Section III.C.

Creating File. File creation is similar to directory creation.
Otter first needs to look up the parent directory in which the
file will be created and create a new file entry in the MDB
that contains its parent directory. Otter allows users to directly
store the small files on the disk. In this case, the data of the
small file are stored in the small file area (as shown in Figure
3(a)). We will introduced the file management in Section III.F.

Link. To link the source file/directory to the target
file/directory, Otter first looks up the entries of the source
and the target files/directories, and then records the MDB ID
and the in-MDB location (offset in the MDB) of the target
file/directory into the source file/directory entry. The subse-
quent accesses on the source file/directory can be redirected
to the target file/directory via the MDB ID and the in-MDB
location.

Removal. Removing files and directories is fast in Otter. For
file removing, Otter only needs to look up the target file entry
and invalidate it. For directory removing, Otter does not need
to remove all subdirectories and files under the target directory
immediately. Instead, it records the removed directory entry to
a list of invalidated entries so that all the directories and files
under the removed subtree become unsearchable. The entries
in the removed subtree still exists in the MDBs. Otter delays
the cleaning process, and it can be merged to other processes
such as MDB splitting and unmount.

Rename. File renaming is simple. Otter finds out the entry
of the target file and rehash it in the MDB (use the new path
as the key). For directory renaming, Otter needs to rehash the
entire target directory. This process can be approximated by
invaliding all entries under the target path and then creating
an identical directory tree under the new path. Renaming

directory will be costly if the target directory is large. In fact,
it is a common challenge for file systems that use full path
indexing [5], [12]. Fortunately, it is generally not a frequent
operation in real-world workloads [15], [16].

C. Namespace Partition

Otter needs to split MDBs to adjust the growth of names-
pace. The ideal partition algorithm should reduce the fre-
quency of MDB splitting while making the MDB as full
as possible. However, it is a challenge in many cases. The
best practice is to design the partition algorithm based on the
workload characteristics, such as the structure of namespace
tree, the frequency of various metadata operations, etc. In our
prototype, we designed a simple algorithm for the case where
the namespace tree is roughly balanced.

In Otter, an MDB will be split if its size exceeds a certain
threshold. The MDB split process is as follows: 1) Find a
split point in the MDB. The result of the partition is mainly
affected by the choice of split point. In our algorithm, we
randomly chose a subtree on the second layer of the entrance
of the MDB as the split point. This lightweight algorithm can
choose the split point with low overhead. 2) Move the entries
(directories and files) under the selected subtree to the new
MDB. 3) Add the skip entry to the old MDB. The skip entry
will redirect requests to the new MDB if the path of the split
point is accessed.

Our experimental results show that this algorithm is effec-
tive when the namespace is relatively balanced. We recur-
sively created a namespace, and the experimental results show
that storing a ten-layer namespace containing approximately
one million directories and files requires approximately 3400
MDBs. This means that more than 70% of the space of
the MDBs can be utilized. However, designing an efficient
partition algorithm for the workloads with skew and frequently
changing namespaces is challenging. We will solve this prob-
lem in our future work.

D. Metadata Storage

The efficiency of metadata storage and indexing on disk can
also significantly affect the metadata processing performance.
Traditional file systems store metadata as files, so they index
the metadata on disk just like regular file data. Most of them
use multilevel index tables or B-Trees (and variants of B-trees)
to index the metadata on disk. KV-based file systems store the
metadata in KV databases, but the metadata will eventually
be stored in the table files of the database in the underlying
file system. So they use the similar indexing methods to index
metadata on disk with as traditional file systems. In Otter, we
designed a more efficient indexing method than traditional and
KV-base file systems.

By considering MDBs as fixed-size structures, we developed
a simple method to index MDBs on the disk. Otter divides the
disk into a number of fixed-size parts that are the same size as
the MDBs (mdb size). We did not use any tree index structure
in Otter, but only maintained a maximum MDB ID and an on-
disk FIFO queue of free MDB IDs. The offset of each MDB on



the disk can be calculated as mdb id× mdb size. In the MDB
allocation, the allocator returns the MDB ID on the front of the
free MDB queue (if the FIFO queue is not empty). Otherwise,
it returns current maximum MDB ID and then increases the
maximum MDB ID. In MDB reclamation, allocator only needs
to add the MDB ID into the free MDB queue. Thanks to this
design, Otter can quickly locate the target metadata on disk. At
the same time, Otter only needs to pay a very small overhead
of index maintenance. On the other hand, entries are indexed
by hash. so we also can quickly locate the target entry when
the MDB is loaded into memory. In addition, Otter uses the
same metadata structure (MDB) between memory and disk.
It means that we can avoid extra overhead in the I/O stack,
such like metadata structure conversion and (de)serialization,
which is beneficial for high speed storage devices.

E. Advantages of MDB Design

Local file systems are beneficial from Otter: Benefit 1. Otter
accelerates the path lookup, which improves the performance
of many metadata operations. The locality-aware metadata
organization (MDB) improves disk I/O efficiency in path
lookup. Our evaluations show that Otter only needs about 3
disk I/Os, on average, to randomly lookup a ten-level path
(namespace contains one million directories and files), but
existing file systems require approximately one disk I/O per
level. In addition, Otter can quickly index the MDB and the
entry in MDB, which it can finish in constant time complexity.
At the same time, Otter does not need to pay a lot of overhead
on index maintaining.

Benefit 2. Otter reduces the depth of the I/O stack in
metadata management. In traditional file systems, the metadata
management is stacked on the file data management logic
and it will cause a lot of memory operations and disk I/Os.
In KV-based file systems, KV stores will bring some extra
cost and the KV databases also need to be deployed upon
traditional file systems. Unlike traditional and KV-based file
systems, Otter stores metadata on raw device and uses the
same structure to organize metadata on disk and memory. It
can reduce unnecessary memory copy and structure conversion
in metadata processing. In addition, separating metadata and
data give users the flexibility to store metadata on high-speed
storage devices.

F. File Management

Otter provides two methods to manage files: 1) store the
data in the underlying file systems or 2) store the data directly
in Otter. For the first method, users can mount Otter on
the suitable file system based on the workload. For instance,
EXT4 may be more suitable for large file read and write and
BetrFS may perform well under the workload with a large
amount of random small writes. Our FUSE-based prototype
uses underlying file system as an object storage. Otter also
allows users store the files on Otter directly, which is suitable
for small files. As shown in Figure 3(b), Otter reserves an
area for small files on the disk. This area is divided into
multiple fixed-size buckets (one file per bucket). The bucket
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ID is recorded in the file pointer field of the small file entry.
We used the similar method as for the MDBs to index buckets
in small file areas.

G. Consistency

Otter uses journaling to guarantee file system consistency.
We provided metadata consistency guarantee in Otter. It is
similar to the default consistency mode (ordered data mode)
that is provided in some mainstream journal file systems (e.g.,
EXT4, XFS). To guarantee the metadata consistency, dirty
metadata will be logged in the journal after dirty data are
written onto the disk. Therefore, when the system crashes,
the file system can recovery metadata to a consistent state by
redoing the metadata in the journal.

As shown in Figure 3(a), we set aside an area in the disk for
journaling. For small files, we used the journaling mechanism
(metadata are written to the journal after the data are written
to disk) when synchronizing dirty metadata and dirty small
files to the disk. The journaling process is slightly different
for large files case because they are stored in the underlying
file system. To guarantee the correct flushing ordering between
the metadata and data of large file, we call fsync to flush the
dirty file data to the underlying file system before the dirty
metadata are written to the Otter’s journal.

IV. EVALUATION

In this section, we first evaluated Otter’s performance in
common metadata and data operations, and then we used
applications to show Otter’s performance in the real-world
workloads. Finally, we evaluated the impact of MDB size on
Otter’s performance.

We compared Otter with EXT4, XFS, Btrfs, BetrFS (0.4
version), and TableFS. Among them, EXT4, Btrfs and XFS
are widely used kernel file systems. BetrFS is a kernel KV-
based (based on TokuDB) file system. TableFS is a KV-based
(based on LevelDB) file system and it is also implemented
on FUSE. All the results were collected on a server with two
Intel E5 2456 CPUs, 64 GB RAM and 2 TB SAS HDD. Linux
3.11.10 (BetrFS can only be run on this version) was used for
our evaluation. The evaluations were run on cold cache when
we do not specify. We cleaned the memory and remounted the
file system after each experiment to make the cache cold.
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A. Metadata Operations

To evaluate the metadata performance of Otter, we selected
four frequent metadata operations: open files, create directo-
ries, link and remove files/directories.

1) Open Files: We evaluated the performance of the file
opening operation with different path depths. The namespace
tree used in this experiment had ten layers and contained
approximately one million directories and files. We randomly
opened a file in the namespace and recorded the duration.

Figure 4 shows the performance comparison in file opening.
Otter’s performance is more than 1.2 times higher than the
traditional file systems (EXT4, Btrfs, XFS), and it is more
than 2.1 times higher than the KV-based file system (TableFS,
BetrFS). The performance improvement of Otter primarily
comes from the efficient disk I/O (most operations require
less than 3 disk I/Os) and the shallow I/O stack. We can see
that the KV-based file systems (BetrFS and TableFS) have no
advantage in this experiment. One of the main reasons is that
they fail to utilize the metadata locality in the path lookup.
For BetrFS, the locality of depth is difficult to reflect in large
namespaces. For TableFS, metadata will be stored on many
SSTables when the namespace is large, thus destroying the
locality. In addition, the KV databases also bring some extra
overhead.

2) Create Directories: Filebench [4] was used to evaluate
the performance of directory creation. We used single thread
to create some directories in the file system and recorded the
duration. In this experiment, we compared to kernel and FUSE
versions of EXT4, XFS, Btrfs and BetrFS. Figure 5 shows the
performance of directory creation.

Compared to traditional file systems, Otter exhibits a perfor-
mance increase of approximately 3.5 to 13.3 times of kernel
EXT4 but it is slower than kernel versions of XFS and Btrfs.
Otter significantly outperforms the FUSE versions of EXT4,
XFS and Btrfs. From this experiment, we also can see that
FUSE will significantly degrade the performance because it
will cause frequent context switching and additional data
copying.

Compared to KV-based file systems, TableFS performs well
in this experiment (compared to the FUSE version of other sys-
tems). One of the reasons is because LevelDB is very friendly
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for the insert-intensive workload. Otter is the second best
system in the FUSE camp. Otter’s main overhead comes from
the MDB splitting. However, TableFS (LevelDB) puts some
expensive tasks in the background, such as table compaction.
In the future work, we will implement asynchronous MDB
splitting to improve the performance of the create operations.
On the other hand, it is difficult to use the metadata locality
in this scenario because the directory creation process is
recursive.

Another KV-based file system BetrFS does not show an
advantage in this experiment. One of the reasons is that
TokuDB (Bε-Tree) does not perform well in the case of
intensive read-after-write. Write operations in the Bε-Tree are
considered as messages and simply buffered in the inner node,
but read operation needs to flush all messages in the inner
nodes on the root-to-leaf path to the leaf node, and then
returns the values. In directory creation, the values of parents
directories can be accessed shortly after creation, so the caches
of the inner nodes do not work much in this case. Otter
performs better than these KV-based file systems because it
does not need to pay for the index maintenance overhead.

3) Remove Files/Directories: We used the namespaces cre-
ated in the directory creation experiment, and removed them
to evaluate the duration of the directory removal operation.
Figure 6 shows that Otter can significantly outperform the
other tested file systems, and the latency of removal in Otter
does not increase significantly as the directory size increases.
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Fig. 8: Link Directories.

The main reason for this performance improvement is that
Otter does not need to recursively remove the subdirectories
and files under the target removal point. Instead, Otter simply
marks the entry of the removal point and adds it to the invalid
list. The cleaning process then reclaims the invalidated entries
in the background. The overhead of cleaning process will not
be large because we can combine it into other processes, such
as MDB splitting and unmount.

The file removal evaluation was run on a ten layer names-
pace that contains approximately one million files and direc-
tories. We removed files with different path depths from the
namespace and recorded the durations. Figure 7 shows that
Otter outperforms the other tested file systems by approxi-
mately 1.6 to 4.3 times. The main reason for the performance
improvement is that Otter accelerates path lookup and reduces
metadata processing overhead.

4) Linking: We evaluated the linking performance in a
ten layer namespace tree used above. We linked directories
in non-bottom layers (the x-axis in Figure 8) to directories
in the bottom layer and recorded the execution times. The
source directory and target directory were selected randomly.
Figure 8 shows the result of link operation. Otter outperforms
the other tested file systems by approximately 1.9 to 13.6
times. Otter’s performance is more stable as the path depth of
source directory grows. The main reason for the performance
improvement is similar to the previous experiments. These
experiments show that many metadata operations can benefit
from our design.

B. File Operations

We used Filebench [4] to evaluate the file operations in
single thread. There are three phases for each file in this
workload: 1) create an empty file, 2) write 64 KB of data into
the new file and 3) close the file. We evaluated the performance
of creating different numbers of files. We compared to other
kernel file systems on FUSE. Because FUSE enables the file
system processing logic to be implemented in the user space,
it results in considerable data movement between the kernel
space and the user space [17] in the data operations, which
brings additional overhead.
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Fig. 9: Performance of File Operations.

TABLE II: Applications Performance

Applications find
(/s)

tar
(/s)

diff
(/s)

stat - 5
(/us)

stat - 9
(/us)

EXT4-FUSE 734.1 1795.4 219.5 55688.2 89659.1

XFS-FUSE 118.2 283.9 26.8 49797.3 84525.2

Btrfs-FUSE 127.4 199.8 30.8 34388.6 66202.2

BetrFS-FUSE 266.8 499.2 67.6 71813.3 79911.7

TableFS 116.5 194.3 21.6 107277.5 180311.6

Otter 58.6 205.5 17.8 24674.2 32465.6

Figure 9 shows the results. We can see Otter’s performance
is higher than EXT4, XFS, Btrfs and BetrFS, but it is lower
than TableFS. The reason for why Otter’s performance is not as
good as TableFS is that file data operation takes up most of the
overhead in this experiment. In TableFS, the log-structure and
compression designs of LevelDB can improve the efficiency
of data I/O. In contrast, Otter only focuses on the optimization
of metadata operations.

C. Applications

To show how Otter performs in real-world workloads, we
evaluated Otter on commonly used applications. Because our
prototype is implemented on FUSE, for fairness, we compared
other kernel file systems on FUSE. We chose several command
line applications for our experiment, including find, tar, diff
and stat. We used the namespace from the previous experi-
ments (ten layers, with one million files and directories). Table
II shows the comparison results.

find. We created five target files on five different directories
in the namespace tree and used the find command to search
them. The results show that Otter significantly outperforms
the other file systems. Because find contains many directory
traversal operations, Otter can take full advantage of the
metadata locality.

tar. We used tar –czf to package the entire namespace.
Otter’s performance is slightly slower than Btrfs and TableFS
but better than EXT4, XFS and BetrFS. One reason for why
Otter’s advantage in this application is not obvious is that
tar contains many data operations and they take up a lot of
overhead, but Otter is mainly to speed up metadata operations.
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diff. We used diff to compare the two subtrees under the
root of the namespace tree. Otter is faster than other compared
systems. Similar to the find, the metadata locality is strong in
this workload, so Otter has a good performance.

stat. We used stat to obtain the attributes of a file. In Table
II, stat-5 indicates that the object file is in the 5th layer of the
namespace tree; stat-9 is similar. Otter performs the best in all
compared file systems. The performance gap increases as the
depth of the target file increases. In particular, we can see that
KV-based file systems have no advantage in this case. Because
stat is a random access workload, KV-based file systems are
difficult to benefit from the metadata locality.

D. MDB Size

The MDB size is an important parameter in Otter because
it affects the overhead of MDB splitting and the efficiency of
path lookup. We designed an experiment to show the impact of
MDB size. The experiment includes two phases. We created
approximately 20 thousand directories in phase 1 and then
used the find command to search for a file that does not exist in
phase 2 (in the cold cache). Figure 10 shows that the MDB size
has a slight effect on the performance of directory creation; an
appropriate MDB size is beneficial for lookup operations. We
chose 128 KB in our experiments. In practice, the MDB size
needs to be selected according to the workload. For example,
if the locality of the application is strong, it may be more
suitable for a large MDB size, and vice versa for a small
MDB size.

V. RELATED WORK

Metadata Organization. Traditional file systems mange
namespace as files but this method is inefficient in creation
and lookup. Therefore, some studies used KV store to manage
metadata. For example, TableFS [11] and KVFS [18] are
FUSE file systems based on LevelDB. BetrFS [12], [19],
[20] is a kernel file system based on kernel TokuDB [21]–
[24]. BetrFS 0.1 [19] uses full-path as the key, but it is not
friendly for rename and large sequence write. BetrfS 0.2/0.3
[20] uses later-binding journaling and relative-path to handle
the performance bottleneck in the BetrFS 0.1. BetrFS 0.4 [12]
reduces the overhead of maintaining the relative-path in a
KV index by using the full-path as the key and tree surgery
technique. Compared to the file-based and KV-based method,

Otter better utilizes the metadata locality to speed up the path
lookup, thereby improving the efficiency of many metadata
operations.

Path Lookup. Prior research also explored accelerating
path lookup in local file systems. DLFS [5] optimized the
path lookup by direct lookup, but it is difficult to extend to
Linux security modules and difficult to take advantage of the
metadata locality by treating the disk as a single hash table.
Unlike DLFS, Otter retains the path lookup to support the full
POSIX interface. The MDB design of Otter makes it possible
to better utilize the metadata locality compared to DLFS.
C. C. Tsai et al. [25] adds a fast lookup table in VFS and
uses a full-path hashing method such as DLFS to accelerate
path lookup in the memory. Otter accelerates the lookup on
the disk, so they are complementary

Others. Otter simplifies I/O stack in metadata processing by
directly managing disk. Deep I/O stack has significant impact
on the speed of storage devices, especially, when they are fast.
J. Condit et al. [26] and S. R. Dulloor et al. [27] pointed out
that the deep I/O stack will become a bottleneck in the NVM-
based architecture. In addition, B. K. R. Vangoor et al. [17]
introduced the principle of FUSE and analyzed its overhead in
great detail. EXTFUSE [28] proposed a low-cost file system
framework in user space. FUSE overhead can be eliminated
by porting Otter into the kernel.

VI. CONCLUSIONS

This paper considers the inefficient path lookup and com-
plex I/O stack in metadata processing. We designed an efficient
metadata management layer for local file systems. First, we
reorganized the metadata using a locality-aware approach to
improve the disk I/O efficiency in path lookup. Then, we
designed a constant time complexity method to index metadata
on the disk and memory. Finally, we stored metadata on raw
device and used the same metadata structure between memory
and disk to simplify the I/O stack in metadata processing.
Our evaluations show that Otter can speed up many metadata
operations. Our future work will involve two parts as follows:
1) Port Otter to the kernel to improve performance. 2) Explore
methods based on machine learning to accommodate different
workloads to improve the efficiency of the MDB splitting al-
gorithm. 3) Eliminate the limit of fixed-size MDB on directory
size by jointing multiple MDBs
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