
Pacon: Improving Scalability and Efficiency of
Metadata Service through Partial Consistency

Yubo Liu1,2, Yutong Lu1, Zhiguang Chen1, Ming Zhao2
1Sun Yat-sen University, 2Arizona State University

Abstract—Traditional distributed file systems (DFS) use cen-
tralized service to manage metadata. Many studies based on this
centralized architecture enhanced metadata processing capability
by scaling the metadata server cluster, which is however still
difficult to keep up with the growing number of clients and the in-
creasingly metadata-intensive applications. Some solutions aban-
doned the centralized metadata service and improved scalability
by embedding a private metadata service in an HPC application,
but these solutions are suitable for only some specific applications
and the absence of global namespace makes data sharing and
management difficult. This paper addresses the shortcomings of
existing studies by optimizing the consistency model of client-
side metadata cache for the HPC scenario using a novel partial
consistency model. It provides the application with strong consis-
tency guarantee for only its workspace, thus improving metadata
scalability without adding hardware or sacrificing the versatility
and manageability of DFSes. In addition, the paper proposes
batch permission management to reduce path traversal overhead,
thereby improving metadata processing efficiency. The result is
a library (Pacon) that allows existing DFSes to achieve partial
consistency for scalable and efficient metadata management. The
paper also presents a comprehensive evaluation using intensive
benchmarks and representative application. For example, in file
creation, Pacon improves the performance of BeeGFS by more
than 76.4 times, and outperforms the state-of-the-art metadata
management solution (IndexFS) by more than 4.6 times.

Index Terms—metadata, scalability, efficiency, distributed file
system, consistency

I. INTRODUCTION

The scalability and efficiency of metadata service have

always been an important topic in the distributed file system

(DFS) research. Traditional DFSes use a centralized service to

manage metadata. This centralized architecture faces scalabil-

ity and efficiency issues in large scale systems, especially in

high performance computing (HPC) systems. There are studies

(e.g., [1]–[3]) improve the metadata processing ability by

scaling the metadata service cluster. But their overall through-

put is still difficult to scale as the number of DFS clients

increases and the metadata service gets saturated. Therefore,

these systems based on the centralized architecture need to

deploy a lot of metadata servers to meet the peak demand

of the systems [3]. This static hardware scaling method is

wasteful or unrealistic in modern HPC scenarios, because the

number of clients in the HPC system can be very large. For

example, a petascale super computing system may have up to

hundreds of thousands of concurrent clients on the compute

nodes.

Some studies proposed private metadata service to address

the scalability and efficiency issues of the centralized meta-

data service in HPC systems. For example, BatchFS [4] and

DeltaFS [5] embed the metadata service into the application.

But these solutions have two critical limitations. First, they can

be used for only some specific applications. One of the most

suitable scenarios for them is N-N checkpoint, where there

is no interaction among the processes. Their performance and

scalability improvements mainly come from the elimination

of consistency guarantees between the clients (processes).

Second, they do not provide (in case of DeltaFS) or need

extra overhead to provide (in case of BatchFS) global names-

pace, which makes data sharing and file system management

difficult.

In summary, existing metadata management solutions (cen-

tralized and private) cannot simultaneously meet the scalabil-

ity, versatility, and manageability requirements. The goal of

this work is to meet all these requirements together. We find

that existing DFSes use strong consistency model in the client-

side metadata cache. It makes clients communicate frequently

and synchronously with the metadata servers to guarantee

the consistency, resulting in a scalability bottleneck. However,

strong consistency is an overkill in many HPC workloads (see

Section II.A for details). Our key idea is to relax the cache

consistency according to the needs of HPC applications and

allow clients to communicate asynchronously with metadata

servers. Therefore, the pressure of metadata processing can be

offloaded to a large number of client nodes.

Our first contribution is to propose a new consistency model

of the client-side metadata cache for the centralized archi-

tecture, which we call partial consistency. Partial consistency

splits the global namespace into multiple consistent regions

according to the workspaces (directories) of HPC applications.

It provides an application with strong consistency guarantee

within the consistent region by using a distributed metadata

cache on the clients that belong to the same application, but

it relaxes the consistency among different consistent regions.

It also allows applications to merge their consistent regions

to support data sharing across different workspaces. In partial

consistency, most metadata operations can be absorbed by the

distributed cache and asynchronously committed to centralized

metadata service. So it can greatly improve metadata scalabil-

ity without adding hardware or sacrificing the versatility and

manageability of DFS.

We also optimize the metadata processing in the distributed

metadata cache. The distributed cache is responsible for per-

mission checking of the metadata operations. The traditional

approach is to traverse each level of the path and check their

986

2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/20/$31.00 ©2020 IEEE
DOI 10.1109/IPDPS47924.2020.00105

permission information. However, path traversal is costly. In

the related works, ShardFS [6] and LocoFS [7] accelerate

path traversal by reducing the network overhead. ShardFS

maintains the namespace structure in each metadata server,

but at the cost of consistency guarantee. LocoFS keeps the

directory metadata in a single metadata server, but it will

cause single point of performance bottleneck and single point

of failure. These optimizations make a big trade-off on path

traversal overhead and other important aspects.

Our second contribution is to directly avoid path traversal

during permission checking in the distributed metadata cache.

In general, there are two characteristics of permission man-

agement in the HPC scenario. First, administrators create a

separate system user for each HPC application, that is, all

clients in the same application will use the same system user

to access the DFS. Second, an HPC application can predict the

permission information of its workspace. According to these

characteristics, we let HPC applications predefine the permis-

sions of the directories/files under their working directories

(consistent regions) and use batch permission management

instead of hierarchical permission authentication to reduce the

overhead.

We implemented a library called Pacon to allow partial

consistency to be adopted by any DFS. In the evaluation,

we deployed Pacon on BeeGFS and compared it with native

BeeGFS and the start-of-the-art metadata management solu-

tion (IndexFS [3]). In the single-application experiment, the

results show that the throughput of Pacon is more than 6.5

times higher than BeeGFS and more than 2.6 times higher

than IndexFS. In the multi-application experiment, Pacon’s

throughput can be more than one order of magnitude higher

than BeeGFS and more than 1.07 times higher than IndexFS.

Pacon has good scalability, and it can get more than 1

million OPS (operations per second) in file creation when the

number of clients reaches 320. We also evaluated Pacon with

MADbench2, a real-world HPC benchmark. The results show

that Pacon does not sacrifice other important system aspects

(such as the computation) in this case while achieving scalable

and efficient metadata management.

The rest of the paper is organized as follows: Section II

introduces the research background and motivations; Section

III describes the design details of Pacon; Section IV evaluates

Pacon’s performance; Section V examines some related work;

and Section VI concludes the paper.

II. BACKGROUND AND MOTIVATIONS

This section first introduces the characteristics of architec-

ture and applications in the HPC scenario. Then, it analyzes the

metadata scalability and the cache consistency model. Finally,

it analyzes the overhead of permission check in the DFS.

A. High Performance Computing Scenario

We summarize the characteristics of hardware architecture

and applications in the HPC scenario. For the hardware archi-

tecture, an HPC system has a large number of compute nodes

(clients), but the number of the storage nodes is relatively

Fig. 1: Client Scalability. Fig. 2: Path Traversal Cost.

small. For example, TIANHE-II in the National Supercom-

puter Center in Guangzhou (NSCC-GZ) has approximately

16,000 compute nodes, but it has only hundreds of storage

nodes [8].

Applications also have some important characteristics in the

HPC scenario: First, each application needs to use only a part

of the namespace (one or more separate directories); Second,

applications can easily predict the permission information of

their workspaces. For example, in the actual use scenario of

NSCC-GZ, the administrator typically creates a system user

and allocates a working directory for the HPC application. So

the clients of the same application will access the DFS by

the same system user, and the permissions of the directories

and files under the working directory are managed by the

application. These characteristics of hardware and application

in the HPC scenario bring new motivations for us to optimize

the scalability and efficiency of metadata service.

B. Metadata Scalability and Consistency Model

The traditional approach is to use a centralized metadata

service to provide a global namespace for all clients. A lot

of studies improved the metadata scalability on this central-

ized architecture. For example, Lustre [9], BeeGFS [10], and

CephFS [1] use multiple metadata servers to share the load

of metadata processing; IndexFS [3] manages metadata by

flattening the namespace and keeping metadata on KV stores;

GlusterFS [2] distributes the metadata service on the data

storage nodes. These systems can increase the scalability of

metadata service to a certain extent by increasing the number

of metadata servers, but the effectiveness of this approach is

limited as it can hardly keep up with the rapidly growing

number of clients which request intensive metadata service.

We evaluated the scalability of BeeGFS and IndexFS in

file creation. BeeGFS is a widely used DFS in the HPC

systems and it has higher metadata performance than Lustre

in some cases [11]. IndexFS is a typical KV-based (LevelDB

[12]) metadata management solution for DFS. We ran the

clients on a cluster of 16 nodes. BeeGFS was setup with

single MDS (metadata server). IndexFS was deployed on all

client nodes and run upon the BeeGFS. We calculated the

multiples of throughput when adding clients compared to the

single client case. Figure 1 shows that their scalability has

a lot of room for improvement. Furthermore, the centralized

architecture requires a large number of metadata servers to

987

meet the peak demand of the system. In HPC systems, the

huge difference in the number of metadata servers and clients

makes this way of hardware expansion insufficient. Although

IndexFS supports co-locating the metadata servers with the

client (compute) nodes, it will waste the compute resource if

we statically deploy a large number of metadata servers on

the client nodes.

In order to support a large number of clients in some special

HPC workloads, DeltaFS [5] and its predecessor, BatchFS [4]

embed a private metadata service in the application to increase

scalability. In fact, they are designed based on IndexFS and can

be approximated as co-locating IndexFS servers with the client

nodes, while leveraging the bulk insertion of IndexFS. Bulk in-

sertion means that the clients buffer the new insertions locally

and merge them to metadata servers in batches. This private

metadata service approach has two critical shortcomings. First,

it can be used for only some specific applications (e.g., N-N

checkpoint) because the clients do not share a consistent view.

Second, it does not directly provide global namespace, and

cannot allow applications to share data through DFS.

In summary, the systems based on centralized metadata

service have limited scalability, while the systems based on

private metadata service face the versatility and manageability

issues. We believe this dilemma can be solved by efficiently

utilizing client metadata caching in the centralized architec-

ture. Generally speaking, DFSes use strong consistency model

in the client metadata cache. It means that each client can

see the latest version of metadata at any time. According

to the CAP theorem [13], choosing the strong consistency

will sacrifice the availability. The strong consistency makes

the client cache inefficient because many metadata operations

must be synchronously applied to the metadata service. This

makes the metadata service easily overloaded by metadata-

intensive workloads, resulting in poor scalability.

Motivation 1. Our first motivation is to make a trade-

off in cache consistency according to the characteristics of

the HPC scenario discussed in Section II.A. We propose

partial consistency. It weakens the consistency based on the

needs of HPC applications, thus improving scalability without

sacrificing other important system aspects.

C. Overhead of Path Traversal

Permission check is an important operation in the file

system. The traditional way is to check the permission of each

layer of the requested path. However, this path traversal is

costly in DFS because it may take a lot of network I/Os. To

evaluate the overhead of path traversal, we used mdtest [14] to

create a namespace with 5 fanouts on the DFSes (BeeGFS and

IndexFS). We increased the namespace depth and evaluated the

throughput of randomly stating the leaf directories. Figure 2

shows that path traversal incurs more than 47% performance

loss when the namespace depth reaches 6 compared to the case

where the depth is 3. The main cause of performance loss is

the network overhead caused by path traversal.

There are some studies focusing on reducing the network

overhead of path traversal. For example, ShardFS [6] maintains

Fig. 3: Partial Consistency.

the whole namespace structure in each MDS node; LocoFS

[7] stores all directory metadata on a single MDS node and

the path traversal can be completed in a single node. The

key idea of these studies is to reduce the number of RPCs

during the path traversal. However, these optimizations also

have some negative effects. For ShardFS, it needs to pay for

the maintenance of the namespace information on the nodes.

For LocoFS, the single directory metadata node will reduce

the scalability and cause single point of failure.

Motivation 2. Our second motivation is to reduce path

traversal overhead in permission checking. According to the

characteristics of permission management in the HPC scenario

(see Section II.A), we propose batch permission management

to replace layer-by-layer checking in our system.

III. PACON DESIGN

In this section, we first introduce the partial consistency and

its usage. Then we introduce the batch permission management

and the main operations in Pacon. Finally, we introduce

the distributed cache space management and node failure

handling.

A. Partial Consistency

In order to provide high metadata scalability without sacri-

ficing the versatility and manageability of DFS, we still use the

centralized architecture, but improve scalability by optimizing

the consistency model of the client-side metadata cache for the

HPC scenario. Current DFSes use strong consistency model

in client-side metadata cache to allow all clients to access

the newest version of metadata at any time. According to the

analysis in Section II.B, strong consistency model makes the

client-side metadata cache inefficient and limits the scalability.

However, using strong cache consistency is an overkill for

many HPC workloads because they just run on some parts

of the namespace. Therefore, we propose partial consistency:

it provides application (clients belonging to the application)

with strong consistency guarantee for only the workspace that

it uses.

In partial consistency, the global namespace is split into

multiple subtrees based on the workspaces of applications,

988

Fig. 4: Architecture of Pacon.

which we call consistent regions. We use an in-memory

distributed cache on the clients that belong to the same applica-

tion to cache the metadata of the workspace, so the clients can

consistently access their workspace on the distributed cache

(strong consistency). Requests outside the workspace will be

redirected to the DFS (weak consistency). Metadata has two

copies in partial consistency, one is in the distributed cache

(primary copy) and the other is in the DFS (backup copy). The

consistency protocol is to synchronously update the primary

copy and asynchronously update the backup copy. Metadata

reaches a globally consistent state when the backup copy is

updated. Partial consistency also allows different applications

to share a consistent view of their workspaces by merging their

consistent regions together. For example, the clients of the

application 1 in Figure 3 can consistently access its working

directory 1 and the merged directory 3, but access to directory

2 may get inconsistent results.

We design Pacon, a library that allows partial consistency to

be adopted by existing DFSes. Figure 4 shows the architecture

of Pacon. Pacon runs on all client nodes and connects to the

DFS (centralized metadata service). It is mainly responsible

for building distributed caches on the client nodes, caching

metadata, and committing metadata operations to the un-

derlying DFS. In the initialization phase, Pacon launches a

Memcached [15] cluster on the nodes where the application

is running as the distributed in-memory cache. Pacon uses

full path as the key to store the metadata, and distributes

them in the distributed cache by DHT. Combining Memcached

and DHT is a common design in cache systems, and they

can be replaced with other in-memory KV databases and

distributed algorithms. For metadata write operations, instead

of synchronously applying the operations to the centralized

metadata service, Pacon performs them on the distributed

cache and pushes the operations into the commit queue.

Commit processes apply metadata operations to the DFS

by different commit strategies depending on the metadata

operation type (see Section III.D and III.E). For metadata read

operations, some of them can directly get the metadata from

the distributed cache.

DFSes can get the following benefits from partial consis-

tency. Benefit 1: High Scalability. Pacon still maintains a

global namespace but offloads the work of the centralized

metadata service to a large number of client nodes. This design

can improve scalability without adding hardware or sacrificing

the versatility and manageability. Benefit 2: Elasticity. Since

the Pacon services are launched with an application’s clients,

it can dynamically adapt to the actual workload and save

resources compared to statically deploying the services accord-

ing to the system’s peak demand. Benefit 3: High Throughput.

Many metadata operations in Pacon can be asynchronously

applied to the centralized metadata service, which allows the

latency of the metadata servers to be hidden. In addition, we

design a batch permission management method to reduce the

path traversal overhead in permission check, thereby further

improving the efficiency of metadata processing in the dis-

tributed cache (see Section III.C).

B. Using Pacon

Pacon provides basic file interfaces for HPC applications.

An application needs to configure and initialize Pacon before

running. The parameters of Pacon initialization mainly con-

tain the path of the workspace (directory) and the network

addresses of the nodes where the application runs. Thereafter,

the file system operations under the working directory trig-

gered by the application will be handled by Pacon, and the

requests outside the working directory will be redirected to

the underlying DFS.

There are three common use cases in the HPC scenario.

Case 1: the application runs only under its working directory

and does not need to interact with the other applications. In

this case, the application just needs to define its consistent

region in Pacon before running. Case 2: multiple applications

run on non-overlapping working directory and need to share

data on the DFS. In this case, applications not only need to

define their consistent regions, but also need to merge them

together. The merge interface of Pacon allows metadata to be

consistently shared across multiple consistent regions. Case 3:

applications’ working directories overlap. In this case, we can

consider them as running in the same large consistent region

(the top one). For example, one application runs on “/A” and

the other application runs on “/A/B”, in which case we can

consider both of them as running on “/A”.

C. Batch Permission Management

Existing DFSes must perform costly path traversal to exe-

cute the permission check. As we discussed in Section II.A,

we consider that an HPC application runs in a certain

workspace and it can predict the permissions information of

its workspace. Pacon lets HPC applications predefine the per-

mission information of its workspace (consistent region) and

keeps this information on all clients, so that permission check

in the distributed cache only needs to match the permission

information locally without executing path traversal.

Pacon maintains normal and special permission information

for each consistent region. The normal permission defines

permission information for most files and directories in the

consistent region. The special permission information contains

a list for the recording files/directories with different permis-

sion setting and the permission information of these items. For

989

liuyubo
高亮

Fig. 5: Commit Queue in Pacon.

TABLE I: Main Metadata Operations in Pacon

Metadata
Operation create mkdir rm getattr rmdir readdir

Cache
Operation put put

update &
delete

get delete N/A

Comm
Type async async async

N/A or
sync (miss)

sync sync

Commit
Type indep. indep. indep.

N/A or
indep. (miss)

barrier barrier

each metadata operation, Pacon first checks the request with

the normal permission setting, and then checks it with each

item in the special permission list. The request is approved if

it can pass these checks. Then, Pacon can directly lookup the

target metadata in the distributed cache by using its full path

as the key without having to traverse the path layer by layer,

thus reducing path traversal overhead.

If the application does not predefine the permission in-

formation, Pacon uses default permission settings similar to

Linux (i.e., all directories and files in the workspace can be

read, written, and executed by the creator) for the files and

directories in the application’s workspace. For those accesses

across consistent regions, Pacon redirects them to the DFS

without any permission checks, so they will be subject to the

permission check of the underlying DFS. The directory/file

creation operation not only requires permission authentication

but also needs to check whether its parent directory exists.

Pacon may need to check the parent directory on the DFS if

it exists in the DFS but is not cached in the distributed cache.

Pacon also allows the application to turn off the parent check,

if the application itself can guarantee the correctness of the

creation operations.

D. Operations in Pacon

1) Metadata Operations: Every metadata update on Pacon

consists of two sub-operations. The first sub-operation is to

perform the metadata operation on the distributed cache. The

second sub-operation is to apply the metadata operation to the

DFS by a commit module in Pacon. As shown in Figure 5,

the commit queue uses the publisher-subscriber model. We use

ZeroMQ [16] to implement the commit queue in our prototype.

Each client in the consistent region is a publisher, and each

node in the consistency region has a commit process that acts

as the subscriber responsible for committing metadata oper-

ations to the DFS using the traditional file system interfaces

(e.g., system calls and DFS client).

Table I shows the implementation details of the main

metadata operations in Pacon, including the key operation(s)

on the distributed cache (“Cache Operation”), communication

type with the DFS (“Comm Type”), and the ways to submit

operations to the DFS (“Commit Type”). In communication

types, “async” and “sync” indicate the operation needs to

commit to the DFS asynchronously and synchronously, re-

spectively. In commit types, “indep.” indicates that the commit

process does not need to ensure that operations are applied

to the DFS in the temporal order. On the contrary, “barrier”

indicates that the commit process needs to ensure that those

operations occurred before the pending operation have already

been applied to the DFS. Operation commit is detailed in

Section III.E.

For creating file/directory (create/mkdir) and removing file

(rm), Pacon performs them on the distributed metadata cache

through the in-memory KV operations and put an operation

message into the commit queue. In particular, removed files

are marked and their cached metadata are deleted after the

operations are committed. The operation message includes the

target path, operation information, and timestamp. Then, these

operations can be returned without waiting for them to be ap-

plied to the DFS (“async” type). At the same time, they can be

submitted without synchronization between different commit

queues because these operations are “independent” (“indep.”

type; see Section III.E). For getting attributes (getattr), Pacon

searches the target metadata in distributed metadata cache.

If the target metadata is not in the distributed cache, Pacon

synchronously calls the DFS interface to load it into the

distributed cache (if it exists on the DFS).

For removing directory (rmdir), Pacon needs to remove

all metadata under the target path on the distributed cache

and the DFS. Pacon commits rmdir synchronously (“sync”

type), which means the operation will only return when it is

applied to the DFS. We use barrier commit (“barrier” type)

to ensure its correctness. The commit process will directly

discard the creation operation located in the directory being

removed. Related metadata in the distributed cache will be

cleaned during the recursive removing process. For listing

directory (readdir), Pacon does not retrieve the metadata in the

distributed cache but calls the DFS interface, and thus avoid

the costly full table scan. Readdir also needs to communicate

with the DFS synchronously. Pacon uses barrier before calling

the readdir interface of the DFS to ensure the correctness of

the listing result.

2) File operations: Files are divided into large files and

small files in Pacon. The threshold for small file size can be

customized by the user (it is 4KB in our prototype, including

metadata and file data). Pacon stores small files with their

metadata, so that applications can get both metadata and data

in a single KV request. For the small files, file operations

will be performed in the distributed cache. In particular,

some operations require inline data to be stored on the DFS

990

immediately (e.g., fsync), but the target file may not have

been created on the DFS because file creation in Pacon is

not synchronously applied to the DFS. To address this case,

Pacon uses direct I/O to temporarily write the data of the files

that have not been created to the cache files. These data will

be written back to their original positions after the target files

are created. Pacon does not cache data of large files; it writes

the file data to the DFS when the size of the file exceeds the

threshold. For the large files that have been created on the

DFS, all file operations will be redirected to the DFS.

3) Handling Concurrent Updates: To handle concurrent

updates on metadata and small files (inline data), we do not

use locks, but use the CAS (check-and-swap) interface of

Memcached [15] to execute the updates. CAS works like

versioning: it compares the item version with the version

provided by client before updating the value, and the update

operation will succeed only if these two versions are the

same. When multiple write operations conflict on the same

metadata or small file, Pacon will re-execute it until the update

is successful.

4) Consistent Region Operations: The consistent region is

defaulted to be a subtree in the namespace. To allow multiple

applications to share a consistent view of their workspaces,

Pacon supports merging multiple consistent regions (subtrees)

together. The first step of merging consistent regions is to

get the basic information (e.g., node addresses, permission

information) of the consistent region that will be merged. The

second step is to establish a connection between them, so that

clients can access the distributed caches of another consistent

region. After the merging process, Pacon will determine which

consistent region (subtree) a metadata request belongs to, and

access the metadata in the corresponding distributed cache.

Currently, Pacon only supports read-only access to the merged

consistent region.

E. Metadata Operation Commit

The commit module in Pacon is responsible for correctly

applying the metadata operations to the DFS. A simple commit

strategy is to commit the metadata operations in the queues

completely based on the temporal order. However, this simple

commit strategy will result in a high synchronization overhead.

Our findings show that the temporal order is not necessary for

all metadata operations. We classify metadata operations into

two categories: non-dependent type and dependent type.

1) Non-dependent Type: It represents operations that only

need to be committed following the namespace conventions,

including creating file/directory and removing file. The basic

namespace conventions are: 1) the object to be created must

not exist; 2) the parent directory must be created earlier than

its children; 3) the deleted object must have been created.

These operations do not need to be committed in the temporal

order for two reasons. The first reason is because the DFS

can guarantee the namespace convention, i.e., these operations

will be rejected by the DFS if they do not conform to

the namespace convention. The second reason is that when

the same set of operations is fully committed, the result

(namespace structure) is the same regardless of the order in

which these operations are committed. Pacon uses independent

commit for the non-dependent operations.

Independent Commit. For the non-dependent type, each

message queue can commit these operations independently. If

an operation fails to be committed to the DFS (e.g., the parent

directory has not been created), we only need to resubmit the

operation until it succeeds.

To prove that the independent committing can get the same

result, let us consider clients that trigger only non-dependent

operations during a certain period and their global time order

is Seq0. Now there are two different sequences, Seq1 and

Seq2, which contain the same operations as Seq0. We assume

that all sequences follow the namespace conventions, so all

operations can be committed. The initial state of the names-

pace is the same. First we prove that committing file removing

independently will not affect the result. We assume that the

orders of create and mkdir are the same in Seq1 and Seq2. If

the conclusion is not true, it means that there is a file that exists

in only one sequence. According to the namespace convention,

its last state (exist or not) is opposite in Seq1 and Seq2. Since

the file has the same operations in both sequences, we can

deduce that the initial state of the file is the opposite in Seq1

and Seq2, which contradicts our hypothesis (same initial state),

so the conclusion is established.

For the same set of operations, we have shown that the

commit order of file deletion operations does not change

the result if the commit order of creation operations is the

same. Next we prove that the commit order of file/directory

creation does not affect the result. According to the namespace

conventions, these operations can be successfully committed

only if they do not exist and their parent directory exists. So,

the conclusion is established. The resubmitting in Pacon is

used to adjust the operation order to conform the namespace

conventions.

2) Dependent Type: It represents operations whose correct-

ness will be affected by the order of other metadata operations,

such as removing directory (rmdir). For example, when the

commit process commits a rmdir operation, Pacon needs to

ensure that all creations that occurred before the rmdir have

been committed to the DFS. Therefore, these operations need

to be committed in the temporal order. Pacon uses barrier

commit for the dependent operations.

Barrier Commit. To ensure the correctness of the depen-

dent type operations, we use a barrier method to make sure that

the dependent operation is committed in the temporal order

(i.e., those operations that occurred earlier than it have been

committed when it is committed). We split the sequence of

operations into multiple barrier epochs. Each operation holds

a barrier epoch number to identify which barrier epoch that it

belongs to, and the barrier epoch number will be increased

when the client triggers a dependent operation or receives

a barrier message. Commit process holds the current barrier

epoch number and will only be increased after the dependent

operation has been committed. The commit process will only

commit those operations whose barrier epoch numbers are the

991

liuyubo
高亮

(a) Generate Barrier (b) Reach Barrier

Fig. 6: Barrier Committing. Striped squares indicate dependent

operations (A3); Black squares indicate barrier message (B);

Grey squares indicate no dependent operations.

same as the current barrier epoch number.

Figure 6 shows a simple example of barrier commit. A3

is a dependent operation called by client A. Before A3 is

pushed into the operation queue, each client will generate a

barrier message and push it into the operation queue, and then

increase the barrier epoch number (as shown in Figure 6(a)).

When the number of barrier messages received by the commit

process is equal to the number of clients on the node (as shown

in Figure 6(b)), it means that the operations of the previous

barrier epoch have all been committed. So the commit process

can commit the dependent operation (A3) and then increase

the current barrier epoch number. Figure 6 is a single node

case. In the multi-node case, the decision condition of whether

an dependent operation can be committed requires all commit

processes to reach the barrier.

F. Distributed Cache Space Management

The distributed metadata cache takes up only a small

amount of memory resources of client nodes as the size of

the metadata is very small. For example, a 500MB distributed

cache space can store more than 10 million metadata without

inline data. For this amount of metadata, the distributed

metadata cache takes up only about 0.05% of the memory

space in our testbed if the application runs on 16 nodes.

Since we assume that insufficient metadata cache is rare, so

we design a simple eviction policy to make a trade-off between

the overhead of memory management and hit rate. If the usage

of the cache space exceeds a certain threshold, we select an

entry (it can be a directory or a file) under the root directory

of the consistent region and evict the metadata (committed to

the DFS) under/of this entry. We use Round-Robin method to

select the entry to be evicted, so that the eviction process will

choose an entry that is different from the last eviction. This

can alleviate cache thrashing that may be caused by the simple

eviction policy to some extent.

G. Failure Recovery

Client node failure will cause the uncommitted metadata

operations to be lost. However, the failure of a client node will

affect only its own consistent region because the consistent

regions are isolated from each other. Pacon addresses client

node failure by periodically checkpointing the subtree of the

consistent region on the DFS. When a node failure occurs

within a consistent region, Pacon can roll back its correspond-

ing subtree to the nearest checkpoint and rebuild the distributed

cache of the consistent region. In order to adapt to the needs

of different applications (such as different checkpoint intervals

and implementations), we expose the interface of the check-

pointing to applications. Unlike traditional checkpointing, we

only need to checkpoint the application’s workspace instead

of the entire namespace. The checkpointing overhead equals

to subtree copy. In fact, checkpoint is optional (for applica-

tions that need version rollback), and even without it, the

DFS already guarantees the crash consistency of committed

operations.

IV. EVALUATION

To demonstrate the benefits that existing DFSes can get

from Pacon, we deployed Pacon upon BeeGFS and compared

it with native BeeGFS (for simplicity, “Pacon” is used to

indicate “BeeGFS with Pacon” in this section). BeeGFS is a

parallel DFS that is widely used in HPC systems. It has higher

metadata performance than Lustre in some cases [11]. We

also compared Pacon with IndexFS, a state-of-the-art metadata

management solution. IndexFS is deployed upon BeeGFS too

(the LevelDB tables are stored on BeeGFS). IndexFS has two

main uses, one is to be deployed on the burst buffer nodes,

and the other is to be co-located with the client nodes. Since

Pacon was run on the client cluster, for fairness, we co-located

IndexFS with the client nodes. We did not compare the private

namespace DFSes (BatchFS and DeltaFS) because they are

not general-purpose systems. BatchFS and DeltaFS can turn

off the bulk insert to support non-batch applications, which

can be approximated as an IndexFS deployed on the client

nodes.

All experiments in this section were run on the TIANHE-II

supercomputer. The client cluster has 16 nodes, each node has

2 Intel Xeon E5 CPU and 64GB RAM. The BeeGFS cluster

has 1 metadata server and 3 data servers. The metadata and

data servers of BeeGFS have the same hardware configuration

as the client nodes, and MDS is mounted on an Intel P3600

PCIE NVMe SSD. We used mdtest [14], a metadata testing

tool based on MPI [17], and MADbench2 [18], an HPC

application benchmark to perform our experiments. We first

evaluated the performance of Pacon in two cases: running

a single application and running multiple applications. Then,

we evaluated Pacon’s path traversal efficiency, overhead, and

scalability. Finally, we evaluated Pacon on a real-world HPC

benchmark.

A. Single-application Case

We selected three common metadata operations in this part:

creating directories, creating empty files, and randomly stating

file. We ran mdtest (to simulate application) on different

number of client nodes (from 2 nodes to 16 nodes), and

ran 20 clients on each node. The clients concurrently create

992

(a) Mkdir Throughput (b) Create Throughput (c) Stat Throughput

Fig. 7: Performance of Single-application Case.

(a) Mkdir Throughput (b) Create Throughput (c) Stat Throughput

Fig. 8: Performance of Multi-application Case.

directories and files on the the same parent directory, and

then randomly get the attributes of the files. The depth of

the namespace is 1. For Pacon, there is only one consistent

region in this experiment.

Figure 7 shows the performance comparison. Pacon can

greatly speed up the metadata processing of BeeGFS. In the

write operations (mkdir and create), Pacon improves perfor-

mance by more than 76.4 times compared to BeeGFS. The

performance improvement is mainly because Pacon buffers

the metadata operations on the in-memory distributed cache

and commit them to central metadata service asynchronously.

It can take the throughput advantage of distributed cache (in-

memory KV store) and absorb the load of metadata service

in background. In the read operations (stat), Pacon has more

than 6.5 times performance improvement over BeeGFS. In

this experiment, all the metadata that are created by the

mkdir and create operations are cached, so Pacon can quickly

access metadata from the distributed metadata cache. Although

BeeGFS has read cache on the client, it does not work much

in random stating because the caches between client nodes are

not shared.

Pacon is also better than IndexFS. For the write operations

(mkdir and create), Pacon has more than 8.8 times perfor-

mance improvement over IndexFS. The improvement mainly

comes from partial consistency. Pacon allows write operations

to return immediately after reaching the distributed cache.

IndexFS is a centralized metadata service. Since IndexFS

uses strong consistency in the client-side metadata cache

so it cannot fully utilize the memory on the client nodes.

For the read operations (stat), the throughput of Pacon is

more than 2.6 times higher than IndexFS. The improvement

is mainly because Pacon can read the metadata from the

distributed cache but IndexFS may need to read them from the

centralized metadata service. For the same reason in BeeGFS,

IndexFS also cannot use client-side metadata cache efficiently

in random stating.

B. Multi-application Case

In HPC systems, it is common for multiple applications to

run simultaneously on the DFS. To simulate this scenario, we

simultaneously ran multiple mdtest programs on different non-

overlapping directories and evaluated the overall throughput.

Each mdtest represents an application. The client cluster has

16 nodes, and each node contains 20 concurrent clients (totally

320 concurrent clients). We evaluated the performance of

three common metadata operations (mkdir, create, random

stat) with different numbers (from 2 to 16) of concurrent

applications. The client nodes are evenly assigned to individual

applications. For example, each application runs on 8 nodes

when the number of concurrent applications is 2. In Pacon,

each application is considered a consistent region. As in the

previous experiment, IndexFS is deployed on each node in the

client cluster.

As shown in Figure 8, Pacon’s overall performance is

better than BeeGFS and IndexFS: it is more than 1.07 times

higher than IndexFS and more than one order of magnitude

993

Fig. 9: Path Traversal Overhead.

Fig. 10: Pacon Overhead.

higher than BeeGFS in these experiments. The performance

improvement is mainly because Pacon has a higher throughput

than other tested systems in the single-application case (as

shown in the previous experiments). At the same time, partial

consistency can isolate the metadata operations from different

applications. In BeeGFS and IndexFS, operations need to

frequently communicate with the centralized metadata service.

But with Pacon, many operations only need to communicate

with their distributed cache. This application-based isolation

also helps group the metadata from the same application onto

the running nodes of the application, thereby increasing the

local metadata hits.

C. Path Traversal Analysis

Pacon uses batch permission management to avoid path

traversal. This part shows the performance improvement

brought by the batch permission management. We generated

a namespace with different depth (from 3 to 6) and then

evaluated the throughput of randomly getting directory at-

tributes. Figure 9 shows that the stat throughput of BeeGFS

and IndexFS decrease as the depth of the namespace increases.

Their performance will be reduced by 63% (BeeGFS) and 47%

(IndexFS) when the namespace depth is increased to 6. One

of the main reasons is that the path traversal will incur a lot of

network overhead. Although they cache the directory entries

in clients, it is not useful in the case of random access. In

Pacon, the depth of the namespace has only a slight impact

Fig. 11: Scalability.

on the performance, because Pacon can directly lookup the

requested metadata.

D. Pacon Overhead

We evaluated Pacon’s overhead by comparing the through-

put of Pacon with raw Memcached (which is used as the

distributed metadata cache in Pacon). We conducted this

experiment without concurrency. For Pacon and other tested

file systems, we ran mdtest with single client to create sub-

directories under the same parent directory. The namespaces

used in this experiment have a fanout of 5, but with different

depths. For Memcached, we ran memaslap [19] with single

client to evaluate the throughput of item insertion.

Figure 10 shows that the throughput of BeeGFS and In-

dexFS are much smaller than the in-memory KV, because

they use local file system (BeeGFS) or on-disk KV system

(IndexFS) to store metadata, which are more expensive than

the in-memory KV system. In this experiment, Pacon can

reach more than 64.6% throughput of the raw Memcached.

The overhead of Pacon comes mainly from accessing the in-

memory distributed KV store and pushing metadata operations

into the commit message queue. Furthermore, in BeeGFS and

IndexFS, path traversal may lead to amplification of metadata

operations, that is, a metadata operation requires multiple

network I/Os in these systems.

E. Scalability

This part shows the metadata scalability of different sys-

tems. We evaluated the throughput of file creation on BeeGFS,

IndexFS, and Pacon. Each client node runs up to 20 clients,

and each client concurrently creates empty files in the same

parent directory. The number of client nodes increases as the

number of clients increases (the number of nodes of Pacon and

IndexFS will also increase). For example, when the number of

clients is 20, the client cluster contains 1 node, and when the

number of clients is 40, the client cluster contains 2 nodes,

and so on. For each system, we normalized the results by the

throughput in the single client case.

Figure 11 shows that Pacon has better scalability than

BeeGFS and IndexFS. It is about 16.5 times and 2.8 times

better than BeeGFS and IndexFS, respectively, when the

994

liuyubo
高亮

Fig. 12: Breakdown of MADbench2.

number of clients reaches 320. Compared with BeeGFS, Pacon

servers run with the client nodes so it can dynamically adapt to

the growth of the number of clients. Compared with IndexFS,

although the number of IndexFS servers can also increase

as the number of clients increases, it cannot fully utilize the

client-side metadata cache, so the creation operations need to

be performed on the central metadata service that is more

costly than Pacon’s distributed cache.

F. Real-world Application Benchmark

We used MADbench2 [18] to evaluate Pacon in the real-

world HPC workload. MADbench2 is a benchmark implemen-

tation based on the behavior of MADspec, which calculates

the maximum likelihood angular power spectrum of the cosmic

microwave background radiation [20]. MADbench2 is used for

testing the integrated performance of the I/O, computation,

and communication subsystems under the stresses of a real

scientific application. At the beginning, each MADbench2

process creates a file and generates (writes) the evaluation data

into these files. Then, MADbench2 processes will read, write,

and calculate the data in these files multiple times.

We ran MADbench2 on 16 nodes, each node has 16 working

processes. In this experiment, a total of 256 files are created,

each containing 4MB of data. We normalized the results by

the duration of BeeGFS. Figure 12 shows that the overall

runtime is almost the same on Pacon and BeeGFS, because

this is a data intensive scenario. We also broke down the

overhead by read, write, and initialization. Specially, the “init”

part (initialization) mainly includes file creation overhead; the

“other” part mainly includes computation and communication

overhead. In the initialization phase, Pacon’s file creation

overhead is only slightly smaller than BeeGFS because this

experiment is not a metadata-intensive scenario. Pacon and

BeeGFS have similar read/write performance, because the file

size (4MB) exceeds the small file threshold of Pacon so all

read/write operations are redirected to the backend BeeGFS.

This experiment shows that Pacon does not have a large impact

on non-metadata operations.

V. RELATED WORK

Central Metadata Service. There are many improvements

to the central metadata service architecture. The most common

way is to adopt a multi-MDS structure, which distributes

metadata onto multiple metadata servers. Many DFSes support

multi-MDS deployment (such as Lustre [9], CephFS [1], and

BeeGFS [10]). Furthermore, CephFS [1] and GIGA+ [21]

address the load balancing problem among multiple MDSes.

To improve the scalability, some DFSes (such as IndexFS [3],

LocoFS [7], and ShardFS [6]) flatten and store metadata on

KV databases. All these related works based on the central

architecture mainly improve the scalability of metadata service

by extending metadata server cluster (MDS scalability), but

they are difficult to scale when the number of clients is large

(client scalability).

Private Metadata Service. In order to improve the client

scalability, an extreme approach is to let the applications

manage metadata themselves. BatchFS [4] is a DFS designed

for batch jobs, a special version of IndexFS. In a batch job,

metadata operations for all clients are independent (e.g., no

access conflicts, no overlapping namespaces) and the files

created by the batch job will not be accessed until after

the batch job have done. BatchFS lets each client operate

only on the local namespace snapshot during the batch job

run, and then merges it into the master snapshot after the

batch job is completed. For scenarios other than batch jobs,

BatchFS requires additional mechanisms to handle issues such

as overlapping namespaces, which increases the complexity

of the system. DeltaFS [5] is a successor of BatchFS and is

very similar to BatchFS’s design, but it completely discards

the global namespace. PFS-delegation [22] relieves metadata

management bottleneck by offloading the space management

to the application. These systems based on private metadata

services are not general-purpose DFSes and will introduce

additional namespace management overhead. Pacon has better

versatility and manageability than these related works.

Configurable Metadata Service. Cudele [23] provides an

API to allow user to customize the consistency and durability

of the namespace. Different from Pacon, the strong consis-

tency guarantee in Cudele is still provides by the centralized

metadata service. Moreover, Cudele is not optimized for client-

side metadata caching. Pacon and Cudele have different design

goals: Cudele provides a simple solution for applications with

different needs, and Pacon optimizes the consistency model of

the client metadata cache.

VI. CONCLUSIONS

This paper addresses the scalability and efficiency of DFS

metadata service with a new consistency model of client-

side metadata cache. It proposes partial consistency, which

splits the namespace into multiple consistent regions based

on the workspaces of applications and guarantees strong

cache consistency only inside the consistent regions for the

applications. Therefore, Pacon can fully utilize the client-side

metadata cache to improve the metadata scalability without

sacrificing the versatility and manageability. In addition, it

reduces the path traversal overhead of permission check in the

distributed cache, which improves the efficiency of metadata

processing. Pacon provides a library that can be utilized by

existing DFSes to provide partial consistency. The evaluations

in the paper show that Pacon can significantly improve the

throughput and scalability of DFSes.

995

ACKNOWLEDGMENTS

We appreciate the insightful comments from the anonymous

reviewers. This work was supported by 2016YFB1000302

(National Key R&D Program of China), U.S. National Sci-

ence Foundation CAREER award CNS-1619653 and awards

CNS-1562837, CNS-1629888, IIS-1633381, CMMI-1610282,

61832020 (NSFC), U1611261 (NSFC), 61872392 (NSFC),

2016ZT06D211 (Program for Guangdong Introducing In-

novative and Entrepreneurial Teams), 201906010008 (Pearl

River S&T Nova Program of Guangzhou), 2018B030312002

(Guangdong Natural Science Foundation), and the China

Scholarship Council.

REFERENCES

[1] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Pro-
ceedings of the 7th symposium on Operating systems design and
implementation (OSDI), 2006, pp. 307–320.

[2] gluster.org, “GlusterFS,” https://www.gluster.org, 2019.
[3] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS: Scaling file

system metadata performance with stateless caching and bulk insertion,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2014, pp. 237–248.

[4] Q. Zheng, K. Ren, and G. Gibson, “BatchFS: Scaling the file system
control plane with client-funded metadata servers,” in Proceedings of
the 9th Parallel Data Storage Workshop (PDSW), 2014, pp. 1–6.

[5] Q. Zheng, K. Ren, G. Gibson, B. W. Settlemyer, and G. Grider,
“DeltaFS: Exascale file systems scale better without dedicated servers,”
in Proceedings of the 10th Parallel Data Storage Workshop (PDSW),
2015, pp. 1–6.

[6] L. Xiao, K. Ren, Q. Zheng, and G. A. Gibson, “ShardFS vs. IndexFS:
replication vs. caching strategies for distributed metadata management
in cloud storage systems,” in Proceedings of the Sixth ACM Symposium
on Cloud Computing (SoCC), 2015, pp. 236–249.

[7] S. Li, Y. Lu, J. Shu, Y. Hu, and T. Li, “LocoFS: A loosely-coupled
metadata service for distributed file systems,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2017, pp. 1–12.

[8] X. Liao, L. Xiao, C. Yang, and Y. Lu, “MilkyWay-2 supercomputer:
system and application,” Frontiers of Computer Science, vol. 8, no. 3,
pp. 345–356, 2014.

[9] P. Schwan et al., “Lustre: Building a file system for 1000-node clusters,”
in Proceedings of the 2003 Linux Symposium, 2003, pp. 380–386.

[10] beegfs.io, “BeeGFS,” https://www.beegfs.io, 2019.
[11] J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, and

T. Ludwig, “Survey of storage systems for high-performance comput-
ing,” Supercomputing Frontiers and Innovations, vol. 5, no. 1, pp. 31–58,
2018.

[12] Google, “LevelDB,” http://code.google.com/p/leveldb, 2018.
[13] E. Brewer, “CAP twelve years later: How the “rules” have changed,”

Computer, vol. 45, no. 2, pp. 23–29, 2012.
[14] LLNL, “mdtest,” https://github.com/LLNL/mdtest, 2019.
[15] memcached.org, “Memcached,” http://memcached.org, 2019.
[16] zeromq.org, “ZeroMQ,” https://zeromq.org, 2019.
[17] W. Gropp, R. Thakur, and E. Lusk, Using MPI-2: Advanced features of

the message passing interface. MIT press, 1999.
[18] J. Borrill, L. Oliker, J. Shalf, and H. Shan, “Investigation of leading

HPC I/O performance using a scientific-application derived benchmark,”
in Proceedings of the ACM/IEEE Conference on Supercomputing (SC),
2007, pp. 1–12.

[19] libmemcached.org, “memaslap,” http://docs.libmemcached.org, 2019.
[20] LBL, “MADbench2,” https://crd.lbl.gov/departments/computational-

science/c3/c3-research/madbench2, 2014.
[21] S. Patil and G. A. Gibson, “Scale and concurrency of GIGA+: File

system directories with millions of files.” in Proceedings of USENIX
Conference on File and Storage Technologies (FAST), 2011, pp. 13–13.

[22] D. Arteaga and M. Zhao, “Towards scalable application checkpointing
with parallel file system delegation,” in Proceedings IEEE Sixth Inter-
national Conference on Networking, Architecture, and Storage (NAS),
2011, pp. 130–139.

[23] M. A. Sevilla, I. Jimenez, N. Watkins, J. LeFevre, P. Alvaro, S. Finkel-
stein, P. Donnelly, and C. Maltzahn, “Cudele: An API and framework
for programmable consistency and durability in a global namespace,” in
Proceedings of IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2018, pp. 960–969.

996

