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Abstract—This paper studies the automatic optimization of
data placement parameters for the inter-job write once read many
(WORM) scenario where data is first materialized to storage by
a producer job, and then accessed for many times by one or more
consumer jobs. Such scenario is ubiquitous in Big Data analytics
applications but existing Big Data auto-tuning techniques are
often focused on single job performance.

To address the shortcomings in existing works, this paper
investigates data placement parameters regarding blocking, par-
titioning and replication and models the trade-offs caused by
different configurations of these parameters through a producer-
consumer model. We then present a novel cross-layer solution,
WATSON, which can automatically predict future workloads’
data access patterns and tune data placement parameters ac-
cordingly to optimize the performance for an inter-job WORM
scenario. WATSON can achieve up to eight times performance
speedup on various analytics workloads.

Index Terms—storage, data placement, auto-tuning, parameter
optimization, Big Data analytics

I. INTRODUCTION

Data analytics applications based on MapReduce [33] (e.g.
Hadoop [35]), distributed dataflow computing (e.g. Spark [36],
and distributed relational systems (e.g. Spark SQL [7]) are
widely deployed today for daily operations. However, it is
observed that enterprise IT professionals and data scientists
tend to use default values to configure storage parameters
such as replication factor, block size, and partitioning of the
underlying distributed file systems, and most of them do
not understand the importance and the art of tuning these
parameters. This causes slow interfacing between storage and
computation and leads to under-utilized storage and compu-
tation resources. Tuning Big Data storage can significantly
improve performance, but it is also a time-consuming task for
IT professional and data scientists. Therefore to offer timely
and cost-effective analytics processing with least effort is a
key for success in many businesses, such as banking, tele-
communication and so on.

In this paper, we mainly focus on the problem of automatic
storage parameter tuning for an inter-job write once read
many (WORM) scenario. In such scenario, once a producer
job outputs data to a distributed file system (abbreviated as
DFS), the data will be processed by one or more consumer
jobs repeatedly. The inter-job WORM scenario is ubiquitous
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Fig. 1. Abstraction of inter-job WORM scenario.

in many popular applications deployed in enterprise and cloud,
and we just list a few as follows:
• Data Warehousing. Data warehouses such as Spark-

SQL [34] and Hive [34] are playing critical roles in daily
operations of enterprises [9]. Once data is persisted to
DFS, the data may be repeatedly processed by a large
number of different jobs for various purposes, e.g. queries
and pre-processings.

• Iterative Analytics. A lot of machine learning algorithms
are iterative-converging in nature. In such iterative analyt-
ics workloads, the same input data (i.e. training samples)
needs to be repeatedly processed.

The WORM pattern is prevalent in real-world cloud traces,
such as the Cloudera traces [9] and Yahoo cluster traces [1].
For example, in the publicly available Yahoo cluster traces,
we observe that, the total size of files that have been read for
at least once is 2.02 peta bytes, and 72% of these bytes are
accessed for more than 10 time after being written, and 28%
of these bytes are accessed for more than 100 times.

As shown in Fig. 1, in an inter-job WORM scenario, we
use producer to represent the analytics job that writes data to
DFS, and use consumer to represent an job that reads the data
for processing. WORM scenarios not only exist in workflows
of multiple applications, where the producer and consumer
are belonging to two standalone applications, but also exist in
applications that run multiple job stages, where the producer
and consumer are simply two different job stages inside the
same application.

Existing auto-tuning tools, such as MRTuner [33], What-if
Engine [16], CDBTune [37] and QTune [22], cannot really
optimize the overall performance for an inter-job WORM sce-



nario, because they focus on the performance of a single job.
When applied to optimize the producer’s performance, they
are not aware of consumers and do not consider the inter-job
trade-offs between the producer and consumers. However we
find that data placement parameters for the producer’s output,
such as block size, partitioning, and replication factor, are
controlling performance trade-offs between the producer and
consumers in an inter-job WORM scenario. These parameters
are not only determining the producer’s speed and volume for
writing to DFS, but also critical to the consumers’ data locality.
For example, replication factor and partitioning determine data
distribution across cluster, and skewed data distribution may
cause difficulty in scheduling tasks on local data. In addition,
non-alignment between block size and consumer’s split size
will cause a map split, the input data of a map task, to span
multiple nodes, and incur unnecessary network transfer, while
setting split size to a default block size like 128MB can also
hurt performance [33].

To address the shortcomings of existing works, we es-
tablish a novel Producer-Consumer model to formalize the
total overhead dependent on data placement parameters for
all jobs. We model DFS writing overhead of the producer
as aggregation of per-block overhead caused by disk seek
and metadata management, and per-byte overhead caused by
writing block data to DFS. We also model data transfer
overhead caused by split spanning, task scheduling, and re-
partition respectively for a consumer’s job stage. Based on
the model, we can determine the optimal data placement
parameters and minimize total overhead. However, there are
two challenges in solving above optimization problem:

1) Due to the gap that exists between DFS and computation
in current practice, the DFS writing process is unaware
of workloads’ data access pattern and it is difficult to
obtain consumer information for the model.

2) Due to vast search space for data placement parameters,
it is difficult to solve the optimization problem online
using a brute-force approach.

To reduce the search space, based on a high-level abstraction
of analytics job scheduling policy, we mathematically prove
deductions that can be summarized as: a consumer’s data
transfer overhead can be minimized, if and only if block size
is aligned with split size, data is proportionally distributed
to each node’s maximum parallelism, and the partitioning
scheme is mostly consistent with consumers re-partitioning
plans. Then we develop an optimization approach based on
greedy strategy to automatically optimize the data placement
parameters.

To bridge the gap between DFS and computation, and to
provide the greedy algorithm with consumer information, we
propose a novel cross-layer solution, WATSON, to enable
workload-aware data storage. WATSON can automatically
collect runtime behavior of previous jobs. Thus, when a
new job is launched, WATSON can automatically predict
consumer information if the same type of jobs have been
executed before. Then WATSON applies the greedy algorithm

to compute optimal data placement parameters. WATSON
is not only applicable for tuning of the storage parameters
of the data that connects multiple job stages inside a single
application, but also working well for data that connects
multiple standalone applications.

The contributions of this work are as follows:
1) We identify the key role of storage parameters in con-

trolling inter-job trade-offs, and to model total overheads
dependent on these parameters for all jobs in an inter-
job WORM scenario. We also mathematically prove the
deductions that lead to an efficient greedy algorithm
and significant reduction of the search space for the
optimization problem.

2) We present an online cross-layer solution, WATSON,
to automatically predict consumer information, tune
storage parameters and optimize the overall performance
for inter-job WORM scenarios in Big Data analytics
applications.

3) We implement WATSON on top of PlinyCompute [38],
a distributed object-oriented relational database using
Pangea [39], [40] as its storage, and Hadoop. We
also conduct an experimental evaluation using various
analytics workloads. The experiment results show that
WATSON can achieve significant speedup for analytics
workloads such as TPC-H, linear algebra operation like
matrix multiplication, PageRank analytics flow, Tera-
Sort, k-means, NutchIndex and so on.

The remainder of this paper is organized as follows. We
analyze the problem in Section II. Then we discuss the
Producer-Consumer model and deductions in Section III. After
that, we describe the architecture of WATSON in Sec. IV. We
discuss evaluation results in Sec. V. Finally, we discuss related
works and conclude the paper.

II. PROBLEM ANALYSIS

A. Distributed File System

Big Data analytics such as MapReduce systems, distributed
dataflow systems, and distributed relational database systems,
can employ mainly three different types of storage abstrac-
tions: i) block-based distributed file systems, such as GFS [14],
HDFS [2], and GPFS [15]; ii) distributed object stores, such
as Amazon S3 [5] and SWIFT [30]; and iii) distributed in-
memory file systems, such as Tachyon [23]. This paper focuses
on the block-based distributed file systems, which is the most
popular storage for Big Data analytics.

For block-based distributed file systems (abbreviated as
DFS), its communication with upper-layer systems include
following aspects:
• Chunking. It is to chunk data into blocks and use block

as the unit of data allocation and transfer to save disk
seek time. The block size parameter can be configured
for each analytics job output.

• Partitioning. For an analytics job that outputs data to
DFS, each writing task of the job will generate a file
partition in local node. Each partition will consist of



one or more blocks. Therefore the number of partitions
for output is controlled by the number of writing tasks.
Writing tasks can be reducers or mappers for map-only
job. In addition, the upper layer system can control how
data is grouped into blocks and how blocks are grouped
to a partition based on the selection of partitioning
key(s). For example, the upper layer system can write
to storage in a way that all data having the same value of
partitioning keys must reside in one partition, and should
not live in more than one partitions.

• Replication. For each block in a partition, DFS will
replicate it to a few nodes across the cluster for resilience.
The replication factor parameter can be configured for
each job output to control the number of replicas per
block.

B. Analysis about Inter-Job WORM Scenario
In an inter-job WORM scenario as shown in Fig. 1, we

observe that the data placement parameters such as block size,
number of partitions (i.e. number of writing tasks), partitioning
schemes and replication factor, are double-edged swords for
the performance of producer and consumers. In addition, those
parameters will involve knowledge gaps between computations
and DFS, if computation is unaware of underlying DFS
read/write principles or DFS is unaware of upper-layer job
characteristics.

In Big Data analaytics systems, an analytics job can have
many stages, and each stage reads in input data from mem-
ory/storage, process it (through a set of homogeneous parallel
tasks with each task executing a series of pipelined operators),
and the stages are inter-connected by the shuffling operator that
repartitions data to prepare for the next stage. For block-based
distributed file systems (abbreviated as DFS), the job schedul-
ing models inside a job stage can fall into two categories:
(1) Short-living-Task-based scheduling, where each time the
scheduler gets a split of input data and schedules a task as
a short-living thread/process for processing the split, such as
Spark and Hadoop; (2) Long-living-Process-based scheduling,
where each long-living process iteratively gets a split and
processes it until all blocks have been processed, such as Pliny-
Compute [38]. Although the two scheduling strategies slightly
differ in task scheduling overhead and resource utilization, we
find their interplay with distributed storage is similar.

We identify following data placement parameters that repre-
sent the key performance trade-offs and cross-layer gaps under
both job scheduling models.

1) Block Size: In our work, we find that it is critical to tune
block size to make the memory footprint of all concurrent tasks
fit available memory, and make all CPU cores fully utilized.
Now we give several examples.

n-gram is a language modeling approach widely used in
text classification. Given a text ”Alice was beginning to get
very tired”, if n is set to 3, a 3-gram step will produce
shingles ”alice beginning”, ”alice beginning get”, ”beginning
get”, ”beginning get very”, ”get very”, ”get very tired”, and
”very tired”.

In the n-gram workload, the size of the output, which
will exponentially increase with the parameter n, could be
significantly larger than the size of the input text (e.g. the
output size is more than five times larger than the input size
when n = 3, and more than nine times larger when n = 4).

In skip-gram, which is another popular language model,
words do not need to be consecutive, so the output will be
even larger in size than n-gram for the same input.

For such workloads, using a default block size like 256
megabytes and using block size as task split size as widely
adopted is sub-optimal, because the output for all concurrently
running tasks may not fit the available memory. In such
situation, we need use much smaller task split size to avoid
disk spilling.

Workloads that invoke computational intensive UDFs (e.g.
matrix multiplication, dynamic time warping, and etc.) will
benefit from splitting even a small input dataset into a large
number of task splits so that each CPU core in a distributed
cluster can be allocated with a task to run on it, and then
all computational resource can be fully utilized to reduce the
latency.

In contrary, workloads that do very simple computations and
have small memory footprint, such as top-k, count, merge-sort
and so on, will run more efficiently by using large task split
size to reduce the number of waves of tasks and thus reduce
the overhead for setting up and cleaning up tasks.

For the producer, chunking the output data into fewer blocks
will lead to less metadata management, smaller metadata size,
and smaller total disk seek latency.

For a consumer, a job divides the input to fixed-size splits
and creates a map task to handle each split, while for under-
lying storage, block is the basic unit that can be guaranteed to
be stored in a single node. When a split spans two or multiple
blocks which are possibly stored in different nodes, part of
this split may have to be transferred. Hadoop guideline [35]
suggests to set size of input split to the block size to avoid this
nonalignment problem, but it overlooks the fact that setting
split size to a default block size like 64MB or 128MB can
hurt performance for a lot of applications [33].

Gap 1. If block size is set unaware of consumer split size, the
gap between block size and split size causes the non-alignment
problem.

2) Number of Partitions: For the producer, the number
of writing tasks determines the number of partitions for the
output data. It also determines the parallelism and pipelines
used to write data to DFS, which influences the writing speed.

For a consumer, partition number can influence the dis-
tribution of its input data. If the distribution of data is
disproportional with the distribution of consumer map tasks,
unnecessary data transfer will be incurred. For example, the
producer writing process can cause that a node executing more
consumer tasks may not have enough data to process, while a
node executing fewer consumer map tasks may have too much
data. Thus, data has to be transferred to nodes executing more
map tasks.
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Fig. 2. Illustration of distributed matrix multiplication.

Gap 2. If the number of writing tasks is set unaware
of the distribution of consumer tasks, disproportional data
distribution may cause additional data transfer overhead for
consumers.

3) Partitioning Scheme: For the producer, adopting differ-
ent partitioning schemes such as random partitioning, range
partitioning, or hash partitioning will incur varying amount
of overheads. For example, range partitioning requires sorting
objects; and hash partitioning requires computing the hash
function for each object. On the other side, the partitioning
scheme of the data can significantly impact the consumer
job’s performance: range partitioning can accelerate consum-
ing workloads that involve range-based filtering operations
by avoiding unnecessary scanning overhead; and hash par-
titioning of two correlated datasets based on the join key
can speedup corresponding join consumers by getting rid
of the re-partitioning (i.e. shuffling) overhead. For example,
as illustrated in Fig. 2, consider two producers create two
N×N matrices, A and B, and a consumer performs distributed
multiplication of the two matrices. Then if the producers
partition A and B, so that A[i][j] co-locates with B[j][k] for
any i, j, k, e.g. the j-th column of A and the j-th row of
B both get dispatched to the same node j%nh, where nh
represents the number of hosts in the cluster. Then the matrix
multiplication consumer can avoid the re-partitioning overhead
for computing the multiplications of all pairs of A[i][j] and
B[j][k].

Gap 3. If the partitioning scheme is set unaware of the
consumer filtering and joining operations, undesirable data
partitioning scheme may cause additional scanning or shuf-
fling overhead for consumers.

4) Replication Factor: For the producer, increasing repli-
cation factor will increase the volume of data to write to DFS.

For a consumer, increasing the replication factor of the input
data can enable a task easier to be scheduled with data co-
located on the same node, thus improving the data locality.

Gap 4. If the number of replication factor is set unaware of
how different replication factors impact consumer’s locality,
overall performance may not be optimal.

C. Problem Statement

This paper is focused on following problem: to automati-
cally determine the best data placement parameters, such as
block size, number of partitions, partitioning schemes, and
replication factor, for the output data of a given producer,
so that the overall performance including the producer and
consumer(s) in an inter-job WORM scenario can be optimized.

All applications including the inter-job WORM scenario,
such as data warehouse applications, analytic flows, and etc.,
should benefit from such optimization.

III. PRODUCER-CONSUMER MODEL

A. Model and Notations

We propose a Producer-Consumer model, shown in Fig. 1.
The producer writes output data to DFS, while the data will
be processed by consumers.

To achieve the optimal overall performance, we seek to
minimize the total overhead (described in EQ(1)) involved in
this Producer-Consumer model: the overhead of writing data to
storage in the producer job stage Oproducer and the overhead
of transferring data in all consumers’ job stages. We group
consumers having similar run-time behavior as a consumer
type. We let Oconsumeri denote the overhead caused by the i-th
type of consumers, and let fi denote the number of occurrences
for the i-th type of consumer.

Ototal = Oproducer +

n∑
i=1

fi ×Oconsumeri (1)

We integrate the Short-living-Task-based scheduling and
Long-living-Processed-based scheduling by abstracting a
higher-level scheduling model, in which the total number
of input splits that can be processed concurrently (i.e. the
parallelism) are defined as ns, which is a concept similar to
the number of slots in Hadoop [35] and Spark [36], and close
to the number of long-living processes in PlinyCompute [38].
Then each time when a slot is available, or a long-living
process is idle, an input split will be fetched to be processed
by a newly created short-living thread as in Hadoop and Spark,
or an idle long-living process as in PlinyCompute. All tasks
that run concurrently form a wave.

We denote the data output from the producer as a set of
objects, as D = {x}, the number of objects as ‖D‖, and
the cluster as a set of hosts, as H = {h}. The replication
factor is denoted as r. We also assume the total size (in bytes)
of D is denoted as S, and the block size is denoted as B.
In addition, we assume the producer uses k threads to shuffle



data into p partitions following a partitioning function denoted
as f : x→ h.

At the consumer side, the split size for the i-th consumer is
represented as si, and the desired partitioning scheme of the
input data is denoted as a function gi : x→ h.

B. Producer Overhead Modeling

The producer overhead falls into two parts: the partitioning
overhead denoted as Opartitioning that the partitioning threads
take to shuffle objects and the writing overhead denoted as
Owriting that the writing threads take to write partitions to
disk.

For a single object x, its communication overhead involved
in partitioning can be illustrated in EQ(2), where host(x) rep-
resents the host node where x resides before being partitioned,
and op represents the unit communication overhead (in terms
of latency) associated with each object that is partitioned to a
remote node.

opartition(x) =

{
op host(x) 6= f(x)
0 host(x) = f(x)

(2)

Then the total communication overhead involved in parti-
tioning can be described as

∑
x∈D opartition(x), which is to

sum the overhead for all objects.
In addition, the computation overhead involved in partition-

ing can be represented as of × ns×S
k , where of represents the

unit computation overhead for running partition function f on
unit size of data.

Then, the total partitioning overhead can be represented as
EQ(3), where of × ns×S

k models the per wave overhead, and
d k
nse represents the number of waves.

Opartition =
∑
x∈D

opartition(x) + of ×
ns× S

k
× d k

ns
e (3)

The overhead involved in producer writing process falls
into two categories: one is per-block overhead, including
overhead about meta data management and disk seek, and we
let oi denote its unit overhead; and the other one is per-byte
overhead, such as writing data to storage, and we let ow denote
unit per-byte ovehead. ow is relevant with disk speed and disk
number.

The total per-block and per-byte overhead for each writing
task then can be represented as oi× S

B×r+ow×S×r
p . In addition,

the number of waves can be computed as nw = d p
nse.

Because writing tasks in a wave can execute in parallel,
according to Amdahl’s law [6], Owriting can be computed as
EQ(4).

Owriting =
oi × S

B × r + ow × S × r

p
× d p

ns
e (4)

Therefore, we can further formulate producer overhead as
described in EQ(5).

Oproducer = Opartition +Owriting (5)

C. Consumer Overhead Modeling

The placement of the input data can also impact the per-
formance of consumer jobs and incur two types of overhead.
One is the re-partitioning overhead if the partitioning scheme
is not desirable (i.e. f 6= gi). The other is the reading overhead
due to the inconsistency between split size and block size
(i.e. B 6= si), and non-proportional data distribution (i.e.
p%ns 6= 0).

The re-partitioning overhead for each object in the i-th
consumer job can be modeled as EQ(6).

orepartitioni
(x) =

{
op f(x) 6= gi(x)
0 f(x) = gi(x)

(6)

Then the overall re-partition overhead aggregated for all
objects in the i-th consumer job can be represented as EQ(7).

Orepartitioni =
∑
x∈D

orepartitioni(x) (7)

In addition, if ot is used to represent the average per-byte
overhead of transferring data from remote nodes to form input
splits, and pj is used to denote the expected percentage of
split data locating on remote nodes for the j-th task, then the
expectation of data transfer overhead for each task in the i-th
consumer, denoted as oinputi , can be described as EQ(8).

oinputi =

∑ S
si
j=1 ot × (pj × si)

S
si

(8)

Because the number of waves can be computed as nw =

d
‖D‖
si

ns e, the overhead for forming input splits in the i-th
consumer, Oinputi can be modeled as EQ(9).

Oinputi = oinputi ×nw =

∑ S
si
j=1 ot × (pj × si)

S
si

×d
S
si

ns
e (9)

Then, the total overhead caused by data placement in the
i-th consumer can be represented by EQ(10).

Oconsumeri = Orepartitioni
+Oinputi (10)

D. Useful Rules Deducted

Based on the Producer-Consumer Model, we can derive four
rules through deductions. (Please refer to the Appendix for
more detailed proofs.)

1. Consistent Partitioning Scheme Rule. Oconsumeri can be
minimized only if the partitioning scheme of the input data
is consistent with the desired partitioning scheme of the i-th
consumer job. (i.e. f = gi).

If the data is already partitioned as desired, each object
resides on the right host, and Orepartitioni

= 0.

2. Aligned Split and Block Size Rule. Oconsumeri can be
minimized only if block size is equal to split size (i.e. si = B).

Intuitively, if block size is smaller than input split size,
then a split consists of two or more blocks that are possibly



stored in different nodes, and part of this split may have to
be transferred. If block size is larger, a block is going to be
processed by two or more tasks that can possibly run on
different nodes. The latter case also generates unnecessary
network transfer.

3. Proportional Data Distribution Rule. Oconsumeri can
be minimized only if the size of data stored in each node
is proportional to the number of slots in each node (i.e.
∀node j, nsj/ns = nbj/nb, where nb represents total number
of blocks and nbj represents number of blocks on the j-th
node).

This rule is to ensure that the data distribution should be
proportional to the resource distribution. A node with more
computation power should be stored with more data.

4. Invariant Replication Rule. If for a consumer job, the
storage block size is aligned with task split size and input
data is distributed proportionally to slot number for each node
in the cluster (i.e. si = B and ∀node j, nsj/ns = nbj/nb),
there will be Oinpupti = 0, regardless of the replication factor.
Therefore, tuning replication factor can not further improve the
performance of this particular consumer.

IV. WATSON SYSTEM OVERVIEW

A. Data Placement Parameter Tuning

Based on the Producer-Consumer Model and the four de-
ductions introduced in Section III-D, we propose an automatic
parameter tuning approach based on a greedy strategy [41] for
data placement in WORM scenario.

The main idea is to optimize for the dominant consumer
type. The dominant consumer type (abbreviated as DCT)
refers to the consumer type that has the highest occurrences
in all consumer types. Once DCT is identified, we optimize
its performance by setting the partitioning scheme to be the
desired partitioning scheme of DCT, based on Rule 1; setting
data block size to be equal to DCT’s split size, according
to Rule 2; and then setting the number of partitions to be
proportional to slot number for each node, according to Rule
3. Thus we transform the problem to a searching problem with
only single parameter, which is the optimal replication factor
r in a user specified range [rdefault, rmax]. Usually, we set
rdefault = 3 and rmax = 5. The algorithm is illustrated in
Alg. 1, where mb represents the maximum memory resources
available for each slot, and other notations are explained in
Sec. III-A.

During the search process, we simplify Opartition and
Orepartitioni

to be zero, as these parts of overhead are ir-
relevant with the value of r. The formulation of pi can be
found in Eq(19) in Appendix.

If heterogeneous replication [39] is applied with a repli-
cation factor of r, we can extend the above algorithm to
select top-r DCTs, and each replica can have data placement
parameters tuned to meet the requirements of one of r DCTs.

While the algorithm is straight-forward, the challenge is that
the greedy algorithm requires workload-level predictions, such
as the frequency, desired partitioning scheme, and desired split

Algorithm 1 Greedy Strategy with Multi-way Block-level
Replication.
Output: Block Size: B; Partition Number: np; Partitioning Scheme:

f ; Replication factor: r
1: dct← searchIndexOfMostFrequentCustomerType()
2: if sdct × ns > S then
3: B ← S/ns
4: else
5: B ← sdct
6: end if
7: f ← gdct
8: nw ← S

mb×ns
9: np← nw × ns

10: Omin ←∞
11: roptimal ← rdefault
12: if n > 1 then
13: for each rdefault ≤ r ≤ rmax do
14: O ← Oproducer +

∑n
i=1 fi ·Oconsumeri

15: if O < Omin then
16: Omin ← O
17: roptimal ← r
18: end if
19: end for
20: r ← roptimal

21: end if
22: return

TABLE I
WORKLOAD INFORMATION REQUIRED BY THE GREEDY ALGORITHM

Notation Description
C Set of consumer job types {consumeri}
fi Occurences of the i-th consumer job type
gi partitioning scheme of the i-th consumer job type
si Split size of the i-th consumer job type

size as well as platform information, such as the desired num-
ber of slots on each cluster node, to compute the optimal data
placement parameters. While it is relatively easier to obtain
platform-related information that is usually static [16], [33], it
is difficult to predict information regarding future workloads
(i.e. consumers). In this paper, we mainly discuss how to
obtain workload-related information as listed in TABLE I.

B. Prediction of Workload-level Information

It is observed in real production deployments in Facebook,
Cloudera, and Microsoft that a significant portion of running
jobs will re-execute in the future [9], [19]. This implies that
it is possible to predict runtime behavior of a job based on its
historical runs.

So the main idea is that when a job is going to write
data to storage, we can predict the potential consumers of
the data, based on historical producer-consumer patterns. That
is, if a historical job once consumed data written by a similar
producer, we assume the producer-consumer workflow will re-
occur, and the job may execute again to consume the data that
is being written now. Then we can obtain a set of predicted
consumer jobs through historical workflow analysis.

Thus, the two challenging questions are:



(1) How to know the current running job is a re-execution
of a historical run of the same job? In SQL-based systems,
it can be easily achieved by matching the relational algebra
representation. However, it is not so easy for applications that
heavily use User Defined Functions (UDFs).
(2) How to efficiently analyze workflows to predict consumer
job information? Here, a workflow represents a set of jobs that
have producer-consumer relationships, where a job consumes
outputs of other jobs.

We address these questions in the next two sections.
1) Job Matching: Existing works such as MRTuner [33]

and Foreseer [41] propose to concatenate job names and
parameter values for classifying jobs. Such approach is in-
sufficient for cloud environment, since different executions of
the same job submitted by different users could use different
job names. Other existing works such as ProfSpan [42] use
frequent instruction sequences profiled from hardware sample
data to classify jobs, which is still not ideal, because some-
times slight changes (e.g. one line change in join predicate)
could bring significant impacts to workload behavior. Another
approach is to cluster jobs by performance metrics such
as CPU utilization, memory utilization, and I/O activities
captured in time series. However, it does not work well in our
case, because the same job running with different sizes of data
must have very different performance metrics and resource
utilization, while actually such executions should be classified
as belonging to the same job. Another approach is to abstract
a job as a computational graph based on its intermediate
representation (IR), where each node is an operator that is
customized by UDFs (such as map, reduce, join, aggregate,
groupBy, and flatten), and each edge represents the data. Then
the job matching problem is modeled as a graph isomorphism
problem [13]. We propose to use this approach in most cases,
but to use job identifiers and frequent instruction sequences to
match jobs on platforms where IR is not available for analysis.

2) Consumer Prediction.: Given a producer with specific
output data path, we can predict the consumers of the output
data as job instances belonging to any of following two sets:
• Set of Historical Job Successors. A historical job

successor is a historical job instance whose input data
is the output data of another historical job instance that
matches current producer’s IR.

• Set of Historical Data Successors. A historical data
successor is a historical job instance and its input data
path is the same with the producer’s output data path.

Given the consumers predicted for the data being written by
the given producer, we can further predict the occurrences, task
split size, and desired partitioning scheme of each consumer.

1. Occurrence Prediction. For each type of consumer jobs,
we track its occurrences, and use the inverse of its most recent
reference distance (i.e. the difference of the two most recent
access time) to predict its frequency.

2. Desired Split Size Prediction. If the task output size
becomes larger than memory buffer size, disk spills will occur
and cause additional latency. So the best practice to tune the

split size is to keep the output bytes generated bounded by
the memory buffer size [33]. Therefore, given memory buffer
size for each task not changed, the optimal split size can be
regarded as fixed for a job type, no matter how data input
size changes. In this work, for each job type, we will first
analyze its historical execution performance counters to derive
the selectivity ratio of each job stage, which is defined as the
ratio of the size of output data to the size of the input data.
This selectivity ratio (denoted as sr) is then used to estimate
the desired input split size of the job stage. We consider two
cases with different memory architectures. In the first case,
each thread reads input from disk and uses a thread-local
buffer to cache the output, which is then written to disk or
shuffled over network, while disk files can be cached in OS
buffer cache. Hadoop is an example system of this case. In the
second case, all threads/processes on the same worker share
a centralized cache that can be used to cache both input and
output in memory. Both Spark and PlinyCompute fall in the
second case. For both situations, the goal of tuning split size
is to avoid disk spills by caching all data required for a wave,
including input and output, in the main memory. But there
exists a special situation where input data size is small and
cannot fully utilize the memory resource. In this case, we
choose to fully utilize the CPU resource by distributing the
data to all threads on each worker. So the desired split size
can be estimated based on Eq. 11.

sdesired = min(
avail mem size

(1 + sr)× ns
, S/ns) (11)

3. Desired Partitioning Scheme Prediction. In relational sys-
tems where the interface is based on SQL, such as Hive [34],
SparkSQL [7], it is easy to infer the desired partitioning
scheme of a consumer query. For example, for a join query
such as ”Select employee.id, department.code From employee,
department, Where employee.depart == department.name”, it
is easy to infer that the desired partitioning scheme of the
employee table should be hash partitioning on the depart field;
and the desired scheme of the department table should be hash
partitioning on the name field, so that, the join can avoid the
shuffling overhead. In Spark, as all join interface is based
on key-value pairs, we can derive from the IR that a join
consumer’s input data should be hash partitioned using the
function that extracts the join keys. In PlinyCompute [38], we
developed a domain-specific language (DSL) for programmers
to specify the details of join predicates in form of lambda
calculus [8], [27], so that a system optimizer software can infer
the desired partitioning scheme. Due to space limitation, we
leave the detailed description of IR matching and the discovery
of desired partitioners to future works.

C. WATSON System Design

In this section, we propose the design of a cross-layer solu-
tion: WATSON, which is processing between computational
framework and storage to enable workload-aware data storage.
WATSON is responsible for collecting historical information,
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predicting workload information, and optimizing data place-
ment parameters using the greedy strategy as described in
Sec. IV-A.

As shown in Fig. 3, WATSON has the following compo-
nents:

1) Historical Workload Information Collector: This
component collects and manages historical workload-level
information, such as job IR, job input path, job output path,
job input data size, and job output data size. It also collects and
manages platform-related information, such as number of CPU
cores and memory size on each cluster node. The collected
information is stored in a SQLite database.

2) Online Consumer Behavior Predictor: Given a pro-
ducer going to write data to storage, this component analyzes
the producer’s job IR and output path. Then it predicts
consumer information as listed in TABLE I based on historical
workflow analysis as described previously.

3) Online Data Placement Optimizer: Given the infor-
mation predicted by the Online Workload Behavior Predictor,
the Data Placement Optimizer is responsible for computing the
optimal block size, number of partitions, partitioning scheme,
and replication factor, following Alg. 1, to configure the
storage of data that is to be output by producer.

V. EVALUATION

A. Experiment Environment Setup

We implemented the WATSON system on top of Pliny-
Compute [38] and Hadoop 1.1.1. For Hadoop, we support
the tuning of only block size, number of partitions, and
replication factor, and on Hadoop we compare WATSON to
existing automatic parameter tuning tool such as MRTuner. For
PlinyCompute, we not only tune these parameters, but also
tune the partitioning schemes by analyzing PlinyCompute’s
Lambda Calculus IR at runtime.

In this section, we evaluate the performance improvement
gained by WATSON for Big Data analytics workloads on
these platforms. We deploy PlinyCompute on a cluster consists
of ten AWS r4.2xlarge instances on AWS. Each instance
consists of eight cores, 61GB memory, and 100GB CPU cores.
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Fig. 4. Profiling results for CPU, memory and network before and after tuning
block size and number of partition

For PlinyCompute, we tune the number of slots to eight,
and the buffer pool size to fifty gigabytes. For Hadoop, we
deploy it on a cluster that consists of ten HS21 blade servers
connected by 10Gb Ethernet. Each of the nodes has four single
core 3.6GHz processor, 4GB memory, and 130GB disk drive.
The slot number is set to four, and all other parameters are
configured by MRTuner [33].

B. Hadoop Platform

On the Hadoop Platform, we only tune the block size,
number of partitions, and replication factor. Due to the unavail-
ability of an analyzable IR to unobscure user defined map and
reduce functions, we cannot tune the partitioning schemes
on this platform.

1) Model Verification: Because the rules obtained in Sec-
tion III are fundamental to Algorithm 1, we first examine
whether experiment results are consistent with some of these
rules.
Block Size and Number of Partitions We test the HiBench
Terasort benchmark [18] with 50GB data generated by Teragen
and processed by Terasort. All the run-time parameters are
tuned by MRTuner.

As illustrated in Fig. 4(a) captured by Ganglia [26], we
observe significant network transfer overhead and CPU over-
head incurred in the map setup phase, and the total elapsed
time measured is 1539 seconds.

We manually tune the data placement parameters for the
input data so that block size is aligned with the Terasort run-
time split size (232MB) and tune the number of partitions from
the default value of 96 to 38.

Then as shown in Fig. 4(b) captured by Ganglia, we observe
significant reduction in network transfer overhead and CPU
overhead at the map setup phase. The tested total elapsed time
is 1096 seconds, which shows 28.8% improvement.

Above results are consistent with Deduction 2 & 3.
Replication Factor. We generate 10GB data with varying
replication factors using Teragen and Wordgen respectively for
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Fig. 5. Replication factor’s performance impacts to consumer and producer

Terasort and WordCount to process. We tune data placement
parameters for both workloads, so that data are uniformly
distributed and block size is aligned with split size.

As shown in Fig. 5(a), for both workloads, increase of the
replication factor can not improve consumer performance. This
observation is consistent with Deduction 4.

In addition, for both workloads, the data writing latency
increases almost linearly with the number of replicas as shown
in Fig. 5(b). This is consistent with the linear relationship
between the writing overhead and replication factor, as used
in our model.

2) Performance Comparison: We also compared WAT-
SON to MRTuner, an existing history based automatic param-
eter tuning tool. Because MRTuner is implemented on Hadoop
v 1.1.1, so we also implemented WATSON on the same
platform. We evaluated both tools using three representative
benchmarks from the HiBench benchmark suite [18]: TeraSort,
k-means, and NutchIndex.

We first ran these workloads in training runs, and use the
Historical Workload Information Collector of WATSON to
parse the Hadoop configuration files and counter files gener-
ated by those training runs and store extracted information into
a SQLite database.

In the training step, the job configurations for all job
instances are tuned for optimal performance using MR-
Tuner [33]. TABLE II also lists the tuned split size for the
consumer in each workload. The second step is the testing step,
wherein for each workload, we ran it against six input datasets
with varying sizes as shown in TABLE III. Among them, three
datasets’ sizes are exactly the same with the training datasets’
sizes (denoted as Trained1, Trained2 and Trained3); three
datasets’ sizes are different with any of the training datasets
(denoted as NotTrained1, NotTrained2 and NotTrained3).

For each dataset of each workload, we compare the con-
sumers’ performance results for using MRTuner and using
both WATSON and MRTuner. For each test run where WAT-
SON is applied, once the producer is submitted to run, WAT-

SON APIs will be invoked immediately to predict potential
consumer and consumer’s behavior, to compute optimal data
placement parameters, and to apply those parameters.

We measure the total elapsed time in each workload. The
results for consumers are shown in Fig. 6. For Terasort,
KMeans, and NutchIndex, WATSON can reduce the total
elapsed time by up to 37%, 30%, and 15%, respectively.
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Fig. 6. Performance comparison with MRTuner on the Hadoop platform

C. PlinyCompute Platform

PlinyCompute is a recent distributed object-oriented rela-
tional system [38]. We configure it to use eight long-living
processes to compute and process input splits, which match
the number of CPU cores. Different with Hadoop’s mem-
ory architecture that uses thread-local buffers, PlinyCompute
deploys a cache that is shared by all processes on each
worker, which caches both input splits and output data in
memory. Therefore, we use Eq. 11 to estimate the split
size. In addition, it also provides a lambda calculus DSL,
which can be used to describe UDFs, so that UDFs are
not opaque to the system any more. For example, utilizing
lambda calculus DSL, a join consumer that has its join
selection UDF returning ”employee.getSupervisorName() ==
supervisor.getName()” will be compiled to a tree of lambda
terms, so that WATSON can easily traverse the tree to under-
stand the desired partitioning schemes and extract partitioning
functions for the employee dataset, and the supervisor dataset,
respectively. In the above example, the desired partition key



TABLE II
INPUT DATA SIZE AND CONSUMER JOB SPLIT SIZE FOR TRAINING STEP

Benchmark Dataset1 Size Dataset2 Size Dataset3 Size Tuned Split Size
Terasort 10GB 20GB 30GB 232MB
KMeans 8GB 16GB 24GB 211MB
NutchIndex 3GB 6GB 9GB 146MB
Bayesian 10GB 20GB 30GB 4MB

TABLE III
INPUT DATA SIZE FOR TESTING STEP

Benchmark Trained1 Trained2 Trained3 NotTrained1 NotTrained2 NotTrained3
Terasort 10GB 20GB 30GB 15GB 25GB 35GB
KMeans 8GB 16GB 24GB 12GB 20GB 28GB
NutchIndex 3GB 6GB 9GB 4.5GB 7.5GB 10.5GB
Bayesian 10GB 20GB 30GB 15GB 25GB 35GB

extraction function for hash-partitioning the supervisor dataset
is supervisor.getName(), and for the employee dataset is em-
ployee.getSupervisorName(). Then in each node, the employee
objects and supervisor objects having the same values of join
keys are co-located together and a distributed join can be
simplified as local joins on each node, which avoids significant
amount of the re-partitioning/shuffling overhead. With the
IR capability of PlinyCompute, we can tune the partitioning
schemes for different workloads.

On the PlinyCompute platform, we selected four repre-
sentative applications: matrix multiplication, sparse matrix
multiplication, an iterative PageRank analytics flow, and a
dataware house applications with TPC-H queries. All of these
applications extensively involve join operations which can
benefit from tuning of partitioning schemes. For these appli-
cations, we mainly compare the consumers’ performance of
using WATSON to the case of using all default data placement
parameters of round-robin partitioning, 256MB block size and
split size, and 3 replicas.

To test these workflows with WATSON, we first ran each
workflow once to form history, which is stored in WATSON’s
historical information collector as described in Sec. IV-B.

1) Dense Matrix Multiplication: Matrix multiplication is a
computational intensive application, which means to multiply
even small sizes of matrices may take significant computa-
tional costs. For example, if distribute a 1, 000 × 1, 000, 000
matrix (stored as set of 1, 000 1, 000 × 1, 000 blocks) to
ten workers, the data on each worker is merely hundreds of
megabytes and cannot fully utilize the memory resources. In
addition, there are only four blocks on each worker that needs
to be computed by eight processes, so four processes will be
idle and cannot fully utilize the CPU resources. By simply
tuning the aligned block and split size to around 100MB to
guarantee that every process has at least one split to process,
we can observe about 1.2× performance speedup for dense
matrix multiplication of a 1, 000 × 1, 000, 000 matrix and a
1, 000, 000× 1, 000 matrix.

In addition, the distributed matrix multiplication involves
an expensive join operation, as illustrated in Fig. 2. Therefore
we observe significant performance speedup when multiply a
1, 000 ×m matrix and a m × 1, 000 matrix with varying m
from 1, 000, 000 to 10, 000, 000 with WATSON applied to

optimize the partitioning scheme as well as other parameters.
The results are illustrated in Fig. 7. Due to the significant
fluctuations of latency measured in AWS, normalized latency
is used here.
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Fig. 7. Performance comparison of dense matrix multiplication.
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Fig. 8. Performance comparison of sparse matrix multiplication.

2) Sparse matrix multiplication: In this application, we first
created a sparse matrix as a set of 1, 000 by 1, 000 sparse
matrix blocks represented in compressed sparse row (CSR)
format using Intel MKL library. Similar with the dense matrix
multiplication application, the first matrix is in the shape of



1, 000×m and the second matrix is in the shape of m×1, 000.
We ran the sparse matrix multiplication operator with varying
value of m and sparsity. The results are illustrated in Fig. 8(a).

3) PageRank: PageRank is a graph analytics algorithm that
assigns a weight to each of a linked set of documents, such as
web pages to measure and rank the importance of pages. The
producer randomly generates a varying number of web pages
and each page has five links in average with a probability of
0.85 for user continuing to click a link at each step (damping
factor). We use five iterations for each test. The performance
speedups are illustrated in Fig. 9.
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Fig. 9. Performance comparison of PageRank.

4) TPC-H Queries: We tested WATSON using TPC-H
data warehouse workload that has 40GB randomly generated
data including seven linked tables for storing information
related with lineitems, orders, suppliers, customers, parts,
partsupp, nations and so on. We ran ten TPC-H standard
queries and the results are illustrated in Fig. 10.
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Fig. 10. Performance evaluation of TPC-H queries.

D. Further Discussion
Compared to PlinyCompute, WATSON achieves less per-

formance gain on Hadoop, mainly because of two reasons.
First, due to the lack of an IR or similar mechanisms to reason
about UDFs on Hadoop, the implementation of WATSON on
Hadoop, as well as MRTuner, can not tune the partitioning
scheme, which is fully tuned in PlinyCompute and contributes
to a major portion of performance gain achieved for join
workloads on PlinyCompute. Second, on Hadoop, we are
comparing to MRTuner that has tuned related parameters, such
as the input split size, for each workload. Above results show
that on Hadoop, WATSON can work as a complement to ex-
isting workload-based parameter tuning tool such as MRTuner
and similar tools to further optimize storage parameters for
workflows, where producer workloads write data to storage,
which is then processed by consumer workloads.

E. Spark Platform

While we did not implement WATSON for Spark, we
manually tuned the block size on Spark following the Aligned
Split and Block Size Rules to demonstrate the potential of
our approach on this platform. We first computed the optimal
input split size by dividing the total available memory to
store the output data by the number of slots, as described in
Alg. 1 for a Spark job stage, and then set the block size to be
consistent with the split size. We implemented a Top-k query
workload on denormalized TPC-H data on Spark, where each
customer object contains a list of order objects, each order
object contains a list of lineitem objects, and each lineitem
object contains a part object and a supplier object. Given a
list of parts, the Top-k query returns the k closest customers
whose list of ordered parts are the most similar to the given
list.

We deployed Spark on the same eleven-node cluster of
PlinyCompute, as mentioned in in Sec. V-A. For Spark, we
tuned the number of cores to eight, and set the executor
memory size to 50 gigabytes.

We generated 9.6 millions of denormalized customer
objects, which is about 160GB data size in total. Additionally,
we configured k to be between 1,024 and 10,240. We
compared two cases: in the first case, we use default HDFS
block size of 128MB; and in the second case, we compute
and configure the optimal split size to be 2GB. The optimal
split size is computed as 2GB, because for Top-k job, the
output data (k top elements) is much smaller in size than
input data. Therefore, using large partition size can fully
utilize the memory and significantly reduce the number
of tasks to avoid the overhead for launching unnecessary
tasks. We configured the optimal split size by setting
”spark.hadoop.mapreduce.input.fileinputformat.split.minsize=
2147483648” and ”spark.hadoop.mapreduce.input.
fileinputformat.split.maxsize=2147483648” in the Spark
job configuration. We also configured the block size
correspondingly. As a result, the end-to-end latency is
reduced from 181 seconds to 59 seconds, which is three times
speedup for this workload.

This result demonstrates that automatically tuning of data
placement parameters in Spark is promising, which we will
explore in more detail in the future.

VI. RELATED WORKS

A. MapReduce Auto-Tuner and Workflow Optimizer

MRTuner [33] and What-if Engine [16], are parameter auto-
tuning tools for single MapReduce job, and are not considering
the inter-job producer-consumer relationship.

Starfish [17] provides a vision about workflow-level op-
timization that mentions producer-consumer relationship, as
well as a simple discussion regarding data layout optimization.
However, their solution is based on What-if Engine [16], which
is a cost model for a single job. As a result, they overlook many
important inter-job trade-offs such as number of partitions and
the alignment of block size and split size, which are the two



main factors for the performance speedup achieved in this
paper.

Other workflow optimizers like Stubby [24] and YS-
mart [21] are targeting at optimization of job execution plan,
and are not tuning data placement parameters. In addition, their
cost model or rules are focused on performance comparison
of different job execution plans, and can not describe the
trade-offs caused by data placement parameters in an inter-
job WORM scenario.

Recent works apply reinforcement learning to the parameter
tuning in relational database, such as CDBTune [37] and
QTune [22]. However the tuning of data placement parameters
in standalone relational database systems is very different to
Big Data frameworks built on top of distributed file systems.

B. Performance Improvement for WORM Scenario
Tachyon [23] could be used to improve performance of

inter-job WORM scenario, however it proposes fundamental
changes to MapReduce read/write principles, while our work
is based on the cases where MapReduce directly reads from
and writes to block-based distributed file system. In addition,
our work enables a mathematical method to automatically
tune data placement parameters and achieve performance
improvement independent of job execution sequence.

CoHadoop [12] can improve the performance for the inter-
job WORM scenario that includes a consumer doing join-
like operations, by co-locating datasets with the same join
key. HadoopDB [3] replaces HDFS using relational databases.
Then it allows user to specify the partition key for each table to
partition data at loading time. Hadoop++ [11] proposes a co-
partitioned join operator called Trojan join and assumes appli-
cation programmer understand the data schema and workloads
and trust them to use Trojan join properly.

Different with these works, WATSON is not limited to join-
like consumers, because we are focused on data placement
parameters which are generic to any inter-job WORM sce-
nario. In addition, we provide an automatic parameter tuning
method, while CoHadoop relies on information provided by
human.

C. Physical Database Design for Relational Databases.
There are a lot of works that recommonds physical database

design schemes, including partitioning schemes, indexing
schemes, materialization schemes and so on, for relational
database, including IBM DB2 Partition Advisor [31], Mi-
crosoft’s AutoAdmin for SQLServer [4] MESA [28], Legob-
ase [32], AdaptDB [25], Schism [10], Sword [20], Horticul-
ture [29], etc.. However, these works are not designed for the
Big Data analytics and NoSQL data, and cannot be applied to
tune data placement parameters on distributed file systems.

VII. CONCLUSION

This paper presents WATSON, a novel cross-layer solution
to address the auto-tuning problem of storage parameters for
the inter-job WORM scenario. It employs a novel Producer-
Consumer model to describe the inter-job performance trade-
offs caused by data placement parameters. Based on this

model, it then takes an efficient greedy strategy to greatly
reduce the search space for optimal data placement parameters,
by utilizing the rules derived from the model. In addition,
WATSON also includes a workload prediction mechanism to
help bridge the gap between storage and computation and
to inform the storage writing process with workload-level
information. The experimental evaluation demonstrates the
effectiveness of WATSON.
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APPENDIX

The consistent partitioning scheme rule is quite intuitive
(when gi = f , Orepartitioni

= 0), so we omit the proof here
and focus on the remaining three rules. Because here we only
consider a particular consumer, we use consumer to replace
consumeri, and split size s to replace si.

A. Proof of the Block and Split Alignment Rule
Oconsumer can be minimized only if block size is equal to

split size (i.e. s = B).
Proof:

Suppose input split for the i-th mapper has m subsplits,
each of them on a different node. We assume that SSi

is a reverse-order array that contains sizes of all subsplits,
SSi = {ssi0 , ..., ssim−1 , 0}, where ssi0 is the largest size. We
further denote the probability that the i-th task is scheduled to
the node having the j-th subsplit ssij as qij . For all situations
that this task is scheduled to a node without any subsplit, we
denote them as ssim , with a probability qim, and all data (S)
has to be copied from other nodes. When this task is scheduled
to a node with a subsplit size ssij , with the probability qij ,
other subsplits (with a total size s − ssij ) have to be copied
to this node. Thus, for the i-th map task, pi–the expected
percentage of data that has to be transferred from remote
nodes–can be illustrated as EQ.(12):

pi =

∑m
j=0 (s− ssij ) · qij

s

where
m∑
j=0

qij = 1
(12)

If block size is equal to input split size, then we will have
s = B. Since a block is the smallest unit for data storage and
a block can only be at one node, there is only one subsplit,
with m = 1 and SSi = {s, 0}. Based on EQ(12), pi can be
simplified as EQ(13), where we add single quote mark to pi



and qi1 to distinguish those symbols with their counterparts in
EQ(12).

p′i =
s · q′i1
s

= q′i1 (13)

Based on our assumption of the FIFO scheduling policy, we
will have the following two relations:
• Relation 1: Since subsplits are transparent to the current

scheduler, the probability that a task will be scheduled
on the split with the largest size will be the same, which
means q′i0 = qi0. Thus, when block size is equal to input
split size, we will have a relation described as EQ(14),
based on the the condition of EQ(12).

q′i1 = 1− q′i0 = 1− qi0 =

m∑
j=1

qij (14)

• Relation 2: Since Hadoop defaulted FIFO scheduler at
first tries to schedule a task to the node with the largest
subsplit, we will have qi0 ≥ qij(if j > 0).

Based on these two relations, we will have pi ≥ p′i in the
end. To prove this, at first we expand EQ(12) as follows.

pi =
(s− ssi0)

s
· qi0 +

(s− ssi1)

s
· qi1 + ...

(S − ssim)

S
· qim
(15)

When we combine EQ(13) and EQ(14) in Relation 1, we
have p′i = q′i1 = qi1 + qi2 + ...+ qim.

Thus, the subtraction of pi and p′i can be shown as follows.

pi− p′i =
(s− ssi0)

s
· qi0−

ssi1
s
· qi1− ...− ssim

s
· qim (16)

Because (s−ssi0 )
S · qi0 can be expressed as

ssi1+ssi2+...+ssim
s · qi0, EQ.( 16) can be transfromed to

the following one.

pi−p′i =
ssi1
s
·(qi0−qi1)+

ss02
s
·(qi0−qi2)+...+

ss0m
s
·(qi0−qim)

(17)
Based on Relation 2, since every term of EQ.( 17) is larger

than 0, thus we have pi − p′i ≥ 0.

Based on EQ.(8), we have Oinput − O′input ≥ 0, where
O′input represents data transfer overhead of consumers when
block size is equal to split size, i.e. s = B.

Now Rule 2 has been proved successfully.

B. Proof of the Proportional Data Distribution Rule
Oconsumer can be minimized only if size of data stored

in each node is proportional to the number of slots in each
node. (i.e. ∀node j, nsj/ns = nbj/nb, where nb represents
total number of blocks and nbj represents number of blocks
on the j-th node).
Proof.
We first consider the case when block size is equal to split size,
i.e. s = B. We let qi0 denote the probability of scheduling the

i-th task to the node storing the input split. Because we assume
the scheduler will try to schedule a task to a data local node
having available slot first, we model qi0 as the ratio of the total
number of tasks that have their splits co-located with the the
i-th task’s split, to the total number of available slots through
all waves of map tasks.

Because replication factor can improve the data locality, we
consider the lower-bound case where replication factor is one.
We use y(i) to represent the host of the input split data for the
i-th task. In addition, we use nsy(i) to represent the number of
slots on the node storing the input split for the i-th task, and
nby(i) to represent the number of blocks on the same node.
We use n to denote the total number of nodes in the cluster.

Then, qi0 can be represented as qi0 = min{nsy(i)·nw
nby(i)

, 1},
where nw represents the number of waves for map tasks.

To maximize the average data-local probability for all tasks,
we have q = qi0 as shown in EQ. 18.

maximize qi0 (0 ≤ i ≤ S

s
)

where qi0 = min{
nsy(i) · nw

nby(i)
, 1}

(18)

It is easy to see that if ∀node j, nsj/ns = nbj/nb, then
there will be qi0 = min{nsnb · nw, 1}. The total number of
map tasks can be expressed as nm = S

s . Then nw can be

represented as nw = dnmns e = d
S
s

nse. Because s = B, there

will be nw = d
S
B

nse = d
nb
nse.

If number of blocks is larger than number of slots (nb >
ns), then qi0 = min{nsnb · d

nb
nse, 1} = 1. Otherwise, nw = 1,

then ns
nb ≥ 1, and there will be qi0 = min{nsnb , 1} = 1.

Therefore, Rule 3 is proved for the case with s = B.
Because subsplit is transparent to scheduler, we can extend

above conclusion to the case when s 6= B. We omit the proof
for the case due to limit of space.

C. Proof of the Invariant Replication Factor Rule
If block size is aligned with split size and data is distributed

proportionally to slot number for each node in the cluster
(i.e. s = B and ∀node j, nsj/ns = nbj/nb), there will be
Oconsumer = 0, regardless with the replication factor.

Proof. When s = B and ∀node j, nsj/ns = nbj/nb, there
will be ∀task i, qi0 = 1, then based on EQ. 8 and EQ. 12, we
can obtain Oconsumer = 0.

Therefore, Rule 1 is proved.

However, when block size is not aligned with split size, a
split consists of multiple subsplits with each subsplit being
from a different block. Increasing replication factor can in-
crease the expected number of blocks which are co-located on
the node executing this task.

For such case, the probability of the j-th subsplit of the i-
th task to be scheduled in a data-local node, denoted by uij ,
can be approximated as the probability that it has at least one
replica co-located with the host, which will be r

n . Then the
portion of data need to be transferred for the i-th task can be
formulated as in EQ. 19.



pi =

m−1∑
j=1

ssij · (1− uij) = (s− ssi0) · (1−
r

n
) (19)
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