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ABSTRACT
Deep neural networks (DNNs) have unleashed a new wave of ap-
plications on mobile devices, such as various intelligent personal
assistants. Most of these applications rely on the use of cloud re-
sources to perform deep learning. With increasingly more powerful
mobile devices, users can perform more deep learning tasks on
the devices. In addition, learning on the devices has important
advantages, such as personalization, privacy, and responsiveness;
however, a good understanding of the capabilities of modern mobile
devices in supporting deep learning is generally lacking. To address
this gap in knowledge, this paper presents a comprehensive study
on performing training and inference on mobile devices. It develops
TensorFlow+, an extension of the widely used TensorFlow frame-
work, to enable training DNNs on devices and use the available
GPUs to accelerate the learning tasks. The study focuses on four
aspects: 1) the performance impact of the network architecture; 2)
the e�ectiveness of using accelerators for learning on mobile de-
vices; 3) the resource and battery usages of training and inference;
and 4) the performance impact on other applications running on
the devices. The results show that the size (width and depth) of a
network as well as the types of layers that it uses are important to
not only meeting the device’s capability but also to the performance
of learning. The study also shows that hardware acceleration is
important to both improving the speed of learning and reducing
the impact on other applications on the device.
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erogeneous (hybrid) systems; Embedded software.

KEYWORDS
Deep learning, neural networks, edge computing, mobile computing

ACM Reference Format:
Yitao Chen, Saman Biookaghazadeh, and Ming Zhao. 2019. Exploring the
Capabilities of Mobile Devices in Supporting Deep Learning. In SEC ’19:
ACM/IEEE Symposium on Edge Computing, November 7–9, 2019, Arlington,
VA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3318216.3363316

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SEC ’19, November 7–9, 2019, Arlington, VA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6733-2/19/11. . . $15.00
https://doi.org/10.1145/3318216.3363316

1 INTRODUCTION
With the rapid advancement of mobile processors, users can ac-
complish a signi�cant amount of daily tasks on mobile devices. In
particular, deep learning has unleashed a new wave of applications,
such as augmented reality, image classi�cation, and face recogni-
tion on mobile devices, using computationally expensive models
such as deep neural networks (DNNs). Such models are usually
trained using scalable cloud resources for hundreds to thousands
of hours.

There are several serious drawbacks with such a cloud-only deep
learning approach: 1) the mobile devices often have to rely on o�-
the-shelf pre-trained models, limiting the models’ adaptation to
the users’ local inputs; 2) users need a reliable network connection
to provide inputs to and obtain results from the models trained in
the cloud; and 3) the rapid growing number of devices and data
that they collect will soon outgrow even the capacity of the cloud
systems.

In comparison, there are important bene�ts of using mobile
devices for deep learning: 1) Personalization—users can tailormodels
with locally available data to better satisfy users’ current needs; 2)
Privacy—the data used for training a tailored model can be better
protected if it is in the owner’s device instead of on the shared
resources in a cloud; 3) Responsiveness—learning on devices can
provide more prompt results, without being a�ected by the possible
outages of the cloud or unreliable connections to the cloud.

Researchers and developers are actively studying new techniques
to enable learning on mobile devices, but a good understanding
of the capabilities of such devices to support learning is generally
lacking. For example, model compression techniques [6, 18, 18, 23,
29] can reduce the size of a model to �t on a mobile device. Another
approach is knowledge transfer, which trains smaller, on-device
networks under the supervision of larger, in-cloud networks [3,
38, 40, 44]. However, these works focus on the algorithm aspect of
deep learning and do not fully explore how well such algorithms
work on mobile devices. Prior works [24, 36] studied performing
inference of neural networks on mobile platforms, but they did
not consider training and did not fully explore the capabilities of
modern mobile devices.

In this paper, we investigate the software and hardware capa-
bilities of mobile devices to support deep learning algorithms. Our
study focuses on the following four main aspects: 1) the impact
of the network architecture (width, depth, and di�erent types of
layers) on learning on devices; 2) the e�ectiveness of using accel-
erators available on devices to help the learning; 3) the impact of
learning on the resource and battery usages of a device; and (4) the
impact on the performance of other applications running on the
same device.
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Since none of the popular deep learning frameworks support
training on mobile devices, we extended TensorFlow (version
r1.3) [1], a widely used framework, to enable training. The vanilla
TensorFlow for Android allows only inference; our extension en-
ables it to train DNNs on Android platform, as well. We also ex-
tended TensorFlow to accelerate learning using the available GPU
on a device, which allows TensorFlow to use RenderScript [17] to
take advantage of heterogeneous hardware and accelerate both
inference and training. In comparison to previous work [2], we
signi�cantly improved TensorFlow to enable the acceleration of
both training and inference, and performed a thorough study on
the e�ectiveness of acceleration.

We focus on DNNs designed for image classi�cation tasks which
have shown impressive capability ever since AlexNet [26] won the
ILSVRC 2012 [39]. We studied models that represent the aforemen-
tioned two possible approaches to utilizing mobile devices in deep
learning: 1) MobileNet [20], a compressed model designed to �t to
a mobile device’s resource constraints, and 2) Mentee network [19],
a small network that can run on a device and receive supervision
from a mentor network in the cloud. We also studied ResNet [45], a
popular model for learning on server platforms. Our test platforms
include several generations of mobile devices, Pixel 2, Nexus 7,
Nexus 5, and an Internet of Things (IoT) platform, Raspberry Pi
3B+.

The most signi�cant results of our study are as follows: 1) The
size (width and depth) of a network and the types of layers that it
uses are important to not only meeting the device’s capability but
also to the performance of learning. Models based on convolutional
layers are more sensitive to the depth whereas models based on
fully-connected layers are more sensitive to the width. Moreover,
convolutional layers are substantially more expensive (two orders
of magnitude slower) than fully-connected layers on the device; 2)
Hardware acceleration is important to improving learning speed
and reducing the impact on other applications on the device. By
using the device’s GPU to accelerate both the forward and back-
ward paths of deep learning, our extended TensorFlow can cut
down the training time by 44.8%. Overall, we conclude that using
mobile devices to support deep learning is feasible, but we need to
pay attention to network architecture and make good use of the
available accelerators to speed up the training.

To the best of our knowledge, our work is the �rst to provide
a comprehensive study of deep learning on mobile devices. The
contributions in this study are as follows: (1) extend commonly used
deep learning frameworks such as TensorFlow to support training
on mobile devices; 2) enable the use of GPUs to accelerate both
training and inference on mobile devices; (3) provide an in-depth
examination of the capabilities of mobile devices for supporting
training and inference using DNNs; and (4) quantitatively analyze
the impact of learning on mobile devices to resource usages and
user experience.

The rest of the paper is organized as follows: Section 2 intro-
duces the background and motivations; Section 3 describes the
methodology for our study; Section 4 presents the analysis of the
experimental results; and Section 5 concludes the paper.
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Figure 1: The forward path and the backward path of a four-layer
CNN [46]. w (·) denotes the weights of each layer. w ⇤ x denotes a
convolution operation between w and x . � is the learning rate. � (·)
is the activation function. L is the loss to be optimized, which is the
di�erence between the prediction and ground truth label.

2 BACKGROUND AND MOTIVATIONS
2.1 Deep Learning and Mobile Computing
Deep learning is the key to various mobile computing tasks, such as
voice recognition, natural language processing, image classi�cation,
and object detection. DNNs have achieved remarkable accuracy
in the above applications compared to other machine learning
algorithms. Image classi�cation is one of the major applications of
deep learning algorithms, which is computationally intensive and
involves a large volume of data. Such tasks obtain images as input
and use neural networks to label each image with a class that the
image belongs to.

A neural network consists of multiple connected layers. A layer is
an abstraction to help with the modular design of a network, where
each layer performs a speci�c mathematical operation. Examples
of common layers include fully-connected layers, which connect to
all neurons from the previous layer and output a weighted sum,
and convolutional layers, which use kernels with various sizes to
extract the features from the overlapped area of the input.

Deep learning tasks include training amodel and using themodel
to perform inference. The training follows the backward path of a
network and updates the weights of each layer iteratively towards a
target. The inference follows the forward path and uses the trained
weights of each layer to make a prediction based on the input. In
the context of image classi�cation, training updates the weights
of a model to reduce the di�erence between the prediction and
the ground truth label, whereas inference uses images as input to
predict the image class. Figure 1 illustrates the forward path and the
backward path of a four-layer convolutional neural network (CNN).
The backward path calculates the partial derivatives of the previous
layers’ input, which involves more calculation compared to the
forward path. Besides, each layer needs to store the intermediate
results to complete the calculation of partial derivatives. Hence, the
backward path calculation is more demanding on both computation
and storage compared to the forward path.

The rapid advancement in mobile computing technologies is
enabling more learning-based applications. These applications are
usually computational- and data-intensive but mobile devices have
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only limited resources. The processors on a device are designed for
high power e�ciency, rather than high performance. The available
memory is quite limited due to the device’s small form factor. The
devices are powered by batteries with limited capacity. Therefore,
a good understanding of the capabilities of mobile devices for deep
learning is vital for many ongoing and future research/development
e�orts in edge and mobile computing.

2.2 Learning on Mobile Devices
The results from this paper can bene�t a number of related e�orts
on enabling deep learning on mobile and embedded devices. We can
broadly classify these works into the following three categories:

Model compression. There are several compression techniques for
reducing the complexity of DNNs and allowing them to be used for
inference on devices, including (1) weight sharing, which reduces
the memory footprint of network parameters by using a single
value to represent a group of weights [6, 18]; (2) pruning, which
reduces the complexity of a model by eliminating the weights under
a pre-determined threshold [29]; (3) quantization, which reduces
the size of a model by shrinking the number of bits used to represent
the weights [23]; and (4) encoding, which encodes the intermediate
layer output to reduce memory footprint [22].

Knowledge transfer. A large network (Mentor) trained in the cloud
can transfer its learned representative features to a small network
(Mentee) trained on the device, thereby improving the latter’s accu-
racy and convergence speed. Knowledge transfer techniques are
inspired by the Dark Knowledge (DK) work [19], which distills
information from the softmax layer output. Romero et al. [38] ex-
tended the DK approach to include the intermediate layer from the
Mentee network for knowledge transfer. Sharma et al. compared
the e�ectiveness of di�erent knowledge transfer techniques [40].
DeCAF [7] is a related solution that retrains only the last layer of a
pre-trained model to adapt to new learning tasks.

Federated learning [25, 42] is a solution for training a large, global
model on a centralized server by federating a number of small,
distributed models trained on mobile devices. Each mobile device
acts as a node and calculates an update from its small model using
its local data. This node then sends this update to the global model.
Federated learning can reduce the risk of exposing users’ data,
since updating the global model is considered less privacy-sensitive
compared to sharing the input data globally.

The above related works focused on the algorithm aspects of
involving mobile devices in deep learning but did not fully explore
how well such algorithms work on real devices. There are also
several related works that explored only the use of inference on
mobile devices. Lane et al. proposed an inference engine for mo-
bile sensing [28]. M. Alzantot et al. and S. Rallapalli et al. [2, 36]
studied the use of on-device GPUs to accelerate inference. Neurosur-
geon [24] considered partitioning the layers of a network between
device and cloud and then optimizing it for the inference speed and
energy usage. Chen et al. [5] presented a compiler for deploying
deep learning on di�erent hardware backends, including mobile
phones. These studies did not consider training, which is a lot more
challenging than inference and is becoming increasingly important
to many mobile applications [16]. Moreover, these studies did not
fully consider the various capabilities of modern mobile devices

Table 1: Comparison of deep learning frameworks on mo-
bile devices

Inference Training Acceleration
TensorFlow Mobile

p ⇥ ⇥
TensorFlow Lite

p ⇥ ⇥
PyTorch

p ⇥ ⇥
Deeplearning4j

p p ⇥
MXNET

p ⇥ ⇥
Chainer ⇥ ⇥ ⇥
MLib ⇥ ⇥ ⇥
CNTK ⇥ ⇥ ⇥

for supporting deep learning. Therefore, a comprehensive study is
much needed to fully explore all these important aspects of deep
learning on mobile devices. The rest of this paper presents our
�ndings.

3 METHODOLOGY
3.1 Porting TensorFlow to Mobile Devices
To perform this study, we need a framework that supports both
training and inference on mobile devices. Several widely used deep
learning frameworks have versions designed for mobile devices,
such as TensorFlow Mobile [15], TensorFlow Lite [13], and Ca�e
2 [10], but they support only inference using a pre-trained network.
Table 1 compares the popular frameworks on the capability of
performing deep learning tasks on mobile devices. Most of the
frameworks support only inference on mobile devices. We decided
to extend TensorFlow Mobile to also support training.

TensorFlow uses a data �ow graph to represent the computa-
tion. In a data �ow graph, a node represents an operation and an
edge represents the data used or generated by the next or previous
computation. Multiple operations form a layer, a core abstraction
in deep learning frameworks, for modularity in the design. Figure 2
represents the general architecture of TensorFlow (left) and the
data �ow graph for training a model (right). TensorFlow consists
of multiple layers. At the bottom, it provides di�erent implementa-
tions for all operations using various device programming models,
which enables acceleration on di�erent types of processors. Further,
it provides several types of operations required for training a DNN.
On the top, TensorFlow provides various interfaces to leverage the
core functionalities. In our case, we utilized the Java interface and
extended the Android library to support training. The right part
of the diagram demonstrates the data �ow of the training process,
which consists of forward and backward computations. In the for-
ward path, layers call normal computational kernels ( A , B ), and
in the backward path, they call the gradient calculation functions
( C , D , E ) of those kernels.

TensorFlow Mobile only provides an interface to support
inference-related operations. In order to train deep learning models
on the device, we extended the interface to support training as
well. We need to �rst, modify the Java interface to support training-
related operations and second, add all the missing libraries that are
needed for training to the Android library. The training process in-
volves more operations than that of the inference process. Di�erent
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Figure 2: The general architecture of TensorFlow and the
�ows of the forward and the backward paths.

from inference, the training process needs to perform operations
without generating any prediction, such as variable initialization.
To support all the training related operations, we modi�ed the Run()
function in the Java interface to perform operations without produc-
ing a prediction. We used the modi�ed Run() function to initialize
all the variables and perform the training related operations. We
then added the missing kernels to TensorFlow Mobile, by porting
them from the TensorFlow C++ core to Android.

We call our extended framework described above TensorFlow+.
It utilizes model graphs de�ned in Python and provides the same
interface for training on devices as that of TensorFlow on the server.
Model graphs use Protobuf format without freezing any variables.
TensorFlow+ loads the model graph with the TensorFlow Java
interface. It then loads the dataset images batch by batch from the
device. Using our training-enabled Java interface, TensorFlow+ can
train a network model on devices following the same steps as how
TensorFlow works on a server.

3.2 Accelerating Inference and Training
We further improved our solution to leverage the available accel-
erators, such as GPUs, on mobile devices, for accelerating deep
learning operations. The existing mobile version of TensorFlow
uses only CPUs on Android platforms. It relies on the Eigen li-
brary [9], which is a high-level C++ library optimized for linear
algebra operations and related algorithms. But as the network mod-
els become increasingly more complex (deeper and wider), such a
CPU-based approach becomes ine�cient. At the same time, the in-
creasingly available accelerators on mobile devices make it possible
to use them for accelerating deep learning on devices.

Our general approach is to use the RenderScript [12] framework
to implement the computationally expensive operations in deep
learning. RenderScript parallelizes the workload at runtime on dif-
ferent processors using a language derived from the C99 [37] stan-
dard. There are other options to leverage GPUs in mobile devices,
such as OpenGL ES and OpenCL. But OpenGL ES is for graphical
tasks; in order to use it to accelerate computational tasks, we need
to implement all the functionalities, including matrix multiplication.
OpenCL, however, is not o�cially supported by Android. Previous

work RSTensorFlow [2] took the same approach as ours to acceler-
ate matrix multiplication and convolution operation in inference
which involves only the forward path of DNNs. But it did not pro-
duce good speedup for convolutions (which accounts for around
75% of the forward path time). It also does not support the acceler-
ation of the backward path of DNNs, which is the most intensive
component in training and, according to our study, accounts for
70% of the total training time.

To accelerate the backward path of DNNs, we need to acceler-
ate the gradient calculations. In TensorFlow, gradients are calcu-
lated in two separate kernels, conv_grad_input and conv_grad_�lter,
which calculate the gradients with respect to the input and the
�lter. The major calculations involved in these two kernels are
matrix-matrix operations. In TensorFlow+, we replaced their Eigen-
based implementation with RenderScript’s single-precision matrix-
multiplication (SGEMM) in order to accelerate the gradient calcula-
tions. The SGEMM API performs operationC = � ⇥op(A)⇥op(B)+
� ⇥C , where A, B, and C are matrices, � and � are parameters. In
the conv_grad_input kernel, computation involves three matrices:
the input, the �lter, and the output. TensorFlow+ redirects the ma-
trices in the conv_grad_input kernel to the SGEMM implementation
to speedup the calculation. Similarly, TensorFlow+ also uses the
SGEMM API to speed up the conv_grad_�lter kernel. In addition to
GPUs, we also considered to use the recently released Pixel Visual
Core (PVC), a specialized image processor, to accelerate learning
on mobile devices. However, the only API provided by Android to
access this accelerator—the Android Neural Network (ANN) API,
supports only inference, but not training.

In summary, we ported the widely used deep learning frame-
work, TensorFlow, to Android, with the support for both training
and inference, and improved their performance by using available
accelerators (GPU) on mobile device. In the next section, we present
a comprehensive evaluation of our solution TensorFlow+ and analy-
sis of the capabilities of mobile devices in supporting deep learning.

4 EVALUATION
4.1 Setup
Models. We considered network architectures that are suited for
mobile devices, as commonly used DNN models such as VGG16 are
too large for the memory size of the devices. So we �rst studied
an architecture based on the Mentee network, proposed for knowl-
edge transfer [19], which has �ve convolutional layers and three
fully-connected layers with around 26.89 million parameters in
total. We also considered MobileNet [20], a widely used network
model designed for vision applications on mobile and embedded de-
vices [41]. However, this network still cannot �t in our test devices
for training, so we shrank the base MobileNet model to a six-layer
model (with around 5.48 million parameters in total) at the cost of
losing some accuracy (around 1% in the Top-5 accuracy and 9% in
the Top-1 accuracy compared to the original model). Similarly, we
also shrank the ResNet [45], a popular model for server platforms,
to an eight-layer model so that it can �t in our test devices. Table 2
lists the detailed architecture of the models.

Datasets. We investigated di�erent commonly used datasets and
realized that large inputs tend to force the batch size to small values,
due to the limited memory. So we chose CIFAR-10, which consists of
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Table 2: Architecture of theMentee, reducedMobileNet, and
reduced ResNet models. the Con�guration column shows
the detailed parameters of each layer. Convolutional layer
parameters are denoted as DH ⇥DW ⇥M ⇥ N , where DH and
DW denote the height and width of a kernel, M denotes the
number of input channels, andN denotes the number of out-
put channels. Average pooling layer parameters are kernel
dimensions. Fully-connected layer parameters are the out-
put dimensions.

Mentee Network Reduced MobileNet
Type Con�guration Type Con�guration
Conv 3⇥3⇥3⇥64 Conv 3⇥3⇥3⇥32
Conv 3⇥3⇥64⇥128 Conv/dw 3⇥3⇥32
Conv 3⇥3⇥128⇥256 Conv 1⇥1⇥32⇥64
Conv 3⇥3⇥256⇥512 Conv/dw 3⇥3⇥64
Conv 3⇥3⇥512⇥512 Conv 1⇥1⇥64⇥128
Avg Pool 2⇥2 Conv/dw 3⇥3⇥128
FC 4096 Conv 1⇥1⇥128⇥128
FC 4096 Conv/dw 3⇥3⇥128
FC 10 Conv 1⇥1⇥128⇥256
Softmax Classi�er Conv/dw 3⇥3⇥256⇥256
- - Conv 1⇥1⇥256⇥256
- - Avg Pool 7⇥7
- - FC 10
- - Softmax Classi�er

Reduced ResNet
Type Con�guration
Conv 3⇥3⇥3⇥16
Conv 3⇥3⇥16⇥160
Conv 3⇥3⇥160⇥320
Conv 3⇥3⇥320⇥320
Conv 3⇥3⇥320⇥640
Conv 3⇥3⇥640⇥640

Avg Pool 8⇥8
FC 10⇥10

60,000 32⇥32 images and is widely used in deep learning works [11,
21, 30, 43], as the benchmark dataset. With CIFAR-10, we are able
to conduct our experiments with a reasonable batch size of 128.

Devices. We obtained our results on several di�erent generations
of mobile devices, Nexus 7 (released in 2012), Nexus 5 (released in
2013), and Pixel 2 (released in 2017). We chose these devices be-
cause they represent di�erent generations of devices. For example,
Pixel 2 has similar hardware speci�cations as iPhone 8 and Sam-
sung Galaxy S8. Pixel 2 was released in October 2017 based on the
Qualcomm Snapdragon 835 SoC. It has an eight-core, Qualcomm
Kryo 280 CPU running at 2.45 GHz clock speed and 4 GB LPDDR4
RAM at 1866 MHz. Apple iPhone 8 was released at a similar time,
equipped with an A11 Bionic chipset with 2.39 GHz hexa-core (2 ⇥
Monsoon + 4 ⇥ Mistral) and 2133 MHz LPDDR4 RAM. Both Pixel
2 and iPhone 8 have similar speci�cations in terms of CPU speed
and memory speed. We also performed experiments on a Rasp-
berry Pi 3B+, a commonly used Internet of Things (IoT) platform,
to explore the capability of the emerging IoT devices in supporting
deep learning. As a baseline, we also obtained results from a typical

Table 3: Test Platform Speci�cations

Speci�cations

Pixel 2

OS Oreo 8.1.0
CPU 2.45 GHz Octa-core Kryo
GPU 710 MHz Adreno 540
Visual Core 800 MHz Cortex-A53
Memory 4 GB

Nexus 7

OS Marshmallow 6.0.1
CPU 1.5 GHz quad-core Krait 300
GPU 400 MHz Adreno 320
Memory 2 GB

Nexus 5

OS Marshmallow 6.0.1
CPU 2.26 GHz quad-core Krait 400
GPU 450 MHz Adreno 330
Memory 2 GB

Resberry Pi 3B+

OS Rasbian
CPU 1.4 GHz quad-core Cortex A53
Memory 1 GB

Server

OS Ubuntu 16.04 LTS
CPU Dual Intel Xeon E5-2630
GPU Nvidia Tesla K40
Memory 64 GB

Nexus7
Nexus 5
Pixel2
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Figure 3: Mentee network’s performance and resource us-
ages.

datacenter server. Table 3 lists the hardware speci�cations of our
test platforms.

4.2 Overall Performance and Resource Usages
We �rst study the performance and resource usages of using Ten-
sorFlow+ to train the Mentee, MobileNet, and ResNet networks on
mobile devices (without using accelerators).
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Figures 3a shows the runtime of using the Mentee network to
perform training and inference on di�erent platforms. The batch
size is 128 for both training and inference. The results from train-
ing are for only a single iteration of one batch of images. We can
observe substantial performance improvement with the continuous
advancement of mobile platforms. Interestingly, the performance
gap between the devices and server is more signi�cant for inference
than for training. For example, a high-end device like Pixel 2 takes
10⇥ longer time for training than the server and 15⇥ longer for
inference.

Figures 3b and 3c show the average CPU and memory utiliza-
tion of the above training and inference experiments. The results
con�rm that both training and inference are CPU intensive. Their
average memory utilization during training and inference is not
high. Both training and inference do not need to perform frequent
memory allocations and the major part is in the initialization where
the system needs to allocate memory for storing the parameters of a
model and the batch of images. Then, the CPU performs calculations
until the batch of images is fully consumed.

Figure 3d compares the battery consumption of various situa-
tions on Pixel 2 while performing deep learning tasks with the
Mentee network: (A) training/inference with the device’s screen
o�; (B) training/inference with the device’s screen on. We also mea-
sured the battery consumption when the device is in standby mode
as a baseline. The battery consumption is calculated by multiplying
the real-time current and the voltage of the device battery. We mea-
sured the real-time current with an interface provided by Android.
The commonly used pro�ler, Trepn [34], is not supported on Pixel 2
but we used it to verify the correctness of our method on the older
devices. The results con�rm that training has reasonable impact on
the device’s battery life.

Figure 4 and 5 show the results of the training time and infer-
ence time using the reduced, six-layer MobileNet model and the
reduced, eight-layer ResNet model with a batch size of 128. The
results from training are for only a single iteration of one batch
of images. From the MobileNet and ResNet results, we can draw
similar conclusions as the above Mentee network experiments. For
the sake of conciseness, in the rest of the paper, we present only the
results from Pixel 2, a more recent generation of mobile devices.

While the above results con�rm the feasibility of learning on
the mobile devices, they also show that relying solely on CPU is
not su�cient for e�cient training on the mobile devices. Even
though these models are specially designed for mobile devices,
the training time is more than 10 seconds for one iteration on
a single batch of images. To reach a good accuracy, the training
process will take about 100 epochs, which is more than 100 hours
on mobile devices. In order to speed up such a lengthy training
process, we need to leverage the hardware accelerators (such as
GPUs) on mobile devices. We will evaluate TensorFlow+’s support
of hardware acceleration in Section 4.5.

4.3 Fully-connected-layer- and
Convolutional-layer Only Models

To further investigate the cost of training DNNs on mobile devices,
we took a close look at the most computationally expensive building
blocks in DNNs—fully-connected layers and convolutional layers
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Figure 4: Performance and resource usages of the reduced
Mobilenet.

Ti
m

e 
(S

)

0

20

40

Training Inference

(a) Avg. runtime.

C
or

e 
U

til
iz

at
io

n 
(%

)
0

100

200

300

400

Training Inference

(b) Avg. CPU utiliza-
tion.

M
em

 U
til

iz
at

io
n 

(G
B

)

0

0.2

0.4

0.6

Training Inference

(c) Avg. memory uti-
lization.

Figure 5: Performance and resource usages of the reduced
ResNet.

Table 4: Estimation of the numbers of �oating point oper-
ations (�ops) and parameters in the fully-connected-layer-
only models. The �rst row denotes the width and the �rst
column denotes the depth of a model. The values in each
cell are the number of �ops and the number of parameters.

64 128 256 512
1 15.1G, 196K 30G, 393K 60G, 786K 121G, 1.57M
2 15.4G, 200K 31G, 409K 65G, 852.48K 141G, 1.84M
4 16G, 209K 34G, 442K 75G, 984K 181G, 2.36M
8 17G, 225K 39G, 508K 95G, 1.25M 252G, 3.41M

in the next few subsections. We designed experiments using simple
models with only fully-connected layers or only convolutional
layers (no activation layer or pooling layer). As the complexity of
a network depends on its depth (the number of layers) and width
(the number of neurons in each layer), we varied the depth and
width of a network to study their impact on the performance. We
used CIFAR-10 dataset as input for our tests and the batch size is
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Figure 6: Performance of fully-connected-layer only model.
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Figure 7: Normalized �ops of a fully-connected-layer-only
model with various width and depth.

128 in all the following tests. We performed training and inference
for a single iteration with one batch of images.

4.3.1 Fully-connected-layer-only Models. Figure 6 demonstrates
how the training and inference time vary with di�erent combina-
tions of network depth and width using fully-connected-layer-only
models (the numbers of parameters and �oating point operations
of each model are listed in Table 4). The training time increases
by 100% when the depth grows from one layer to eight layers, and
it increases by 254% when the width grows from 64 to 512. The
inference time increases by up to 85.7% with the increase of depth
and it increases by up to 457% with the increase of width. These
results show that the training and inference time of fully-connected
layers are more sensitive to width than to depth.

To con�rm the above understanding, we show how the compu-
tational cost of a fully-connected-layer-only model changes with
respect to the width and depth of the model. We measured the cost
in terms of the number of �oating point operations (�ops) of our
model. Figure 7 shows the results normalized to the one-layer model
with a width of 64. The results con�rm that the computational cost
of a fully-connected-layer only model is indeed more sensitive to its
width than depth. Every neuron from a fully-connected layer needs
to interact will all the neurons from the subsequent layer, which
explains its sensitivity toward width. Based on this observation, we
believe that narrow but deep models are more suited for mobile
devices.

Table 5: Estimation of the numbers of �oating point opera-
tions (�ops) and parameters in the convolutional-layer-only
models. The�rst row denotes thewidth and the�rst column
denotes the depth of a model. The values in each cell are the
number of �ops and the number of parameters.

64 128 256 512
1 1.3G, 1.7K 2.7G, 3.5K 5.5G, 7K 11G, 14K
2 30G, 38.7K 118G, 15K 469G, 597K 618G, 237M
4 88G,112K 350G, 446K 1397G, 1.78M 5577G, 7.09M
8 204G, 260K 814G, 1M 3253G, 4M 13000G, 537M
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Figure 8: Performance of convolutional-layer-only model.

4.3.2 Convolutional-layer-only Models. Figure 8 shows the train-
ing and inference time with various con�gurations using
convolutional-layer-only models (the numbers of parameters and
�oating point operations of each model are listed in Table 5). The
training time increases by 125⇥ when the depth grows from one
layer to eight layers, and it increases by 64⇥ when the width grows
from 64 to 512. The inference time increases by up to 625⇥ with the
increase of the depth and by up to 75⇥ with the increase of width.
Hence, the training time of the convolutional-layer-only models is
a lot more sensitive to the growth in depth than to width, which
is in contrast to the observation from fully-connected-layer-only
models.

Theoretically, a convolutional layer has a computational cost
proportional to: Dk ⇥Dk ⇥M ⇥N ⇥Df ⇥Df [20], where Dk is the
size of the kernel, M and N are the numbers of input and output
channels, and Df is the size of the �lter. As a result, doubling the
size ofM adds about the same cost as introducing a new layer.

The measurements of �ops in training with various widths and
depths in the convolutional-layer-only models also con�rm the
above theory. Figure 9 shows that the number of �ops increases
much faster when the depth increases compared to when the width
increases. The sensitivity of convolutional layers to width also
manifests in their memory requirement. Four-layered and eight-
layered convolutional-layer-only models cannot even run on the
device due to the out of memory error when the network model
has a width of 512.

Finally, comparing the training time between models with only
fully-connected layers and only convolutional layers, the latter
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Figure 9: Normalized �ops of a convolutional-layer-only
model with various width and depth.
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Figure 10: Performance of depthwise-separable-
convolution-layer-only models (DW-conv) and standard
convolutional-layer-only models (Conv).

takes on average, two orders of magnitudes more time than the for-
mer with the same depth and width. Convolutional-layer-only mod-
els have less number of parameters compared to fully-connected-
layer-only models when the model is not complex. But the growth
of the number of parameters in convolutional-layer-only models is
much faster than fully-connected-layers-only models as the model
becomes more complex, as shown in Table 4 and 5. The number of
parameters of a convolutional-layer only model is about the same as
the fully-connected-layer-only model when the width is 128 and the
depth is 4. When the model has 8 layers in depth and 512 neurons
in width, the number of parameters of the convolutional-layer-only
model is 4.85 times more than that of the fully-connected-layer
model. The faster growth of the number of parameters also ex-
plains why convolutional-layer-only models are more sensitive to
the increase of depth than fully-connected-layer-only models.

In order to reduce the computational cost of convolutional lay-
ers, Howard et al. proposed depthwise separable convolution [20],
which splits the calculation of a standard convolution into two
steps: 1) calculate convolution along the depth dimension using
multiple kernels and each of the kernels iterates one channel of
the input, and 2) merge all the results from the previous step using
standard convolution with a one by one kernel. The result shows
that depthwise separable convolution uses between 8 to 9 times
less computation than the standard convolution, and may be more
appropriate for deep learning on mobile devices. Hence, we also
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Figure 11: Runtime of various operations involved in training
a four-layer convolutional-layer-only model (CONV: convolution;
BA: bias addition; BG: gradient for bias addition; GF: convolution
gradient with respect to the �lter; GI: convolution gradient with re-
spect to the input. The number after the operation name is the layer
number).

evaluated the performance of depthwise separable convolutional-
layer only models.

Figure 10 compares the training time of a single depthwise sep-
arable convolution layer (DW-conv) and a single standard con-
volutional layer (Conv). With a width of 64, the training time of
depthwise convolution is already faster than that of the standard
convolution; and it does not grow much as the width increases.
When the width is 512, the depthwise separable convolution needs
only one third of the training time of the standard convolution. For
inference, the speedup of depthwise separable convolution is 2⇥
when the width is 512. The results con�rm that depthwise separa-
ble convolution indeed has a signi�cant advantage over standard
convolution in computational cost.

The main trade-o� from using depthwise separable convolu-
tion vs. standard convolution is speed vs. accuracy. With the full
MobileNet model, our experimental result shows that the accuracy
loss of depthwise convolution compared to the standard convolu-
tion is 6%, whereas with the reduced MobileNet model, the accuracy
loss is 12%. In comparison, the speedup that we observed from using
depthwise separable convolution is 3⇥, which makes it a worthy
option for deep learning on resource-constrained devices.

4.4 Training Time Breakdown
The previous results show that training is much more expensive
than inference, especially for the models with convolutional layers,
on mobile devices. As illustrated in Figure 1, the training process
involves more computational intensive operations, such as gradient
calculation. In order to understand which operations contribute to
the training time and how we can possibly improve it on mobile
devices, we analyzed the performance of the various operations
involved in the training process.
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Figure 12: Accelerating various operations involved in train-
ing a single convolutional layer using GPU. The calculation
time of Conv2DbackpropInput is reduced by 37.5%, and that
of the Conv2DBackpropFilter is reduced by 90.6%.

Figure 11 illustrates the training time breakdown of a four-layer
convolutional-layer-only model. The convolution calculation time
is proportional to the input size in both the forward path and the
backward path. We also observe that in the forward path, the con-
volution operations are the slowest whereas in the backward path,
the convolution gradient calculation is the most time-consuming.
In particular, gradient calculation time accounts for 91% of the
backward path calculation time and 65% of the total computation
latency. The above result motivates us to focus our e�ort on re-
ducing the computation latency of the gradient calculation so that
mobile devices can support deep learning tasks more e�ciently.

4.5 Hardware Acceleration
In this section, we evaluate the performance improvement made
by Tensor�ow+ from using on-device GPU to accelerate training.
Following the discussion in the previous section, we �rst evaluate
the e�ectiveness of accelerating the various components involved
in training a single convolutional layer. Figure 12 shows that Ten-
sorFlow+ reduces the calculation time in the gradient calculation
compared to TensorFlow’s CPU implementation. In particular, the
calculation time of Conv2DBackpropInput is reduced by 37.5%, and
that of the Conv2DBackpropFilter is reduced by 90.6%. The other op-
erations are not accelerated and their runtimes remain unchanged.
With this understanding, next we evaluate the speedup achieved
by accelerating complete networks.

Figure 13 shows the training time of eight-layer and four-layer
convolutional-layer-only models with acceleration (TF+) and with-
out it (Eigen). The results show that hardware acceleration achieves
a speedup of up to 2.2⇥. To show the importance of accelerating the
backward path, which is not supported by the previous work [2],
we also compared to the performance of using RenderScript to
accelerate only the forward path (RSTF ), which shows a speedup
of only 30%. Then, we further evaluated the e�ectiveness of accel-
eration on a real network designed for mobile devices, MobileNet.
Figure 14 shows the training and inference times for the reduced,
six-layer MobileNet with acceleration (TF+) and without it (Eigen).
The results con�rm the e�ectiveness of using hardware accelera-
tion for learning on mobile devices: it achieves a speedup of 1.7⇥
on training and 1.2⇥ on inference.

In addition, we also explore the e�ectiveness of using the new
Pixel Visual Core (PVC) and Android Neural Network API (ANN )
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Figure 13: Training time of convolutional-layer-onlymodels
with acceleration in both forward and backward path (TF+),
acceleration only in forward path (RSTF), and no accelera-
tion (Eigen). The convolutional-layer-only models use vari-
ous width, ranging from 64 to 256.
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Figure 14: Performance of the reduced MobileNet running
on GPU (TF+), CPU (Eigen), and specialized accelerator
(ANN).

to accelerate inference, which shows an impressive 5.7⇥ speedup
compared to our GPU-based acceleration of inference. The reason
for the performance di�erence between GPU and PVC is two-fold.
First, PVC can deliver higher throughput compared to GPU due to
its larger numbers of arithmetic logic units (ALUs). PVC consists of
eight customized cores and each core has 512 ALUs whereas Adreno
540 has only 256 ALUs. PVC can deliver 3.28 T�ops raw computing
power whereas Adreno 540 can achieve only 567 GFlops [14, 35].
Second, PVC uses TensorFlow Lite models, which are less expensive
than the TensorFlow models used by GPU. TensorFlow Lite uses an
optimizing converter to convert a pre-trained TensorFlow model to
a TensorFlow Lite model. The conversion quantizes the weights and
biases in a model to reduce the computation and memory footprint;
it also fuses activations to provide a better data level parallelism.
However, the PVC core supports only inference. Therefore, it well
complements the general-purpose GPU, and they can be utilized to
accelerate inference and training, respectively, on devices.

4.6 Deep Learning on IoTs
Next, we investigate the capability of IoT devices in performing
both training and inference. We evaluate the training and inference
on Raspberry Pi 3B+, a commonly used platform for developing IoT
applications, using the reduced MobileNet model.

Figure 15 illustrates the training time and inference time running
the reduced MobileNet model on Raspberry Pi. The Pi has even less
memory than the mobile devices, and we can run a batch size of
only four on the reduced MobileNet model. The resource utilization
follows a similar pattern as our results on mobile devices. The
training time of a single iteration on a batch of images is 6X longer
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Figure 15: Resource utilization of the reduced MobileNet on
Raspberry Pi 3B+.
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Figure 16: Performance of training in foreground and in
background with CPU (TensorFlow) and GPU (TF+).

than the inference time. Both are much slower than on mobile
devices. The lack of accelerators makes it even more di�cult for
IoTs to support deep learning tasks.

4.7 User Experience
4.7.1 Foreground training and background training. Since training
is an intensive task, running it in background can reduce its impact
on user experience of other applications on the device. Because
Android always sets higher priority to the foreground applications
compared to the background applications to provide prompt re-
sponse to user input, more resources are allocated to the foreground
applications. Training is inevitably slower in background with less
resources compared to foreground. We compared the performance
di�erence between training in foreground and in background on
both CPU and GPU in Figure 16, and the results show that the
former is 3X faster than the latter.

4.7.2 Impact on Other Applications. We evaluated how learning
impacts the performance of other applications running on the same
device. We used a mobile benchmark [33], PassMark, to model
typical applications on a device. It includes multiple tests which
stress di�erent hardware components of the device. The CPU tests
in the benchmark, including �nding prime numbers, encryption,
and compression can model computational intensive tasks. The
memory tests measure the access latency of the memory system
with varied data size block, and can model the memory intensive
tasks. The graphics tests measures the rendering capability of the
GPU by rendering images and game-like scenes on the screen.

By comparing the performance from the benchmark with and
without running the learning tasks, we can quantitatively evalu-
ate the impact of the learning tasks on other applications. Since
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We compared the PassMark score with various con�gura-
tions. All the scores are normalized to the baseline Pass-
Mark score, which is from running PassMark standalone.
TF Mentee and TF MobileNet run the deep learning tasks
on CPU in background along with PassMark in foreground.
The TF+Mentee and TF+MobileNet run deep learning tasks
on GPU in background along with PassMark in foreground.

training a model is often time consuming and does not require user
interactions, we ran training using TensorFlow+ in background
while running the benchmark in foreground. We considered four
di�erent cases in which we train the Mentee and MobileNet models
with and without GPU. Figure 17 shows the slowdown of PassMark
with respect to its standalone performance with no training in
background.

The results show that training has a signi�cant performance im-
pact on the system, especially when running on CPU. The CPU uti-
lization is about 305% and 348% for training MobileNet and Mentee,
respectively, which leads to up to 30% drop in PassMark’s CPU test
performance. The results also show that the reduced MobileNet
has 15% less slowdown compared to Mentee in the CPU test per-
formance. When the models are run on GPU, we observe that the
CPU load is reduced, leading 10% less performance slowdown.

The memory test result shows that training also has a quite
signi�cant impact on memory-intensive applications. Training the
reduced MobileNet has a less impact than Mentee, because the
former’s network is relatively smaller. Since CPU and GPU share
memory on mobile SoCs, o�oading training to GPU cannot reduce
the impact on memory performance.

In terms of graphic experience, the scores in both 2D and 3D
rendering drop about 5% while the mobile device is running the
training tasks. It is worth noting that the Mentee network is able
to utilize more GPU (50% more) than MobileNet because of its
wider network which increases data parallelism. But, overall, the
performance impact of training on a GPU-intensive application is
much less signi�cant than on a CPU-intensive application, which
tells us that the mobile device’s GPU is quite capable.

4.7.3 Impact on User Interactions. We also investigated the impact
on user interactions when running deep learning tasks. Our goal
is to �nd out whether running deep learning tasks a�ects a user’s
interactive experience with the device. We performed our measure-
ments using an application which models user interaction with a
device by taking user input from the touch screen and then per-
forming various tasks. Based on the user input, the mobile device
will render di�erent output responses on the screen. By analyz-
ing the frame rendering data in response to the user input, we
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Table 6: Impact of background training on user interactions.
The response time shows how fast the application react to
user input events. The frame latency is the time to render
one frame upon a user input event.

Baseline CPU GPU
99th percentile response time (ms) 0.21 0.24 0.21
99th percentile frame latency (ms) 5.49 5.75 5.78

can understand the user interactivity quantitatively. We used the
Android dumpsys tool [8] to collect aggregated analysis of frame
rendering data. There are two metrics of interest: 1) response time,
the time for the application to process user inputs; and 2) frame
latency, the time to complete rendering a new frame based on the
user inputs. We again stressed the system by training the Mentee
network, which is more computational intensive compared to the
reduced MobileNet, on Pixel 2.

Table 6 lists the 90th percentile response time and frame latency
of three di�erent settings, 1) without training in background (base-
line), 2) training the Mentee network on CPU (CPU ), and 3) training
the Mentee network on GPU (GPU ). The results show that the deep
learning tasks have minimal impact on the processing of user inputs.
The response time increases by merely 0.03 ms when the training
is running on CPU, and it remains the same when the training is
on GPU. We can conclude that the impact from the deep learning
tasks is not perceivable by users, because the minimum threshold
of perceivable latency is 100 ms [4, 31, 32].

The frame latency results show that the application can render
more than 60 frames per second when training either on CPU
or GPU. The frame latency increases only 0.26 ms and 0.29 ms,
when training on CPU and GPU, respectively. If an application is
rendering at 60 frames per second, the deadline for rendering each
frame is 16 ms (1000ms/60 = 16ms). The additional frame latency
incured by running deep learning tasks is negligible, which means
that the background training is not a�ecting the graphic experience
provided by the application.

5 CONCLUSIONS
This paper presents a comprehensive study on the software and
hardware capability of mobile devices in supporting deep learning
tasks. We conclude that mobile devices can support both inference
and training using DNNs with reasonable performance and rea-
sonable impact on user experience. But due to the limited resource
availability on mobile devices, we need to carefully design our deep
learning models to control the complexity, especially for training.
New learning paradigms such as federated learning and knowledge
transfer are promising approaches to utilizing mobile devices and
improving deep learning. Our work sheds light on the e�ectiveness
of such approaches on modern smartphones and IoT platforms.

Speci�cally, our �ndings show that the width and depth of a
network have di�erent performance impact on di�erent types of
layers. Fully-connected layers are more sensitive to width whereas
convolutional layers are more sensitive to depth. This insight can
help us design models that are suitable for mobile devices. Our

�ndings also show that utilizing GPUs on mobile devices is impor-
tant to the performance of training on devices, whereas specialized
image and AI processors can achieve substantial speedup for infer-
ence. Hence, combining the use of these accelerators can be of great
bene�t to deep learning tasks on mobile devices. Another insight
is that running the deep learning tasks in background on a device
has a minor impact on the foreground tasks and user interactions
as well as the resource and battery usages.

Our solution, TensorFlow+, embodies several key extensions
to TensorFlow for deep learning on mobile devices, including the
support of training and GPU-based acceleration. It is open source
and publicly accessible [27].
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