Smart Blue Light Pole-based Real-Time Crowd
Counting for Smart Campuses

Yitao Chen*, Kaiqi Zhao!, Krishna Gundu*, Zohair Zaidi*, Ming Zhao*
*Arizona State University
{ychend04, kgundul, zohair.zaidi, mingzhao} @asu.edu
fOakland University
kaigizhao @oakland.edu

Abstract—Crowd counting on a smart campus can provide
valuable insights into pedestrian behaviors and is critical to
making decisions about campus designs and improvements.
Conventional image or video based crowd-counting approaches
have serious privacy risks, while cloud-based solutions also face
challenges in providing real-time responses. This paper proposes
Height-AWare Human Classifier for Crowd Counting (HAWC-
CC), a real-time, cost-effective, and privacy-protected smart blue
light pole-based crowd-counting framework for smart campuses,
using Light Detection and Range (LiDAR) sensors and computing
devices installed on the blue light poles to collect traffic data
and analyze patterns in real time while protecting data privacy.
HAWC-CC is built upon two novel methods. The first is an
adaptive clustering approach that dynamically adjusts to point
cloud structure and density for accurate and efficient clustering.
The second method is a Height-AWare Human Classifier (HAWC)
that projects 3D point clouds into height-augmented multiple
2D views and uses a lightweight CNN to detect humans from
the projected views. HAWC-CC and its quantized version are
then implemented on Nvidia Jetson and Coral TPU for real-
world deployment on the blue light poles. A comprehensive
3D LiDAR dataset is collected and curated for single-person
detection and crowd counting. An extensive evaluation shows that
HAWC-CC significantly outperforms the representative related
works (PointNet-CC, AutoEncoder-CC, and OC-SVM-CC) by
up to 86.61% in Mean Absolute Error (MAE) and 90.44% in
Mean Squared Error (MSE). Additionally, HAWC-CC is the only
framework that meets the real-time requirements for LiDAR-
based crowd counting, processing one LiDAR sample in 17.42 ms.
HAWC demonstrates the highest robustness to limited training
data, achieving a notable accuracy of 90.29% with only 0.1% of the
training data. HAWC-CC outperforms SOTA RGB image-based
solutions in high-density settings, achieving 97.64% accuracy.

Index Terms—Human Classification, Crowd Counting, Smart
Campus, 3D Point Clouds

I. INTRODUCTION

We present a smart blue light pole-based smart campus
(Figure 1), where each pole is equipped with a variety of
sensors and computing devices. The smart blue light poles are
connected to the private campus network for secure commu-
nications with the private campus cloud backend. Among the
many exciting smart campus applications that can be enabled
by such a smart blue light pole-based infrastructure, in this
work, we focus on real-time crowd counting. Crowd counting
can provide valuable data on pedestrian behaviors, including
popular routes, peak times, and common gathering areas. This
information is critical to making decisions about campus design

Private

,'/ Computing\ /Computing
______ Pt Device Device

[
. 7
~~~~ N %
N 7

Blue Light Pole

Fig. 1: Overall diagram of a smart blue light pole-based smart campus,
each equipped with sensors and computing devices, communicating
securely with a private cloud backend.

and management. Real-time crowd counting is essential for
the instant detection of unusual crowding, indicating potential
safety hazards or emergencies, and identifying crowded areas
during emergencies, such as fires or security threats.

To develop crowd counting, we need to address the following
challenges. 1) Privacy Risks: Conventional approaches based
on camera images or videos [1]-[4] pose privacy risks due to
potential exposure of human-identifiable information. Advanced
vision algorithms can extract identifiable details, such as
facial features, even from small images. Furthermore, the
aggregation of camera data over time or across multiple
locations can build detailed movement profiles of individuals,
exposing sensitive personal information such as habitual routes
and activity patterns, posing significant privacy risks [5].
2) Real-time requirements: State-of-the-art camera-based ap-
proaches leverage computationally intensive architectures, such
as transformer-based TransCrowd [1] and attention-based
ASNet [3], to achieve high accuracy. While cloud can handle
such computation, it is difficult to deliver real-time responses,
and sharing camera data to cloud also introduces privacy risks.

We propose Height-AWare Human Classifier for Crowd
Counting (HAWC-CC), leveraging the Light Detection and
Ranging (LiDAR) sensors and computing devices on blue light
poles to collect 3D traffic data and analyze patterns in real
time while protecting privacy by keeping data local. To the
best of our knowledge, HAWC-CC is the first-of-its-kind real-
time, cost-effective, privacy-protected crowd-counting system,
successfully deployed on campus for practical use.

First, HAWC-CC employs LiDAR-based human detection
to perform privacy-preserving crowd counting. It leverages
LiDAR sensors to generate 3D point clouds (set of points



with cloud-like structure), which reveal significantly less
personally identifiable information (PII) than camera images [6].
Additionally, LiDAR provides precise object positions and
shapes regardless of lighting conditions.

To enable large-scale campus deployment, HAWC-CC uses
a cost-effective 32-channel LiDAR sensor [7]. These sensors
produce fewer points than professional-grade sensors. The
reduction in points is particularly pronounced with increasing
distance due to the diminishing surface area for light reflection.
To address this limitation, we propose a noise-controlled up-
sampling method that preserves key human features for the
subsequent CNN-based detection.

Second, HAWC-CC overcomes the challenges of variable
point cloud density and efficient 3D point clouds processing
for resource-constrained computing devices deployed on the
blue light poles, enabling real-time LiDAR data processing
and crowd counting. Specifically, HAWC-CC is built upon two
novel methods. The first is an adaptive clustering approach that
dynamically adjusts to point cloud structure and density for
accurate and efficient clustering. The second is a Height-AWare
Human Classifier (HAWC), which projects 3D point clouds into
height-augmented multiple 2D views and uses a lightweight
CNN to efficiently detect humans from these projected views.

Third, we collected and curated comprehensive 3D LiDAR
datasets to address the scarcity of datasets from large outdoor
environments. Unlike the abundance of datasets from RGB
and RGB-D cameras, available 3D LiDAR datasets [8], [9] are
limited and mainly collected in indoor environments for mobile
service robots. Our dataset introduces unique properties that
are valuable for 3D LiDAR-based human detection and crowd
counting in outdoor environments. The first dataset contains
exclusively single-person captures for evaluating single-person
detection accuracy. The second dataset includes multiple-people
captures for evaluating crowd counting accuracy. Each dataset
consists of 15,028 LiDAR point clouds collected from 2021
to 2022.

Fourth, we implemented our proposed algorithms and models
on two representative computing devices, Nvidia Jetson Nano
and Coral TPU, and deployed them on blue light poles.
To further improve the real-time performance of HAWC-
CC, we employed post-training quantization to reduce model
complexity. During deployment, we carefully monitored the
environmental factors, such as temperature, to ensure reliable
device operations.

Finally, we extensively evaluated the performance of HAWC-
CC against three representative related frameworks: PointNet-
CC [10], AutoEncoder-CC [11], and OC-SVM-CC [12].
HAWC-CC consistently achieves the highest accuracy for
crowd counting with the lowest Mean Absolute Error (MAE)
and Mean Squared Error (MSE), in both full precision and 8-
bit quantization, outperforming the baselines by substantial
margins of up to 86.61% in MAE and 90.44% in MSE.
Additionally, HAWC-CC is the only framework that meets
the real-time processing requirement of LiDAR-based crowd
counting, processing the LiDAR samples at a rate of 17.42ms
per sample. Furthermore, the proposed HAWC achieves a

test accuracy of 99.97% for single-person human detection,
significantly outperforming alternative classifiers used in the
related frameworks by up to 51.37%. HAWC also demonstrates
the highest robustness to limited training data, achieving a
notable accuracy of 90.29% with only 0.1% of the training
data, whereas PointNet’s accuracy decreases to 75.82%, and
AutoEncoder’s even drops to 12.44%. HAWC-CC significantly
outperforms SOTA RGB image-based methods in high-density
settings by up to 20.54%, achieving an impressive 97.64%
accuracy with an MAE of 5.9, compared to 90.9% by Su et
al. [13], 77.1% by Liu et al. [14], and 86.27% by Hao et
al. [15].

The paper is organized as follows: Section II introduces
the background and related works; Section III describes the
system overview; Sections IV and V explain the proposed
adaptive clustering method and height-aware human classifier;
Section VII presents the experimental results and discusses the
real-world deployment issues; and Section VIII concludes the

paper.
II. BACKGROUND AND RELATED WORKS

Outdoor crowd counting helps improve traffic control, road
design, and facility management by distinguishing humans
from other objects to understand traffic flow. Researchers have
explored the following main crowd counting approaches.

A. Image-based Methods

Density estimation is the mainstream approach for image-
based crowd counting, where a model generates a density map
representing people density at each pixel, and the total count
is obtained by summing pixel values. Techniques to improve
density map accuracy include multi-column networks [16],
which extract multi-scale features through parallel branches
with different filter sizes, and attention mechanisms like ASNet
[3], which dynamically selects the appropriate scale for each
region. Recently, transformer-based methods [1] have further
improved crowd counting performance.

However, these techniques face challenges: 1) loss of
spatial information. Density maps lose precise localization
of individuals; 2) lighting sensitivity. Density maps rely on
images that degrade in poor lighting conditions; and 3) privacy
concerns. Density maps based on images can reveal PII.
In comparison, LiDAR retains spatial precision, overcomes
lighting issues, and preserves privacy, making it a superior
alternative for robust and privacy-preserving crowd counting.

B. Wi-Fi, Sonar, and Sound-based Methods

Wi-Fi-based methods [17] track personal devices, raising
privacy concerns by collecting unique identifiers like MAC
addresses, even if anonymized. Additionally, these systems
offer lower resolution than LiDAR-based solutions. RF-based
systems [18] rely on users carrying RF-ID tags, limiting
their scalability for general crowd counting. Sonar-based
methods [19] suffer from rapid attenuation in air and lack
the fine spatial details of LiDAR, making them unsuitable
for large outdoor spaces. Sound-based methods [20] are cost-
effective but struggle with environmental noise and provide



lower accuracy and granularity than LiDAR, especially in
outdoor environments.

C. LiDAR-based Methods

There is currently no cost-effective, LiDAR-only crowd-
counting framework for outdoor environments like campuses,
where challenges such as weather conditions, privacy concerns,
costs, real-time requirements, and deployment complexities
arise. HAWC-CC is the first-of-its-kind framework designed
to address these issues and has been successfully deployed on
campus for real-world use.

3D LiDAR-based methods leverage human classifiers for
crowd counting. But designing a classifier that works well on
real-life data and satisfies real-time needs for human detection
is non-trivial. Human classifiers can be broadly categorized
into two types: non-CNN-based and CNN-based classifiers.

Non-CNN-based Human Classifier. Scholkopf et al. [12]
addressed human detection as a single-class classification
problem and proposed the One-Class Support Vector Machine
(OC-SVM) to solve it. Unlike conventional SVM, which
maximizes separation between two classes, OC-SVM treats
the origin in the projected space as an outlier and finds a
hyperplane that maximizes separation from it.

CNN-based Classifier. CNN-based classifiers can be classified
into two categories based on their techniques for handling 3D
LiDAR point clouds. 2D-CNN-based Methods convert 3D point
clouds into 2D views, e.g., bird-eye-view (BEV) [21], range-
view (RV) [22], and Density-SetAbstraction (Density-SA) [23].
These views are then classified using a 2D CNN. However,
these projection methods fail to capture the important spatial
details. For example, BEV [21] lacks vertical information,
making it less effective for small objects like pedestrians, and
often relies on other modalities, such as images, to provide
additional information [24]. Existing multi-view methods [22],
[23] address this by generating several 2D views to improve
spatial coverage. However, these views are typically predefined
and do not emphasize the semantic importance of features for
human detection. In comparison, we argue that height is the
most critical feature for human detection and propose a height-
aware projection method that augments height information in
the views. Our evaluation shows that the proposed method
outperforms all these alternatives (see Section VII-B).

3D-CNN-based Methods do not have the projection issue
as they directly process 3D point clouds. Qi et al. [10]
designed PointNet, the state-of-the-art neural network for
classifying 3D point clouds, leveraging read-process-write
networks with attention mechanisms to consume unordered
input [25]. However, PointNet is too large and too slow to run
on edge devices, and it is not robust to limited training data (see
Section VII-B for details). In comparison, our proposed HAWC
is more accurate, robust, and much faster than PointNet.

III. SYSTEM OVERVIEW

LiDAR-integrated smart blue light pole infrastructure.
Figure 2 shows a smart blue light pole with a LiDAR sensor
mounted atop the blue alarm light. The pole’s compartment

L

@
Ouster OSO
LiDAR Sensor

Jetson Nano
or
Coral

IoT Computing Devices
Fig. 2: Blue light pole with LiDAR sensor and computing devices.

1
: Height-Aware Human Classifier (HAWC) l

| .
Adaptive | 1 Height-Aware -2D CNN ‘ ) #
Clustering] , Up-Sampling -Projection "

T TR o
RiO' Clustering Outputs

Projected 2D Views
Fig. 3: Pipeline overview of HAWC-CC for crowd counting.

-

Point Cloud

houses computing devices and protects them from heat and rain.
To balance cost and performance, we select the Ouster OSO
32-channel LiDAR sensor [7] for data capture. For computing,
we employ the Coral Dev Board and Nvidia Jetson Nano,
both widely used lightweight Internet-of-Things (IoT) devices.
The LiDAR sensor captures real-time 3D point cloud data
from passersby, which is securely transmitted to the computing
devices housed in the pole’s compartment for crowd counting.

3D LiDAR data capture. HAWC-CC defines its region of inter-
est (ROI) and captures three-dimensional points p;(z;, y;, z;) €
R3 within it. The x-axis of the ROI restricts the distance from
12 meters to 35 meters from the LiDAR sensor, ensuring that
individuals within this range are captured without being affected
by shadows cast by the pole. Meanwhile, individuals beyond
35 meters are excluded since they produce weak reflective
signals. The y-axis covers the entire 5-meter-wide walkway,
providing comprehensive coverage for data collection within
the ROI. Instead of collecting point cloud data from a full
360-degree LiDAR scan, HAWC-CC targets approximately 90
degrees, specifically targeting the walkways connecting popular
campus areas. This targeted approach discards irrelevant data,
improving processing efficiency and accuracy by concentrating
only on the most frequently used paths.

Ingestion of high-quality 3D point clouds. HAWC-CC
improves the quality of captured 3D point clouds by removing
the noise from ground reflections or objects beyond the sensor’s
effective range, which can degrade classifier performance in
real-world LiDAR data. HAWC-CC employs a rule-based
ground segmentation technique to reduce z-axis noise, targeting
ground noise from objects like pulleys commonly found on
campus. Let z; denote a point’s z-axis coordinate and z,,;, the
minimum z value. The LiDAR sensor, mounted on the top of a
three-meter-tall smart blue light pole, has a detection range of 0



to —3 meters along the z-axis. Empirical observations indicate
that ground noise extends up to 0.4 meters. Thus, HAWC-CC
retains the points P; = {(z,y:,2:) € R¥i =1,...,N;2; >
Zmin} and sets zp,i, to —2.6 meters.

Processing 3D point clouds for crowd counting. Figure 3
provides an overview of HAWC-CC. First, it filters ground-
reflected noise in the point clouds. Second, it partitions the
point clouds into distinct clusters using the proposed adaptive
clustering method. Third, the height-aware human classifier
(HAWC) processes these clusters to classify them as “Human”
or “Object”. The crowd count equals the total number of
clusters identified as “Human”. For fast processing and low
memory usage, the convolutional network within HAWC
is quantized to 8-bit using post-training quantization. The
following sections will further discuss each step in detail.

IV. ADAPTIVE CLUSTERING

A core mechanism of HAWC-CC is to partition the point
clouds into distinct clusters. The mechanism serves two
purposes: 1) noise reduction—even after preprocessing, the
point cloud data may still contain noise, and clustering helps
reduce this noise by grouping similar data points; 2) handling
multiple objects of interest. Clustering is essential for scenes
with multiple objects, as it helps separate each object in the
point cloud, facilitating the detection.

Clustering different instances of humans. HAWC-CC em-
ploys the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm to group point clouds belonging
to different human instances. DBSCAN structures the data to
represent the underlying density accurately [26], ensuring that
points belonging to the same human instance are clustered
together. We also tested other popular clustering methods, e.g.,
hierarchical clustering [27], Gaussian mixture clustering [28],
and k-means clustering [29], but found them less favorable.
Gaussian mixture clustering and k-means clustering assume
a parametric distribution and typically create clusters with
convex shapes, which are less suitable for capturing complex,
non-convex patterns in the data. Hierarchical clustering often
attributes bounding boxes of the same object to separate
clusters. In contrast, DBSCAN can detect clusters with arbitrary
shapes, including non-convex shapes, and effectively handle
low-density regions by classifying them as outliers [30].

Adaptive clustering. As a prerequisite for applying DBSCAN,
HAWC-CC must specify €, which defines the neighborhood
range for each point. A good ¢ is crucial for accurate clustering,
but selecting an appropriate value is challenging due to the
lack of automatic method.

To determine €, we plot k-nearest neighbor distances in
decreasing order and identify the “elbow” point, indicating the
transition from points within clusters (with smaller distances)
to noise points (with larger distances). The plot’s “elbow” point
denotes this sample’s optimal e. Figure 4a shows the k-nearest
neighbor distance plot for a single training sample and its
“elbow” point indicates an optimal e value of 0.069.

Due to the unstructured and unordered nature of point clouds,
each sample may have a distinct optimal €. Our analysis of

g 0.14 1750
+0.10 b .
50.08 \ 51000 Wide range
’ g 750
Z0.06 2
= 500
+ 0.04 250 l
0.02 0 —
0 20 40 60 80 0 2 4 6 8
Points sorted by distance Elbow Value

(a) k-NN distance plot. (b) Elbow values distribution.

Fig. 4: Illustration of elbow point and the wide range of its value.

optimal e values across the training set (Figure 4b) reveals
a wide range from 0.04 to 9.06, with 0.08 predominating.
This variability poses challenges, as using a fixed € can result
in suboptimal performance. Furthermore, the range of € may
exceed that observed in the training set when processing new
data after HAWC-CC deployment.

To address the aforementioned problems, we propose adap-
tive clustering approach that dynamically calculates the optimal
€ for each LiDAR capture by identifying the “elbow” point
in the k-nearest neighbor plot. This optimal ¢ is then applied
in the DBSCAN to improve clustering quality. Specifically,
HAWC-CC first calculates the distances between each point
p; and its nearest neighbors, and then sorts these distances in
ascending order: D; = {d; x}¥=", where d; . is the distance
between point p; and its k-th nearest neighbor, and n denotes
the number of nearest neighbors.

Second, HAWC-CC performs the KneeLocator algorithm on
the sorted distance vector D; to determine the “elbow” point
wild’“) . The optimal € is
determined as the distance value at this POINt: €optimal = Ay -
Finally, HAWC-CC identifies core points C' as those having
at least m neighbors within the €qpima range, as follows: C' =
{pi | {p; | distance(p;, p;) < €optima | > m}.

HAWC-CC forms the final clusters by iterating through the
points and assigning them to clusters based on their connectivity
to core points. A point p; belongs to cluster C,, if it is a core
point or a neighbor of a core point within the €ypima range.

In summary, the proposed adaptive clustering method dy-
namically adjusts to the inherent structure and density of point
clouds, resulting in more accurate clustering compared to both
fixed-e density-based clustering and other non-density-based
methods (see Section VII-C for comparison results).

as follows: kepow = arg max; (

V. HEIGHT-AWARE HUMAN CLASSIFIER (HAWC)

A core component of HAWC-CC is classifying the 3D
point clouds produced by adaptive clustering. The classification
model should be: 1) lightweight to accommodate the resource
constraints; 2) capable of real-time classification for smart
campus applications; and 3) robust with limited labeled data.

Given these challenges, we propose a 2D-CNN-based
classifier as an suitable choice for classifying 3D point clouds
on edge devices. While non-CNN classifiers are lightweight,
easy to train, and suitable for learning from scarce data,
they rely on hand-crafted features, which is challenging to
find. In contrast, CNNs directly learn features from raw data,
demonstrating remarkable success across domains. To classify



3D point clouds, CNN-based classifiers either 1) process point
clouds with 3D models like PointNet or 2) convert 3D point
clouds into 2D views and process them with 2D CNNs. 3D
models preserve all features and can achieve good accuracy,
but they require extensive training data for effective feature
extraction due to the sparse and unstructured nature of 3D point
clouds. Processing in 3D space also demands significantly more
computational power than 2D, often exceeding edge devices
capabilities. Transformer-based and hybrid models face similar
limitations in terms of complexity and latency. Therefore, we
argue that a 2D-CNN-based approach can more effectively
handle the challenges of edge resource constraints, real-time
processing, and limited labeled data.

We propose a novel 2D-CNN-based classification method,
Height-AWare Human Classifier (HAWC) to enhance the 3D
point cloud classification. Specifically, first, HAWC employs the
proposed noise-controlled up-sampling approach to standardize
the size of 3D point clouds. It then uses a new height-aware
projection method to transform 3D point clouds into multiple
height-augmented 2D views. Finally, HAWC classifies these
2D views through a lightweight convolutional network.

Noise-controlled up-sampling. Given the challenge of identify-
ing point significance and its potential impact on classification,
we address CNNs’ fixed-size input requirement for variable-
sized 3D point clouds by standardizing point counts and
employing a novel noise-controlled up-sampling approach.
Let P, = {(z;,9;,%5) ; Ni & R? represent points in the
ith point cloud, where N; is the number of points, and R?
represents the three-dimensional Euclidean space with each
point (x;,y;,%;) specifies its x-, y-, and z-coordinates. To
determine the fixed-size input, HAWC first calculates the
maximum number of points across all the point clouds in
the training dataset: N,,o, = maz({N;}M,), where M is
the total number of point clouds in the entire training dataset.
HAWC then calculates the up-sampling size N}, ., ensuring
that it is sllghtly larger than N,,,, and a perfect square:
Nl = [\/ max | » meeting CNNSs’ square image requirement.
To maintain a consistent count of N/ . points across all
training samples, we introduce a controlled noise level to each
sample. Instead of sampling noise points from commonly used
distributions such as Gaussian, we propose to sample the noise
points from a distinct “Object” dataset, where humans are not
present in the scene. Thus, to standardize the number of points
to N/, ,.. for the ith point cloud HAWC samples additional

max
points Q; = {(zk, Y, zk)}k 1 Nmaz=Ni ¢ RS from the object

data. Finally, HAWC produces the zth up-sampled point cloud:
Pl = PUQz*{(xj»ijzj)}] 1Ww € R?.

Figure 5 illustrates the noise-controlled up-sampling process
for a single point cloud. The left figure shows a point cloud of
a single human, the middle figure shows a point cloud from
“Object” data, and the right figure shows the up-sampled point
cloud. In practice, all “Object” data are pooled together, and
the required number of point clouds are randomly selected
from this pool to up-sample each “Human” point cloud. The
proposed noise-controlled up-sampling approach effectively
reduces the impact of noise on the learning process of HAWC

Fig. 5: Noise-controlled up-sampling: left shows a single human point
cloud, the middle shows “Object” data, and the right shows the up-
sampled point cloud.

1

-

oomasmmo

= Human Data

0
8 mmm Human Data glo
Ob]ectData 28 Object Data
6 o6
2

4 g 4

2 Lueatlll Il g2

o | £, L.

—-14-12-10 -8 -6 —4 -5 -4 -3 -2-10
Value Value

mmm Human Data
Object Data

l|||||||||||||

-2.5 -2.0 -1.5 -1.0 -0.5
Value

53
i}
=
>
[9
<
5}
S
=
o
fid

| Frequency (1e4)

-
w

(a) x-axis. (b) y-axis. (c) z-axis.

Fig. 6: Histogram of “Human” and “Object” data on (a) x-axis, (b)
y-axis, and (c) z-axis.

and outperforms Gaussian distribution sampling (see Sec VII-B
for results).

To validate the low impact of additional noise on classifica-
tion accuracy, we compare the distribution patterns of “Human”
and “Object” data. Figure 6 shows histogram patterns for
point cloud coordinates across all three axes (x, y, z). This
visualization demonstrates that the “Human” data exhibits
unique patterns that are markedly different from those of
the “Object” data. The controlled noise from “Object” data is
unlikely to compromise classification accuracy. The proposed
noise-controlled up-sampling approach effectively reduces the
noise impact of HAWC and outperforms Gaussian distribution
sampling (see Sec VII-B for results).

Height-aware projection (HAP). After noise-controlled up-
sampling, the point clouds attain a consistent size that can
be converted into square views. In this section, we propose a
simple yet effective height-aware projection (HAP) method to
convert 3D point clouds into multiple 2D views.

First, HAP projects 3D point clouds into 2D space by directly
generating three 2D views, including front view, top view, and
side view, each with a dimension of N/ .. x 2. Specifically, for

max
the ith point cloud, the xy pla}ne projection generates the top

view PP = {pz (x, yj)}j 1 Moo € R2, the yz plane pI‘OJCCtIOIl

produces the front view P/™" = {p! (5, 25) Y= Vne ¢ R2,
and the xz plane projection generates the side view Ps’de =
{pz (xj,25) i:lv “ ¢ R2% HAP employs direct projection
instead of the commonly used occupancy grid [31], since the
occupancy grid is effective only with a large number of points.
With fewer points, the occupancy grid struggles to distinguish
valuable patterns from background noise.

Then, HAP calculates the variation in height (z-coordinate)
among neighboring points in the 3D point cloud, as height is
a significant feature for distinguishing human patterns. Spe01f-
ically, for the i-th point cloud P; = {p/(z;,y;, 2) Y= Mo &
R3, it first constructs a KD-tree K DTree(P;) to fac1lltate
fast nearest-neighbor searches. Then, for each ;" point p]



in F;, it identifies the k-nearest neighbors through a single
query to the KD-tree: K,J Query(K DTree(P;),p], k),
producing K7 = {p/ (xj,yj,zj)}7 ¥ € R3. Next, it extracts
the z-coordinates of the neighbors K], generating a set of
z-coordinates: {2 }J ¥ € R!. After that, it calculates the
height variation af for the j-th point of i-th point cloud,
as the standard deviation of these z-coordinates along the

neighbors: o7 = \/ L3°% (2] — %)2, where k is the number
of neighbors, z; is the mean of the z-coordinates for the j-th
point’s neighbors.

Next, HAWC incorporates height variations into the projected
views to augment the helght features. Specifically, it stacks the

N
height variations {Uz m ¢ R into the top view P}’ =

{p! (xj,y])}zziv',"“ € R2, producmg a height-integrated top

view Pt(’p = {pl(xj,y5,0)} i1 Mo R3, It then utilizes a
reshape function to transform the top view from a size of
Nlwx X3 t0 D x D x 3, where D = /N/,.. Similarly, it
also transforms the other two views from a size of N/, x 2
to D x D x 2. Finally, following the approach of stacking
RGB channels in images, HAWC stacks all three projections
to create a single input image of dimension D x D x 7, serving
as the input for the 2D CNN model.

2D CNN. HAWC processes the stacked projections using a
lightweight CNN model with three convolutional layers and two
fully connected layers, which has a total of 62,114 parameters.
Each convolutional layer includes batch normalization and a
ReLu activation, using 3 x 3 kernel and a stride of 1.

VI. EDGE DEPLOYMENT

We deployed the proposed models on smart blue light
poles for real-time and privacy-preserving crowd counting.
We considered two complementary devices: the Coral Dev
Board, providing an edge TPU for accelerating Al applications
but with limited 1GB memory, and the Nvidia Jetson Nano,
providing the Nvidia Maxwell GPU and 4GB of memory.

We used TensorFlow Lite on both devices for inference with
TFLite models. We employed TensorFlow Lite Converter [32]
to apply post-training quantization, converting floating-point
models into integer format and reducing complexity for real-
time inference on resource-constrained devices. Quantization is
essential for accelerating the model on the Coral Dev Board’s
TPU, which supports only 8-bit integer models. To preserve
accuracy, the converter calibrates the quantization range using
a calibration dataset. We randomly selected 100 samples from
our training data to serve this purpose.

VII. EVALUATION
A. Methodology

3D LiDAR dataset. A good 3D LiDAR dataset for crowd
counting should: 1) consist of clear cloud points from LiDAR
sensor; 2) originate from real-world deployments, capturing
spatiotemporal patterns of humans, and aligning with the de-
ployment setup; 3) provide annotated human labels for accuracy
evaluation; and 4) include metadata such as timestamps and

-
-

(a) Single-person LiDAR capture.

(b) Single-person camera capture.

Fig. 7: Example visualization of captures from LiDAR and image
sensor. These sensors face the same direction at a similar height.

sensor positions to support the analysis of dynamic crowd
behaviors over time.

However, existing public outdoor 3D point cloud datasets
for crowd counting are limited and do not meet the above
requirements. To address this gap, we collected and curated
two LiDAR datasets using data captured from smart blue
light poles deployed across the campus (see Section III). Each
dataset contains 15,028 LiDAR samples collected over one
year (2021 to 2022). We also collected camera images for
ground truth validation, but we did not use camera data for
inference to provide strong privacy protection. The first dataset
exclusively contains single-person captures for evaluating
single-person detection. We created the ground truth labels
for the LiDAR samples using a Lasso selector to identify the
most distinctive human pattern in each point cloud and verified
them using the associated RGB images (see Figure 7). The
second dataset includes multiple-person captures for evaluating
crowd counting. We created the ground truth labels by manually
counting humans in each LiDAR capture and verifying the
counts using the associated RGB image. Each LiDAR sample,
i.e., one point cloud, has a size of 324 x3. We applied a random
80:20 training and test split across LiDAR samples.

Accuracy metrics. We measured the accuracy of both HAWC
for single-person detection and HAWC-CC for crowd count-
ing. For single-person detection, we evaluated HAWC’s test
accuracy, precision, recall, and F1 score. For crowd counting,
we measured HAWC-CC’s Mean Absolute Error (MAE) and
Mean Squared Error (MSE), following the methodology of
previous works on image-based crowd counting [2], [4]. For

a sequence of NV L1DAR point clouds, MAE is defined as
follows: MAE = LS 1 |C; — CET|, where C; represents
the crowd count predicted by the model, and CS7 is the
crowd count derived from the human-labeled ground- truth.
MSE serves as a complementary metric to MAE and indicates
the robustness of the predicted count [2], defined as follows:

MSE =L YN, \/(Ci—CCT)?

Speed metric. For inference speed, we measured the end-to-
end inference time to process a single LIDAR sample, reflecting
real-world scenarios with continuous streaming data.

Baselines. For human detection, we compared HAWC to three
prior works: PointNet [10], AutoEncoder [11], OC-SVM [33].
These designs cannot support crowd counting as they lack our



data processing and adaptive clustering techniques. In order to
evaluate their performance for crowd counting, we integrated
them into HAWC-CC by replacing HAWC and adding steps
(e.g., feature extraction, up-sampling), resulting in PointNet-CC,
AutoEncoder-CC, and OC-SVM-CC.

o PointNet-CC: Unlike HAWC, which converts 3D point
clouds into multiple 2D views before classification, PointNet-
CC directly process 3D point clouds using the state-of-
the-art model, PointNet [10]. To handle PointNet’s fixed-
size input requirement, PointNet-CC uses our up-sampling
step to increase the number of points in each point cloud
generated from adaptive clustering. We used the original
PointNet implementation, consisting of 64 layers and 747,947
parameters. It includes a classification network, which
transforms inputs and aggregates features by max pooling,
and a segmentation network, which concatenates global and
local features for per-point scores.

o AutoEncoder-CC: AutoEncoder-CC performs feature extrac-
tion after adaptive clustering to obtain meaningful features,
e.g., boundary regularity and circularity, for human detec-
tion [34]; it then utilizes AutoEncoder [11] for classification.
The feature extraction divides each point cloud into slices
(0.2-meter intervals, approximating human head length),
and extract features from each slice. The AutoEncoder
comprises a three-layer encoder, a bottleneck layer, a three-
layer decoder, and an output layer. Following Liou et al [11],
we used KeraTuner [35] to optimize number of neurons in
the model with a grid search (16 to 128 neurons per layer),
resulting in a model with 26,384 parameters.

e OC-SVM-CC: Similar to AutoEncoder-CC, OC-SVM-CC
also performs feature extraction following adaptive clustering
and then it utilizes OC-SVM [33] for classification. We
considered OC-SVM because of its popularity in two-class
nonlinear classification tasks, treating the origin of the high
dimensional space as the only member of the second class.

Implementation details. We implemented HAWC-CC and all
baselines using TensorFlow 2.12.0 and Python version 3.9.16.
HAWC uses the Adam optimizer with a learning rate of 0.001
and a batch size of 32. PointNet and AutoEncoder use the
Adam optimizer with batch sizes of 64 and 512, respectively,
and a learning rate of 0.001. OC-SVM employs a Radial Basis
Function kernel with a coefficient of 1/n, where n is the
number of input features. Both the training errors upper bound
and the support vectors lower bound are set to 0.01.

B. Significance of Height-Aware Human Classifier

Height-AWare Human Classifier (HAWC) is designed to
distinguish between humans and objects, which is critical
to the performance of crowd counting. In this section, we
conduct a comprehensive evaluation of HAWC in comparison
to alternative classifiers, including PointNet [10], AutoEn-
coder [11], and OC-SVM [33]. Specifically, we compare their
accuracy, robustness to limited training data, and inference
speed. Additionally, we perform an in-depth analysis of the
effectiveness of HAWC’s key components, such as noise-
controlled object data sampling and height-aware projection.

Accuracy. Table I illustrates the test accuracy comparison for
single-person classification between HAWC and the baselines
in full-precision (32-bit floating points) and quantized 8-bit
formats. In full precision, HAWC performs the best across all
accuracy metrics, including test accuracy, F1 score, precision
and recall. Specifically, HAWC achieves the highest test
accuracy of 99.97%, significantly outperforming the baselines
by 5.06% to 51.37%. Moreover, HAWC achieves F1 score,
precision, and recall of 1.0, reflecting its exceptional ability to
distinguish between humans and objects without any errors.

After 8-bit quantization, HAWC maintains the highest
accuracy among all the baselines. Specifically, 8-bit HAWC
achieves 99.53% test accuracy, outperforming 8-bit PointNet
and 8-bit AutoEncoder by 9.94% and 26.18%, respectively.
HAWC also shows the least accuracy degradation from quanti-
zation. Quantization reduces HAWC’s test accuracy by only
0.44%, significantly lower than the accuracy loss observed
in PointNet (5.32%) and AutoEncoder (4.59%). OC-SVM is
excluded from the quantized accuracy comparison because its
reliance on support vectors and kernel methods, which require
precise positioning and transformations, makes it incompatible
with reduced bit widths. It is noteworthy that the impact of
quantization on networks for LiDAR-based 3D classification
tasks is recognized as a significant challenge [36]. Our work is
among the first to provide a comprehensive analysis of the state-
of-the-art methods, and our proposed classification method can
achieve the lowest and negligible quantization accuracy loss.

As observed, PointNet performs worse than HAWC, with
lower test accuracy (94.91% vs. 99.97%) and F1 scores
(0.89 vs. 1.0) in full precision, and lower test accuracy
(89.59% vs. 99.53%) in 8 bitwidth, despite its state-of-the-art
accuracy in complex 3D tasks [10]. Its complex architecture,
tailored for multi-category object classification and detailed
segmentation, leads to overfitting in binary classification tasks,
reducing its generalization capability. Moreover, PointNet’s
direct processing of raw 3D point clouds results in a high-
dimension input space that introduces noise and redundancy.
In contrast, HAWC’s height-aware 2D projections effectively
filter noise and preserves human-related features, achieving
superior detection accuracy. Notably, OC-SVM performs the
worst, with a test accuracy of 48.6% and an F1 score of
0.49, as it misclassifies every test LIDAR sample as “human”.
This result indicates that 3D point cloud-based classification
tasks are exceedingly challenging for SVM-based methods.
Figure 8a illustrates the test accuracy progression of all the
models. HAWC shows more fluctuation across iterations than
the baselines due to learning from multiple views of each
LiDAR capture, which introduces view-specific variability;
however, its consistently strong performance on unseen test
data demonstrates its robustness.

Robustness to limited training data. Figure 8b shows the test
accuracy of HAWC, PointNet, and AutoEncoder trained on
varying percentages of the training data, from 100% to 0.1%.
HAWC demonstrates the highest robustness to limited training
data, achieving an accuracy of 99.97% with the full training
dataset and a notable 90.29% with only 0.1% of the training



TABLE I: Accuracy comparison for single-person human detection
between HAWC and the baselines in full-precision and quantized
8-bit formats. We do not include OC-SVM for quantized accuracy
comparison (denoted with “-”) since its reliance on support vectors
and kernel methods makes it incompatible with reduced bit widths.

Model FP32 Int8
Test .. Test Test Acc.
Ace. (%) F1 Precision Recall Acc. (%) Diff. (%)
OC-SVM 48.60 0.49 047 0.50 - -
AutoEncoder 77.94 0.49 0.88 0.87 73.35 -4.59
PointNet 9491 0.89 0.85 0.77  89.59 -5.32
HAWC (Ours) 99.97 1.00 1.00 1.00  99.53 - 0.44
100
X
< 954 .
g <100 = 15 0.29
g 90 < 4.9
= 3 75
§ 85 HAWC (Ours) § 77.94 By NQAED
< 801 _—_ PointNet § 501 —m— HAWC (Ours)
0 ] 5 —— PointNet
@ 75| —— AutoEncoder 2 259 —a— AutoEncoder
70 12.4

T 1 T T 1
0 250 500 750 1000
Iteration

100 70 50 10 5 2 1 01
Percentage of Training Data (%)

(a) 100% training data. (b) Varying percentage of training data.

Fig. 8: Test accuracy of HAWC with baselines on (a) 100% training
data and (b) varying percentages of the training data.

data. PointNet’s accuracy decreases from 94.91% to 75.82%,
while AutoEncoder shows significant sensitivity, dropping from
77.94% to 12.44%. These results highlight HAWC’s superior
robustness to limited training data.

Inference speed. Table II shows the inference speed of HAWC,
PointNet, AutoEncoder, and OC-SVM in both full precision
(32-bitwidth) and 8-bit quantization on the Coral Dev Board
and Nvidia Jetson Nano. On the Jetson Nano, HAWC achieves
faster inference speed than PointNet by 23 x in floating points
and by 37x in 8-bit integers. Moreover, although AutoEncoder
performs faster than HAWC. e.g., 0.03 ms vs. 0.29 ms in
8-bit, this comes at the expense of significantly lower accuracy.
Specifically, the test accuracy of 8-bit AutoEncoder is 73.35%,
lower than the 8-bit HAWC by 26.18%, as shown in Table 1.
Furthermore, quantization enables HAWC to achieve the highest
speedup of 1.87x, outperforming AutoEncoder at 1.62x and
PointNet at 1.13x.

On the Coral Board, with 8-bit quantization, HAWC achieves
the lowest inference speed of 0.62 ms, outperforming Au-
toEncoder and PointNet by 1.76x and 1.69x, respectively.
Meanwhile, 8-bit HAWC achieves the highest test accuracy
of 99.53%, as shown in Table I. These results validate that
HAWC is both the fastest and the most accurate model.

On the Coral Board, the 8-bit AutoEncoder surprisingly
has a longer inference time than its floating-point counterpart,
whereas 8-bit HAWC achieves a significant 3.05x speedup.
This is because the edge TPU on the Coral Board is optimized
for operations such as convolutions and pooling but it cannot
handle fully connected layers, heavily used in AutoEncoder,
efficiently. In contrast, the Jetson Nano avoids this issue with
its general-purpose GPU and libraries like CUDA and cuDNN

TABLE II: Inference time of full-precision and 8-bit HAWC and
baselines for processing a single LiDAR sample on the Coral Dev
Board and Nvidia Jetson Nano (“+” indicates standard deviation).

Inference Time (ms)

Edge Device Model Speedup
FP32 Int8

0OC-SVM 0.30 + 0.01 - -

Jetson Nano Au}oencoder 0.04 = 0.02 0.03 £0.01 1.62 x
PointNet 12.15 £ 1.51  10.75 £ 0.74 1.13 x
HAWC (Ours) 0.54 + 0.20 0.29 £ 0.05 1.87 x
OC-SVM 0.32 £ 0.03 - -

Coral Dev Board Autoencoder  0.07 = 0.04 1.05 £ 0.19 0.07 x
PointNet 57.14 £ 14.63 1.09 +0.78 52.33 x
HAWC (Ours) 1.88 +1.33 0.62 + 048 3.05 x

TABLE III: Test accuracy comparison between object data sampling
and Gaussian distribution sampling with varied standard deviation o.

Object data ~ Gaussian distribution sampling

Sampling Method

sampling =3 p— o7
Test Accuracy (%) 99.97 99.70 9430 97.15
Accuracy Difference (%) 0 -0.27 -5.67 -2.82

which support a broad range of operations. This observation
shows that CNN-based frameworks for processing 3D cloud
points are well-suited for deployment on typical edge hardware.

Object data sampling. Point clouds exhibit diverse sizes,
whereas CNNs require fixed-size inputs. To address this,
HAWC up-samples the point clouds to a fixed size through
object data sampling, which selects points from the “Object”
dataset consisting of scenes without humans. Alternatively,
Gaussian distribution sampling generates synthetic points with
a fixed mean ;o = 0 and varying standard deviations o, e.g.,
o € {3,5,7}. As shown in Table III, object data sampling
outperforms Gaussian distribution sampling by up to 5.67%.

Height-aware projection (HAP). HAWC uses HAP to convert
3D point clouds into multiple 2D views. To evaluate the
effectiveness of HAP, we compare HAWC’s test accuracy
for human detection and HAWC-CC’s accuracy for crowd
counting against four alternative projection methods: bird-
eye-view (BEV) [21], range-view (RV) [22], density-aware
(DA) [23], and three-view (TV) projections, a simplified version
of HAP without height integration.

Figure 9 demonstrates that HAP enables HAWC and HAWC-
CC to achieve significantly higher accuracy than other pro-
jection methods. Specifically, for human classification, HAP
outperforms all baselines by up to 12.44%, and for crowd
counting, it achieves 7.32% to 75.61% lower MAE and 15.87%
to 83.88% lower MSE.

HAP’s superior performance stems from its enhanced uti-
lization of height information, which improves differentiation
between overlapping objects at different elevations and miti-
gates occlusion issues. It achieves a balanced representation of
height, width, and depth, leading to higher spatial resolution and
more accurate crowd localization. Unlike bird-eye-view, range-
view, and three-view, which lose crucial height information,
and density-aware projection, which loses spatial details, HAP
integrates height directly into the projection process, reducing



m MAE
MSE

0.79
0.63
052000 41520 3853

BEV RV DA TV  HAP
(Ours)

Test Accuracy (%)

BEV RV DA TV

HAP
(Ours)
Projection Methods Projection Methods

(a) HAWC (b) HAWC-CC
Fig. 9: (a) Test accuracy of HAWC and (b) MAE and MSE of HAWC-
CC using our height-aware projection (HAP) and alternative methods,
including bird-eye-view (BEV), range-view (RV), density-aware (DA),
and three-view (TV) projections.

TABLE IV: Accuracy of HAWC-CC with different clustering methods.
The number inside the bracket represents the relative improvement of
the proposed adaptive clustering over those methods.

134.7 (99.72%)
0.38

28236.72 (100%)
0.53

Hierarchical Clustering

Method \ MAE MSE
0.1 1.56 (75.57%) 3.28 (83.85%)
0.3 0.67 (43.03%) 1.04 (49.22%)
Fixed-e Clustering 0.5 0.40 (4.63%) 0.55 (3.49%)
0.7 0.42 (9.82%) 0.63 (15.46%)
0.9 0.45 (15.1%) 0.71 (25.4%)
|
\

Adaptive Clustering

ambiguity and providing a more comprehensive understanding
of crowd distributions.

C. Significance of Adaptive Clustering

Table IV shows that HAWC-CC achieves the highest
accuracy (lowest MAE and MSE) with the proposed adaptive
clustering compared to fixed-e¢ clustering and hierarchical
clustering. Specifically, adaptive clustering outperforms fixed-
e clustering with ¢ € {0.1,0.3,0.5,0.7,0.9} by 4.63% to
75.57% in MAE and 3.49% to 83.85% in MSE. Hierarchical
clustering is less favorable as it often attributes bounding
boxes of the same person to separate clusters, significantly
overestimating crowd size. This observation aligns with Xu
et al.’s findings [37], where hierarchical clustering performed
poorly for Object Re-identification (RelD) in city-scale edge
camera networks. These results confirm the effectiveness of
the proposed adaptive clustering, which adaptively selects the
optimal € for each 3D point cloud.

D. Crowd Counting Performance

Accuracy. Table V shows the accuracy of full-precision (32-bit
floating points) and 8-bit quantized HAWC-CC compared to the
baseline crowd counting frameworks. HAWC-CC consistently
achieves the highest accuracy, i.e., the lowest MAE and MSE,
outperforming the baselines by substantial margins, up to
86.61% in MAE and 90.44% in MSE. Specifically, in full
precision, HAWC-CC outperforms 1) PointNet-CC by 39.68%
and 45.92%, 2) AutoEncoder-CC by 11.63% and 32.05%, and
3) OC-SVM-CC by 86.61% and 90.44%, in MAE and MSE,
respectively. After quantizing all the classifiers to 8-bit, HAWC-
CC still outperforms 1) PointNet-CC by 73.72% and 83.03%,

and 2) AutoEncoder-CC by 43.91% and 64.22%, in MAE and
MSE, respectively. OC-SVM-CC is excluded from quantized
accuracy comparison since its reliance on support vectors and
kernel methods makes it incompatible with reduced bitwidths.

As shown in Table V, HAWC-CC also demonstrates re-
markable robustness to quantization, exhibiting the smallest
increments in MAE and MSE among all the evaluated frame-
works. For example, quantization increases HAWC-CC’s MSE
by only 0.03, significantly lower than PointNet-CC’s 2.32 and
AutoEncoder-CC’s 0.79. These results confirm that HAWC-CC
is the most accurate and robust framework in both full and
reduced precisions.

Speed. Table V shows the crowd counting speed of HAWC-CC
and baseline frameworks. Speed is measured as the inference
time of the entire system for processing a single LiDAR sample
on Nvidia Jetson Nano. Consider a 60 frames-per-second sensor,
each frame must be processed within 16 ms to meet real-time
requirements. HAWC-CC is the only framework that closely
meets this requirement. Specifically, HAWC-CC processes one
LiDAR sample in 17.42 ms, faster than PointNet-CC by 1.5x
(26.25 ms) and AutoEncoder-CC by 2.7x (46.98 ms).

Although AutoEncoder-CC uses a lightweight classifier
AutoEncoder, it is slower than HAWC-CC due to its time-
consuming feature extraction. PointNet-CC is also slower
than HAWC-CC because it uses PointNet, a computationally
expensive model that directly processes raw 3D point clouds.
Moreover, PointNet’s feature transformations and max pooling
operations, although effective for capturing 3D structures,
further increase the computational burden. In comparison,
HAWC-CC converts the complex 3D point clouds into 2D views
and processes them with a lightweight classifier HAWC, which
has fewer parameters and lower computational requirements.

In summary, HAWC-CC achieves the highest accuracy and
fastest speed among all the baselines, enabling accurate and
real-time crowd counting. 7o the best of our knowledge, HAWC-
CC is the first-of-its-kind real-time and accurate framework
for LiDAR-based crowd counting on a smart campus.

Scalability. Publicly available LiDAR datasets for high-density
outdoor crowds are scarce. For example, CrowdBot [38]
supports densities of only 0.1 to 1 person/m?2. To overcome
this, we generated a synthetic dataset doubling the density
to 2 persons/m?, providing a more realistic and challenging
crowd counting evaluation. We applied random offsets to the
z and y coordinates of single-person point clouds to simulate
varying pedestrians distances. To improve realism, we added
object data proportional to the number of simulated pedestrians
(e.g., 10 object data samples for 20 pedestrians). Figure 11 (a)-
(c) visualizes the point clouds of these density levels and
Figure 11 (d)-(f) visualizes the offset distributions.

We simulated three density levels based on Fruin et al.’s
criteria [39]: 1) Low Density (up to 1 person/m?), 2) Moderate
Density (less than 2 people/ m?), and 3) High Density (more
than 2 people/m?). To model these densities, we generated
synthetic data following our setup, where the LiDAR deploy-
ment covers a 5S-meter walkway located 12 to 35 meters from
the sensor. We simulated a 100-square-meter area to match



TABLE V: Crowd counting performance including accuracy and speed for HAWC-CC and baselines models in full precision (FP32) and 8-bit
(Int8). Bracketed values indicate the relative MAE/MSE improvements of HAWC-CC over the baseline frameworks. OC-SVM-CC is excluded
from quantized accuracy comparison (denoted with “-”) since it does not support quantization. Speed is measured as the inference time of the
entire system for processing a single LiDAR sample on Nvidia Jetson Nano, with both the average value and the standard deviation reported.

\ FP32 \ Int8
Framework
‘ MAE MSE ‘ MAE MSE ‘ MAE Difference MSE Difference ‘ Speed (ms)
OC-SVM-CC 2.84 (86.61%) 5.55 (90.44%) - - - - -
AutoEncoder-CC 0.43 (11.63%) 0.78 (32.05%) 0.73 (43.91%) 1.57 (64.22%) + 0.30 +0.79 46.98 £+ 1.70
PointNet-CC 0.63 (39.68%) 0.98 (45.92%) 1.56 (73.72%) 3.3 (83.03%) + 0.93 +2.32 26.25 £+ 0.65
HAWC-CC (Ours) 0.38 0.53 0.41 0.56 + 0.03 + 0.03 17.42 + 0.46
TABLE VI: Scalability results for crowd counting with pedestrian
counts from 20 to 250, averaged over three runs on 100 LiDAR 55 4
samples (“£” indicates standard deviation). 5
. Density Total Actual s
# Pedestrians "y oy MAE MSE Count (K)  Count (K) < 451
@ I

20 Low 0473 £ 0.057 0.920 + 0.062 2 1.952 + 0.005 2 40+ {3 BLEL B W \ \ Redte Wil

30 Low 0733 £ 0.235 1.647 £ 0.755 3 2.926 =+ 0.023 g dFREArAE AT Rk \‘|‘||| \““‘\

40 Low 0913 + 0095 2427 + 0324 4 3909 + 0.008 £3571 It '|'|','| L EERNEE RS

50 Low  1.107 & 0.168 3.140 % 0.738 5 4889+ 0016 @ ol WY T

60 Low 1443 + 0.166 4.543 % 0.806 6 5.855 + 0.016 \ W e .

70 Low  1.643 + 0.075 5.603 & 0.356 7 6.835 + 0.007 251 1 v\;’ et:m‘fra “ret

80 Low  1.877 #+ 0.095 6.910 & 0.238 8 7.812 %+ 0.009 —~ Weather femperature

90 Low  2.007 & 0.093 7.600 + 0.571 9 8.799 + 0.009 06/24/23 06/28/23 07/02/23 07/06/23 07/10/23

100 Moderate 2.430 + 0.161 10.983 =+ 2.336 10 9.757 + 0.016 Time

150 Moderate 3.173 =+ 0.405 17.747 & 4.509 15 14.682 + 0.04 : . ; )

200 High 4.483 + 0280 30977 £ 5237 20 19.551 & 0.028 Flfg’ 10: c};o}lf tgmp ergt}:lre an;l lysis from sum;ner 2}?23' We crgsg

250 High 5903 & 0.156 52.090 + 3.978 25  24.400 + 0015 referenced this data with weather temperatures from the same period.

these conditions, with pedestrians randomly distributed within
—>5 to 5-meter offset along both the x and y axes. This setup
generates synthetic crowd data ranging from 7 meters (12 — 5)
to 40 meters (354 5) from the sensor. This approach enables
varying pedestrians numbers to simulate various density levels.

Table VI lists the scalability evaluation results across various
densities. HAWC-CC is highly accurate and effective in both
moderate and high-density settings. Specifically, in moderated
density setting (150-person scene), it achieves an average MAE
of 3.1 on average, i.e., miscalculation of 3.1 people, achieving
98% accuracy or 2% error. Even in the challenging, high-
density setting (250-person scene), our method still performs
highly accurately, achieving 97.64% accuracy or only 2.36%
error. Additionally, HAWC-CC significantly outperforms SOTA
RGB image-based methods in high-density settings by up to
22.54%, compared to 90.9% by Su et al. [13], 77.1% by Liu
et al. [14], and 86.27% by Hao et al. [15].

Deployment Issues. We deployed smart blue light poles
on ASU campus with elevated summer temperatures. To
ensure the reliability of edge devices housed within the pole’s
compartment, we monitored and analyzed their temperature.
Given the vast temperature data collected over a year, we focus
on a specific summer period from June 24, 2023 to July 11,
2023. A temperature sensor within the pole records temperature
every 1.7 minutes, generating 2500 data points daily. We also
cross-referenced this data with weather temperature data from
Visual Crossing [40] during the same period.

Figure 10 shows the weather and pole temperatures during
this period. The pole temperatures varied each day closely
aligned with weather changes, with a maximum temperature of
57.81°C, a minimum of 21.00°C, and an average of 41.95°C.

(d) Low density. (e) Moderate density.

(f) High density.

Fig. 11: Visualization of point clouds (a-c) and offset distribution (e-f)
for varied density levels.

The temperature difference between the pole and the weather
remains consistent: approximately 10°C higher during peak
heat and less than 5°C during cooler period. Notably, despite
slightly exceeding the recommended operational range of 0°C
to +50°C [41], the Coral Dev Board operated with no issue.

VIII. CONCLUSIONS

This paper presents Height-AWare Human Classifier for
Crowd Counting (HAWC-CC), a smart blue pole-based crowd
management solution for smart campuses. HAWC-CC leverages
LiDAR-based data collection, ML-based human detection and
counting, and edge computing-based real-time processing. It
proposed a novel adaptive clustering method and a novel Height-
AWare Human Classifier (HAWC), trained using LiDAR data
from the blue light poles and deployed on the Nvidia Jetson and
Coral TPU embedded on the poles. Evaluation results show



that HAWC-CC achieves a much faster and more accurate
end-to-end performance than the representative related works.
HAWC-CC offers a pioneering smart campus infrastructure that
synergistically integrates new IoT, ML, and edge computing
solutions, and its real on-campus deployment also demonstrates
that its design and implementation work well in practice.

While HAWC-CC provides accurate and privacy-preserving
crowd counting for smart campus, the proposed classifier,
HAWC, relies on an assumption of the average college students
height, which may limit its generalizability to populations
with significantly different height distributions. A direction
to address this is by integrating non-intrusive complementary
sensors like thermal sensors to improve the classification result
without compromising privacy.

ACKNOWLEDGMENT

This work is supported by National Science Foundation
awards CNS-2311026, SES-2231874, OAC-2126291 and CNS-
1955593. We thank the anonymous reviewers for their valuable
feedback. We also thank Divy Kamlesh Patel and Ahraz Rizvi
for their help with data labeling.

REFERENCES

[1] D. Liang, X. Chen, W. Xu, Y. Zhou, and X. Bai, “Transcrowd: weakly-
supervised crowd counting with transformers,” Science China Information
Sciences, vol. 65, no. 6, p. 160104, 2022.

[2] B.S. et al., “Switching convolutional neural network for crowd counting,”

in Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 5744-5752, 2017.

X. Jiang, L. Zhang, M. Xu, T. Zhang, P. Lv, B. Zhou, X. Yang, and

Y. Pang, “Attention scaling for crowd counting,” in Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition,

pp. 4706-4715, 2020.

[4] Z. et al., “Cross-scene crowd counting via deep convolutional neural

networks,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, pp. 833-841, 2015.

P. Zhang, Z. Tao, W. Yang, M. Chen, S. Ding, X. Liu, R. Yang, and

H. Zhang, “Unveiling personnel movement in a larger indoor area with a

non-overlapping multi-camera system,” arXiv preprint arXiv:2104.04662,

2021.

Z. Wang, R. Arablouei, J. Liu, P. Borges, G. Bishop-Hurley, and

N. Heaney, “Point-syn2real: Semi-supervised synthetic-to-real cross-

domain learning for object classification in 3d point clouds,” in 2023 IEEE

International Conference on Multimedia and Expo (ICME), pp. 1481—

1486, IEEE, 2023.

[7]1 Ouster, “OS0: Ultra-Wide View High-Resolution Imaging Lidar.,” 2020.

[8] M. De Deuge, A. Quadros, C. Hung, and B. Douillard, “Unsupervised
feature learning for classification of outdoor 3d scans,” in Australasian
conference on robitics and automation, vol. 2, University of New South
Wales Kensington, Australia, 2013.

[9]1 A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous

driving? the kitti vision benchmark suite,” in 2012 IEEE conference on

computer vision and pattern recognition, pp. 3354-3361, IEEE, 2012.

Q. et al., “Pointnet: Deep learning on point sets for 3d classification

and segmentation,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 652-660, 2017.

C.-Y. Liou, W.-C. Cheng, J.-W. Liou, and D.-R. Liou, “Autoencoder for

words,” Neurocomputing, vol. 139, pp. 84-96, 2014.

B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.

Williamson, “Estimating the support of a high-dimensional distribution,”

Neural computation, vol. 13, no. 7, pp. 1443-1471, 2001.

J. Su, H. Zhang, X. Luan, and Q. Tian, “Fusion attention mechanic

crowd counting network based on transformer,” in Proceedings of the

2024 8th International Conference on Control Engineering and Artificial

Intelligence, pp. 3743, 2024.

[3

[5

=

[6

=

[10]

(11]

[12]

[13]

[14] L. et al., “Cross-modal collaborative representation learning and a
large-scale rgbt benchmark for crowd counting,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pp. 4823-4833, 2021.

L. Hao, B. Huang, B. Jia, and G. Mao, “Heterogeneous dual-attentional
network for wifi and video-fused multi-modal crowd counting,” IEEE
Transactions on Mobile Computing, 2024.

Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma, “Single-image crowd
counting via multi-column convolutional neural network,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 589-597, 2016.

C. et al., “Mac address randomization tolerant crowd monitoring
system using wi-fi packets,” in Proceedings of the 16th Asian Internet
Engineering Conference, pp. 27-33, 2021.

W. et al., “People counting with carry-on rfid tags,” in 2023 IEEE/ACM
31st International Symposium on Quality of Service, pp. 1-10, 2023.

J. e. a. Kay, “The caltech fish counting dataset: A benchmark for multiple-
object tracking and counting,” in Computer Vision — ECCV 2022, pp. 290—
311, Springer Nature Switzerland, 2022.

H. et al.,, “Crowdotic: Transformer-based occupancy estimation for
hospital waiting rooms with non-speech audio and differential privacy,”
arXiv preprint, 2023.

J. Zarzar, S. Giancola, and B. Ghanem, “Efficient bird eye view proposals
for 3d siamese tracking,” arXiv preprint arXiv:1903.10168, 2019.

K. et al., “Rethinking range view representation for lidar segmentation,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 228-240, 2023.

L. et al., “Density-net: A density-aware network for 3d object detection,”
in 2021 IEEE 33rd International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 1105-1112, IEEE, 2021.

B. et al.,, “Birdnet+: End-to-end 3d object detection in lidar bird’s
eye view,” in 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC), pp. 1-6, IEEE, 2020.

O. Vinyals, S. Bengio, and M. Kudlur, “Order matters: Sequence to
sequence for sets,” arXiv preprint arXiv:1511.06391, 2015.

H.-P. Kriegel, P. Kroger, J. Sander, and A. Zimek, ‘“Density-based
clustering,” Wiley interdisciplinary reviews: data mining and knowledge
discovery, vol. 1, no. 3, pp. 231-240, 2011.

F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an
overview,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 2, no. 1, pp. 86-97, 2012.

A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264-323, 1999.
O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and 1. Perona,
“An extensive comparative study of cluster validity indices,” Pattern
recognition, vol. 46, no. 1, pp. 243-256, 2013.

M. Habhsler, Piekenbrock, et al., “dbscan: Fast density-based clustering
with 1,” Journal of Statistical Software, vol. 91, pp. 1-30, 2019.

A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46-57, 1989.

Google, “TFLiteConverter.,” 2019.

B. Scholkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt,
“Support vector method for novelty detection,” Advances in neural
information processing systems, vol. 12, 1999.

A. Leigh, J. Pineau, N. Olmedo, and H. Zhang, “Person tracking and
following with 2d laser scanners,” in 2015 IEEE international conference
on robotics and automation (ICRA), pp. 726-733, IEEE, 2015.

T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi,
et al., “Keras Tuner.” https://github.com/keras-team/keras-tuner, 2019.
S. Zhou, L. Li, X. Zhang, B. Zhang, S. Bai, M. Sun, Z. Zhao, X. Lu,
and X. Chu, “Lidar-ptq: Post-training quantization for point cloud 3d
object detection,” arXiv preprint arXiv:2401.15865, 2024.

T. Xu, K. Shen, Y. Fu, H. Shi, and F. X. Lin, “Rev: A video engine
for object re-identification at the city scale,” in 2022 IEEE/ACM 7th
Symposium on Edge Computing (SEC), pp. 189-202, IEEE, 2022.

D. Paez-Granados, Y. He, D. Gonon, L. Huber, and A. Billard, “3d point
cloud and rgbd of pedestrians in robot crowd navigation: Detection and
tracking,” IEEE DataPort, vol. 12, 2021.

J. Fruin, Pedestrian Planning and Design. Metropolitan Association of
Urban Designers and Environmental Planners, 1971.

Visual Crossing Corporation, “Visual Crossing Weather. 2023/06/24-
2023/07/11.,” 2023.

Google, “Coral Dev Board Datasheet, Version 1.7,” 2022.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]



